Graphs with prescribed radius, diameter, and center

Kelly Guest

Tuskegee University, kbraganguest@gmail.com

Andrew Johnson

Kennesaw State University, ajohn301@students.kennesaw.edu

Peter Johnson

Auburn University, johnspd@auburn.edu

William Jones

State University of New York at Binghamton, wjones4@binghamton.edu

Yuki Takahashi

Grinnell College, takahash@grinnell.edu

Zhichun (Joy) Zhang

Swarthmore College, zzhang3@swarthmore.edu

Abstract

Among other things, it is shown that for every pair of positive integers r, d, satisfying $1 < r < d \le 2r$, and every finite simple graph H, there is a connected graph G with diameter d, radius r, and center H.

Key words and phrases: distance in graph, eccentricity of a vertex, radius/diameter of a connected graph, central vertex, center of a connected graph.

AMS Subject Classification: 05C12

1 Introduction

All graphs referred to will be finite and simple. The vertex and edge sets of a graph G will be denoted V(G) and E(G), respectively. If G is connected and

This research was supported by NSF grant no. 1950563.

 $u, v \in V(G)$, $dist_G(u, v)$ is the length of a shortest walk in G from one of u, v to the other; a geodesic under the shortest-walk metric. As every shortest walk is a path, $dist_G(u, v)$ may also be formulated as the length of a shortest path in G with end-vertices u and v.

If G is connected and $v \in V(G)$, the eccentricity of v in G, denoted $\varepsilon_G(v)$, is:

$$\varepsilon_G(v) = \max_{u \in V(G)} \{ dist_G(u, v) \}.$$

The radius of a connected graph G is:

$$rad(G) = \min_{u \in V(G)} \{ \varepsilon_G(u) \},$$

and its diameter is:

$$diam(G) = \max_{u \in V(G)} \{ \varepsilon_G(u) \}.$$

Equivalently,

$$diam(G) = \max_{u,v \in V(G)} \{ dist_G(u,v) \}.$$

It is easy to see that $rad(G) \leq diam(G) \leq 2rad(G)$. It is a standard exercise in a first course in graph theory to show that for any positive integers satisfying $r \leq d \leq 2r$, there is a connected graph G such that rad(G) = r and diam(G) = d. (A more challenging, but still elementary, exercise would be to determine, for pairs r, d constrained as above, the values of n such that there exists a connected graph G with rad(G) = r, diam(G) = d, and |V(G)| = n.)

A vertex $v \in V(G)$ is a *central vertex* in G if and only if $\varepsilon_G(v) = rad(G)$. The *center* of G, denoted C(G), is the subgraph of G induced by the set of centers of G. (Therefore, that set is V(C(G)).)

The question broached in [1] is: which graphs can be installed as the center of another graph? That is, given a graph H, can you find a connected graph G such that $C(G) \cong H$?

As reported in [1], this question in full generality was killed at its birth as a question meriting research by a brilliant observation of S. Hedetniemi (Steve? Sandra?), encapsulated in Figure 1.

Figure 1: A connected graph G with an arbitrary graph H as its center. Each vertex of H is adjacent to both u and v, in G.

The authors of [1] resurrect the problem by asking: for a distinguished family \mathcal{F} of connected graphs, which graphs H can be the center of a graph $G \in \mathcal{F}$? And, for such H and \mathcal{F} , how small can |V(G)| - |V(H)| be, if $G \in \mathcal{F}$? These questions have borne fruit, but we are going in a different direction.

The graph G in Figure 1 has diameter 4 and radius 2. The set of central vertices of G is precisely V(H), regardless of what H is. If the paths leading away from H from u and v are each lengthened to have length t > 1, the result is a graph with center H, radius t + 1, and diameter 2t + 2.

Our aim here is to answer the question: for which positive integers d, r, satisfying $r \leq d \leq 2r$, and graphs H, does there exist a connected graph G such that rad(G) = r, diam(G) = d, and $C(G) \simeq H$? The extension of the observation of Hedetniemi just above shows that there is such a G for every H, r > 1, and d = 2r. Our main result, in Section 3, is that there is such a G for every H, r > 1, and $r < d \leq 2r$. In the next section we deal with extremes, and alternative solutions to that in Section 3, in some cases.

2 Extremes and alternative solutions

2.1 r = d

If rad(G) = diam(G), then G is its own center. Therefore, H = C(G) and rad(G) = diam(G) if and only $H \simeq G$ and rad(H) = diam(H).

$2.2 \quad r = 1, d = 2$

If rad(G) = 1, then each central vertex of G is adjacent to every other vertex of G. Therefore, if $H \cong C(G)$ then H must be a complete graph, and each vertex of H must be adjacent to each vertex of $V(G) \setminus V(H)$. Furthermore, since all central vertices of G are in V(H), it must be that every $v \in V(G) \setminus V(H)$ has a non-neighbor in G in $V(G) \setminus V(H)$.

Let " \vee " stand for the *join* of two graphs: $X \vee Y$ is formed by taking disjoint copies of X and Y and then adding in every edge xy, $x \in V(X)$, $y \in V(Y)$. By the paragraph above, when r = 1, d = 2, the only H for which a solution G can exist are $H = K_t, t > 0$, and the only possible solutions are $K_t \vee Y$ in which Y is a graph with |V(Y)| > 1 and for each $y \in V(Y)$, the degree $\deg(y)$ of $y \in V(Y)$ satisfies $\deg_Y(y) < |V(Y)| - 1$.

