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From the start, the airline industry has remarkably connected countries all over the world through rapid
long-distance transportation, helping people overcome geographic barriers. Consequently, this has ushered in
substantial economic growth, both nationally and internationally. The airline industry produces vast amounts
of data, capturing a diverse set of information about their operations, including data related to passengers,
freight, flights, and much more. Analyzing air travel data can advance the understanding of airline market
dynamics, allowing companies to provide customized, efficient, and safe transportation services. Due to big
data challenges in such a complex environment, the benefits of drawing insights from the air travel data
in the airline industry have not yet been fully explored. This article aims to survey various components
and corresponding proposed data analysis methodologies that have been identified as essential to the inner
workings of the airline industry. We introduce existing data sources commonly used in the papers surveyed
and summarize their availability. Finally, we discuss several potential research directions to better harness
airline data in the future. We anticipate this study to be used as a comprehensive reference for both members
of the airline industry and academic scholars with an interest in airline research.
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1 INTRODUCTION

The structure of the airline industry experienced significant changes after the Airline Deregulation
Act of 1978, which removed the U.S. federal government control over many areas and sparked a
renewed interest among economists in the determinants of airfares for individual market pairs.
Consequently, the response to this deregulation was the establishment of a free market within
the commercial airline industry. A similar deregulation process also happened to E.U. airlines but
led to much smaller changes [134]. Beginning in 1990, several E.U. air transport liberalization and
deregulation packages entered into effect. The third deregulation package, going into effect in 1993,
removed most of the barriers that limited the E.U. airlines to access all air transport routes with
unrestricted rate-making. Aside from aiming to improve the customer experience, the continuously
growing business challenges still center on keeping up with market changes to further increase
profits and productivity. Notably, studies from both economic and operations research contribute
to exploring the connection between airfares and market-specific measures of demand, cost, and
competition [8, 42].

Incorporating cutting-edge technology promotes an airline’s path toward realizing total rev-
enue optimization. For example, Revenue Management (RM) was first introduced into the air-
line industry in the 1970s, which promoted the use of differentiated pricing—charging passengers
different fares for multiple booking classes [88]. Traditional RM derives marketing and pricing
strategies based on economic theory and is popularly applied and developed in many industries
to design the appropriate products that satisfy the customers’ interests. An early example is the
well-known static optimization model, which determines the booking limits only once, proposed
by Belobaba in 1987 [17]. Furthermore, Origin-Destination (O-D) flow control prompted airlines
to develop advanced approaches after understanding the basic RM controls, since fare class mix
revenue gain came from the dynamic revision of booking limits. Dynamic revision often relies on
human intervention, which is essential to account for unusual surges in demand due to special
events.

Meanwhile, the airline industry is facing a complex and dynamic environment from the emer-
gence of cost-competitive carriers vying for market share [24, 41]. For example, Southwest Airlines,
the world’s largest Low-Cost Carrier (LCC), has been shown to dramatically increase the traffic
and reduce the average fares at airports that the airline serves, as well as the new markets that it
enters [163]. According to recent findings, LCCs control more than 24 percent of the entire market
share; this change has revealed how customers’ demands and expectations for cheaper fares are
contiguously growing [24].

In 2007, a pioneering innovation known as ancillary pricing—revenue made from goods and ser-
vices considered as secondary options to a company’s primary product—was introduced. Studies
focused on trends and impacts of ancillary revenue will often cite the case of Ryanair, a leading
European LCC, as a catalyst of unbundled services and lower base fares [172]. The introduction of
ancillaries revolutionized traditional RM. However, there is still much room for improvement to
handle new challenges being ushered in by the internet era.

