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Abstract—We study a social learning model in which
agents iteratively update their beliefs about the true state
of the world using private signals and the beliefs of other
agents in a non-Bayesian manner. Some agents are stub-
born, meaning they attempt to convince others of an erro-
neous true state (modeling fake news). We show that while
agents learn the true state on short timescales, they “for-
get” it and believe the erroneous state to be true on longer
timescales. Using these results, we devise strategies for
seeding stubborn agents so as to disrupt learning, which
outperform intuitive heuristics and give novel insights re-
garding vulnerabilities in social learning.

[. INTRODUCTION

With the rise of social networks, people increasingly receive
news through non-traditional sources. One recent study shows
that two-thirds of American adults have gotten news through
social media [1]. Such news sources are fundamentally dif-
ferent than traditional ones like print media and television, in
the sense that social media users read and discuss news on
the same platform. As a consequence, users turning to these
platforms for news receive information not only from major
publications but from others users as well; in the words of [2],
a user “with no track record or reputation can in some cases
reach as many readers as Fox News, CNN, or the New York
Times.” This phenomenon famously reared its head during
the 2016 United States presidential election when fake news
stories were shared tens of millions of times [2], and it has
remained a critical issue in the years since [3].

In this paper, we study a mathematical model describing
this situation. The model includes a set of agents attempting to
learn the true state of the world (e.g. which of two candidates
is better suited for office). Each agent iteratively updates its
belief (i.e. its distribution over possible states) in a manner
similar to the non-Bayesian social learning model of [4] using
information from three sources. First, each agent receives
noisy observations of the true state, modeling e.g. news stories.
Second, each agent observes the beliefs of a subset of other
agents, modeling e.g. discussions with other social media
users. Third, each agent may observe the beliefs of stubborn
agents or bots who aim to persuade others of an erroneous true
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state, modeling e.g. users spreading fake news.! This process
continues iteratively until a finite learning horizon.

Under this model, two competing forces emerge as the
learning horizon grows. On the one hand, agents receive more
observations of the true state, which help them learn. On the
other hand, the beliefs of the bots gradually propagate through
the system, suggesting that agents become increasingly ex-
posed to bots and thus less likely to learn. Hence, while the
horizon clearly affects the learning outcome, the nature of this
effect — namely, whether learning becomes more or less likely
as the horizon grows — is less clear.

This effect of the learning horizon has often been ignored
in works with models similar to ours. For example, our model
is nearly identical to that in the empirical work [6], in which
the authors show that polarized opinions can arise when there
are two types of bots with diametrically opposed viewpoints.
However, the experiments in [6] simply fix a large learning
horizon and do not consider the effect of varying it. Models
similar to ours have also been treated analytically in e.g.
[4], [7]1-[9], but these works consider infinite horizons and/or
cooperative settings (i.e. no stubborn agents). See Section V
for details on these (and other) works.

In the first part of the paper (see Section III), we argue that
the learning horizon plays a prominent role when stubborn
agents are present and should not be ignored. In particular,
we show that the learning outcome depends on the relationship
between the horizon 7,, and a quantity p,, that describes the
“density” of bots in the system, where both quantities may
vary with the number of agents n. Mathematically, letting 6 €
(0,1) denote the true state and 07, (4*) the mean of the belief
(hereafter, the estimate) for a uniformly random agent i* at
the horizon T},, we show (see Theorem 1)?

0, T,(1—p,) ——0
Or (Z*) P n—00 . (1)
" n—oo |0, T,(1—py) —>_> 00
n o0

Here p,, is smaller when more bots are present and O is the
erroneous true state promoted by the bots. Hence, in words,
(1) says the following: if there are sufficiently few bots, in the
sense that T,,(1 — p,) — 0, i* learns the true state; if there
are sufficiently many bots, in the sense that 7,,(1 — p,,) —
00, ¢* adopts the extreme estimate 0 promoted by the bots.

'The term stubborn agents has been used in the literature to describe such
agents; the term bots is used in reference to automated social media accounts
spreading fake news while masquerading as real users [5].

2The theorem also addresses the case limp—s oo Tn(1 —pn) € (0,00).
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Additionally, we show the belief of ¢* converges to a Dirac
measure in a certain sense (see Corollary 1).

We note the result in (1) assumes a particular random graph
model for the social network connecting agents and bots (a
modification of the so-called directed configuration model).
For such models, phase transitions — wherein small changes
to model parameters lead to starkly different behaviors — are
often observed. In this case, assuming T,, = (1 — p,,)~* for
some k > 0, and also assuming p,, — 1, the learning outcome
suddenly drops from 6 to 0 as k£ changes from e.g. 0.99 to 1.01.
Put differently, agents initially (at time (1—p,,)~%%%) learn the
true state, then suddenly (at time (1 — p,,)~1-%1) “forget” the
true state and adopt the extreme estimate (. Hence, we show
the horizon can lead to drastically different outcomes. We also
note proving (1) involves analyzing hitting probabilities for
random walks on random graphs with absorbing states (bots
in our setting), which may be of independent interest.

In the second part of the paper (see Section IV), we study
a setting in which an adversary chooses how many bots to
connect to each agent, subject to a budget constraint. The
adversary would like to minimize 6r, (*) (i.e. to convince
agents of the erroneous state 0), but this quantity depends
on the graph topology, which is not publicly available for
social networks like Twitter. Hence, motivated by (1), we
formulate the adversary’s problem as minimizing p,, which
only depends on the degrees in the graph — e.g. number of
followers on Twitter, which is publicly available. We clarify
that 07, (¢*) is monotone in p,, only as n — oo for the random
graph of Section III (see Theorem 1). Thus, we use p,, as a
tractable (albeit nonrigorous) surrogate for the true objective
function 67, (i*), and we show empirically that these quantities
are closely correlated for real social networks (see Figure 2).
Alternatively, given a target 0r, (i*), we can minimize the
horizon 7T,, when this target estimate is reached. However, we
view T, as fixed and thus do not pursue this dual problem.

