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Integrated omics endotyping of infants with
respiratory syncytial virus bronchiolitis and
risk of childhood asthma
Yoshihiko Raita 1✉, Marcos Pérez-Losada2,3, Robert J. Freishtat4,5,6, Brennan Harmon4,
Jonathan M. Mansbach7, Pedro A. Piedra8, Zhaozhong Zhu1, Carlos A. Camargo 1 & Kohei Hasegawa 1

Respiratory syncytial virus (RSV) bronchiolitis is not only the leading cause of hospitalization

in U.S. infants, but also a major risk factor for asthma development. While emerging evi-

dence suggests clinical heterogeneity within RSV bronchiolitis, little is known about its

biologically-distinct endotypes. Here, we integrated clinical, virus, airway microbiome

(species-level), transcriptome, and metabolome data of 221 infants hospitalized with RSV

bronchiolitis in a multicentre prospective cohort study. We identified four biologically- and

clinically-meaningful endotypes: A) clinicalclassicmicrobiomeM. nonliquefaciensinflammationIFN-

intermediate, B) clinicalatopicmicrobiomeS. pneumoniae/M. catarrhalisinflammationIFN-high, C) clin-

icalseveremicrobiomemixedinflammationIFN-low, and D) clinicalnon-atopicmicrobiomeM.catar-

rhalisinflammationIL-6. Particularly, compared with endotype A infants, endotype B infants—

who are characterized by a high proportion of IgE sensitization and rhinovirus coinfection, S.

pneumoniae/M. catarrhalis codominance, and high IFN-α and -γ response—had a significantly

higher risk for developing asthma (9% vs. 38%; OR, 6.00: 95%CI, 2.08–21.9; P= 0.002).

Our findings provide an evidence base for the early identification of high-risk children during

a critical period of airway development.
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Bronchiolitis is the leading cause of hospitalization in U.S.
infants, accounting for ~110,000 hospitalizations with the
direct cost of $734 million annually1. In addition to the

substantial acute morbidity, ~30% of infants hospitalized for
bronchiolitis (“severe bronchiolitis”) subsequently develop
asthma in childhood2. Of the major causative pathogens,
respiratory syncytial virus (RSV) infection during infancy has the
largest population attributable fraction in asthma development
(i.e., the most impactful risk factor)3.

While bronchiolitis has been considered a single disease with
similar mechanisms2, emerging evidence suggests heterogeneity
in clinical presentations4 and chronic morbidities (e.g., sub-
sequent risk of recurrent wheeze and asthma)5,6. Growing evi-
dence also suggests distinct upper airway microbiome7,8,
transcriptome9, cytokine10,11, and metabolome12 profiles among
infants with bronchiolitis. However, these findings have been
solely derived from single-level (e.g., clinical or microbiome) data.
Understanding the complex interplay among the host, respiratory
viruses, airway microbiome, and subsequent chronic morbidities
of bronchiolitis involve several major challenges—e.g., identifi-
cation of the responsible mechanisms (e.g., host–microbiome
interrelations), the effect of clinical factors reflecting multi-level
environmental relations, and heterogeneity of bronchiolitis itself.
To our knowledge, no study has integrated clinical, virus, and
multi-omics data to investigate the endotypes of RSV bronchio-
litis and their longitudinal relations with chronic morbidities in
childhood. Our still limited understanding of the heterogeneity of
RSV bronchiolitis during infancy—an important period of lung
development—has hindered efforts to develop endotype-specific
RSV bronchiolitis treatment and asthma prevention strategies in
this large patient population with substantial morbidity burden.

To address this knowledge gap in the literature, analyzing data
from a multicentre prospective cohort, we sought to (1) identify
biologically distinct RSV bronchiolitis endotypes through apply-
ing integrative network and clustering approaches to clinical,
virus, nasopharyngeal airway microbiome, transcriptome, and
metabolome data and to (2) investigate the association of the
derived endotypes with chronic morbidity outcomes (recurrent
wheeze by age 3 years and asthma at age 5 years) (Fig. 1). We
report that four biologically distinct and clinically meaningful
endotypes are identified: (A) clinicalclassicmicrobiomeM. non-
liquefaciensinflammationIFN-intermediate, (B) clin-
icalatopicmicrobiomeS. pneumoniae/M. catarrhalisinflammationIFN-high,
(C) clinicalseveremicrobiomemixedinflammationIFN-low, and (D)
clinicalnon-atopicmicrobiomeM.catarrhalisinflammationIL-6. Specifi-
cally, the endotype B characterized by a high proportion of par-
ental asthma, immunoglobulin E (IgE) sensitization, and
rhinovirus coinfection, S. pneumoniae/M. catarrhalis codomi-
nance, and high IFN-α and -γ response had the highest risk for
developing asthma by age 5 years.

Results
We analyzed the data from a multicentre prospective cohort
study of infants hospitalized for bronchiolitis—the 35th Multi-
centre Airway Research Collaboration (MARC-35) study. This
prospective cohort study completed enrollment of 1016 infants
(age < 1 year) hospitalized with bronchiolitis at 17 sites across 14
U.S. states. Of these 1016 infants (median age, 3 months; female,
40%), 921 (91%) completed the run-in procedure (contact at both
1 week after hospital discharge or 3 weeks after hospitalization)
and comprise the MARC-35 longitudinal cohort. Of the infants
enrolled into this longitudinal cohort, this study included 221
infants with RSV bronchiolitis who were randomly selected for
the nasopharyngeal microbiome, transcriptome, and metabolome
testing (Supplementary Fig. 1). The analytic cohort and

nonanalytic cohort did not differ in patient characteristics (P ≥
0.05; Supplementary Table 1), except for daycare use. Among the
analytic cohort, the median age was 3 (IQR, 2–6) months, 42%
were female, and 42% were non-Hispanic white. Overall, 72%
were solo-RSV infection, while 13% had coinfection with rhino-
virus. The analytic cohort had no patients lost to follow-up up to
age 5 years.

Integrated omics approach identified clinically- and biologi-
cally distinct endotypes. To derive clinically- and biologically
distinct RSV endotypes, we applied integrative network and
clustering approaches to clinical, virus, nasopharyngeal airway
microbiome, transcriptome, and metabolome data (Fig. 1). First,
we computed a distance matrix of each dataset—(1) Gower dis-
tance for clinical and virus data (age, sex, birth weight, history of
breathing problems, lifetime antibiotic use, parental asthma, IgE
sensitization, positive pressure ventilation use, and virus data), (2)
Bray–Curtis distance for microbiome data of 40 most abundant
species, which accounted for 95% of total abundance, (3) Pearson
distance for transcriptome data using 3000 gene transcripts with
high variances, (4) Euclidian distance for metabolome data with
using 100 metabolites with high variances with adjustment for
batch effects. Then, we computed an affinity matrix of each
dataset separately and derived a fused affinity matrix by a simi-
larity network fusion. Lastly, to identify mutually exclusive
endotypes, we applied spectral clustering to the fused affinity
matrix. To choose the optimal number of endotypes, we used a
combination of the average silhouette scores, network modularity,
endotype size, and clinical and biological plausibility. Across the
different numbers of endotypes (k of 2–6), both the average sil-
houette score and the network modularity were highest with k=
4 (Supplementary Fig. 2).