To directly compete with LCCs, Full-Service Carriers (FSCs) are urged to incorporate more
innovative strategies based on understanding, predicting, and influencing customer behavior to
further maximize its revenue and profits [58]. FSCs not only need to provide low fares to attract
passengers, but they also need to keep regular fares to cover direct Operating Costs (OCs).
OCs are typically very high and volatile, and are often influenced by factors such as fuel, la-
bor, and equipment maintenance, making RM increasingly complicated in such a dynamic cost
environment. Therefore, bringing cutting-edge techniques to this industry is necessary to ef-
fectively and efficiently solve these issues and provide strategies to assist the decision-making
process.
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RM goes beyond inventory control, requiring a mix of various authorities and skills. Data ana-
lytics using Artificial Intelligence (AlI) is the next step in the evolution of RM and its application
to new areas, and it brings with it a set of Machine Learning (ML) technologies that can surpass
traditional strategies. In the future, the airline industry needs to understand their passengers’
requirements and make decisions that support other facets of the air travel experience, such as
retailing and merchandising. These new requirements are going to be addressed by utilizing large
volumes of air travel data that are generated from various components, with advanced technol-
ogy ensuring robust analytics and providing more accurate and easy-to-understand information
in real-time. Airlines can then leverage useful domain-specific knowledge, deliver causal analysis
and actionable insights to all the stakeholders in the ecosystem.

Starting in 2000, applications of ML techniques, an essential part of data analytics, began to
arise in the airline industry. ML applications promote more robust models and overcome the short-
comings existing in traditional approaches. For example, one approach is to use ML for creating
pricing strategies across multiple market segments simultaneously. Then, traditional RM can be
used to select prices that will be accepted for each product by responding to the demands of all
the given markets, with many of these decisions made in real-time. Another example is the appli-
cation of Reinforcement Learning (RL), one of the most popular ML approaches. RL solutions
begin by modeling the problem as a sequence of actions that yield a reward, depending on the
outcome of said action. By modeling pricing strategies in this way, RL can provide more opportu-
nities to generate optimal policies that were not achievable before. As the airline industry searches
for more opportunities that will potentially boost revenue, more advanced and emerging ML tech-
niques such as rule-based learning, tree-based learning, and deep learning will start to attract more
attention.

While investigating the application of ML in the industry, two interesting questions arose: Are
academic scholars aware of the recent changes in the airline industry? Similarly, which academic
domains are dedicated to addressing long-standing business practice? To gain insight on these
questions, an academic citation searching result from 1990 to 2017 was performed using the Web of
Science. The results were generated by using the search term “airline” and limiting the occurrence
of the term in either the paper’s title, abstract, or list of keywords. The papers that were returned
as a result of this query were divided into two categories: (1) traditional airline papers and (2)
airline papers referencing Computer Science (CS) papers. Each category was counted separately.
The results are shown in Figure 1. Upon closer inspection, very few papers in CS are referenced
by airline researchers during the 1990s. However, CS papers have been increasingly cited over the
last decade and are recently contributing equally or more than operation research papers.

Form 41 Finance Data from the Office of Airline Information of the Bureau of Transportation
and Statistics (BTS) contains quarterly reported financial information on the largest certified
U.S. air carriers. Figure 2 shows the FSCs that obtained the top-three annual operating revenues
generated by domestic flights from 1990 to 2017. In the last year, all three airlines obtained over
$23 billion in total revenue. Delta Airlines reached almost $29.7 billion in revenue. Three large
spikes in revenue can be observed during 2009-2010, 2011-2012, and 2014-2016. This has been
attributed to the mergers and acquisitions that happened within each airline [132]. Though the
airline industry has experienced dramatic changes in recent decades, the outcomes show that the
operating revenues have stayed stable, experiencing only moderate increases every year, even after
the economic crisis of 2008. Thus, there is still room for improvement.

With a history of great successes in multiple disciplinary fields, Al is one of the hottest research
directions in both academia and industry. This survey focuses on an overview of how data analytics
have been applied in the airline industry for RM from different perspectives, including challenges,
techniques, available data sources, and possible opportunities. To the extent of our knowledge,
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Fig. 1. Airline research papers that reference CS research papers from 1990-2017; source: Web of Science.
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Fig. 2. Total operating revenues of the top-three FSCs from 1990 to 2017.

this article is the first comprehensive review on academic works that focuses on analytics using
air travel data from two different points of view within the airline industry—the service provider
and the customer. Other areas that employ air travel data for non-RM purposes are also included.
Compared to previous academic surveys with a focus on a particular scope of RM [17, 65], this
article distinguishes itself through its focus on different aspects of the airline industry by reviewing
the existing work, research and applications, as well as presenting the authors’ experience in this
area. The covered topics are summarized in Table 1.

