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Abstract

Among other things, it is shown that for every pair of positive integers
r, d, satisfying 1 < r < d ≤ 2r, and every finite simple graph H, there is a
connected graph G with diameter d, radius r, and center H.
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1 Introduction

All graphs referred to will be finite and simple. The vertex and edge sets of a
graph G will be denoted V (G) and E(G), respectively. If G is connected and
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u, v ∈ V (G), distG(u, v) is the length of a shortest walk in G from one of u, v to
the other; a geodesic under the shortest-walk metric. As every shortest walk is
a path, distG(u, v) may also be formulated as the length of a shortest path in G
with end-vertices u and v.

If G is connected and v ∈ V (G), the eccentricity of v in G, denoted εG(v), is:

εG(v) = max
u∈V (G)

{distG(u, v)}.

The radius of a connected graph G is:

rad(G) = min
u∈V (G)

{εG(u)},

and its diameter is:
diam(G) = max

u∈V (G)
{εG(u)}.

Equivalently,
diam(G) = max

u,v∈V (G)
{distG(u, v)}.

It is easy to see that rad(G) ≤ diam(G) ≤ 2rad(G). It is a standard exercise
in a first course in graph theory to show that for any positive integers satisfying
r ≤ d ≤ 2r, there is a connected graph G such that rad(G) = r and diam(G) = d.
(A more challenging, but still elementary, exercise would be to determine, for pairs
r, d constrained as above, the values of n such that there exists a connected graph
G with rad(G) = r, diam(G) = d, and |V (G)| = n.)

A vertex v ∈ V (G) is a central vertex in G if and only if εG(v) = rad(G). The
center of G, denoted C(G), is the subgraph of G induced by the set of centers of
G. (Therefore, that set is V (C(G)).)

The question broached in [1] is: which graphs can be installed as the center of
another graph? That is, given a graph H, can you find a connected graph G such
that C(G) ∼= H?

As reported in [1], this question in full generality was killed at its birth as
a question meriting research by a brilliant observation of S. Hedetniemi (Steve?
Sandra?), encapsulated in Figure 1.

Figure 1: A connected graph G with an arbitrary
graph H as its center. Each vertex of H is adjacent to

both u and v, in G.

The authors of [1] resurrect the problem by asking: for a distinguished family
F of connected graphs, which graphs H can be the center of a graph G ∈ F?
And, for such H and F , how small can |V (G)| − |V (H)| be, if G ∈ F? These
questions have borne fruit, but we are going in a different direction.
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The graph G in Figure 1 has diameter 4 and radius 2. The set of central
vertices of G is precisely V (H), regardless of what H is. If the paths leading away
from H from u and v are each lengthened to have length t > 1, the result is a
graph with center H, radius t + 1, and diameter 2t + 2.

Our aim here is to answer the question: for which positive integers d, r, satis-
fying r ≤ d ≤ 2r, and graphs H, does there exist a connected graph G such that
rad(G) = r, diam(G) = d, and C(G) ' H? The extension of the observation
of Hedetniemi just above shows that there is such a G for every H, r > 1, and
d = 2r. Our main result, in Section 3, is that there is such a G for every H,
r > 1, and r < d ≤ 2r. In the next section we deal with extremes, and alternative
solutions to that in Section 3, in some cases.

2 Extremes and alternative solutions

2.1 r = d

If rad(G) = diam(G), then G is its own center. Therefore, H = C(G) and
rad(G) = diam(G) if and only H ' G and rad(H) = diam(H).

2.2 r = 1, d = 2

If rad(G) = 1, then each central vertex of G is adjacent to every other vertex of
G. Therefore, if H ∼= C(G) then H must be a complete graph, and each vertex
of H must be adjacent to each vertex of V (G) \ V (H). Furthermore, since all
central vertices of G are in V (H), it must be that every v ∈ V (G) \ V (H) has a
non-neighbor in G in V (G) \ V (H).

Let “∨” stand for the join of two graphs: X ∨ Y is formed by taking disjoint
copies of X and Y and then adding in every edge xy, x ∈ V (X), y ∈ V (Y ). By
the paragraph above, when r = 1, d = 2, the only H for which a solution G can
exist are H = Kt, t > 0, and the only possible solutions are Kt ∨ Y in which Y is
a graph with |V (Y )| > 1 and for each y ∈ V (Y ), the degree deg(y) of y ∈ V (Y )
satisfies degY (y) < |V (Y )| − 1.

Every such G = Kt∨Y satisfies rad(G) = 1, diam(G) = 2, and C(G) = Kt, so
we have completely characterized the values of H(H = Kt) for which our problem
with r = 1, d = 2 has a solution, and all possible solutions (G = Kt∨Y , as above).

