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The Stokes velocity uS, defined approximately by
Stokes (1847, Trans. Camb. Philos. Soc., 8, 441–455.),
and exactly via the Generalized Lagrangian Mean,
is divergent even in an incompressible fluid. We
show that the Stokes velocity can be naturally
decomposed into a solenoidal component, uS

sol, and
a remainder that is small for waves with slowly
varying amplitudes. We further show that uS

sol arises
as the sole Stokes velocity when the Lagrangian
mean flow is suitably redefined to ensure its exact
incompressibility. The construction is an application
of Soward & Roberts’s glm theory (2010, J. Fluid
Mech., 661, 45–72. (doi:10.1017/S0022112010002867))
which we specialize to surface gravity waves and
implement effectively using a Lie series expansion.
We further show that the corresponding Lagrangian-
mean momentum equation is formally identical to
the Craik–Leibovich (CL) equation with uS

sol replacing
uS, and we discuss the form of the Stokes pumping
associated with both uS and uS

sol.
This article is part of the theme issue ‘Mathematical

problems in physical fluid dynamics (part 1)’.

1. Introduction
Surface gravity waves induce a rectified motion of fluid
particles and thus a wave-averaged difference between
the mean Eulerian velocity, uE, and the mean Lagrangian
velocity uL [1,2]

uL = uE + uS. (1.1)

Above, uS is the Stokes velocity, also known as
Stokes drift. The Stokes velocity is fundamental to
understanding wave-averaged effects, such as the CL
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Figure 1. The sea-surface displacement, s(x, t), of a packet of surface gravity waves at t = 0. The envelope is Gaussian,
a exp[−(x − x0 − 1

2 ct)
2/2!2], and the carrier wavenumber is k = 2π/100m. The 100mwave length corresponds to an 8 s

period and a group velocity c/2 of 6.24m s−1. The maximum surface displacement a= 1.27m corresponds to maximumwave
orbital speed 1m s−1. Themodulation parameter isµ = 1/(k!)= 0.05 and thewave slope isε = ka= 0.08. (Online version
in colour.)

vortex force and the Stokes–Coriolis force, in the wave-averaged momentum and vorticity
equations [3–7].

The Stokes velocity can be defined exactly at finite wave amplitude using Generalized
Lagrangian Mean (GLM) theory [8,9]. This exact GLM uS is rotational and compressible, even
if the underlying fluid motion is irrotational and incompressible [10]. Expansion in powers of a
wave-amplitude parameter ε produces the standard approximation [2,11] to the Stokes velocity

uS = (ξ1 · ∇) u1. (1.2)

The overbar in (1.2) denotes a running time mean, or phase average. In (1.2), u1 is the linear
(first order in ε) velocity of the wave and the associated displacement ξ1 is defined by ∂tξ1 =
u1 and ξ1 = 0. (The subscript 1 indicates the first-order fields throughout.) The small-amplitude
approximation to uS in (1.2) is also rotational and compressible: assuming only that ∇ · ξ1 = 0,
McIntyre [10] shows from (1.2) that

∇ · uS = ∂t

(
1
2 ξ1iξ1j

)

,ij
. (1.3)

The time derivative of an averaged quadratic quantity in (1.3) entails the same slow-modulation
assumption that underlies the concept of group velocity and so introduces a second small
parameter, µ. The Eulerian mean velocity, uE in (1.1), is incompressible and thus the divergent
uS in (1.3) implies a divergent Lagrangian mean velocity.

In figure 1, we illustrate the role of the two small parameters ε and µ, by considering a weakly
nonlinear, slowly modulated two-dimensional packet of deep-water surface gravity waves. The
Stokes expansion [1, 10] is justified by the weakly nonlinear assumption that the wave slope is
small: ε = ak " 1, where k is the wavenumber and a is the amplitude of the surface displacement.
In this example the slow-modulation parameter is µ = (k!)−1 " 1 where ! is length scale of the
packet envelope. Figure 2 shows the motion of a fluid particle in the velocity field of this wave.

Despite (1.3), and the exact results provided by GLM, some authors are reluctant to accept
the reality of non-zero ∇ · uS. Moreover, discontent with ∇ · uS #= 0 is sometimes confounded with
unease over the vertical component of the Stokes velocity, wS = ẑ · uS. For example, rather than
taking the vertical component of (1.2), McWilliams et al. [12] defines a ‘vertical Stokes pseudo-
velocity’ which, together with the horizontal components of uS, makes an incompressible three-
dimensional ‘Stokes pseudo-velocity’.