The rest of this article is organized as follows: In Section 2, the major problems addressed by the
surveyed papers are briefly presented. Section 3 discusses various data analytics approaches and
ML techniques that have been used in the airline industry to complement traditional statistical
analytics. Since the airlines’ data is mostly private and contain a lot of non-disclosure information,
many public datasets and data sources are discussed in Section 4. As advanced ML methods and
applications in the airline industry are still relatively new, Section 5 points out current challenges
and potential directions for future research. Section 6 provides a conclusion to this article.

2 THE AIRLINE RESEARCH COMPONENTS

The research topics that were identified through the literature survey of airline papers are briefly
described in Table 2. Taken individually, the topics are independent components. However, taken
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Table 1. Topics Identified Regarding Airline Industry and Air Travel

Section # Topics Descriptions
2.1 Ticket Pricing Finds correlation between the potential factors and the fare segments
92 Inventory Control Discovers the optimal seat booking for each class to maximize airline
revenue
2.3 Overbooking Selects appropriate overbooking rate to mitigate the effects of cancellation
2.4 Demand Prediction Forecasts the demand for air travel and its correlation with pricing
95 Simulation Tools Evalu‘ate and compare different RM models before deploying them into
practice
2.6 Ancillary Pricing Makes revenue by providing extra comfort
97 Service Improvement and Customer | Capture and understand the customers’ needs to gain the ability to be
) Experience adaptive to the changing economic environment
. . . Ai inimize th f hasi flight tick: i
28 Price Mining for Strategic Customers | * ims to minimize the cost of purchasing a flight ticket or constructing an
itinerary
. Studies the interactions among nodes in the air transport network by
2.9 Connectivity . ) . .
measuring their relationship
2.10 Air Traffic Management Improves thfe accuracy, safety, a.nd eﬂimency of air traﬂ'l(f control to
support decision-makings for aircraft and airport operations

Table 2. Summary of Papers Categorized as Either Traditional or ML and
Grouped by Publication Year Range

Year Range Papers Using Traditional Methods Papers Using ML Methods
Inventory Control: [17, 42, 87, 89, 97, 149, 159]
Overbooking: [8, 16, 84, 130, 131, 137, 156] Demand Prediction: [7, 72]

Before 2000 Demand Prediction: [76, 150] Service Improvement: [178]

Service Improvement: [26], Simulation Tools: [171]
Ticket Pricing: [29], Inventory Control: [103]
Demand Prediction: [160]

Ticket Pricing: [52], Inventory Control: [67]

2001-2006 | g1 ilation Tools: [32, 57, 141, 152, 153], j‘ie“?;“d P;e.d I.Ctl(?n'lgil’ 170]
Air Traffic Management: [62, 83] neillary Pricing: [116]
Inventory Control: [119], Demand Prediction: [20, 37],
2007-2012 | Ancillary Pricing: [48], Service Improvement: [50, 80, 151],
Air Traffic Management: [101] Air Traffic Management: [14, 126, 180]
Ticket Pricing: [45, 68, 110]
Ticket Pricing: [22], Inventory Control: [144] Demand Prediction: [9, 98, 105]
Overbooking: [179], Simulation Tools: [49] Ancillary Pricing: [39, 56, 111, 135, 158]
2013-Now | Service Improvement: [78, 102] Service Improvement: [3, 85, 138, 142, 161, 165, 176]
Ancillary Pricing: [115, 145, 164] Price Mining: [77, 107]
Air Traffic Management: [11, 104, 121] Air Traffic Management: [5, 12, 13, 15, 33, 36, 38, 53, 61],

[73,79, 82,94, 117, 118, 128, 140, 157, 166168, 174, 181]

as a whole, the topics contribute to the improvement of the airline industry and have resulted in
new profits. The most cited publications for each topic is also discussed.