We identified four distinct endotypes among infants with RSV
bronchiolitis (Supplementary Fig. 3). These endotypes were chiefly
characterized by their clinical presentation, major bacteria species of
the nasopharyngeal airway microbiome, and immune response: (A)
clinicalclassicmicrobiomeM. nonliquefaciensinflammationIFN-intermediate

(19.5%), B) clinicalatopicmicrobiomeS. pneumoniae/M. catarrhalis

inflammationIFN-high (28.5%), C) clinicalseveremicrobiomemixedin-
flammationIFN-low (28.5%), and D) clinicalnon-atopicmicrobiomeM.

catarrhalisinflammationIL-6 (23.5%) (Figs. 2–5, Supplementary Figs. 4,
5 and Table 1). Across these endotypes, several clinical characteristics
(e.g., age, lifetime antibiotic use, parental history of asthma, use of
positive pressure ventilation during hospitalization) were significantly
different (P < 0.05; Table 1).

Descriptively, infants with an endotype A were characterized
by “classic” clinical presentation of bronchiolitis (e.g., young age,
a low proportion of previous breathing problems and parental
asthma, the high proportion of solo-RSV infection), higher
abundance of M. nonliquefaciens, and intermediate IFN-α and -γ
response (Table 1 and Figs. 2–5). Endotype B was characterized
by a high proportion of parental asthma, IgE sensitization, and
coinfection with rhinovirus, higher abundance of S. pneumoniae
and M. catarrhalis, and higher IFN-α and -γ response (Table 1
and Figs. 2–5). Endotype C was characterized by a high
proportion of lifetime antibiotics use and positive pressure
ventilation use, mixed microbiome profile, and low IFN response
(Figs. 2–4 and Supplementary Fig. 4). Lastly, the endotype D was
characterized by a low proportion of parental asthma and IgE
sensitization, high abundance of M. catarrhalis, and high
interleukin-6 (IL-6) response profile (Figs. 2–4 and Supplemen-
tary Fig. 5). These variables that characterized the endotypes also
had high-ranked normalized mutual information scores, indicat-
ing large contributions to the similarity network (Supplementary
Fig. 6).
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Endotypes had differential risks of developing asthma and
recurrent wheeze. To examine their longitudinal association with
clinical outcomes, we compared the outcome risks between
endotype A (clinically “classic” bronchiolitis) and each of the
other endotypes. Compared with endotype A infants, endotype B

infants (clinicalatopicmicrobiomeS. pneumoniae/M. catarrhalisin-
flammationIFN-high) had a significantly higher risk of developing
asthma by age 5 years (9.3% vs. 38.1% [binary outcome]; OR,
6.00; 95% CI, 2.08–21.9; P= 0.002; Table 2) while those with an
endotype C or D did not have significantly differential risks.
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Likewise, in the rate of developing recurrent wheeze by age 3
years that resulted in asthma, the Kaplan–Meier curves sig-
nificantly differed between the endotypes (Plog-rank= 0.049;
Fig. 6). Compared with endotype A infants, endotype B infants
had a significantly higher rate of recurrent wheeze that resulted in
asthma (6.1% vs. 28.2%; HR, 5.50; 95% CI, 1.22–24.8; P= 0.03;
Table 2). By contrast, for the rate of recurrent wheeze that did not
result in asthma, there were no significant differences between
endotypes A and B (20.5% vs. 28.2%; HR, 1.47; 95% CI, 0.59–3.66;
P= 0.40; Table 2).

Endotypes had distinct biological characteristics. To better
understand the difference between the lowest-risk (endotype A)
and highest-risk (endotype B) groups, we compared the naso-
pharyngeal microbiome, transcriptome, and metabolome in both
individual and integrated manner. For example, compared with
endotype A infants, endotype B infants had a higher abundance
of S. pneumoniae but the lower abundance of M. nonliquefaciens
(both P < 0.05, FDR < 0.1; Supplementary Table 3). Similarly, the
overall host transcriptome profile was different between these
endotypes (Fig. 5a heatmap) with 29 differentially expressed
genes (FDR < 0.1 with ≥|1.5|-fold change; Fig. 5a volcano plot;
Supplementary Table 4). In the functional pathway analysis that
identifies biologically meaningful pathways, endotype B infants
had 24 differentially enriched pathways (FDR < 0.05)—e.g.,
upregulated IFN-α and -γ pathways (Fig. 5b). The integrated
analysis of both transcriptome and metabolome data also
demonstrated 155 differentially enriched pathways (FDR < 0.05)
—e.g., enriched PI3K-Akt-mTOR-signaling pathway in endotype
B (Fig. 4c). For the endotype A vs. C and endotype A vs. D
comparisons, the detailed differences in transcriptome and inte-
grated pathway analysis results are also summarized in Supple-
mentary Figs. 4 and 5.

Sensitivity analyses demonstrate the robustness of endotype-
outcome associations. In the sensitivity analyses that examine
the robustness of primary findings, we first excluded infants with
rhinovirus coinfection. Despite reduced statistical power, com-
pared to endotype A, endotype B infants had a significantly
higher risk of asthma (10.5% vs. 38.0%; OR, 5.21; 95% CI,
1.73–19.5; P= 0.006; Supplementary Table 5) and a non-
significant but consistently higher rate of recurrent wheeze that
resulted in asthma (7.14% vs. 28.1%; HR, 4.61; 95% CI, 0.99–21.3;
P= 0.051; Supplementary Table 5). Second, we repeated the
analyses without excluding the preprocessed variables. The allu-
vial plot (Supplementary Fig. 7) demonstrated consistency
between the four endotypes derived in this sensitivity analysis and
the original four endotypes (A–D). Compared to infants with an
endotype 1 (which corresponds to endotype A), those with an
endotype 2 (which corresponds to endotype B) had a significantly
higher risk of asthma (14.6% vs. 36.4%; OR, 3.35; 95% CI,
1.35–9.19; P= 0.012; Supplementary Table 6). Lastly, we

examined different numbers of endotypes. The alluvial plot
(Supplementary Fig. 8) demonstrated the consistency of the ori-
ginal four endotypes (A–D) across the different numbers. With
the use of five endotypes, endotype 1 had 90% concordance with
the original endotype A and endotype 2 had 100% concordance
with the original endotype B (Supplementary Table 7). Similar to
the primary analysis, these five endotypes were also characterized
by clinical presentation and nasopharyngeal microbiome com-
position (e.g., S. pneumoniae, M. catarrhalis). In addition, the
differential gene expression analysis demonstrated that, compared
to endotype 1 (which is concordant with endotype A), endotype 2
(which is concordant with endotype B) infants also had upre-
gulated IFN-γ and NFκB pathways (both FDR < 0.05; Supple-
mentary Fig. 9). Lastly, compared to endotype 1, endotype 2
infants had a significantly higher risk of asthma at age 5 years
(12.5% vs. 40.8%; OR, 4.83; 95% CI, 1.71–16.0; P= 0.005; Sup-
plementary Table 8) and nonsignificant but consistently higher
rate of recurrent wheeze that resulted in asthma (9.7% vs. 31.0%;
HR, 3.57; 95% CI, 0.97–13.2; P= 0.057; Supplementary Table 8).