Mellor [13], while emphasizing that uS is divergent, is unwilling to accept a non-zero vertical
component wS: ‘a mean vertical drift is not acceptable’. In the view of concerns with the mean
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Figure 2. Trajectory of a )uid particle in the linear velocity ,eld of the wave packet in ,gure 1. Panels (a,b) show the x- and
z-displacements as functions of time; panel (c) shows the trajectory. In this computation, we assume that the depth d is much
greater than the packet length scale! so that the second-order Eulerianmean)ow is negligible in thewave-active zone. (Online
version in colour.)

vertical drift wS it is reassuring that particle tracking velocimetry can be used to observe vertical
Lagrangian displacements, wS #= 0, beneath groups of deep-water waves [14,15]: the mean vertical
drift is upward as a wave packet arrives and downwards as the packet departs. (For the wave
packet in figure 1, the maximum vertical displacement resulting from wS is about 4.8 cm—this is
not visible in figure 2.) After the passage of the packet a fluid particle returns to its initial depth.
It is a net vertical displacement that is unacceptable: transient vertical motion, on time scales longer
than a 10-s wave period, and shorter than the 100-s packet transit time, is not a concern.

Mellor critiques the Craik & Leibovich ([3,4]) vortex-force formulation of wave-mean
interaction by arguing that CL and subsequent authors incorrectly assume that the divergence of
uS is zero. A different interpretation is that CL and many followers assume that the wave field has
no temporal modulation so that the right of (1.3) is conveniently zero. For example, McWilliams
& Restrepo [7] claim to prove ∇ · uS = 0. But examination of this argument shows that [7] assumes
that there is no temporal modulation of the wave field. This raises the issue of whether the CL
formulation is incomplete or misleading in situations with temporal modulation of the wave field,
e.g. in ocean observations [16] and in modelling the growth of swell [17].

In this paper, we revisit the concept of Stokes velocity. For surface gravity waves, we exhibit
a natural Helmholtz decomposition of uS in (1.2) and argue that the solenoidal component, uS

sol,
can advantageously replace uS in most situations. We emphasize that the familiar form (1.2) of the
Stokes velocity is not unique but depends on a specific definition of the Lagrangian-mean flow,
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namely the GLM definition of Andrews & McIntyre [8]. An alternative definition, proposed by
Soward & Roberts [18] and closely related to classical averaging and its Lie series implementation
(e.g. [19,20]), leads to a solenoidal Lagrangian-mean velocity with uS

sol as the corresponding
Stokes velocity. This alternative definition, known as ‘glm’ but better characterized as ‘solenoidal
Lagrangian mean’, has the added benefit of coordinate independence in any geometry, unlike
standard GLM (see [21] for other coordinate-independent definitions of the Lagrangian mean).
We show that, for surface gravity waves, the associated Lagrangian-mean momentum equation
governing the dynamics of the Eulerian mean flow is the CL equation with uS

sol replacing uS.
The difference between GLM and glm is vividly illustrated with an example proposed by

O. Bühler (personal communication, 2021). Consider a bucket of initially motionless water. If the
water is agitated, for example, by pressure forcing at the surface, then the potential energy of
the water is increased, or equivalently the centre of mass of the water is elevated above its initial
height. The fluid at the bottom of Bühler’s bucket, however, cannot move in the vertical and so
any definition of ‘Lagrangian mean’ that tracks the position of the centre of mass of the fluid—
such as GLM—will be divergent in this situation, even though the velocity of the water is entirely
incompressible. Conversely, any definition of ‘Lagrangian mean’ resulting in a strictly solenoidal
Lagrangian mean velocity—such as glm—cannot track the centre of mass of the fluid.

The plan of the paper is as follows. In §2, we sketch the derivation of the standard form (1.2)
of the Stokes velocity, give its Helmholtz decomposition, and show how a simple modification of
this derivation, implementing an alternative Lagrangian-mean flow definition, naturally brings
about the velocity uS

sol. In §3, we examine the respective role of uS and uS
sol in Stokes pumping,

which is the mechanism whereby the horizontal divergence of the Stokes transport drives an
Eulerian mean flow. In §4, we show how the glm approach enables the systematic construction
of solenoidal Lagrangian-mean and Stokes velocities up to arbitrary algebraic accuracy in ε. We
explain how Lie series provide both an interpretation and an efficient implementation of this
construction, and we derive the glm version of the CL equations. Section 5 gives the conclusion.

2. The Stokes velocityuS and its solenoidal partuS
sol

(a) Derivation of the Stokes velocity
We start by recalling the traditional derivation of the Stokes velocity in (1.2). The position x(t) of
a fluid particle is determined by solving

dx(t, α, ε)
dt

= u
(
x(t, α, ε), t, α, ε

)
, (2.1)

where α is a wave phase, regarded as an ensemble parameter. The fluid velocity u(x, t, α, ε) is
incompressible, ∇ · u = 0, and has the form

u(x, t, α, ε) = εu1(x, t, α) + ε2u2(x, t, α) + · · · , (2.2)

where ε is the wave amplitude parameter. The leading-order term u1(x, t, α) is a fast wavy flow,
so u1 = 0, where the mean, denoted by the overbar, is an average over the phase α.