2.1 Ticket Pricing

Airline ticket pricing is a strategy that determines the number and type of fare products offered in
different markets. The price for each product is set precisely, often using different sets of restric-
tions, resulting in limits on how many seats to sell at what prices. Since its beginnings, solutions
to the airline pricing game have tended to focus on simplistic models, considering that theoretical
game models are more complicated to solve [51]. Airline companies have the potential to increase
their total revenue by applying different restriction levels to offer multi-fare class products. Ac-
cording to Reference [29], typical dynamic pricing products have three characteristics: (1) The
products have fixed order and quantity; (2) The sales will end with a certain deadline; (3) The
marginal cost of selling one additional item is low. As a classic example of the dynamic pricing
game, ticket pricing has been a favorite topic in a variety of research societies for several decades.
Traditional RM covers broader scientific domains, such as operation science, business, econom-
ics, engineering, and statistical analysis. More revenue can be achieved by managing to reach the
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optimized pricing options. Those pricing strategies are designed based on service and restrictions
controlled by a limited inventory.

Since the emergence of online travel agents (OTAs) and LCCs, airlines have been forced to
take competitive awareness into ticket pricing, which not only includes many aspects related to the
ticket itself, but also incorporates inventory control, customer behavior models, and other compet-
itive attributes and parameters [127]. Also, maintaining a healthy operation with an expectation of
improved economic benefit is challenging for a high-cost industry. Therefore, lowering the ticket
price is not an easy decision, since determining pricing without restriction (either too high or too
low) might result in a loss of customers or negative income. Sometimes, letting the flight depart
with empty seats might be the better option.

Airlines use many strategies to manage their decision-making. However, a complete list of strate-
gies and policies used by all airlines does not exist. Identifying customer and market segmentation
groups are essential for better decision-making and yield management. Among different cluster-
ing techniques in ML, partitioning algorithm (centroid based clustering) has been widely used in
the airline industry for segmentation. In Reference [123], the authors suggested that customers of
airlines can be categorized by the ticket types they regularly buy or by their travel purpose (i.e.,
leisure or business travel). Using classical clustering such as K-means, they defined six customer
segments based on travel behavior features. Examples of these segments include “medium amount
of trips,” “few weekend flights,” “no return flights,” and so on. Non-linear regression models and
clustering analysis were leveraged in Reference [114] to conceptualize the pricing discount strate-
gies used by airlines. The authors first selected several normalized variables, such as days before
flight, trip time, capacity of the plane, and so on, to represent seat characteristics. Then, a four-
cluster solution is identified by running a cluster analysis on those variables to discover the pricing
strategies. These four clusters allow for a separate strategy for each group of fares from the least
to the most expensive. In the end, an ordered logit model is built to describe the significant char-
acteristics that contribute to the final discount fare. In general, K-Means is a simple and efficient
clustering technique that is applicable and suitable for large-scale airline data. However, it needs
prior knowledge about K (number of clusters) and is highly sensitive to outliers. Different from
partitioning algorithms, hierarchical clustering is more informative, and it is easier to detect the
number of segments by looking at the tree diagrams. This characteristic is important in different
airline applications in which the number of clusters is unknown. Dai et al. [43] conducted a hierar-
chical clustering for market segmentation related to the survivability of the airline operators. The
study segments the operators into seven clusters including “Local Inefficient,” “Short Haul,” “Small
Efficient,” “Domestic Efficient,” “No Domestic,” “Domestic Long,” and “International Long.” It also
examined the relation of the load factor as the key parameter for discriminating between these
segments to the survival of each operator cluster. However, the high time complexity of hierarchi-
cal clustering makes it unsuitable for large-scale data. In 2015, Piggott [122] applied a number of
clustering algorithms to discover market segments and potential business passengers, including
K-means, X-means (an alternative to K-means), Expectation-Maximization (EM), and Hierarchi-
cal clustering. The results showed the effectiveness of the aforementioned clustering techniques
for passenger segmentation and market analysis. In particular, EM algorithm generates the best
clustering results in that study:.