Minimizing p, amounts to solving an integer program,
which can be done in polynomial time owing to the structure of
pn. However, the computational complexity is ©(n?), which
is infeasible for social networks like Twitter. Thus, we pro-
pose a randomized approximation algorithm that runs in time
nlogn and that produces a constant-fraction approximation
of the optimal solution with high probability (see Theorem
2). Moreover, whereas the logic of the optimal solution is
somewhat opaque, the form of our approximate solution offers
the interpretation that successful adversaries carefully balance
agents’ influence and susceptibility to influence. For a social
network like Twitter, this means targeting users with many
followers (i.e. influential users) who follow very few users
themselves, so that fake news will occupy a greater portion
of the targeted users’ feeds. While somewhat intuitive, the
precise form of the randomized scheme is far from obvious.
Furthermore, empirical results show that our scheme disrupts
learning to a larger extent than schemes that more obviously
balance influence and susceptibility. Thus, we believe our
analysis provides new insights into vulnerabilities of news
sharing platforms and non-Bayesian social learning models.

The paper is organized as follows. In Section II, we define
our learning model. Sections III and IV follow the outline
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above. We discuss related work in Section V. Proof details
are deferred to the full version of the paper, [10]. Preliminary
versions of the paper appeared in abstracts [11], [12].

Notational conventions: The following notation is used
frequently. For £ € N, we let [k] = {1,...,k}, and for
ke Nwelet k] +k =K +[k]={1+FK,...,k+k}.
All vectors are treated as row vectors. We let e; denote the
vector with 1 in the ¢-th position and O elsewhere. We denote
the set of nonnegative integers by No = N U {0}. We use
1(A) for the indicator function, i.e. 1(4) = 1 if A is true and
0 otherwise. All random variables are defined on a common
probability space (€2, F,P), with E[] = [,- dP denoting
expectation, LN denoting convergence in probability, and a.s.
meaning P—almost surely.

[I. LEARNING MODEL

We begin by defining the model of social learning studied
throughout the paper. The basic ingredients are (1) a true state
of the world, (2) a social network connecting two sets of nodes,
some who aim to learn the true state and some who wish to
persuade others of an erroneous true state, and (3) a learning
horizon. We discuss each in turn.

The true state of the world is a constant § € (0,1). For
example, in an election between candidates representing two
political parties (say, Party 1 and Party 2), § ~ 0 and 6 ~ 1
means the Party 1 and 2 candidates are superior, respectively.
We emphasize that € is a deterministic constant and depends
neither on time, nor on the number of nodes in the system.

A directed graph G = (AU B, F) connects disjoint sets of
nodes A and B. We refer to elements of A as regular agents,
or simply agents, and elements of B as stubborn agents or
bots. While agents attempt to learn the true state 6, bots aim
to disrupt this learning and convince agents that the true state
is instead 0. In the election example, agents represent voters
who study the two candidates to learn which is superior, while
bots are loyal to Party 1 and aim to convince agents that the
corresponding candidate is superior (despite possible evidence
to the contrary). Edges in the graph represent connections in
a social network over which nodes share beleifs in a manner
that will be described shortly. An edge j — ¢ means that &
observes j’s belief. Let N;,, (i) ={j € AUB:j — i€ E}
and d;y, (1) = |Nin(2)]; we assume Ny, (i) # 0.

Agents and bots share beliefs until a learning horizon 7" €
N. We will allow the horizon to depend on the number of
agents n = |A| and will thus denote it by 7}, at times. In the
election example, T' represents the duration of the election,
i.e. the number of time units that agents can learn about the
candidates and that bots can attempt to convince agents of the
superiority of the Party 1 candidate.

Given these basic ingredients, we can define the learning
process. At time ¢t = 0, agent ¢ € A has a Beta(ag(i), Bo(7))
belief, where ag(i) € (0,a] and By(i) € (0,3] for some
@, € (0,00) that do not depend on n. For each t € [T,
i receives the signal s;(i) ~ Bernoulli(¢). In the absence of
a network, the Bayesian approach dictates that ¢ update its
parameters to ay (i) = ay—1(2) + s¢(7) and B () = Bi—1(¢) +
(1—s¢(7)) and its belief to p14(7) = Beta(c(¢), B:(i)), namely,
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for any (measurable) A C [0, 1],
/Lt(Z)(A) X -[:EG_A xat(i)*l(l _ I)ﬁt(i)fldl,.

In our running example, a4 (7) and /3;(¢) represent the number
of news stories favorable to respective parties that ¢ has read
during the election, plus some prior parameters ag(¢) and
Bo(i) that account for i’s biases from before the election. As
t grows, the belief 11:(7) converges to a Dirac measure on its
mean 6;(i) = a;(2)/(0 (i) + Be(2)); intuitively, ¢ becomes
increasingly confident that the true state is the fraction of
stories favorable to a certain party.

In the presence of a network, we proceed in the same
manner, except the parameters are updated as follows:

(i) = (1= )1 (i) +s:(0) + Y
JEN;n (7)

Bi(i) = A=) (Boa(i) + 1= s:(D)) +

JENn (i

nag—q (J)
) 2

nBe-1(J)
: din (i)

where 1 € (0,1). Intuitively, ¢ reads the news and calculates
its favorability of the parties as before, then discusses with its
neighbors to update its favoribility. Mathematically, ¢ performs
a Bayesian parameter update and then averages parameters. [6]
uses the same update, whereas agents in [4] do Bayesian belief
updates and then average beliefs. We study the former mainly
for tractability. Our update also resembles the deGroot model
[13], with the key difference being that we consider sequences
of signals (to model a sequence of news stories). See Section
V for details on related work.

Finally, we specify bot behavior. For i € B, we set N;,, (i) =
{i}, ag(i) = 0, Bo(i) = B, and (i) = 0 V t € [T], then
iteratively define {a(4), B¢(i)}Z_, via (2). More explicitly, a
simple inductive proof shows

Bi(i) =B+ (1—n)t VtelT]. (3)

In our running example, ag(i) = 0, Bop(i) = 3, and s:(i) =0
means ¢’s prior parameters and signals are maximally biased
toward Party 1. Furthermore, we can interpret N;, (i) = {i}
as bots being “echo chambers” who only listen to themselves.
Finally, note that since all bots ¢ € B have the same behavior,
we assume (without loss of generality) that the outgoing
neighbor set of i € B is Nyyt(i) = {4,i'} for some i’ € A,
i.e. in addition to its self-loop, each bot has a single outgoing
neighbor from the agent set.

(1) =0,

I1l. LEARNING OUTCOME

To begin our analysis of the learning outcome, we show
when all agents are (pathwise) connected to bots, their beliefs
converge to those of the bots. Formally, for p > 1, let

Wy (1, v) = inf(x v xmp, v (B[ X = Y[P)1/P

denote the p-Wasserstein distance for probability measures p
and v, where X ~ u,Y ~ v means X and Y have respective
marginals p and v. For € [0,1], let §, denote the Dirac
measure d,(A) = 1(z € A) for measurable A C [0,1]. We
then have the following (see [10, Appendix V] for a proof).
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Proposition 1: Suppose that for any ¢ € A, there exists
l € Nand (i;)._, € (AU B)'*! such that ig = i, i,_1 —
i € EV 1 €]l], and i; € B. Then for any i € A and p > 1,
limy o0 0 (1) = limy—yoo Wy (e (i), 60) = 0 a.s.