To average the fast wave oscillations in (2.1), we consider the ansatz

x(t, α, ε) = xL(t, ε) + ξ
(
xL(t, ε), t, α, ε

)
, (2.3a)

= xL(t, ε) + εξ1
(
xL(t, ε), t, α

)
+ ε2ξ2

(
xL(t, ε), t, α

)
+ · · · , (2.3b)

where xL(t, ε) is the slow motion of a Lagrangian mean position. Think of xL as a ‘guiding centre’
such that rapid wavy oscillations are confined to the displacements ξn; these displacements from
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xL do not grow with time, i.e. all members of the ensemble remain close to the guiding centre xL.
The motion of xL is written as

dxL

dt
= ε2uL(xL, t) (2.4)

= ε2uL
2 (xL, t) + ε3uL

3 (xL, t) + · · · , (2.5)

where uL(x, t, ε) is the Lagrangian mean velocity, yet to be defined and determined. The ansatz
(2.3b) is ambiguous because requiring only that the ξn’s do not grow with time does not uniquely
determine uL and ξn. We return to this point below.

Substituting (2.3b) and (2.5) into (2.1) and (2.2) and matching powers of ε at the first two orders
results in

∂tξ1(xL, t, α) = u1(xL, t, α) (2.6a)

and

uL
2 (xL, t) + ∂tξ2(t, α) = u2(xL, t, α) + ξ1(xL, t, α) · ∇u1(xL, t, α). (2.6b)

Choosing to follow Stokes [1] and Andrews & McIntyre [8], one disambiguates (2.3b) by requiring
that ξ2(xL, t, α) = 0. In this case, averaging (2.6b) produces the familiar result

uL = u2︸︷︷︸
uE

+ (ξ1 · ∇) u1︸ ︷︷ ︸
uS

(with ξ2 = 0). (2.7)

In (2.7) we have now omitted the subscript 2 on uL. With (2.7) we recover (1.2) and the small
wave-amplitude version of (1.1).

(b) The solenoidal Stokes velocityuS
sol

Let us examine the divergence of uS in more detail. The ‘un-averaged Stokes velocity’ can be
written exactly as

ξ1 · ∇u1 = ∂t
1
2 (ξ1 · ∇)ξ1 + 1

2 (ξ1 · ∇)u1 − 1
2 (u1 · ∇)ξ1, (2.8a)

= ∂t
1
2 (ξ1 · ∇)ξ1 + ∇× 1

2 (u1 × ξ1). (2.8b)

In passing from (2.8a) to (2.8b), we have used wave incompressibility

∇ · u1 = ∇ · ξ1 = 0, (2.9)

to simplify the standard vector identity for the curl of the cross product u1×ξ1. The average of
(2.8b),

uS = ∂t
1
2 (ξ1 · ∇)ξ1︸ ︷︷ ︸

O(ε2µ)

+ ∇× 1
2 (u1 × ξ1)

︸ ︷︷ ︸
O(ε2)

, (2.10)

identifies a solenoidal part of the Stokes velocity as

uS
sol

def=∇×
(

1
2 u1 × ξ1

)
, (2.11a)

= 1
2 (ξ1 · ∇) u1 − 1

2 (u1 · ∇) ξ1. (2.11b)

The solenoidal vector uS
sol is the incompressible part of the Stokes velocity for all types of weakly

nonlinear waves in an incompressible fluid. We propose that uS
sol can advantageously replace the

traditional form of the Stokes velocity (1.2) in many circumstances.
The solenoidal Stokes velocity arises naturally if a small change is made in the derivation in

§2(a): suppose we decide from the outset to change the definition of ‘Lagrangian mean’ so that
uL in (2.5) is solenoidal. To implement this choice, we disambiguate (2.3b) with ξ2 = 1

2 (ξ1 · ∇)ξ1
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(rather than ξ2 = 0). Averaging (2.6b) then results in

uL = u2︸︷︷︸
uE

+ ∇×
(

1
2 u1 × ξ1

)

︸ ︷︷ ︸
uS

sol

, (with ξ2 = 1
2 (ξ1 · ∇)ξ1). (2.12)

The incompressible Lagrangian mean velocity in (2.12) is an alternative to the traditional
compressible uL in (2.7). The O(ε2) shift ξ2 in the position of guiding centre xL(t, ε) produces
Lagrangian mean and Stokes velocities that are divergence free at order ε2. In §4, we discuss a
systematic framework—Soward & Robert’s [18] glm alternative to GLM—that generalizes this
property to arbitrarily high order in ε.

Note that the difference between uS and uS
sol is a time derivative so has no impact on particle

dispersion for waves that are represented by stationary random processes as discussed by
Holmes-Cerfon & Bühler [22].

(c) Irrotational linear waves
In addition to incompressibility in (2.9), surface gravity waves are also irrotational,

∇×u1 = ∇×ξ1 = 0. (2.13)

Using (2.13), the final term in the vector identity ξ1 · ∇ξ1 = ∇ 1
2 |ξ1|2 + (∇ × ξ1) × ξ1 is zero and

(2.10) simplifies further to a Helmholtz decomposition of the surface-wave Stokes velocity

uS = ∂t∇ 1
4 |ξ1|2 + ∇× 1

2 u1 × ξ1︸ ︷︷ ︸
uS

sol

. (2.14)

The divergence of the surface-wave Stokes velocity in (2.14) is

∇ · uS = ∂t% 1
4 |ξ1|2︸ ︷︷ ︸

O(ε2µ)

, (2.15)

where % = ∂2
x + ∂2

y + ∂2
z is the Laplacian. The expression for ∇ · uS in (2.15) is simpler than that in

(1.3), but restricted to waves with ∇ × ξ1 = 0.
The curl of the Stokes velocities does not vanish:

∇ × uS = ∇×uS
sol = ∇×∇× 1

2 u1 × ξ1, (2.16)

= −% 1
2 u1 × ξ1, (2.17)

where we have used ∇×∇× = ∇∇ · − % and ∇ · 1
2 u1×ξ1 = 0. With an error of order µ2ε2, we can

replace % with ∂2
z in (2.17).