Beginning in the early 2000s, ML approaches, such as regression analysis and RL, have begun
to provide analytical support for developing advanced pricing policies [45]. In some cases, sim-
ple Linear Regression (LR) may be inadequate when the relationship between the response and
explanatory variables is complex and can not be explained by linear relationships. Thus, Gener-
alized Linear Models (GLMs) have been applied to better analyze and describe airline industry
data exhibiting non-linearity. According to Mumbower et al. [110], the presence of endogeneity
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causes the final estimation to be biased. A Two-Stage Least Squares (2SLS) linear regression
model was implemented to correct the limitation in Ordinary Least Squares (OLS) regression
model to estimate the price elasticity. The flight, booking, and sale characteristics, as well as the
competitor promotions, are considered to affect the 2SLS model when calculating price elasticity.
While it has been shown that 2SLS can predict the amount of bookings for flights booked in ad-
vance when explanatory factors such as departure date and market are taken into account, their
research is restricted to a specific sample size with over a quarter of price and demand details
lacking.

RL techniques benefit by including an additional dimension of intuition into the pricing game
to solve issues that were unsolvable by conventional strategies. In 2012, Collins and Thomas con-
ducted a comparison work that used a dynamic airline pricing game as an example and examined
different types of RL algorithms (i.e., Q-Learning, State-Action-Reward-State-Action (SARSA),
and Monte Carlo Learning) that work for an adaptable sequential airline pricing game [40]. In
their experiments, both Q-learning and SARSA outperformed the Monte Carlo Learning approach.
The extra dimensions that were added to the model while learning have the potential to aid the
decision-making process, though it could only be used to understand the problem underlying the
designed model. In 2013, they investigated how RL, especially SARSA, was utilized when consider-
ing complex customer behaviors [41]. While using SARSA, three new aspects regarding customer
modeling were discussed: customer demand, customer choice, and the size of the market. The pa-
per proved that SARSA has the ability to solve complex games in the airline industry and provide
promising learning results as compared to the demand prediction model.

Regarding vertical relationships (e.g., producers and retailers), some other situations need to
be considered in the airline industry [112]. Both airline companies (as producers) and OTAs (as
retailers) occupy some degrees of market control. Although OTAs set their own airfare price, air-
line companies are the service producers and thus exert pricing control as well. There is a bargain
space that will lead the final sticker price to be varied for the consumers who search for offers from
different channels. The final price can be affected by the distribution of the market as a result of
competition that exists among the products and the retailers. To better understand the distribution
of airline ticket prices in those two aforementioned competitive market structures, Bilotkach and
Pejcinovska [23] randomly selected 50 top U.S. domestic market-pairs and collected the fare quotes
from three major OTAs. They concluded, through analysis by means of simple regression with
a natural logarithm transformation applied to the dependent variables, the existing competition
between agents is an essential factor to determine the price. It also creates competition between
producers (different airline companies). In 2015, Bilotkache et al. [22] also found that, contrary to
popular belief, a positive correlation exists between the load factor and the fare segments. Theo-
retically, the fare price should follow a steady increase, corresponding to the increasing load factor
as the departure date approaches. However, by conducting instrument variable experiments, the
results pointed to another probability that would potentially lead to a boost in revenue. Increas-
ing the ticket price as the departure date gets closer does not guarantee a gain in profit, since it
might stop the growth of the load factor. These theoretical models consider several key indepen-
dent variables, such as potential peak demand periods, econometric limitations, correlation with
stocks.

2.2 Inventory Control

Inventory control or inventory management is a critical topic in operations management that
generally refers to the strategies maximizing the inventory usage of the company. In particular,
inventory seat control in the airline industry is the process of discovering the optimal seat book-
ing for each class to maximize airline revenue. The lack of efficient inventory control can lead to
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customer dissatisfaction, as well as the reduction in profits and productivity. Over the past decade,
the airline industry has started to leverage data analytics to improve pricing strategies and inven-
tory management [27]. Generally speaking, seat inventory control techniques can be categorized
into the following groups [103]: single leg and network based.