Discussion
By integrating clinical, virus, nasopharyngeal microbiome, tran-
scriptome, and metabolome data from a multicentre prospective
cohort study of 221 infants with RSV bronchiolitis, we identified
four biologically distinct endotypes. In particular, compared to
infants with endotype A (“classic” bronchiolitis), those with
endotype B—characterized by a high proportion of parental
asthma, IgE sensitization, and rhinovirus coinfection, S.
pneumoniae/M. catarrhalis codominance, and high IFN-α and -γ
response—had a significantly higher risk for developing child-
hood asthma. To the best of our knowledge, this is the first study
that has identified biologically meaningful endotypes in infants
with RSV bronchiolitis and demonstrated their longitudinal
relations with the risk of chronic morbidities.

Recent studies have examined the potential mechanisms that
link infant bronchiolitis to its health sequelae. For example, we
previously reported that interactions between infecting virus and
IgE sensitization in infants with bronchiolitis are associated with
the risk of developing asthma2,5. Similarly, studies have also
reported the association of unique airway microbiome profiles
with the risk of recurrent wheeze and childhood asthma. Indeed,
research has shown the pathogenic role of Streptococcus genus
and S. pneumoniae in the upper airway—both among infants with
or without bronchiolitis13,14—in the development of these
chronic morbidities. However, the current literature has con-
flicting findings about the role of Moraxella genus in the infant
airway, with higher Moraxella abundance associated with
increased and decreased risk of developing asthma. In contrast to
these earlier reports based on a culture-dependent method13 or
16S rRNA gene sequencing14,15, our study with the species-level
resolution of microbiome structure revealed that the endotypes
with distinct Moraxella species (less-pathogenic M.
nonliquefaciens16 vs. more-pathogenic M. catarrhalis13) exhibit

Fig. 1 Analytic workflow of integrated omics endotyping. a After an affinity matrix of each dataset (clinical and virus, microbiome, transcriptome, and
metabolome) was separately computed, and a fused affinity matrix was generated by similarity network fusion. Then, the fused affinity matrix was used to
identify mutually exclusive endotypes by spectral clustering. b A combination of average silhouette scores, network modularity, and clinical plausibility (in
addition to endotype size) was used to choose the optimal number of endotypes. The concordance between the different numbers of endotypes was also
examined. After deriving endotypes, a similarity network was visualized. c Between four derived endotypes of RSV bronchiolitis, the differences in the
major clinical and virus variables, nasopharyngeal microbiome, and metabolome were visualized using heatmap. d Differentially expressed genes (endotype
A as the reference group) were visualized using a heatmap and volcano plot. The functional pathway analysis using the gene set enrichment analysis and
the Wilcoxon pathway enrichment analysis integrating transcriptomic and metabolome data were conducted to identify enriched pathways. e The risk of
childhood asthma (binary outcome) was modeled by fitting a logistic regression model. The rate of recurrent wheeze (time-to-event outcome) was
modeled by fitting a Cox proportional hazards model. RSV respiratory syncytial virus, IFN interferon, IL interleukin.
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differential risks of chronic morbidities. Research that examined
the role of airway immune response in RSV bronchiolitis and its
sequalae has also shown somewhat conflicting results—e.g., the
associations of higher type-2/-17 cytokines10 or CCL-5
chemokine11 with higher risks of recurrent wheeze. Moreover,

research has also suggested the role of metabolome—which
represents the downstream functional products of the micro-
biome, child’s genetic make-up, and immune response—in the
pathogenesis of bronchiolitis and asthma2. For example, a recent
study of airway metabolome has shown differences in pro- and

Table 1 Baseline characteristics and clinical course of infants, according to respiratory syncytial virus bronchiolitis endotypes.

Characteristics Overall
(n= 221; 100%)

Endotype A
(n= 43; 19.5%)

Endotype B
(n= 63; 28.5%)

Endotype C
(n= 63; 28.5%)

Endotype D
(n= 52; 23.5%)

P value*

Demographics
Age (month), median (IQR) 3 (2–6) 2 (1–4) 4 (2–6) 4 (2–8) 3 (1–4) 0.002
Female sex 92 (41.6) 35 (81.4) 30 (47.6) 20 (31.7) 7 (13.5) <0.001
Race/ethnicity 0.40

Non-Hispanic white 92 (41.6) 21 (48.8) 17 (27.0) 32 (50.8) 22 (42.3)
Non-Hispanic black 54 (24.4) 9 (20.9) 20 (31.7) 12 (19.0) 13 (25.0)
Hispanic 66 (29.9) 12 (27.9) 22 (34.9) 17 (27.0) 15 (28.8)
Other or unknown 9 (4.1) 1 (2.3) 4 (6.3) 2 (3.2) 2 (3.8)

Prematurity (32–37 weeks) 46 (20.8) 7 (16.3) 14 (22.2) 10 (15.9) 15 (28.8) 0.33
Birth weight (kg), median (IQR) 3.20 (2.85–3.54) 3.14 (2.92–3.42) 3.02 (2.81–3.40) 3.30 (2.92–3.58) 3.30 (2.68–3.64) 0.36
Mode of birth (cesarean delivery) 75 (34.6) 13 (30.2) 19 (30.6) 23 (36.5) 20 (40.8) 0.63
Previous breathing problems
(count)

0.26

0 189 (85.5) 38 (88.4) 58 (92.1) 48 (76.2) 45 (86.5)
1 24 (10.9) 3 (7.0) 4 (6.3) 11 (17.5) 6 (11.5)
2 8 (3.6) 2 (4.7) 1 (1.6) 4 (6.3) 1 (1.9)