3. Stokes transport and Stokes pumping
Discussions of the deep return flow associated with a surface-gravity wave packet argue [2] that:

‘the return flow · · · can be explained as the irrotational response to balance the Stokes transport
· · · that acts to “pump” fluid from the trailing edge of the packet to the leading edge’.

Similar sentiments are expressed in [23,24]. With this physical picture in mind, it is instructive
to compare the Stokes pumping associated with uS with that of uS

sol. The interpretation of the
return flow in the quotation above is most consistent with uS

sol.
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(a) Stokes pumping anduS
sol = ∇× 1

2u1 × ξ 1
We start with the easy solenoidal case, with Stokes transport

TS
sol(x, y, t)def=

∫ 0

−∞
(uS

sol x̂ + vS
sol ŷ) dz, (3.1)

where the vertical integration above is from the bottom of the wave-active zone (denoted −∞) to
the mean sea surface at z = 0. (In this section, we confine attention to deep-water waves so that
the lower limit, −∞, is well above the distant bottom.) Vertical integration of ∇ · uS

sol = 0 over the
wave-active region produces the unsurprising result

solenoidal Stokes pumpingdef= − ∇ · TS
sol, (3.2a)

= wS
sol
∣∣
0, (3.2b)

where we use
∣∣
0 to denote evaluation at z = 0, e.g. wS

sol
∣∣
0 = wS

sol(x, y, 0, t). The result (3.2b) is
consistent with the idea that horizontal convergence within the wave-active zone pumps fluid
downwards, out of the wave-active zone, with the vertical velocity wS

sol(x, y, 0, t).
Vertical integration of uS

sol = 1
2 (ξ1 · ∇)u1 − 1

2 (u1 · ∇)ξ1 over the wave-active zone results in

x̂ · TS
sol = 1

2
(
ζ1u1 − w1ξ1

)∣∣
0 + ∂yχ (3.3a)

and
ŷ · TS

sol = 1
2
(
ζ1v1 − w1η1

)∣∣
0 − ∂xχ , (3.3b)

where

χ
def= 1

2

∫ 0

−∞
(η1u1 − v1ξ1) dz (3.4)

is a streamfunction for horizontally circulating Stokes transport. This horizontal Stokes circulation
is previously unremarked, perhaps because the terms involving χ in (3.3a) and (3.3b) are order µ

smaller than the other terms. Using the coordinate expressions in (3.3a) and (3.3b), the solenoidal
pumping can be expressed entirely in terms of surface quantities:

solenoidal Stokes pumping = ∂x
1
2
(
ζ1u1 − w1ξ1

)∣∣
0 + ∂y

1
2
(
ζ1v1 − w1η1

)∣∣
0. (3.5)

(b) Stokes pumping anduS = (ξ 1 · ∇)u1
We turn now to the traditional definition of the Stokes velocity. Define the Stokes transport via

TS(x, y, t)def=
∫ 0

−∞
(uS x̂ + vS ŷ) dz, (3.6)

and the Stokes pumping by

Stokes pumpingdef= − ∇ · TS. (3.7)

Because ∇ · uS #= 0 there is no analogy to (3.2b). Instead, integrating (2.15) over the wave-active
zone

∇ · TS + wS∣∣
0 = ∂t∂z

1
4 |ξ1|2

∣∣
0 + ∂t(∂2

x + ∂2
y )

∫ 0

−∞
1
4 |ξ1|2 dz. (3.8)

With vertical integration of the horizontal components of uS over the wave-active zone

x̂ · TS =
(
ζ1u1

)∣∣
0 + ∂t∂x

∫ 0

−∞
1
2 ξ2

1 dz + ∂y

∫ 0

−∞
η1u1 dz (3.9a)

and

ŷ · TS =
(
ζ1v1

)∣∣
0 + ∂x

∫ 0

−∞
ξ1v1 dz + ∂t∂y

∫ 0

−∞
1
2 η2

1dz. (3.9b)
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The horizontal divergence of TS is therefore

∇ · TS = ∂x
(
ζ1u1

)∣∣
0 + ∂y

(
ζ1v1

)∣∣
0 + ∂t

(
1
2

∫ 0

−∞
ξ1,αξ1,β dz

)

,αβ

. (3.10)

In the final term, the indices α and β are 1 and 2. Eliminating ∇ · TS between (3.8) and (3.10)

wS∣∣
0 = −∂x

(
ζ1u1

)∣∣
0 − ∂y

(
ζ1v1

)∣∣
0 + ∂t∂z

1
4 |ξ1|2

∣∣
0

+ ∂t(∂2
x + ∂2

y )
∫ 0

−∞
1
4 |ξ1|2 dz − ∂t

(
1
2

∫ 0

−∞
ξ1,αξ1,β dz

)

,αβ

. (3.11)

The results in (3.8), (3.10) and (3.11) are all more complicated than their solenoidal cousins in
(3.2b), (3.3a) and (3.3b).