2.2.1 Single Leg. There are independent policies of booking control for different flight legs
and the methods in this group are categorized as static and dynamic. Static techniques provide an
optimal seat allocation at a specific point in time [28]. Littlehood [97], for example, suggested one of
the first studies in the static strategy for a single leg flight with two fare classes, in which a low fare
booking proposal should be accepted if it generates more revenue than the highest fare’s projected
revenue for the same seat. This idea was further extended by Belobaba [17] using the Expected
Marginal Seat Revenue (EMSR) approach for multiple nested fare classes. The EMSR solution
generates the degrees of protection for fare groups based on the amount of seats protected. Despite
its effectiveness, this system is only capable of generating optimum booking limits for two fare
classes. In a recent work [144], a static two-class overbooking model is proposed integrating both
inventory control and overbooking techniques in RM. This model enhances the expected profit
using a closed-form expression to find the best limit for overbooking, and a sensitivity analysis is
conducted by modifying the parameters in the model. These parameters include refund, penalty,
revenue, and denied boarding costs, as well as capacity and show-up probability.

Different from static solutions, dynamic techniques determine the policy over time instead of do-
ing so at the beginning of the booking time. Discrete time dynamic programming models [89], and
models that also consider overbooking, cancellation, and no-shows, are examples of dynamic solu-
tion methods. In addition, there are combined methods that link static and dynamic methods based
on Markov Decision Process (MDP) [87]. Subramanian et al. formulated a complete MDP that
integrated dynamic and static approaches to seat allocation on a single-leg flight with multiple
fare classes [149]. The assumptions cover a wide range of features, such as cancellations, over-
booking, and discounting. However, adding additional features increases the versatility of MDP.
A simplified approach restricted to basic assumptions was introduced by Lautenbacher [87]. Later
on, in 2002, Gosavii et al. [67] proposed a Semi-Markov Decision Problem (SMDP) for single
leg revenue management. This was the first model designed based on RL in the airline industry,
which outperforms previous methods such as EMSR for solving the RM problem. The authors
considered the RL model because it is not only able to scale up to a large state space, but it can
also handle the realistic factors mentioned above. They noted that most of the stochastic dynamic
programming models can only accommodate a subset of the related features to make the model
manageable. However, more features are needed to generate optimal or near-optimal results, such
as random cancellations and random demand requests from multiple fare classes. In it, the au-
thors used Q-learning to iteratively obtain the Q value for each state-action pair. The state-space
is defined based on the latest purchasing request of a certain class with the updated status of the
sold seats for each class and the specific remaining time until departure. The results presented in
the paper showed an average improvement of 1.5% as compared to nested EMSR. Similarly, in an-
other work [119], a simulation-based greedy grid-search algorithm was proposed to optimize the
expected total revenue by considering the customer choice behavior in sequential multiple flights
for seat inventory control. In early 2019, a deep Q-Learning framework was proposed to solve the
RM problem in a single O-D market [136], which leverages the advanced deep learning and RL al-
gorithms to approximate the Q function that solves inventory control and overbooking problems.
Its nonlinearities were captured through the neural network to train an agent to make decisions
on accepting or denying passenger’s booking requests. However, this model is still a prototype
that needs more improvements to handle the full scope of the real-world airline RM problems.

ACM Computing Surveys, Vol. 54, No. 8, Article 167. Publication date: October 2021.



Data Analytics for Air Travel Data: A Survey and New Perspectives 167:9

2.2.2  Network Based. In this group, revenue is maximized by considering all the flights in a net-
work at the same time. Network inventory control is necessary in itineraries involving connecting
flights. In such cases where the network effects are increased, the single leg inventory control is
not sufficient. This group of methods started with mathematical programming approaches [63].
Curry [42] proposed a new mathematical programming approach in seat allocation using piece-
wise linear approximation to maximize the revenue. The work leveraged mathematical program-
ming and marginal seat revenue to make it possible to handle larger problems and multiple O-D
pairs, while considering the fare class nesting in seat inventory management.