Hence, for a large enough horizon, estimates and beliefs
become arbitrarily close to zero. A natural follow-up question
is how such a horizon scales — and in which graph parameters
— for a sequence of graphs {G,,}5 ;. In general, this scaling
has a complicated dependence on the specific graphs chosen.
To ensure a tractable characterization, we thus restrict atten-
tion to a particular random graph model, namely, a directed
configuration model (DCM) with bots. The DCM constructs
a graph with prespecified degrees, which, conditioned on
being simple (i.e. having no self-loops or multi-edges), is
uniformly distributed among (simple) graphs of those degrees
[14, Proposition 7.15]. Thus, our analysis is “average-case”
over graphs of given degrees. In Section IV, we will exploit
the resulting insights empirically for more general graphs.

Having motivated our study of the DCM, we define it in
Section III-A, present our main result for the DCM in Section
III-B, and discuss our assumptions in Section III-C.

A. Graph model

To begin, we realize a sequence {dyu:(), d2 (i), d2 (i) }ica
called the degree sequence from some distribution; here we
let A = [n]. In the construction described next, i € A will
have d,+(7) outgoing neighbors (i will be observed by d . (7)
other agents), dZ (i) incoming neighbors from the A (i will
observe dZ! (i) agents), and dZ (i) incoming neighbors from
B (i will observe dZ (i) bots). Here the total in-degree of i is
din (i) = di (i) + dB (i) (as used in (3)). We assume

dout (1), dis (1) €N, dB(i)eNy Vie A,

Siea dout (i) = 2o 4 di3, (i)

In words, the first condition says ¢ is observed by and observes
at least one agent, and may observe one or more bots. The
second condition says sum out-degree must equal sum in-
degree in the agent sub-graph; this will be necessary to
construct a graph with the given degrees. Finally, it will be
convenient to define the degree vector of i € A as

d(i) = (dout (1), diy, (1), 75, (1)) )

After realizing the degree sequence, we begin the graph
construction.® First, we attach d,,(i) outgoing half-edges,
d4 (i) incoming half-edges labeled A, and dZ (i) incoming
half-edges labeled B, to each i € A; we will refer to these half-
edges as outstubs, A-instubs, and B-instubs, respectively. Let
O 4 denote the set of all agents’ outstubs. We then pair each
outstub in O 4 with an A-instub to form edges between agents
in a breadth-first-search fashion that proceeds as follows:

o Sample i* from A uniformly. For each the dZ (i*) A-
instubs attached to ¢*, sample an outstub uniformly from
O, (resampling if the sampled outstub has already been
paired), and connect the instub and outstub to form an edge
from some agent to *.

3This construction is presented more formally in [10, Appendix II-A].
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e Let Ay = {i € A\ {¢*} : an outstub of ¢ was paired with
an A-instub of i*}. For each i € A;, pair the dZ (i) A-
instubs attached to ¢ in the same manner the A-instubs of
1" were paired in the previous step.

« Continue iteratively until all A-instubs have been paired. In
particular, during the [-th iteration, we pair all A-instubs
attached to Ay, the agents at geodesic distance [ from ¢*.

The procedure above yields the standard DCM, plus unpaired

B-instubs attached to some agents. To pair these instubs,

we define B = n + [Y,.,dP (i)] to be the set of bots

(hence, the node set is AU B = [n+ Y., d5 (i)]). To

each 7 € B we add a single self-loop and a single unpaired

outstub (as described at the end of Section II). This yields
> iea dE (i) unpaired outstubs attached to bots. Finally, we
pair these outstubs arbitrarily with the Y-, , dZ (i) unpaired

B-instubs from above to form edges from bots to agents (the

pairing can be arbitrary since all bots behave the same).

We note that the pairing of A-instubs with outstubs from
O 4 did not prohibit multi-edges, so the set of edges E formed
will in general be a multi-set. For this reason, we replace the
summation in the ay(7) update (2) with

YjeavpMy" =i € B j = j,i" = i}ow1(j)/din (i),

and analogously for the [;(:) update, i.e. we weigh the
parameters of i’s neighbors proportional to the number of
edges pointing to i. We also note that if dZ (i) =0V i € A,
the construction above reduces to the standard DCM.

Our results will require assumptions on the degree sequence
{d(i) }ic 4, where (we recall) d(i) is the degree vector of ¢ (see

(4)). First, we define f, f,, : N x N x Ny — [0,1] by
f;(i’j? k) = ZZ:l 1(d(a) = (ivja k))/”v
Falijsk) =Y dour(@)1(d(a) = (i, 4, k))/ Y dour(a’).
a=1

a’=1

In words, f; and f, are the degree distributions of agents
sampled uniformly and sampled proportional to out-degree,
respectively. Note that, since the first agent ¢* added to the
graph is sampled uniformly from A, the degrees of i* are
distributed as f*. Furthermore, recall that, to pair A-instubs,
we sample outstubs uniformly from Oy4, resampling if the
sampled outstub is already paired. It follows that, each time
we add a new agent to the graph (besides ¢*), its degrees are
distributed as f,,. We also note that, because the degree se-
quence is random, these distributions are random as well. From
these random distributions, we define the random variables

ﬁ:; = EjeN,keNo(j/(j +k)) ZieN f;:(lajak)? (5)

Pn = ZjeN,keNo (/G +k)) ZiEN fulis 3, k),

Gn = EjeN,keNo (/G + k)Q) EieN fn(3, 5, k).
Following the discussion above, p; is the expected value
(conditioned on the degree sequence) of the ratio of A-instubs
to total instubs for ¢*; p,, is the expected value of this same
ratio, but for new agents added to the graph. The interpretation
of g, is similar. At the end of Section III-B, we discuss in more
detail why these random variables arise in our analysis.

We now state four assumptions, which we discuss in detail
in Section III-C. Two of these require the degree sequence
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to be well-behaved (with high probability) — specifically, Al
requires certain moments of the degree sequence to be finite,
while A3 requires {p,}nen to be close to a deterministic
sequence {py }nen. The other assumptions, A2 and A4, im-
pose maximum and minimum rates of growth for the learning
horizon T),. In particular, 7,, must be finite for each finite n
but grow to infinity with n.