(c) A comment on approximations to the Stokes transport
A widely used expression for the Stokes transport is

TS ≈ (ζ1u1)
∣∣∣
0
. (3.12)

Expression (3.12) is exact for a uniform (µ = 0) progressive wave and is a leading-order
approximation for a slowly modulated (µ " 1) wave packet. To see the connection with the
more general and exact results above, align the x-axis with the horizontal wavevector so that
η1 = v1 = 0; then ŷ · TS = ŷ · TS

sol = χ = 0. Thus, with an error by order ε2µ, and in agreement
with (3.12),

1
2
(
ζ1u1 − w1ξ1

)∣∣∣
0
≈ (ζ1u1)

∣∣∣
0
. (3.13)

In other words, (3.12) is a leading-order approximation and at this order TS and TS
sol are identical.

4. glm
We return to the definition of the Stokes velocity and show how the glm theory of Soward &
Roberts [18] rationalizes and generalizes the heuristic construction of the solenoidal velocity uS

sol.
In §2(a), we emphasized the ambiguity in the decomposition (2.3a) of trajectories into a mean part
xL and a perturbation ξ . GLM resolves this ambiguity by imposing that

ξ = 0. (4.1)

While (4.1) is widely accepted, it is neither inevitable nor particularly natural. It implies that the
Lagrangian-mean trajectory of a particle is defined by the equality xL = x between the coordinates
of the Lagrangian-mean position and the average of the coordinates of the particle. This indicates
that the Lagrangian-mean trajectory and, as a result, the Lagrangian-mean velocity uL depend on
a choice of coordinates. This undesirable feature of GLM is remedied by glm, while also ensuring
that uL is non-divergent (see [21] for other alternatives to GLM).

(a) Formulation
To introduce glm, it is convenient to rewrite equation (2.1) governing the fluid trajectories in terms
of the flow map ϕ(x, t, α, ε) giving the position at time t of the fluid particle initially at x. Equation
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(2.1) becomes
ϕ̇(x, t, α, ε) = u(ϕ(x, t, α, ε), t, α, ε). (4.2)

The decomposition of trajectories into mean and perturbation is best written as the composition

ϕ = Ξ ◦ ϕL, (4.3)

or, more explicitly, ϕ(x, t, α, ε) = Ξ (ϕL(x, t, ε), t, α, ε). Here ϕL is the (α-independent) mean map,
sending the initial position of particles to their mean position, and Ξ is the perturbation map,
sending the mean position to the exact, perturbed position. The perturbation map can only
be represented in the familiar form x )→ x + ξ (x, t, α, ε), as in (2.3a), in Euclidean space, where
positions x can be identified with vectors and added, or, in more general geometries, once a
specific coordinate system has been chosen and x is interpreted as a triple of coordinates. The
smallness of the perturbation, usually stated as |ξ | " 1, translates into the requirement that Ξ is
close to the identity map. We emphasize that the mean map ϕL is not obtained from ϕ by applying
an averaging operator: averaging is a linear operation that applies to linear objects, such as vector
fields, but not to nonlinear maps such as ϕ. Instead, ϕL is defined by imposing a condition on the
perturbation map Ξ . The form of the Lagrangian-mean velocity uL, defined by

ϕ̇L(x, t, ε) = ε2uL(ϕL(x, t), t, ε
)
, i.e. ε2uL = ϕ̇L ◦ (ϕL)−1, (4.4)

depends on this condition.
The defining condition of glm is expressed as follows. The small parameter ε is regarded as a

fictitious time, and the perturbation map Ξ is constructed as the flow at ‘time’ ε of a vector field,
q say; that is, Ξ (x, t, α, ε) is the solution of

∂εΞ (x, t, α, ε) = q(Ξ (x, t, α, ε), t, α, ε) with Ξ (x, t, α, ε = 0) = x, (4.5)

and t is treated as a fixed parameter. The glm condition is then

q = 0. (4.6)

Although superficially similar to the GLM condition (4.1), (4.6) is fundamentally different in
that it is an intrinsic statement, applicable to any manifold and independent of any coordinate
choice. Moreover, the glm formulation defines an exactly divergence-free Lagrangian mean flow,
by requiring that

∇ · q = 0 (4.7)

to ensure that Ξ and ϕL preserve volume and hence ∇ · uL = 0.
Equation (4.6) generalizes the condition on ξ2 in (2.12) which leads to uS

sol as the Stokes velocity.
We show this by solving (4.5) by Taylor expansion. In coordinates, we have that

Ξ (x, t, α, ε) = x + ξ (x, t, α, ε) = x + εq(x, t, α, 0) + 1
2 ε2(∂εq + q · ∇q)(x, t, α, 0) + · · · . (4.8)

The power series expansions (2.3b) for ξ and

q = q1 + εq2 + ε2q3 + · · · (4.9)

for q then give
ξ1 = q1 and ξ2 = q2 + 1

2 q1 · ∇q1 (4.10)

so that (4.6) implies (2.12). In the next section, we develop a systematic computation of uL and
hence uS

sol order by order in ε using Lie series. This removes the need to introduce ξ by focusing
the perturbation expansion on q.