Previous ICU admission 4 (1.8) 0 (0) 0 (0) 3 (4.8) 1 (1.9) 0.21
Lifetime antibiotic use† 67 (30.3) 2 (4.7) 12 (19.0) 48 (76.2) 5 (9.6) <0.001
Ever attended daycare 66 (29.9) 13 (30.2) 21 (33.3) 18 (28.6) 14 (26.9) 0.89
Cigarette smoke exposure at home 32 (14.5) 11 (25.6) 11 (17.5) 6 (9.5) 4 (7.7) 0.06
Maternal smoking during
pregnancy

30 (13.8) 8 (18.6) 6 (9.7) 10 (15.9) 6 (12.2) 0.56

Parental history of asthma 68 (30.8) 6 (14.0) 50 (79.4) 10 (15.9) 2 (3.8) <0.001
Parental history of eczema 41 (18.6) 9 (20.9) 14 (22.2) 13 (20.6) 5 (9.6) 0.27
Clinical presentation
Weight (kg), median (IQR) 5.90 (4.60–7.90) 4.90 (4.14–5.65) 6.20 (5.18–7.75) 6.73 (4.90–8.35) 5.64 (4.40–7.26) 0.003
Respiratory rate (per minute),
median (IQR)

48 (40–60) 52 (41–61) 48 (40–62) 45 (38–53) 52 (44–60) 0.045

Oxygen saturation 0.28
<90% 27 (12.6) 5 (11.9) 4 (6.3) 12 (20.3) 6 (11.8)
90–93% 173 (80.5) 35 (83.3) 55 (87.3) 44 (74.6) 39 (76.5)
≥94% 15 (7.0) 2 (4.8) 4 (6.3) 3 (5.1) 6 (11.8)

Blood eosinophilia (≥4%) 18 (9.7) 5 (13.5) 5 (9.8) 3 (5.8) 5 (11.1) 0.64
IgE sensitization 46 (20.8) 7 (16.3) 15 (23.8) 16 (25.4) 8 (15.4) 0.48
Clinical course
Positive pressure ventilation use‡ 17 (7.7) 2 (4.7) 3 (4.8) 12 (19.0) 0 (0) 0.001
Intensive treatment use§ 37 (16.7) 6 (14.0) 10 (15.9) 16 (25.4) 5 (9.6) 0.15
Length-of-day (day), median (IQR) 2 (1-3) 2 (1–3) 2 (1–4) 2 (1–4) 2 (1–3) 0.17
Antibiotic use during
hospitalization

71 (32.1) 9 (20.9) 21 (33.3) 32 (50.8) 9 (17.3) <0.001

Corticosteroid use during
hospitalization

24 (10.9) 1 (2.3) 6 (9.5) 13 (20.6) 4 (7.7) 0.02

Respiratory virus
RSV solo infection 158 (71.5) 32 (74.4) 44 (69.8) 40 (63.5) 42 (80.8) 0.22
Rhinovirus coinfection 29 (13.1) 5 (11.6) 13 (20.6) 5 (7.9) 6 (11.5) 0.21

Rhinovirus-A 14 (6.3) 1 (2.3) 7 (11.1) 5 (7.9) 1 (1.9) 0.15
Rhinovirus-B 4 (1.8) 2 (4.7) 1 (1.6) 0 (0.0) 1 (1.9) 0.37
Rhinovirus-C 11 (5.0) 2 (4.7) 5 (7.9) 0 (0.0) 4 (7.7) 0.09

Other coinfection pathogens‖ 34 (15.4) 6 (14.0) 6 (9.5) 18 (28.6) 4 (7.7) 0.006
Chronic comorbidities
Asthma at age 5 years 51 (23.1) 4 (9.3) 24 (38.1) 12 (19.0) 11 (21.2) 0.005
Recurrent wheeze by age 3 years 69 (31.2) 10 (23.3) 22 (34.9) 19 (30.2) 18 (34.6) 0.58

IQR interquartile range, ICU intensive care unit, RSV respiratory syncytial virus, IgE immunoglobulin E.
Data are no. (%) of infants unless otherwise indicated. Percentages may not equal 100, because of rounding and missingness.
*Two-sided raw P values.
†Any systemic antibiotic use from birth up to the index hospitalization for bronchiolitis.
‡Infants with bronchiolitis who underwent continuous positive airway ventilation and/or mechanical ventilation.
§Infants with bronchiolitis who were admitted to ICU and/or who underwent positive pressure ventilation.
‖Infants with coinfection by non-rhinovirus include adenovirus infection (n= 7), bocavirus (n= 8), endemic coronavirus (n= 15), enterovirus (n= 1), influenza virus (n= 1), human metapneumovirus (n
= 4), Mycoplasma pneumonia (n= 1) and parainfluenza virus (n= 3). Since six infants have coinfection with multiple infecting agents, the total number is not equal to 34.
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anti-inflammatory mediators (e.g., spermidine) in infants with
bronchiolitis12. These studies—while limited to single-level data
(e.g., clinical, virus, microbiome, cytokines/chemokines, metabo-
lome)—have discovered potential mechanisms that underlie the
bronchiolitis–asthma link. The current study corroborates these
earlier reports and extends them by identifying biologically
meaningful RSV bronchiolitis endotypes that have differential
risks of chronic morbidities.

There are several potential mechanisms linking the endotypes
of RSV bronchiolitis—in particular endotype B (clin-
icalatopicmicrobiomeS. pneumoniae/M. catarrhalisinflammationIFN-
high)—with subsequent chronic morbidities. Emerging evidence
suggests that RSV infection increases the virulence of S.
pneumoniae17 and induces type I IFN production by macro-
phages in S. pneumoniae infection18. Likewise, airway infection of
mice by M. catarrhalis induces an inflammatory response with
CD4+ T-cell-derived IFN-γ19. In addition, a recent study has
shown that the higher types 1 and 3 IFN response of RSV-
infected bronchial epithelial cells from children with asthma is
correlated with the magnitude of airway obstruction, suggesting
that an accelerated airway IFN response to RSV infection pro-
motes the obstructive processes of lungs20. Furthermore, in an
animal model of allergic asthma, there were synergistic effects of
pneumovirus infection and allergic sensitization on type 1 IFN
response21. In this study, the integrated analysis also demon-
strated that endotype B had upregulated PI3K-Akt-mTOR-
signaling pathway. The literature has shown its role in the
pathobiology of asthma, including activating both innate and
adaptive immunity, and airway remodeling22. PI3K inhibition not
only reduces allergen-induced inflammation and hyperrespon-
siveness but also prevents the expression of IFN-γ-induced pro-
tein 10—a mediator released by virus-induced asthma22. Besides,
both the PI3K-Akt-mTOR-signaling pathway and anti-
inflammatory polyamines regulate the function of dendritic
cells linking innate to adaptive immunity23. In conjunction with
earlier studies, our data collectively suggest the integrated role of
RSV infection, pathogenic bacteria (S. pneumoniae and M. cat-
arrhalis), and IFN-α/-γ airway response in the development of
asthma among infants at risk for atopy.