Every such $G = K_t \vee Y$ satisfies rad(G) = 1, diam(G) = 2, and $C(G) = K_t$, so we have completely characterized the values of $H(H = K_t)$ for which our problem with r = 1, d = 2 has a solution, and all possible solutions ($G = K_t \vee Y$, as above).

2.3 A standard method

Proposition 1. Suppose that X is a connected graph with |V(X)| > 1, rad(X) > 1, and $V(C(X)) = \{h\}$; i.e., there is a single central vertex in X. For an arbitrary graph H, if G is formed by replacing h by H, with every vertex of H adjacent in G to every vertex in X to which h is adjacent, then rad(G) = rad(X), diam(G) = diam(X), and $C(G) \cong H$.

The proof is straightforward. Note that the assumption that $rad(X) = \varepsilon_X(h) \ge 2$ plays a role in the proof that $H \cong C(G)$.

For instance, the graph in Figure 1 is obtained from $X = P_5$, the path on 5 vertices, by the device of Proposition 1. The generalization to the solution of our problem for all H when $d = 2r \ge 4$ uses the device of Prop. 1 with $X = P_{2r+1}$.

In Figure 2 we have a graph X with a single central vertex h such that rad(X) = r, diam(G) = 2r - 1, for arbitrary $r \geq 2$. By Proposition 1, this shows that every graph H can be the center of a graph G of radius r and diameter 2r - 1, for every $r \geq 2$.

Figure 2: A graph X with radius $r \geq 2$, diameter 2r-1, and a single central vertex h; and a graph G with rad(G) = r, diam(G) = 2r-1, and $C(G) \simeq H$. The paths hanging off the vertices of C_6 are all P_{r-1} , paths of length r-2. In the case r=2, they are not there, and |V(X)| = 7.

For those who enjoy variety, we can vary X to the graph Y shown in Figure 3, which gives another solution to our problem when d = 2r and H arbitrary.

Figure 3: A graph with a single central vertex, radius $r \geq 2$, and diameter 2r.

If you have been paying attention, you might exclaim: why do we need this? Hedetniemi's construction already gives us solutions of our problem in the case $d = 2r \ge 4$. Yes, bur Figure 3 gives a different solution, and different solutions of our problem contribute to the solution of a problem that towers over ours: given positive integers r and d satisfying $1 < r < d \le 2r$, and a graph H, find all possible graphs G satisfying rad(G) = r, diam(G) = d, and $C(G) \cong H$. In view of Proposition 1, in pursuit of this larger problem, it is appropriate to pose the following: given d and r as above, find all graphs X such that rad(X) = r, diam(X) = d, and $C(X) = K_1$.

Moreover, the alternative solutions to the d = 2r case provide a related problem: what properties characterize those graphs with d = 2r and center K_1 ? The majority of graphs constructed with center K_1 in fact had d = 2r, and the solution to this problem will considerably narrow down the larger problem.

In Figure 4, we have, for $r \geq 2$, a graph of radius r and diameter r+1, and a graph of radius r and diameter $r+\lceil \frac{r}{3} \rceil$, both with a single central vertex.

Figure 4: A graph G with radius r and diameter r+1, and a graph H with radius r and diameter $r+\left\lceil\frac{r}{3}\right\rceil$. The "top" and the "bottom" of the drawing of H are P_{r+1} 's.

2.4 A non-standard strategy in special cases

The strategy referred to, applicable only when H is connected is: attach pairwise vertex-disjoint paths to the vertices of H. This trick appears to be of use only in a special class of cases.

Proposition 2. Suppose that H is connected with rad(H) = diam(H) = z. Suppose that G is formed by attaching vertex-disjoint paths P_t to the vertices of H, with each vertex of H being an end of its attached path (when t = 1, nothing

is attached, and G = H). Then rad(G) = z + t - 1, diam(G) = 2(t - 1) + z, and $C(G) \cong H$.

The proof is straightforward.

Corollary 1. If H is as in Proposition 2 then for all integers $r \ge z$ and d = 2r - z there is a graph G, obtained as in Prop. 2 with t = r - z + 1 such that rad(G) = r, diam(G) = d, and C(G) = H.

3 The main result

Lemma 1. Let X be the graph depicted in Figure 5. Suppose that $n \geq 0$ and $r \geq \max\{2, n+1\}$. Then h is the unique central vertex of X, rad(X) = r, and diam(X) = r + n + 1.

Figure 5: A graph X with a single central vertex h, radius r and diameter r+n+1, provided $r \geq n+1$.

Proof. Clearly $\varepsilon_X(h) = \max\{r, n+1\} = r$. Checking shows that every other vertex of X has eccentricity > r in X. For instance,

$$\varepsilon_X(v_{1,1}) = \max\{dist(v_{1,1},w_n), dist(v_{1,1},v_{r+1,2})\} = \max\{n+2,r+1\} = r+1.$$

Finally, it is easy to see that the vertices $v_{i,j}$, $i \in \{r, r+1\}$, $j \in \{1, 2\}$, have the greatest eccentricity; for instance, $\varepsilon_X(v_{r,1}) = dist(v_{r,1}, y_n) = r + n + 1 = diam(X)$.

Theorem 1. For all integers $r \geq 2$ and d satisfying $r < d \leq 2r$ and every graph H there is a graph G such that rad(G) = r, diam(G) = d, and $C(G) \cong H$. Furthermore, G is obtainable from some graph by the method of Proposition 2.

Acknowledgement

We greatly thank Timothy Eller for drawing the graphs for us.

References

[1] Fred Buckley, Zevi Miller, and Peter J. Slater. On graphs containing a given graph as center. *Journal of Graph Theory* 5(1981), 427-434.