(b) Lie series expansion
The glm formalism can be regarded as an instance of classical perturbation theory, which
approximates solutions to the ordinary differential equation (4.2) by performing a variable
transformation designed to eliminate fast time dependences. In this interpretation, Ξ determines
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the variable transformation and ϕL represents the new variable. Lie series [19,20] provide a
powerful tool for the systematic implementation of classical perturbation theory which we now
apply to glm.

Introducing the decomposition (4.3) into (4.2) and using (4.4) gives

w + Ξ ∗ uL = u, (4.11)

where

w = Ξ̇ ◦ Ξ−1 (4.12)

is the perturbation velocity and Ξ∗ is the push-forward by Ξ , with Ξ ∗ uL = (uL · ∇)Ξ in
Cartesian coordinates. Pulling back (4.11) gives

uL = Ξ∗u − ŵ, where ŵ = Ξ∗w. (4.13)

We seek an ε-dependent Ξ to eliminate fast time dependence from uL order-by-order in ε, and
formulate the problem in terms of the vector field q that generates Ξ according to (4.5). We impose
that ∇ · q = 0 to ensure that ∇ · uL = 0, and the glm condition (4.6).

Expanding q as in (4.9) we relate the various terms by differentiating (4.13) repeatedly with
respect to ε and evaluating the results at ε = 0. Two key identities turn this into a mechanical
exercise. The first, essentially the definition of the Lie derivative [25], is

∂εΞ
∗u = Ξ∗Lqu, (4.14)

where Lqu = q · ∇u − u · ∇q is the Lie derivative of u along q. The second,

∂εŵ = ∂t(Ξ∗q) + LΞ∗qŵ, (4.15)

is established in appendix A. Iterating (4.14) and (4.15) we find

Ξ∗u = u + εLq1
u + 1

2 ε2(L2
q1

+ Lq2
)u + 1

6 ε3(L3
q1

+ 2Lq1
Lq2

+ Lq2
Lq1

+ 2Lq3
)u + · · · (4.16)

and

ŵ = ε∂tq1 + 1
2 ε2(∂tq2 + Lq1

∂tq1) + 1
3 ε3(∂tq3 + Lq1

∂tq2 + 1
2Lq2

∂tq1 + 1
2L

2
q1

∂tq1) + · · · (4.17)

Introducing (4.16) and (4.17) into (4.13) gives at the first two orders in ε,

∂tq1 = u1, i.e. q1 = ξ1 (4.18)

and

uL = u2 + 1
2Lq1

u1, (4.19)

on using (4.6). This provides the geometric formula

uS
sol = 1

2Lq1
u1 (4.20)

for the solenoidal Stokes drift, equivalent to (2.11a) since Lq1
u1 = q1 · ∇u1 − u1 · ∇q1 = ∇ × (u1 ×

ξ1). The expansion can be pursued to higher orders by choosing divergence-free qn that push the
fast dependence on the right-hand side of (4.13) to order εn+1. This yields uL and hence uS

sol to
arbitrary order in ε.

(c) Lagrangian-mean momentum equation
A Lagrangian-mean momentum equation, analogous to Andrews & McIntyre Theorem I [8], can
be derived for the glm formalism order-by-order in ε [18,21]. We sketch a derivation, focusing
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on the case of small-amplitude surface gravity waves. This derivation is conveniently carried out
using a representation of the rotating Euler equation

Dtu + f × u = −∇p, (4.21)

with Dt = ∂t + u · ∇, in terms of the absolute momentum 1-form [21,26,27]

νa = u · dx + 1
2 (f × x) · dx. (4.22)

It can be checked that (4.21) is equivalent to

(∂t + Lu)νa = −dπ , (4.23)

where π = p − 1
2 |u|2 − 1

2 (f × x) · u, using basic properties of the Lie derivative, namely Leibniz
rule, commutation with the differential d, and that Lu = u · ∇ when applied to scalars [25]; see
appendix A for details. Equation (4.23) can be thought of as a local version of Kelvin’s circulation
theorem. This is readily obtained by integration along a closed curve C(t) moving with u to find

∮

C(t)
νa =

∮

C(t)
(u + 1

2 (f × x)) · dx = const. (4.24)

An advantage of (4.23) is that it leads directly to a Lagrangian-mean momentum equation of a
similar form [21],

(∂t + LuL )νL
a = −dπL, (4.25)

and to the corresponding Lagrangian-mean Kelvin’s circulation theorem

∮

CL(t)
νL

a = const, (4.26)

where the closed curve CL(t) moves with the Lagrangian-mean velocity uL. Here the Lagrangian-
mean momentum and effective pressure are given by