In addition to endotype B, the identification of other endotypes
such as endotype C—characterized by a high proportion of previous
antibiotic use, higher bronchiolitis severity, mixed microbiome
profile, and low IFN-α/-γ response—is also intriguing. Consistently,
studies have reported the relations of early-life exposures to sys-
tematic antibiotics, airway dysbiosis, and higher asthma risk15 and

the association of immature IFN-α and -γ response in RSV infec-
tion with severe RSV infection24 contributing to direct damage to
airway structure and subsequent risk of asthma25. Lastly, IL-6,
which partially characterized endotype D (clinicalnon-atopic
microbiomeM. catarrhalisinflammationIL-6), also plays a role in the
pathobiology of both severe respiratory infection and asthma. In
agreement with our study, research has previously shown the
interrelations between RSV infection, M. catarrhalis, higher naso-
pharyngeal IL-6 level, and wheezing19,26. Notwithstanding the
complexity of these mechanisms, the observed endotypes of RSV
bronchiolitis and their longitudinal relations with chronic mor-
bidities are important findings that could advance research into the
development of endotype-specific strategies for bronchiolitis treat-
ment and asthma prevention.

Our study has several potential limitations. First, we focused on
infants with RSV bronchiolitis while other non-RSV viruses are
also causative pathogens. However, RSV not only contributes to
75% of severe bronchiolitis7 but also has the largest population
attributable fraction in asthma development3. Second, bronchio-
litis involves inflammation of the lower airways in addition to the
upper airways. While our study is based on nasopharyngeal
samples, studies have shown that upper airway sampling provides
a reliable representation of the lung microbiome27 and
transcriptome28 profiles. Furthermore, the use of upper airway
specimens is preferable as bronchoscopy or other methods of
lower airway sampling would be too invasive in young infants.
Third, the nasopharyngeal samples were obtained at a single time
point. While longitudinal molecular data are also important, the
study objective was to identify endotypes of RSV bronchiolitis.
Besides, even with single-time point data, we successfully iden-
tified biologically distinct endotypes that are longitudinally
associated with chronic morbidities. Fourth, it is possible that
asthma diagnosis (by age 5 years) is misclassified and that chil-
dren are going to develop asthma at a later state. To address these
points, the study sample is currently being followed longitudinally
up to age 9 years. Fifth, this study did not have healthy “controls”.
Yet, the study objective was not to evaluate the difference of
endotypes from healthy infants but to define endotypes of RSV
bronchiolitis. Sixth, the sample size of the present analysis is
relatively smaller to the number of variables examined. This study
should facilitate further validation research. Lastly, the study
sample consisted of racially/ethnically- and geographically diverse
infants hospitalized for bronchiolitis. While our sample had a
large severity contrast, our inferences may not be generalizable to
infants in ambulatory settings with mild-to-moderate

Fig. 2 Between-endotype differences in clinical variables, virus, nasopharyngeal microbiome, and nasopharyngeal metabolome data in infants with
respiratory syncytial virus bronchiolitis. To visualize the between-endotype differences, the clinical variables and viruses are treated as numeric variables
and processed by autoscaling. The microbiome data (20 most abundant species) are processed by log2 transformation and autoscaling. The metabolome
data (20 metabolites with the highest normalized mutual information score) are processed by log2 transformation with batch effect adjustment and
autoscaling. RSV respiratory syncytial virus, IFN interferon, IL interleukin, sIgE specific immunoglobulin E.
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bronchiolitis and warrant external and experimental validation.
Nonetheless, our data remain relevant for the 110,000 infants
hospitalized yearly in the U.S.1, a vulnerable population with a
substantial morbidity burden.

In summary, by applying an integrated omics approach to data
from a multicentre prospective cohort study of 221 infants with
RSV bronchiolitis, we identified four biologically distinct and
clinically meaningful endotypes. Specifically, the endotype char-
acterized by a high proportion of parental asthma, IgE sensiti-
zation, and rhinovirus coinfection, S. pneumoniae/M. catarrhalis
codominance, and high IFN-α and -γ response had the highest
risk for developing asthma in later childhood. Considering the
relatively small sample size of infants with severe RSV bronch-
iolitis in the present study, external validation is warranted.
Regardless, our data lend significant support to the emerging
concept that “bronchiolitis” represents several diseases with dis-
tinct biological mechanisms. For clinicians, our findings may
provide an evidence base for the early identification of high-risk

children during an important period of airway development—
early infancy. For researchers, our data should facilitate further
investigations into the development of endotype-specific strate-
gies for bronchiolitis treatment and asthma prevention.

Methods
Ethical statements. With the exception of specimen collection (the NPA, blood, and
nasal swab), all study participants were evaluated and treated as usual and without
regard to this observational study. Parent/legal guardians were approached about par-
ticipating after the medical team had finished their assessments and stabilized the study
participant. If necessary, the recruiting took place the morning after admission, but no
later than 24 h after admission to the ward or intensive care unit. Samples and infor-
mation of the participants were used to study the possible genetic causes of severe
bronchiolitis, recurrent wheezing, asthma, and related concepts. The institutional review
board at each of the participating hospitals approved the study. Written informed
consent was obtained from the parent or guardian.

Study design, setting, and participants. We analyzed data from a multicentre
prospective cohort study of infants hospitalized for bronchiolitis—the 35th Mul-
ticentre Airway Research Collaboration (MARC-35) study7. MARC-35 is

Fig. 3 Relationship between major clinical variables and endotypes. a Chord diagram showing major clinical variables by endotype. The ribbons connect from
the individual endotypes to the major clinical and virus characteristics. The width of the ribbon represents the proportion of infants within the endotype who have
the corresponding clinical or virus characteristic. Then, it was scaled to a total of 100%. For example, the endotype B infants (light red) had a high proportion of
parental asthma, IgE sensitization, and coinfection with rhinovirus. Endotype C (light orange) infants had a high proportion of lifetime antibiotics use and positive
pressure ventilation use during the index hospitalization for bronchiolitis. b Venn diagram of three major clinical variables (parental history of asthma, IgE
sensitization, rhinovirus infection) and their intersections. The Venn diagram illustrates the composition of three major clinical variables and their intersections. The
numbers correspond to the number of infants in each subset and intersection. c Upset plot corresponding to the presented Venn diagram. The plot illustrates the
composition of three major clinical variables and their intersections visualized based on the four endotypes. Vertical stacked bar charts reflect the number of infants
within each subset and intersection colored according to the endotypes. Horizontal bars indicate the number of infants in each clinical variable set. Black dots
indicate the sets of subsets and intersections; connecting lines indicate relevant intersections related to each stacked bar chart.
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coordinated by the Emergency Medicine Network (EMNet,), an international
research collaboration with 247 participating hospitals. Site investigators enrolled
infants (age < 1 year) hospitalized with bronchiolitis at 17 sites across 14 U.S. states
using a standardized protocol during three consecutive bronchiolitis seasons (from
November 1 through April 30) during 2011–2014. The diagnosis of bronchiolitis
was made according to the American Academy of Pediatrics bronchiolitis guide-
lines, defined as the acute respiratory illness with a combination of rhinitis, cough,
tachypnoea, wheezing, crackles, or retraction29. We excluded infants with a pre-
existing heart and lung disease, immunodeficiency, immunosuppression, or
gestational age of <32 weeks, history of previous bronchiolitis hospitalization, or
those who were transferred to a participating hospital >24 h after initial hospita-
lization. Of 921 infants enrolled into the longitudinal cohort, the current analysis
investigated 221 infants with RSV infection who were randomly selected for the
nasopharyngeal microbiome, host transcriptome, and metabolome testing (Sup-
plementary Fig. 1).