Al lim, o P(2,, 1) = 1, where, for some v1,v5,v3,7 > 0

independent of n such that v3 > vt

Q1 = {|(XC1] dowt (i) /n) — 1| <n=7}
N {71 dout () /n) = v2| <77}
NI doue(1)d, () /n) — v3] <77}
A2 3 N € Nand ¢ € (0,1/2) independent of n s.t. T,, <
Clog(n)/log(vs/v1) ¥ n > N.
A3 lim, 00 P(Qy,2) = 1, where, for some p,, € [0,1] s.t.
lim,, 0o P = p € [0,1], some 0 < §,, = o(1/T;,), and
some ¢ € (0,1) independent of n,

Qn,2 = {|pn _ﬁn| < 6n7ﬁz Zﬁnaijn < 1 _E}

Ad lim, o T) = 00.

B. Main result

We can now present Theorem 1. The theorem states that the
estimate at time 7, of a uniformly random agent converges in
probability as n — oco. As discussed in the introduction, the
limit depends on the relative asymptotics of the time horizon
T, and the quantity p,, defined in A3. For example, this limit
is 6 when T,,(1 —p,,) — 0; note that T,,(1 — p,,) — 0 requires
Pr to quickly approach 1 (since T,, — oo by A4), which by
A3 and (5) suggests the number of bots is small. Hence, ¢*
learns the true state when there are sufficiently few bots. (The
other cases can be interpreted similarly.)

Theorem 1: Assume that G is the DCM and that Al, A2,
A3, and A4 hold. Then for i* ~ A uniformly,

0, T.(1=pp)—0
07, (") o § 22, T(1 = pa) = c € (0,00)
0, T.(1—pp) = ©

Before discussing the proof, we make several observations:
Suppose p,, is fixed and consider varying 7,,. To be con-
crete, let p,, = 1—(logn)~1/2 and define T}, ; = (logn)'/*
and Ty, o = (logn)3* (note Ty 1, Ty 2 satisfy A2, Ad).
Then T,1(1 — p,) — 0 and T, 2(1 — p,) — o0, SO
by Theorem 1, the estimate of * converges to 6 at time
T,,1 and to O at time T}, 5. In words, 4" initially (at time
(logn)'/*) learns the state of the world, then later (at time
(logn)3/%) forgets it and adopts the bot estimates.

Alternatively, suppose T,, is fixed and consider varying p,,.
For example, let p, = 1 — ¢/T, for some ¢ € (0,00).
Here smaller ¢ implies fewer bots, and Theorem 1 says the
limiting estimate of ¢* is a decreasing convex function of
c. One interpretation is that, if an adversary deploys bots in
hopes of driving agent estimates to 0, the marginal benefit

4The assumption v3 > v only eliminates the trivial case of a line graph;
see Section III-C for details.
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of deploying additional bots is smaller when c is larger, i.e.
the adversary experiences “diminishing returns”. It is also
worth noting that, since (1 —e~°")/(cn) — 1 as ¢ — 0 and

(1—e“7)/(en) — 0 as ¢ — oo, the limiting estimate of ¢*

is continuous as a function of c.

o« If T,,(1—py) — ¢ € (0,00), consider the limiting estimate
of ¢* as a function of 7. By Theorem 1, this estimate tends
to § as 7 — 0 and tends to (1 —e~¢)/c as n — 1. This is
expected from (2): when 1 = 0, agents ignore the network
(and thus avoid exposure to biased bot beliefs) and form
estimates based only on unbiased signals; when 7 = 1, the
opposite is true.

e If p, —» p < 1, we must have T,,(1 — p,) — oo (since
T, — oo by A4), and the estimate of ¢* tends to O by
Theorem 1. Loosely speaking, this says that a necessary
condition for learning is that the bots vanish asymptotically
(in the sense that p,, — 1).

o In fact, in the case p,, / 1, a stronger result holds: the set
of agents ¢ for which 61, (i) /4 0 vanishes relative to n.
See [10, Appendix I] for details.

The proof of Theorem 1 is lengthy and deferred to [10,
Appendices II and IV], where [10, Appendix II] lays out
the structure of the proof. However, we next present a short
argument to illustrate the fundamental reason why the three
cases of the limiting estimate arise in Theorem 1.

At a high level, these three cases arise as follows. First,
when T,,(1 — p,) — 0, the “density” of bots within the 7,-
step incoming neighborhood of ¢* is small. As a consequence,
1* is not exposed to the biased beliefs of bots by time 7,, and
is able to learn the true state (67, (¢*) — 6). On the other
hand, when T,,(1 — p,) — oo, this “density” is large; i* is
exposed to bot beliefs and thus adopts them. Finally, when
T(1 —pp) = c € (0,00), the “density” is moderate; i* does
not fully learn, nor does ¢* fully adopt bot beliefs.

This explanation is not at all surprising; what is more subtle
is what precisely density of bots within the T,,-step incoming
neighborhood of i* means. It turns out that the relevant
quantity is the probability that a random walker exploring
this neighborhood reaches the set of bots. To illustrate this,
consider a random walk {X;};en that begins at Xy, = ¢*
and, for [ > 0, chooses X;;; uniformly from all incoming
neighbors of X; (agents and bots); note here that the walk
follows edges in the direction opposite to their polarity in the
graph. For this walk, it is easy to see that, conditioned on the
event X; € A, the event X;; € A occurs with probability

i (X0)/(di(X0) + dB (X)), (6)

Crucially, we sample this walk and construct the graph si-
multaneously, by choosing which instub of X;_; to follow
before actually pairing these instubs. Assuming they are later
paired with agent outstubs chosen uniformly at random, and
hence connected to agents chosen proportional to out-degree,
we can average (6) over the out-degree distribution to obtain
that X;1; € A occurs with probability

45 (@) dout(@) .
Z dﬁz(a) +dB (a) Za’eA dout(a) = Pn- 7

acA in
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Now since bots have a self-loop and no other incoming edges,
they are absorbing states on this walk. It follows that X7, € A
if and only if X; € AV [ € [T,]; by the argument above, this
latter event occurs with probability p,,». Since p, ~ p, by
A3, we thus obtain that X7 € A with probability

=T oo I oy o= liMp oo Th(1—pn
Pt P, Re - ( ).