νL
a = Ξ∗νa and πL = Ξ∗π . (4.27)

The pull-back Ξ∗ by the perturbation map acts on scalars as a composition, e.g. (Ξ∗π )(x, t, α, ε) =
π (Ξ (x, t, α, ε), t, α, ε), and commutes with the differential so that

(Ξ∗(u · dx))(x) = u(Ξ (x)) · dΞ (x) = u(Ξ (x)) · (dx · ∇)Ξ (x). (4.28)

We show in appendix A that (4.25), together with the coordinate representation Ξ (x, t, α, ε) =
x + ξ (x, t, α, ε) and GLM condition (4.1) recovers Andrews & McIntyre’s Lagrangian-mean
momentum equation [8, theorem I]. For glm, we can use the Lie-series expression (4.16) to obtain
an expansion of νL

a as

νL
a = 1

2 (f × x) · dx + ε2 u2 · dx + Lq1
(u1 · dx) + 1

4L2
q1

((f × x) · dx) + O(ε3) (4.29)

using that u = εu1 + ε2u2 + · · · and q1 = q2 = 0. Introducing (4.29) into (4.25) and expanding the
Lie derivative gives an evolution equation for the Eulerian mean velocity uE = u2 supplemented
by the incompressibility condition ∇ · uE = 0.

The Lagrangian-mean momentum equation greatly simplifies for surface gravity waves:
typical wave frequencies σ satisfy σ/f - 1 and we can therefore neglect the term involving
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L2
q1

in (4.29) against the other two in the average (recall that ∂tq1 = u1). Moreover, using the
irrotationality condition (2.13), we compute

Lq1
(u1 · dx) = (q1 · ∇)u1 · dx + u1 · dq1 = (q1ju1i,j + u1jq1j,i) dxi

= (q1ju1j,i + u1jq1j,i)dxi = ∂t(q1jq1j,i) dxi

= 1
2 ∂t∇|q1|2 · dx = 1

2 d(∂t|q1|2) = O(µε2). (4.30)

Therefore, to leading order, the glm mean momentum equation reduces to

(∂t + LuL )(uE · dx + 1
2 (f × x) · dx) = −dπL, (4.31)

with the glm Lagrangian-mean velocity in (2.12) (see [26,27] for an analogous formulation of the
GLM CL equation). Using Cartan’s formula in the form

Lu(v · dx) = ((∇×v) × u) · dx + d(u · v), (4.32)

the Lie derivatives in (4.31) can be written as

LuL ((f × x) · dx) = 2(f × uL) · dx + d(·), (4.33)

LuL (uE · dx) =LuE (uE · dx) + LuS
sol

(uE · dx)

= (uE · ∇uE) · dx + ((∇×uE) × uS
sol) · dx + d(·), (4.34)

where we do not detail the exact differentials. This makes it possible to rewrite (4.31) as

∂tuE + (uE · ∇)uE + ×(uE + uS
sol) = −∇- + uS

sol × (∇ × uE), (4.35)

for a suitable definition of the effective pressure - . Equation (4.35) can be recognized as the
CL equation [3,4,28] with the solenoidal Stokes velocity uS

sol replacing uS. This is not surprising
since the O(ε2µ) difference between uS

sol and uS is of the same order as terms neglected in the
derivation of the CL equation. (CL geared µ to ε by taking µ = ε2. In our derivation, this gearing
is not necessary.) In fact the assumption µ " 1 is only used to neglect the term (4.30) from the
Lagrangian-mean momentum equation to obtain (4.31) and hence (4.35). Restoring this term leads
to the generalization

(∂t + LuL )(uE · dx + 1
2 d(∂t|q1|2) + 1

2 (f × x) · dx) = −dπL, (4.36)

of the CL equation valid for µ = O(1). Since LuL and d commute, LuLd(∂t|q1|2) = d(· · · ) and the
additional terms involving |q1|2 can be absorbed in the differential of the pressure-like term on
the right-hand side. We conclude that the CL equation (4.35) with uS

sol as Stokes velocity holds for
µ = O(1) provided that the effective pressure - is suitably redefined.

5. Conclusion
This paper examines a problematic aspect of the Stokes velocity uS, namely its divergence ∇ · uS

and non-zero vertical component wS. Some confusion has arisen because ∇ · uS and wS are
small when the wave field has an amplitude that varies on scales longer and slower than the
wavelength and period. This scale-separation approximation corresponds to the existence of a
small parameter µ " 1, as is the case for slowly varying wavepackets. The distinction between
approximate and exact results in the literature is not always made plain. Beyond this, there are no
irretrievable difficulties with the familiar form (1.2) of uS: when ∇ · uS and wS cannot be neglected,
they are readily computed in terms of the first-order fields.