Data collection and measurement of virus, microbiome, transcriptome, and
metabolome. Clinical data (patients’ demographic characteristics, and family,
environmental, and medical history, and details of the acute illness) were collected
via structured interview and chart reviews7. All data were reviewed at the EMNet
Coordinating Centre (Boston, MA), and site investigators were queried about
missing data and discrepancies identified by manual data checks. In addition to the
clinical data, nasopharyngeal airway samples were collected by trained site inves-
tigators using the standardized protocol that was utilized in a previous cohort study
of children with bronchiolitis7,30. All sites used the same collection equipment
(Medline Industries, Mundelein, IL, USA) and collected the samples within 24 h of

hospitalization. The nasopharyngeal airway specimens were immediately placed on
ice and then stored at −80 °C. Frozen specimens were shipped in batches to Baylor
College of Medicine (Houston, TX) where they were tested for 17 respiratory
viruses (including respiratory syncytial virus [RSV]) using real-time polymerase
chain reaction (RT-PCR) assays (Supplementary Table 9)7,30,31. Frozen samples
were also shipped to the University of Maryland (Baltimore, MD) for RNA
sequencing (both transcriptome and metatranscriptome profiling) and to Meta-
bolon (Durham, NC, USA) for metabolomic profiling32.

RNA extraction, RNA sequencing, and quality control. Total RNA was isolated from
the nasopharyngeal samples using Trizol LS reagent (ThermoFisher Scientific,
Waltham, MA) in combination with the Direct-zol RNA Miniprep Kit (Zymo
Research, Irvine, CA). RNA quantity was measured with the Qubit 2.0 fluorometer
(ThermoFisher Scientific, Waltham, MA); its quality was assessed with the Agilent
Bioanalyzer 2100 (Agilent, Palo Alto, CA) using the RNA 6000 Nano kit. Total
RNA underwent DNase treatment using the TURBO DNA-free™ Kit (Thermo-
Fisher Scientific, Waltham, MA) and rRNA reduction for both human and bac-
terial rRNA using NEBNext rRNA Depletion Kits (New England Biolabs, Ipswich,
MA). RNA was prepared for sequencing using the NEBNext Ultra II Directional
RNA Library Prep Kit (New England Biolabs, Ipswich, MA) and sequenced on an
Illumina NovaSeq6000 using a S4 100PE Flowcell (Illumina, San Diego, CA). All
RNAseq samples had sufficient sequence depth (mean, 8,067,019 pair-end reads/
sample) to obtain a high degree of sequence coverage.

Nasopharyngeal airway microbiome profiling. Raw sequence reads were filtered and
trimmed for adapters and contaminants using the k-mers strategy in bbduck33 and

P<0.001, FDR<0.001P=0.005, FDR=0.013 P=0.014, FDR=0.028 P<0.001, FDR<0.001 P<0.001, FDR<0.001

P=0.029, FDR=0.042 P=0.029, FDR=0.042 P=0.22, FDR=0.22 P=0.15, FDR=0.18 P=0.17, FDR=0.18

Fig. 4 Between-endotype differences in the abundance of the ten most abundant nasopharyngeal microbial species. The boxplots show the distribution
of the ten most abundant microbial species of the nasopharyngeal microbiome, according to the four endotypes. The differences in relative abundance (scale
of 0–1) among the four endotypes (endotype A, 43 samples; endotype B, 63 samples; endotype C, 63 samples; and endotype D, 52 samples) were tested by
Kruskal–Wallis test. center lines indicate median values. Box limits indicate upper and lower quartiles. Whiskers indicate 1.5 × interquartile ranges. Points
indicate outliers. Exact P values and false discovery rates (FDRs) are the following: Streptococcus pneumoniae, P value= 0.0051, FDR= 0.013; Moraxella
catarrhalis, P value= 4.1 × 10−5, FDR= 0.00014; Moraxella nonliquefaciens, P value= 0.014, FDR= 0.028; Cutibacterium acnes; P value= 2.4 × 10−5, FDR=
0.00012; Haemophilus influenzae, P value= 2.0 × 10−5, FDR= 0.00012; Escherichia coli, P value= 0.029, FDR= 0.042; Corynebacterium simulans, P value=
0.029, FDR= 0.042; Prevotella melaninogenica, P value= 0.22, FDR= 0.22; Streptococcus mitis, P value= 0.15, FDR= 0.18; and Prevotella nanceiensis,
P value= 0.17, FDR= 0.18. FDR false discovery rate.
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default settings. We used PathoScope34–36 and the expanded Human Oral
Microbiome Database (eHOMD) database37 to infer bacterial composition. Sam-
ples with <1000 reads, singletons, and strains not present in at least 10% of the
samples were eliminated. The metatranscriptomic analysis obtained 1,968,352,599
merged sequences and identified 323 microbial lineages after singleton removal.
The microbiome data are presented in Figs. 2, 4, and 8, and Supplementary Table 3.

Nasopharyngeal airway host transcriptome profiling. Transcript abundances from
clean RNAseq reads were estimated in Salmon38 using the human transcriptome
(hg38) and the mapping-based mode. We first generated a decoy-aware tran-
scriptome and then quantified the reads using Salmon’s default settings and the
following flags: –validateMappings, –recoverOrphans, –seqBias and –gcBias. Sal-
mon is fast and accurate, corrects for potential changes in gene length across
samples (e.g., from differential isoform usage), and has great sensitivity. For the
differential gene expression analysis, Salmon’s estimated transcript abundances
were imported into DESeq2 using tximport39. The transcriptome data are pre-
sented in Fig. 5, Supplementary Table 3, and Supplementary Figs. 4, 5, and 9.

Nasopharyngeal airway metabolomic profiling. Metabolomic profiling used 125 μl
of nasopharyngeal airway sample. All samples were blinded to Metabolon and
processed in random order. The metabolic profiling used ACQUITY ultra-high
performance liquid chromatography (UPLC) (Waters, Milford, MA, USA) and Q-
Exactive high resolution/accurate MS interfaced with a heated electrospray ioni-
zation (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass
resolution (ThermoFisher Scientific, Waltham, MA, USA).