From this final expression, Theorem 1 emerges: when T;, (1 —
prn) — 0, the random walker remains in the agent set with
probability ~ 1; this corresponds to ¢* avoiding exposure
to bot beliefs and learning the true state. Similarly, T;,(1 —
Prn) — 0o means the walker is absorbed into the bot set with
probability ~ 1, corresponding to ¢* adopting bot estimates.
Finally, T,,(1 — p,) — ¢ € (0,00) means the walker stays in
the agent set with probability =~ e~¢ € (0, 1), corresponding
to ¢* not fully learning nor fully adopting bot estimates.

We note that the actual proof of Theorem 1 does not
precisely follow the foregoing argument. Instead, we locally
approximate the graph construction with a certain branching
process; we then study random walks on the tree resulting from
this branching process.> However, the foregoing argument
illustrates the basic reason why the three distinct cases of
Theorem 1 arise. We also observe that the argument leading to
(7) shows why p,, enters into our analysis. The other random
variables defined in (5) enter similarly. Specifically, p;, arises
in almost the same manner, but pertains only to the first step
of the walk; this distinction arises since the walk starts at
1*, the degrees of which relate to p;,. On the other hand, ¢y
arises when we analyze the variance of agent estimates. This is
because analyzing the variance involves studying two random
walks; by an argument similar to (7), the probability of both
walks visiting the same agent is

dﬁL(a’) dout(a) .
2 (dpy(a) + d5(a)? Y prea dout(@)

Finally, we note that the proof of Theorem 1 reveals that the
variance of each agent’s belief vanishes, so beliefs converge
to Dirac measures. Combined with the theorem, this yields the
following corollary. See [10, Appendix V] for a proof.

Corollary 1: Assume G is the DCM and Al, A2, A3, and
A4 hold. Let L(p,) = L({pn}2,,T,) denote the limit (in
probability) of 6, (i*) from Theorem 1. Then for any p > 1

% . -k P
and for i* ~ A uniformly, W, (ur, (4*),01(p,.)) — 0.

acA

C. Comments on assumptions

We now return to comment on the assumptions needed
to prove our results. First, Al states that certain empirical
moments of the degree distribution — namely, for i* ~ A
uniformly, the first two moments of d,,:(7*) and the correla-
tion between d,,(i*) and d£ (i*) — converge to finite limits.
Roughly speaking, this says our graph lies in a sparse regime,
where typical node degrees do not grow with the number of

SThis is necessary because the argument leading to (7) assumes instubs
are paired with outstubs chosen uniformly at random, which is not true if
resampling of outstubs occurs in the construction from Section III-A.
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nodes.® We also note v3 > vy in Al is minor and simply
eliminates an uninteresting case. To see this, first note that
when (2,, ; holds, we have (roughly)

vs/v1 & Y1 dowt (1) dig (1)) Y001 dowt (i) > 1, (8)

where we have used the assumed inequality df (i) > 1V i €
[n]. Hence, v3 < vy cannot occur, so assuming vs > Uy
only prohibits 3 = ;. This remaining case is uninteresting
because v3/1q is the limiting number of offspring for each
node in the branching process we analyze; thus, if v3 = v,
the tree resulting from this process is simply a line graph.
Next, A2 states 7,, = O(logn). Together with Al, these
assumptions are standard given our analysis approach, which,
as discussed previously, locally approximates the graph con-
struction with a branching process. We also note that, with
the interpretation of v3/v; above, it follows that the number
of agents within the T},-step neighborhood of ¢* is roughly

(vs/v1)™ = O((va/11)" M) = O(n®) = o(n).

In words, the size of the aforementioned neighborhood van-
ishes relative to n. This is why our title refers to the learning
as “local”: only a vanishing fraction of other agents (those
within this neighborhood) affect the estimate of *.

The remaining statements are needed to establish estimate
convergence on the tree resulting from the branching process.
A4 states T, — oo with n, which is an obvious requirement
for convergence. A3 essentially says that three events occur
with high probability. First, p,, should be close to a conver-
gent, deterministic sequence p,,; this is necessary since the
asymptotics of p,, play a prominent role in Theorem 1. Second,
Dy, > Dy, essentially says that bots prefer to attach to agents
with higher out-degrees, i.e. more influential agents; this is
the behavior one would intuitively expect from bots aiming to
disrupt learning. Third, ¢, < 1 — & € (0,1) is satisfied if, for
example, all agents have total in-degree at least two.

Finally, while we focused on the DCM in this section, our
analytical approach is more general. At a high level, the key
properties of the DCM we used are that most nodes’ O(logn)-
step neighborhoods are treelike and “statistically similar,”
which allows for a branching process coupling. Such couplings
exist more generally, though this O(logn) scaling will be
smaller for denser graphs, which makes 7,, smaller as well.

IV. ADVERSARIAL SETTING

We next formalize the adversarial problem introduced
in Section I. We begin with some notation. Let m, =
>, dout(i), and (with slight abuse of notation to the previ-
ous section), define the function p, : Nij — [0,1] by

~ " dA (Z) dout (Z)
n(d) = n :
P ; A () +d(i) ma

which is simply p,,, as defined in (5), viewed as a function of
the bot in-degrees d(i) = dZ (i)”. Given a budget b,, € N, the

wm

VdeNr,

OThis is analogous to e.g. an Erdds-Rényi model with edge probability \/n
for constant A > 0, where degrees converge to Poisson(A) random variables.
7We suppress the sub- and super-scripts to avoid cumbersome notation.

Authorized licensed use limited to: University of Michigan L

ALGORITHM 1: Exact solution of (9)
Let d € dom(pr), compute prn(d)
while not terminated do
Compute pn(d —e; +¢;) Vi,j € [n] st iF#j
Let (i*,5%) € argmin; ;ye(,j2,2; Pn(d — €; +¢€5)
if pn(d) < pn(d — e;+ + e;+) then terminate
else Set d = d — e; + ej=

ALGORITHM 2: Approximate solution of (9)
Compute d(7) as in (11) and set d*"4 (i) =0V i € [n]
for j =1 to b, do
Sample W; from the distribution d;°'/ So0_, dnfl(k), i.e.
P(W; = i) = ! (1)) jy i (k) Vi € [n]
Set dp*™(i) = 320 1(W; =4) Vi € [n]

adversary’s problem is then as follows:
mingens pn(d) s.t. Y1 d(i) < by,. )

Thus, the adversary’s objective function only depends on the
agent degrees {doy: (i), dis, (i) }ic[n (e.g. numbers of followers
and followees on Twitter), and not the topology of the agent
sub-graph. Consequently, the topology will play no role in
this section, i.e. we do not require the DCM assumption.
We reiterate that, by Theorem 1, solving (9) is equivalent
to minimizing estimates asymptotically for the DCM.® For
general graph topologies, we treat (9) as a nonrigorous but
tractable surrogate for estimate minimization, and we will soon
show empirically that this is a reasonable choice.