2.3 A standard method

Proposition 1. Suppose that X is a connected graph with |V (X)| > 1, rad(X) >
1, and V (C(X)) = {h}; i.e., there is a single central vertex in X. For an arbitrary
graph H, if G is formed by replacing h by H, with every vertex of H adjacent in G
to every vertex in X to which h is adjacent, then rad(G) = rad(X), diam(G) =
diam(X), and C(G) ∼= H.

The proof is straightforward. Note that the assumption that rad(X) = εX(h) ≥
2 plays a role in the proof that H ∼= C(G).
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For instance, the graph in Figure 1 is obtained from X = P5, the path on 5
vertices, by the device of Proposition 1. The generalization to the solution of our
problem for all H when d = 2r ≥ 4 uses the device of Prop. 1 with X = P2r+1.

In Figure 2 we have a graph X with a single central vertex h such that
rad(X) = r, diam(G) = 2r − 1, for arbitrary r ≥ 2. By Proposition 1, this
shows that every graph H can be the center of a graph G of radius r and diameter
2r − 1, for every r ≥ 2.

Figure 2: A graph X with radius r ≥ 2, diameter
2r − 1, and a single central vertex h; and a graph G
with rad(G) = r, diam(G) = 2r − 1, and C(G) ' H.
The paths hanging off the vertices of C6 are all Pr−1,
paths of length r − 2. In the case r = 2, they are not

there, and |V (X)| = 7.

For those who enjoy variety, we can vary X to the graph Y shown in Figure
3, which gives another solution to our problem when d = 2r and H arbitrary.

Figure 3: A graph with a single central vertex, radius
r ≥ 2, and diameter 2r.
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If you have been paying attention, you might exclaim: why do we need this?
Hedetniemi’s construction already gives us solutions of our problem in the case
d = 2r ≥ 4. Yes, bur Figure 3 gives a different solution, and different solutions
of our problem contribute to the solution of a problem that towers over ours:
given positive integers r and d satisfying 1 < r < d ≤ 2r, and a graph H, find
all possible graphs G satisfying rad(G) = r, diam(G) = d, and C(G) ∼= H. In
view of Proposition 1, in pursuit of this larger problem, it is appropriate to pose
the following: given d and r as above, find all graphs X such that rad(X) = r,
diam(X) = d, and C(X) = K1.

Moreover, the alternative solutions to the d = 2r case provide a related prob-
lem: what properties characterize those graphs with d = 2r and center K1? The
majority of graphs constructed with center K1 in fact had d = 2r, and the solution
to this problem will considerably narrow down the larger problem.

In Figure 4, we have, for r ≥ 2, a graph of radius r and diameter r + 1, and a
graph of radius r and diameter r + d r3e, both with a single central vertex.

Figure 4: A graph G with radius r and diameter r + 1,
and a graph H with radius r and diameter r + d r3e.

The ”top” and the ”bottom” of the drawing of H are
Pr+1’s.

2.4 A non-standard strategy in special cases

The strategy referred to, applicable only when H is connected is: attach pairwise
vertex-disjoint paths to the vertices of H. This trick appears to be of use only in
a special class of cases.

Proposition 2. Suppose that H is connected with rad(H) = diam(H) = z.
Suppose that G is formed by attaching vertex-disjoint paths Pt to the vertices of
H, with each vertex of H being an end of its attached path (when t = 1, nothing
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is attached, and G = H). Then rad(G) = z + t− 1, diam(G) = 2(t− 1) + z, and
C(G) ∼= H.

The proof is straightforward.

Corollary 1. If H is as in Proposition 2 then for all integers r ≥ z and d = 2r−z
there is a graph G, obtained as in Prop. 2 with t = r−z+1 such that rad(G) = r,
diam(G) = d, and C(G) = H.

3 The main result

Lemma 1. Let X be the graph depicted in Figure 5. Suppose that n ≥ 0 and
r ≥ max{2, n + 1}. Then h is the unique central vertex of X, rad(X) = r, and
diam(X) = r + n + 1.

Figure 5: A graph X with a single central vertex h,
radius r and diameter r + n + 1, provided r ≥ n + 1.

Proof. Clearly εX(h) = max{r, n + 1} = r. Checking shows that every other
vertex of X has eccentricity > r in X. For instance,

εX(v1,1) = max{dist(v1,1, wn), dist(v1,1, vr+1,2)} = max{n + 2, r + 1} = r + 1.
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Finally, it is easy to see that the vertices vi,j , i ∈ {r, r + 1}, j ∈ {1, 2}, have
the greatest eccentricity; for instance, εX(vr,1) = dist(vr,1, yn) = r + n + 1 =
diam(X).

Theorem 1. For all integers r ≥ 2 and d satisfying r < d ≤ 2r and every graph
H there is a graph G such that rad(G) = r, diam(G) = d, and C(G) ∼= H.
Furthermore, G is obtainable from some graph by the method of Proposition 2.
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