Sample preparation was carried out as described previously40,41. In brief,
recovery standards were added prior to the first step in the extraction process for
quality control purposes. Proteins were precipitated with 500 μL of methanol added
to 100 μL of the sample under vigorous shaking for 2 min (Glen Mills Genogrinder
2000; Clifton, NJ, USA) followed by centrifugation. The sample extract was dried
then reconstituted in solvents compatible with each of the four methods. Each
reconstitution solvent contained a series of standards at fixed concentrations to
ensure injection and chromatographic consistency. One aliquot was analyzed using
acidic positive ion conditions, chromatographically optimized for hydrophilic
compounds. In this method, the extract was gradient eluted from a C18 column
(Waters UPLC BEH C18-2.1 × 100 mm, 1.7 μm) using water and methanol,
containing 0.05% perfluoropentanoic acid and 0.1% formic acid. Another aliquot
was also analyzed using acidic positive ion conditions, but it was
chromatographically optimized for hydrophobic compounds. In this method, the
extract was gradient eluted from the same aforementioned C18 column using
methanol, acetonitrile, water, 0.05% perfluoropentanoic acid, and 0.01% formic
acid and was operated at an overall higher organic content. Another aliquot was
analyzed using basic negative ion optimized conditions using a separate dedicated
C18 column. The basic extracts were gradient eluted from the column using
methanol and water, including 6.5 mM ammonium bicarbonate at pH 8. The
fourth aliquot was analyzed via negative ionization following elution from a HILIC
column (Waters UPLC BEH Amide 2.1 × 150 mm, 1.7 μm) using a gradient
consisting of water and acetonitrile with 10 mM ammonium formate, pH 10.8. The
MS analysis alternated between MS and data-dependent MSn scans using dynamic
exclusion. The scan range varied slightly between methods but covered 70–1000m/
z. Parameters for chromatography are summarized in Supplementary Table 10.

Metabolites were identified by automated comparison of the ion features in the
experimental samples to a reference library of chemical standard entries that
include retention time, molecular weight (m/z), preferred adducts, and in-source
fragments as well as associated MS spectra, and curated by visual inspection for
quality control using QUICS software42. Identification of known chemical entities
was based on comparisons to metabolomic library entries of >3000 purified
standards. Peaks were quantified using the area under the curve. The raw area
counts for each metabolite in each sample were normalized to correct for variation
due to instrument interday tuning differences by the median value for each run
day, setting the median to 1.0 for each run. Missing values were imputed with the
observed minimum for that particular compound.

Four types of quality controls were analyzed in concert with the specimens: (1)
samples generated from a pool from a small portion of each experimental specimen
that served as technical replicate; (2) extracted water samples that served as process
blanks; (3) samples of solvent used in extraction; and (4) a cocktail of standards
spiked into every analyzed specimen that allowed instrument performance
monitoring. The median relative standard deviation (RSD) for the standards that
are added to each sample—a measure of instrument variability—was <5%. The
metabolome data are presented in Figs. 2, 5, Supplementary Tables 2, 3, and 7, and
Supplementary Figs. 4, 5, and 9.

Outcome measures. The primary outcome was asthma at age 5 years. The
secondary outcome was the development of recurrent wheeze by age 3 years,
stratified by asthma status to account for the heterogeneity of recurrent wheeze
according to prior research5. The definition of asthma was based on a com-
monly used epidemiologic definition of asthma43—physician-diagnosis of
asthma by age 5 years, plus either asthma medication use (e.g., albuterol
inhaler, inhaled corticosteroids, montelukast) or asthma-related symptoms in
the preceding year. The definition of recurrent wheeze was, based on the 2007T
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U.S. asthma guidelines44, defined as having at least two corticosteroid-
requiring exacerbations in 6 months or at least four wheezing episodes in 1
year that last at least 1 day and affect sleep.

Statistical analysis. In the current study, our aims are to identify biologically
distinct RSV bronchiolitis endotypes (description [clustering]) and to relate them
to outcome risks (association)45. The analytic workflow is summarized in Fig. 1.
First, we selected and preprocessed variables to compute a distance matrix for each

of the datasets (i.e., clinical and virus, microbiome, transcriptome, and metabo-
lome). For the clinical data, we choose variables based on a priori knowledge3—age,
sex, birth weight, history of breathing problems, lifetime antibiotic use, parental
asthma, immunoglobulin E (IgE) sensitization, positive pressure ventilation use,
and virus data (coinfection with rhinovirus [binary], rhinovirus species (catego-
rical), virus genomic load [count])3,5. The breathing problem variable had miss-
ingness in 2 infants (0.9%) which were imputed by a random forest method using R
missForest package46. For the microbiome data, we used the relative abundance of
40 most abundant species which accounted for 95% of total abundance. For the

Fig. 5 Differential gene expression analysis and functional pathway analysis in the endotypes A vs. B comparison. a Heatmap and volcano plot of
differentially expressed genes. For the heatmap (left), we selected 300 genes with the most significant P value (two-sided raw P value) and the color bar indicates
the scaled value of variance stabilizing transformation. For the volcano plot (right), the threshold of log2 fold change is |0.58| (i.e., ≥|1.5|-fold change) and that of
FDR < 0.1. There were 29 differentially expressed genes that met these criteria. Of these, 11 Ensemble gene ids are annotated in the volcano plot due to space
availability. These genes are presented in Supplementary Table 4. b Functional pathway analysis. For the functional class scoring analysis (left), we selected 25
pathways with the highest absolute value of normalized enriched score to visualize the plot. cWilcoxon pathway enrichment analysis integrating transcriptome and
metabolome data. For the Wilcoxon pathway enrichment analysis, we selected 20 pathways with the most significant joint FDR, and showed the numbers and
proportions of hit genes (left) and metabolites (right) for the corresponding pathways. GSEA gene set enrichment analysis, FDR false discovery rate.
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host transcriptome data, we selected 3000 transcripts with high variances after
normalization and variance stabilizing transformation using DESeq2 package47.
For the metabolome data, we selected 100 metabolites with high variances with
adjusting for batch effects using sva package48,49 after log2 transformation. Then,
we computed Gower distance for the clinical data using StatMatch package50,
Bray–Curtis distance for the microbiome data using vegan package51, Pearson
distance for the transcriptome data using amap package52, and Euclidian distance
for the metabolome data using amap package52.