A. Exact solution
First, we let dom(p,) = {d € N :

rewrite (9) as mingez» pr(d), where

Pn(d),

o,

S0 d(i) = b} and

d € dom(py)

5, (d) =
Pald) otherwise

In words, we incorporated the constraints from (9) into the
objective; we also used the (obvious) fact that the solution
of (9) satisfies the budget constraint with equality. The new
objective p,, satisfies a certain discrete convexity property,
which implies that d minimizes p,, if and only if p,(d) <
Pn(d + e; — e;) for any ¢,j pair. Hence, we can find the
minimizer by iteratively replacing d with d + e; — e; until the
objective stops decreasing. This approach is known as steepest
descent [15, Section 10.1.1] and is provided in Algorithm 1.
In [10, Appendix III-E], we show its runtime is ©(n?) in the
best case and O(n2b,,) in the general case.

B. Approximation algorithm

Algorithm 1’s ©(n?) runtime is prohibitive for massive
networks like Twitter, which motivates our approximation
scheme. The idea is to first solve the relaxed problem

mingepn Pn(d) s.t. Doi, d(i) < by, (10)

8More precisely, this only holds if the solution of (9) converges in the sense
of A3. We are unsure if this holds, but we view it as a minor technical point
and leave it as an open problem.
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and then to sample bot locations in proportion to the relaxed max;¢p,) 7(j), and for w = (wj)?’;l € [n]® define
solution. More formally, our approximate solution d’"? is b
constructed via Algorithm 2. We note that by definition, the (w) 1 n dout(wj)
budget constraint holds with equality for Algorithm 2. Also, In 7 — ds (w;) + Z%— L Nwy, = U{j)’
as shown in [10, Appendix III-A], the solution of (10) is = B
) " Then a simple calculation yields
d, (i) = din, () (Vr (@) /h*) = 1)y Vien], (1D i
(W) =mn(1— pn(dfrzand))/Fv

where x, = xl(x > 0), (i) = doue(i)/d (i) ¥ i € [n],
h* = maxzcr, h(x), and and using Jensen’s inequality, one can show

Z:ie[n]:r(i)Za:2 dOUt(Z)dﬁL(l) Egn(W) > mn(l - ﬁn(d;;el))/2f (15)

h(z) = VeeR,. (12)

bn + i)y >a din (1)
This randomized scheme yields useful insights, in contrast
to the optimal algorithm. In particular, the randomized and
relaxed solutions d7%"¢ and d"¢! are equal in expectation, and
the relaxed solution d"°! satisfies some intuitive properties:

o d7¢(i) grows with (i) = dpy:(i)/d2 (1), i.e. the adversary
targets agents  with large d,,(7) and small d2. (i) under the
relaxed solution. Here large d,,+(i) means i is influential
(e.g. i has many Twitter followers), while small dZ (i)
means ¢ is susceptible to influence (e.g. i has few Twitter
followees, so bot tweets will appear prominently in i’s
Twitter feed).

o If 7(i) < (h*)2, then d'°'(i) = d’*"¥(i) = 0. Hence,
if ¢ is sufficiently non-influential, and/or sufficiently non-
susceptible, targeting ¢ gives no value to the adversary.

o If (i) = r(j) > (h*)?, the relaxed solution yields

dip (0)/(diy, (0) + d7 (0)) = di (5)/(dn (7) + A (7).

This can be interpreted as follows: the adversary strives for

a similar proportion of fake news in the feeds of users with

similar ratios of influence to susceptibility.

In short, our approximate solution strives to balance influence
and susceptibility. While somewhat intuitive, the precise man-
ner in which this balance occurs (in particular, the form of
(11)-(12)) is far from obvious.

In [10, Appendix III-E] , we show Algorithm 2 has complex-
ity O(nlogn + b,). In terms of accuracy, we next prove that
with high probability, Algorithm 2 is a (2 + §)-approximation
algorithm for the constrained problem maxgenr.5~,(i)<b., (1—
pn(d)), which is equivalent to (9). More precisely, letting doP*
be any solution of (9), i.e.

diPt € argmingenp s g(y<p, Pn(d), (13)

we have the following result.

Theorem 2: Let 6 > 0 and ¢5 = %. Then

P(1 = pn(dp?) < (1= pn(dP"))/(2+6))

< eXp(_Cémn(l - ﬁn(d:fl))/ mMaX;e(n] ’I“(j))
Proof: As mentioned above, [10, Appendix III-A] shows
(11) solves (10) (the proof amounts to verifying KKT condi-
tions, see e.g. [16, Section 5.5.3]). Hence, by definition (13),

P(dy) < Pu (7).

We next rewrite 1 — p,,(d7%"¢) in terms of the random vector
W = (Wj)é’f;l from Algorithm 2. Toward this end, let 7 =

(14)

Authorized licensed use limited to: University of Michigan L

(see [10, Appendix III-B] for details.) Combining (14)-(15),

. 1 — pp(doPh) 2Eg, (W)
1— o drand < n = gn W) < z.
Pn(dy™) < 2456 (W) < 2456

Also, using (15) and recalling 7 = max;¢[,) 7(j), we have
csmn (1 = Pa(dy))/ maxjep r(5) < 2¢5Egn(W).
By the previous two lines, the following implies the theorem:

P (g, (W) < 2Eg, (W)/(2 + 8)) < exp (~2¢5Eg, ().
(16)

Such an inequality would follow from a simple Hoeffding
bound if g,(W) was simply >, Wj; however, g,(W) is
a much more complicated function. Fortunately, g,, belongs
to a special class called self-bounding functions [17, Section
3.3], for which concentration inequalities of the form (16) are
known. See [10, Appendix III-C] for details. [ ]

The tail bound in Theorem 2 is opaque, as it relies on
Pn(dr€), which (in general) is difficult to interpret. Under
certain assumptions, we can obtain more transparent results.
For example, we have the following corollary.