The main point of the paper, however, is that the Stokes velocity, understood as the difference
uS = uL − uE between Lagrangian- and Eulerian-mean velocities, is not uniquely defined and
that an alternative version, uS

sol in (2.11), that is exactly solenoidal can serve as a convenient
substitute for the familiar (1.2). The non-uniqueness arises because there is no single definition
of the Lagrangian-mean velocity uL, which is only constrained to serve as a good ‘guiding-centre’
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representative of the motion of an ensemble of fluid particles. The ambiguity is usually resolved
by imposing the GLM condition ξ = 0, which is restricted to Euclidean geometry or depends on
coordinates, but alternatives which have the benefit of both coordinate-independence and non-
divergent uL exist [21]. One of these, Soward & Roberts’ glm [18], leads to uS

sol in (2.11) or, in a
more geometric form, (4.20). We give only the form of uS

sol to leading order in the wave amplitude
parameter ε; as we describe, higher-order corrections can be computed systematically using a Lie
series expansion. We further show that the CL equations [3,4], widely used to model the feedback
of surface gravity waves on the flow, apply in the glm framework, with uS

sol simply replacing uS.
We stress that, in general, the coordinates associated with a Lagrangian-mean trajectory

xL = ϕL(x0, t, ε) of given fluid particle (identified by initial position x0) are not the average of the
coordinates of this particle. This is a feature specific to GLM, intimately connected to its coordinate
dependence and the decision to make ξ = 0.

We conclude by noting that the assumption µ " 1, which makes it possible to ignore the
divergence and vertical component of uS, is restrictive. The assumption clearly holds for single
wavepackets, but may fail for more complex wave fields. When it does, using the solenoidal
Stokes velocity uS

sol brings considerable simplifications, e.g. for the computation of the Eulerian
mean flow from the CL or other wave-averaged equations.
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Appendix A. Computational details for §4
(a) Derivation of (4.15)
We define q̂ = Ξ∗q in analogy with ŵ = Ξ∗w and note that both are the negative of velocities
associated with the inverse map Ξ−1 in the sense that

∂tΞ
−1(x, t, ε) = −ŵ(Ξ (x, t, ε), t, ε) and ∂εΞ

−1(x, t, ε) = −q̂(Ξ (x, t, ε), t, ε), (A 1)

as follows from the differentiation of the identity Ξ−1(Ξ (x, t, ε), t, ε) = x with respect to t and ε.
(We do not make the dependence on α explicit for simplicity.) Equating the derivative of the first
equality with respect to ε with the derivative of the second with respect to t gives

− ∂εŵ + q̂ · ∇ŵ = −∂tq̂ + ŵ · ∇q̂ (A 2)

and, on rearranging,

∂εŵ = ∂tq̂ + q̂ · ∇ŵ − ŵ · ∇q = ∂tq̂ + Lq̂ŵ, (A 3)

i.e. (4.15).

(b) Equivalence between (4.21) and (4.23)
We show that (4.23) is equivalent to the familiar form (4.21) of the Euler equation. We first write
(4.23) explicitly as

(∂t + Lu)(u · dx + 1
2 (f × x) · dx) = −d(p − 1

2 |u|2 − 1
2 (f × x) · u). (A 4)
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Expanding, we find

(Dtu) · dx + u · du + 1
2 (f × u) · dx + 1

2 (f × x) · du

= −∇p · dx + u · du + 1
2 (f × dx) · u + 1

2 (f × x) · du, (A 5)

which recovers (4.21) since (f × dx) · u = −(f × u) · dx.

(c) GLM from (4.25)
We show that (4.25), together with the defining property of GLM ξ̄ = 0 is equivalent to Theorem I
of Andrews & McIntyre [8] in the case of an incompressible fluid. We need to apply the pull-back
Ξ∗ to

νa = u · dx + 1
2 (f × x) · dx and π = p − 1

2 |u|2 − 1
2 (f × x) · u, (A 6)

then average. Here u stands for the three components of u rather than for a vector, hence the pull-
back is simply composition with Ξ , that is, Ξ∗u = u ◦ Ξ =: uξ . We also have Ξ∗x = x + ξ (x, t, ε)
and Ξ∗dx = d(Ξ∗x) = dx + dξ . Using that ξ̄ = 0, we compute

νL
a = uξ · dx + uξ · dξ + 1

2 (f × ξ ) · dξ + 1
2 (f × x) · dx. (A 7)

The averaged term can be written as (uL − p) · dx with uL = uξ and

pi = −ξj,i(u
ξ
j + 1

2 (f × ξ )j) (A 8)

the pseudomomentum. Similarly,

πL = pξ − 1
2 |uξ |2 − 1

2 (f × ξ ) · uξ − 1
2 (f × x) · uL. (A 9)

Introducing (A 7) and (A 9) into (4.25), we compute

(∂t + LuL )((uL − p) · dx) + ((∇× 1
2 (f × x)) × uL) · dx + d( 1

2 (f × x) · uL)

= −∇π̃L · dx + d( 1
2 (f × x) · uL), (A 10)

where π̃L = pξ − 1
2 |uξ |2 − 1

2 (f × ξ ) · uξ and we have used Cartan’s formula given below (4.31).
Since ∇×(f × x) = 2f we finally obtain

Dt(uL
i − pi) + (uL

j − pj)u
L
j,i + (f × uL)i = −π̃L

,i , (A 11)

that is, theorem I of [8].
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