To conduct integrated omics endotyping, we computed an affinity matrix of
each dataset separately, and computed a fused affinity matrix by similarity network
fusion53 using SNFtool package54. We set all parameters of similarity network
fusion (i.e., the number of neighbors [n= 25], hyperparameter [alpha= 0.7], and
number of iteration [T= 25]). Finally, to identify mutually exclusive endotypes, we
conducted spectral clustering using fused affinity matrix. To choose the optimal
number of endotypes, we chose the optimal number of endotypes by using a
combination of the average silhouette scores (Supplementary Fig 2a), network
modularity (Supplementary Fig 2b), endotype size (n= 43–63), and clinical and
biological plausibility. The network modularity measures how well separated
subnetworks are given a particular partitioning (i.e., endotypes) of the network55.
To complement these approaches, we have also used a priori knowledge. Indeed,
these derived endotypes are characterized by major clinical characteristics (e.g.,
atopy), major airway bacteria (e.g., S. pneumoniae, M. catarrhalis, Haemophilus
influenzae), and immune response profiles (e.g., type I interferons): (A)
clinicalclassicmicrobiomeM. nonliquefaciensinflammationIFN-intermediate, (B)
clinicalatopicmicrobiomeS. pneumoniae/M. catarrhalisinflammationIFN-high, (C)
clinicalseveremicrobiomemixedinflammationIFN-low, and (D) clinicalnon-
atopicmicrobiomeM.catarrhalisinflammationIL-6. These endotypes are consistent with
earlier studies that individually investigated each of clinical56,57 and omics
(transcriptome58, microbiome7,8, and metabolome32) data in infants with
bronchiolitis. We conducted differential expression gene and functional pathway
analyses by comparing the reference endotype with each of the other endotypes.
We also computed the ranking of normalized mutual information (NMI) score of
each variable. Each variable is ranked based on the similarity in the clustering of
fused matrix, meaning that high-ranked variables contribute more to form the
similarity network53. After deriving these endotypes, we visualized a patient
similarity network with Fruchterman-Reingold layout using qgraph package59.

We also conducted several analyses to examine the between-endotype
differences in clinical and virus, microbiome, and metabolome data. First, we
examined the between-endotype differences in the patient characteristics and
clinical presentation by using Kruskal–Wallis, chi-squared, and Fisher exact tests,
as appropriate. Second, to examined the relationship between major clinical
variables and endotypes, we developed a chord diagram, Venn diagram of three
major clinical variables (parental history of asthma, IgE sensitization, rhinovirus
infection) and their intersections, and an upset plot corresponding to the presented

Venn diagram. We used circlize package60 for the chord diagram, VennDiagram
package61 for the Venn diagram, and ComplexUpset package62 for the upset plot.
Lastly, to visualize the between-endotypes differences in the clinical characteristics,
viruses, selected microbiota species, and selected metabolites, we developed a
heatmap assigning the mean value for clinical variables and viruses, microbiome,
and metabolome data. The clinical variables and viruses are treated as numeric
variables and processed by autoscaling. The microbiome data (20 most abundant
species) are processed by log2 transformation and autoscaling. The metabolome
data (30 highest NMI scores) are processed by autoscaling.

For transcriptome data, we conducted differential gene expression analysis
and functional pathway analysis by comparing the reference endotype (endotype
A) with each of the other three endotypes. To visualize the differentially expressed
genes for each of the comparisons, we used a volcano plot and created a heatmap
using 300 genes with the smallest P values. To investigate whether genes for
specific biological pathways are enriched among the large positive or negative
fold changes, we conducted a functional class scoring analysis using fgsea
package63. To detect biologically meaningful pathways by integrating host
transcriptome and metabolome data, we also performed a Wilcoxon pathway
enrichment analysis using the Integrated Molecular Pathway Level Analysis
(IMPaLA) method64.

To determine the association of endotypes with the risk of childhood asthma
(binary outcome), we fitted a logistic regression model. To examine the longitudinal
relations of endotypes with the rate of recurrent wheeze outcome, we modeled the
time to outcome development (i.e., the development of recurrent wheeze) by fitting
a Cox proportional hazards model. Patients who did not have an outcome were
censored at their last follow-up interview during the 36-month follow-up period.
The proportionality of hazards assumption was verified through evaluating the
Schoenfeld residuals. To examine the robustness of endotype-outcome associations,
we also conducted a series of sensitivity analyses—(1) excluding infants with
coinfection with rhinovirus, (2) using all variables from the full datasets, and (3) a
different number of endotypes—and examined the between-endotype difference in
the clinical, microbiome, transcriptome, and metabolome data for the major
between-group comparison. We analyzed the data using R version 3.6.1 (R
Foundation for Statistical Computing, Vienna, Austria). All P values were two-
tailed, with P < 0.05 considered statistically significant. We corrected for multiple
testing using the Benjamini–Hochberg FDR method65.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All relevant data that support the findings of this study will be available on the NIH/
NIAID ImmPort and/or dbGaP through controlled access or from the authors. To be

Fig. 6 Kaplan–Meier curves for development of recurrent wheeze by age 3 years, according to respiratory syncytial virus bronchiolitis
endotypes. a Recurrent wheeze by age 3 years with asthma at age 5 years. Overall, the survival curves significantly differed across the endotypes (Plog-rank=
0.049). Compared with endotype A (clinicalclassicmicrobiomeM. nonliquefaciensinflammationIFN-intermediate) infants, the rate of developing recurrent wheeze by age 3
years was not significantly different in endotype C or D infants. By contrast, the rate was significantly higher in endotype B (clinicalatopicmicrobiomeS. pneumoniae/M.

catarrhalisinflammationIFN-high) infants (HR 5.50; 95% CI 1.22–24.8; P=0.03). Corresponding hazards ratio estimates are presented in Table 2. b Recurrent
wheeze by age 3 years without asthma at age 5 years. The survival curves did not significantly differ across the endotypes (Plog-rank=0.84). Compared with
endotype A infants, the rate of developing recurrent wheeze by age 3 years was not significantly different in endotype B, C, or D. Corresponding hazards ratio
estimates are presented in Table 2. RSV respiratory syncytial virus, IFN interferon, IL interleukin.
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compliant with the informed consent forms of the MARC-35 study and the genomic data
sharing plan, the data are available only for research that studies the possible genetic
causes of severe bronchiolitis, recurrent wheezing, asthma, and related concepts. BBMap
used in this study can be found in the following site: https://sourceforge.net/projects/
bbmap/files/ The expanded Human Oral Microbiome Database (eHOMD) database used
in this study can be found in the following repository: http://www.homd.org. Source data
are provided with this paper.

Code availability
Computational code from the study is available at https://github.com/HasegawaLab/
sample_code_snf_nc_open. Yoshihiko Raita, Integrated omics endotyping of infants with
respiratory syncytial virus bronchiolitis and risk of childhood asthma, HasegawaLab/
sample_code_snf_nc_open: Sample code for similarity network fusion, https://doi.org/
10.5281/zenodo.4731225.
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