Corollary 2: Let T = maxjc[, 7(j) as above. Assume
lim,, o b, = o0 and for some € > 0 independent of n,

a7)

lim [{i € [n] : r(i) > eF}| = 0.
n—oo
Then 3 {6, }nen C (0,00) s.t. limy, 00 0, = 0 and

Tim P (1= pn(d™) < (1= pa(d?"))/(2+ 6n)) = 0.
Proof: Since d,rfl solves (10), we can weaken the bound
in Theorem 2 by replacing p, (d7¢") with p,,(d) for any d € R":
with } . d(i) < by. Thus, the proof chooses a particular d that
leads to a more tractable bound, and the assumptions ensure
this bound vanishes. See [10, Appendix III-D] for details. ®
In words, the corollary shows our randomized scheme is
(asymptotically) a 2-approximation algorithm with probability
tending to 1. The assumption (17) only precludes the case
where only finitely many of the degree ratios (i) are com-
parable to the maximum 7. This restriction arises because our
self-bounding concentration analysis in Theorem 2 requires
normalization by 7 (see [10, Appendix III-C].)

C. Empirical results

A fundamental assumption in our adversary solutions is that
Drn and 07 (i*) are correlated, in the sense that minimizing
Dn, also minimizes 67 (i*). While Theorem 1 states this
correlation holds for the random graph model of Section III-A,
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it is unclear if this correlation occurs in practice. To conclude TABLE I: Dataset details

this section, we present empirical results suggesting that this Name Description Nodes Edges
indeed occurs. In our experiments, we compare our proposed Gnutella Peer-to-peer network 6,301 20,777
. . c e ‘Wiki-Vote Wiki admin elections 7,115 103,689
solutions against some natural heuristics: Pokec Slovakian social network | 1,632,803 | 30,622,564
« A naive baseline, which uses Algorithm 2 but samples each LiveJournal | Blogging platform 2847571 | 63.993.773
W; uniformly from [n].
o Three schemes which similarly use Algorithm 2, along with & PageRank(2 1) Uniform Ay /L

2
PageRank(2 %) ot .

the observed degrees: sampling WW; proportional to do,: (i.e. ’
4+ PageRank(2 ") 1/dd

targeting influential nodes), dﬁb (i.e. targeting susceptible

nodes), and dy¢/ d{}L (i.e. naively balancing the two). 0.5s. _Gl_lut(_zlla_ _ 0.5: _\\-’i_ki-\_]ot.(_z
« Sampling W; proportional to PageRank(e) [18], where’ ~3 ' "
PageRank(e) = (¢1,,/n) S-72o(1 =€) (PT)’, D Y O ]
. . 048 poac T3] u  oooAAd
where € € (0,1), 1,, is the length-n ones vector, and P4 is “ea (R S—— s naa
the agent sub-graph’s column-normalized adjacency matrix, 047 —— N 0ol — ) b
i.e. the matrix with (¢, j)-th element 20 80 100 20 60 100
t t
Pa(i,j) = 1(i = j € Eyn)/djy, () ¥ 4,5 € [n]. 05 Pokec . Live!]om.nal
PageRank is a commonly-used measure of influence or ' '.__-j S A
centrality for graphs in many domains [19] (and a richer . e . Rs e
such measure than d,,;). 3: 0.4 =¥ e ] :: 0.4 R omo e
We compare our proposed solutions with these heuristics = a e, ® s Tl
using four datasets from [20], described in Table I. We chose 03 Te_ _
these datasets so we could test our proposed solutions on real 20 60 100 20 60 100

social networks of two scales: Gnutella and Wiki-Vote have ¢ ¢
n < 10% a scale at which the exact solution Algorithm 1
is feasible; Pokec and LiveJournal have n > 109, a scale that
renders Algorithm 1 infeasible but that more closely resembles
social networks of interest. For the experiments, we set § =
0.5 (to maximize signal variance), 7 = 0.9 (to emphasize the
effect of the network), and 7,, = 101 (to ensure the code had
reasonable runtime). We let b,, = [|E,|/400], so that 0.25%
of all agent in-edges are connected to bots. For each graph
and each of five experimental trials, we chose {d% (i)};c(,) as
described above, added bots to the original graph accordingly,
and simulated the learning process from Section II.

In Figure 1, we plot the mean and standard deviation (across
experimental trials) of 6;(i*) as a function of ¢. For all datasets,
our proposed solutions outperform all heuristics, in the sense
that our solutions yield the lowest average 6.(i*) for most
values of t. Furthermore, we note the following:

e Across all graphs, our solutions outperform PageRank(e)
for all values of e tested. This is quite surprising, because

PageRank uses the entire graph topology, whereas our

Fig. 1: Estimates when simulating our learning model on real
datasets; Algorithms 1 and 2 outperform intuititive heuristics.

and the latter is an approximation, this is still surprising,

since it is unclear that these schemes are even optimizing

the correct objective for real graphs.

While Figure 1 only considers one choice of b,,, we believe
our conclusiops are robust. In~particular, we also tested the
cases b, = [b|E,|] for each b € {1555, 505> 765+ 365+ 10 >
so that between =~ 0.0625% and ~ 1% of edges connected
to bots (thus, Figure 1 shows the intermediate case b= ﬁ).
[10, Appendix III-F] contains a figure analogous to Figure 1
for the other choices of b; the plots are qualitatively similar.

We have thus far shown that our solutions outperform
heuristics, even those using graph topology. This is quite
surprising: our solutions were derived under the fundamental

2325-5870 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution re

solutions only use degree information. Also, as € becomes

Gnutella

Wiki-Vote

increasingly smaller, PageRank(e) performs increasingly - 0.5 __/ T o4l /
better, but this comes at the cost of higher runtime to t’o 45 Lo _ tO ol > |
estimate PageRank(e). = UL sl s

« Among the heuristics using (at most) degree information, 0'95_’. ! 0.8 0 9 1
dout/d? performs best — but still worse than Algorithm P I _
2 — across all datasets. Put differently, naively balancing . Pokec e 05 LiveJournal
influence and susceptibility is not enough; the non-obvious J 8; o :, 0.4} " ,_;J/
form of Algorithm 2 yields better performance. Sool . ot T F03 AT

0.95 1 0.95 1

« For Gnutella and Wiki-Vote, Algorithm 1 noticeably outper-
forms Algorithm 2. Though the former is an exact solution

°In experiments, we compute the first [log(0.99)/log(1 — ¢)] summands,
which guarantees an [; error bound of 0.01.
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Pn

Pn

Fig. 2: As suggested by Figure 1, 01, (i*) and p,, are closely
correlated for real social networks.
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assumption that minimizing 0, (i*) amounts to minimizing py,
but we only verified this assumption asymptotically for a class
of random graphs. Thus, our empirical results suggest that
even for real social networks, this assumption holds. Indeed,
in Figure 2 we show scatter plots of 7, (i*) against p,, (each
dot represents one experimental trial). For all datasets, the two
quantities are closely correlated.

V. RELATED WORK

As discussed in Section II, (2) resembles the non-Bayesian
social learning model from [4], which uses belief update

pre (i) = 0iiBU (pe—1(4), wi(8)) + 2 e v, (o) Migte—1(5), (18)

where 3, 7;; = 1, wy (i) is a signal, and BU means Bayesian
update. Hence, agents perform Bayesian updates and then
average in terms of beliefs in [4] but parameters in this work.
The main advantage of the latter is that beliefs remain Beta dis-
tributions, which simplifies our analysis. This simplification,
along with weights 1/d;,,(j) instead of (18), are needed since
we consider a finite horizon and a graph which need not be
connected, in contrast to [4]. Another distinction is that agents
in [4] need not be able to learn the true state individually (i.e.,
in the absence of a network). In contrast, agents in our work
can learn in isolation (simply by averaging their signals), so
the network can either speed up learning or be a detriment.
This (potential) detriment is relevant to platforms like Twitter,
where users who could have read accurate news in isolation
instead risk exposure to bots.

Our parameter update is also studied in [6], which features
bots defined in a slightly different manner but in the same
spirit. However, [6] only includes theoretical results in the case
B = (); the case B # () is studied empirically. This allowed [6]
to use a slightly richer model, including a time-varying graph
and agent-dependent mixture parameters » JENu (i)u{a} g
Notably, the empirical results from [6] fix a learning horizon
and do not investigate the effects of different timescales; in
particular, the delicate relationship between timescale and bot
prevalence from Theorem 1 is not brought to light. Beyond
stubborn agents, [21], [22] propose different non-Bayesian
updates to cope with Byzantine agents with arbitrary behavior.

From an analytical perspective, our approach of analyzing
estimates by studying random walks is similar to the deGroot
model [13]. Here the estimate vector 6; = {6;(¢)}; is updated
as 0; = 0;_1 W for some column-stochastic matrix 1. Hence,
0; = 0gW?, so i’s belief is determined by the distribution
of a t-step random walk from ¢. This observation has been
exploited in the literature; see the surveys [23, Section 3]
and [24, Section 4], and the references therein. For example,
assuming W is irreducible and aperiodic, and therefore has
a well-defined stationary distribution 7, [7] establishes con-
ditions for learning using the fact that 6;(i) = OyW'e] ~
Oor" V i when t is large. Roughly speaking, our model
combines deGroot-like averaging with exogenous unbiased
signals. As discussed, the averaging in our case exposes agents
to biased beliefs (due to bots); the resulting tension between
biased and unbiased information is a key feature in our model
not present in deGroot’s. Ours is arguably a richer model

of platforms like Twitter, where there is a similar tension
between legitimate news and bots. Beyond the deGroot model,
agents in [25] perform Bayesian updates using the prior of a
randomly-chosen neighbor, which yields a different connection
to random walks; assuming strong connectedness, the authors
exploit the fact that the walk visits every agent infinitely often
(i.0.) to derive conditions for learning.

Similar to [4], the papers of the previous paragraph typically
assume strong connectedness and long learning horizons so
as to leverage properties such as stationary distributions and
i.0. visits. This is a fundamental distinction from our work.
Indeed, even if we disregard stubborn agents, the random walk
converges to a stationary distribution, but it does not converge
within our local learning horizon. This is because, as shown
in [26], the DCM we consider has mixing time that exceeds

logn logn

~ log(vs/11)’

Zie[n] 10%@%@))%
where we used Jensen’s inequality and (8). The right side
exceeds 7, by A2, i.e. our learning horizon occurs before
the underlying random walk mixes. In fact, [26] shows that
the random walk on the DCM exhibits cutoff, meaning that the
T,,-step distribution of this walk can be maximally far from the
stationary distribution (i.e. the total variation distance between
these distributions can be 1 for certain starting locations of
the walk). Hence, not only can we not use this stationary
distribution, we cannot even use an approximation of it. Again,
this means our analysis cannot leverage global properties
typically used when relating estimates to random walks. We
circument this using the DCM, which has a well-behaved
local structure. We also note that our idea to simultaneously
construct the graph and sample the walk is taken from [26].

Some other works have considered social learning with
stubborn agents. For example, [8] studies a model in which
agents meet and either retain their own estimates, adopt the
average of their estimates, or adopt a weighted average; the
agent whose estimate has a larger weight is called a “forceful”
agent. Here the authors show that all agent estimates converge
to a common random variable and study its deviation from
the true state. A crucial difference between this work and ours
is that [8] assumes even forceful agents occasionally observe
other agents’ opinions. This yields an underlying Markov
chain that is irreducible (unlike ours); the analysis then relies
on this chain having a well-defined stationary distribution.

Stubborn agents have also been considered in the consensus
setting [27], which asks whether agent estimates converge to a
common value, i.e. a consensus. For example, [28] considers
a model in which regular agents adopt weighted averages of
estimates upon meeting other agents, while stubborn agents
always retain their own estimates. This intuitively prohibits
a consensus from forming; indeed, it is shown that agent
estimates fail to converge, i.e. disagreement can persist indef-
initely. Another example is [29], in which an agent’s estimate
at time ¢t + 1 is a weighted average of their own estimate at
time 0 and their neighbors’ estimates at time ¢. In this model,
stubborn agents place all weight on their own estimate from
time O and thus do not update their estimates. The analysis in
[29] is similar to ours as it relates agent estimates to hitting
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probabilities of the stubborn agent set, but it differs as the
learning horizon is infinite in [29]. Also in the consensus
setting, [30] investigates protocols for robust consensus that
may lessen the undesirable effects of stubborn agents.

The problem of deploying stubborn agents is studied in [31],
[32], though for the voter model. Both assume knowledge
of a matrix describing the graph topology (like P4 from
Section IV-C), and the optimization requires inverting this
matrix at complexity n3. Our algorithms overcome both of
these issues. We also note this inversion is common in more
general influence maximization settings.

Without stubborn agents, [33] considers a non-Bayesian
update for infinite horizons, where agents treat neighbors’
beliefs as independent. Convergence rates are provided in [9],
[34], [35] for (2) or similar Bayesian-plus-aggregation updates.
An open question is how these models behave with stubborn
agents, particularly for [9], [34], [35], where the convergence
may be slower than the propagation of stubborn agent bias.
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