In addition to the mathematical programming methods, there are several research studies on
simulation-based methods for the problem of the network inventory control that can be catego-
rized into model-based and model-free search techniques [119]. In Reference [19], a stochastic gra-
dient algorithm combined with dynamic programming is employed by Bertsimas and De Boer to
determine the optimal booking limits that optimize the expected revenue function. This expected
revenue function is approximated by simulating the booking process. More accurate revenue dif-
ferential estimates can be obtained by applying the revenues’ average, acquired through booking
limits, over a sequence of simulated booking request results. Finally, using dynamic programming,
they significantly reduce the computation time. Gosavi et al. [66] presented a model-free search
method to achieve the global optimal solution. They also identify the best booking limits using
simultaneous perturbation integrated with simulated annealing, a popular meta-heuristic for dis-
crete optimization.

2.3 Overbooking

Given the fact that a certain percentage of passengers for final pre-departure bookings might not
show up, overbooking becomes an essential method to avoid the loss of revenue. Overbooking
can also mitigate the effects of cancellation at any time before the departure. However, a high
overbooking rate might lead to the risk of having not enough capacity to allocate all the passengers.
Moreover, the airline carrier not only needs to compensate the extra ticket-holders financially,
but it also risks losing the loyalty of their customers. Therefore, there are many research studies
focusing on how an appropriate overbooking rate could be selected.

Early on, overbooking was studied mostly in operation science, where the optimal overbook-
ing rate is obtained from a pre-built model. The first model of overbooking was proposed by
Beckmann in 1958 [16], which provides the upper bound of the overbooking rate by optimizing
the revenue loss from the unsold seats and an overbooking penalty. In 1961, Thompson [156] in-
troduced stochastic techniques to solve the overbooking problem and proposed an incremental
control approach to optimize the overbooking rate by applying a constraint based on the proba-
bility of having a passenger with no seat. This model provides a more realistic paradigm to solve
the problem. Although stochastic models can help to determine the policy, customer demand is
not considered in the model. As the usage of electronic reservation systems in the airline industry
grow, demand prediction technique becomes feasible (see Section 2.4). By incorporating the de-
mand prediction technique, Rothstein [131] proposed an overbooking model based on Markovian
sequential decision processes. This model takes the passenger demand distribution into consid-
eration and achieves the optimal revenue under the oversales constraint. Furthermore, a set of
booking policy decision rules [137] is proposed by Schlifer and Vardi to find the optimal overbook-
ing policy, based on the statistical models to characterize future demand and cancellation patterns.
The proposed rules can also be extended to handle flights with two fare classes and two legs.

All the aforementioned models are static models and do not allow for optimizing the dynamic
process of ticket cancellation. Kosten first proposed a dynamic approach in the continuous time
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domain [84], but the computation was impractical, since a series of simultaneous differential
equations need to be solved. To make it easier to solve the dynamic process problem, dynamic
programming is first applied by Rothstein [130] and the model was tested with data collected from
American Airlines. In the follow-up work, this model was extended to consider passengers in the
first and economic class simultaneously [8].

Often, the historical no-show rate may not be available or the data is not completely reliable.
In those instances, Zhang et al. proposed a fuzzy system to address to the overbooking problem
[179]. The fuzzy system can provide an appropriate overbooking rate without historical no-show
data. This method helps to mitigate the traditional models’ dependency on the data and enables
overbooking for the new routes without sufficient historical data.

2.4 Demand Prediction

The goal of demand prediction is to precisely forecast customer demands for air travel based on
pricing. The common methodology is to build a regression model to identify the pattern between
demand and a selected set of features, including the ticket price, income elasticity, CPI index, pop-
ulation of the region, and distance between the O-D pair. These features might be incorporated
into the model directly or indirectly, i.e., the regression model can be trained by the statistics and
entries of the historical data directly, while the features might be used to first model the implicit
factors, such as popularity of the market [98], and then demand is computed based on these fac-
tors. Demand prediction is a critical process of a successful decision-making strategy for airline
RM, since it bridges customer behavior and ticket pricing strategy.

Most demand prediction techniques operate at the product-level, i.e., the prediction is made for
each O-D pair or each flight [160]. In early research on the demand for air travel [7, 76], log-linear
models were built to estimate the demand in each time period, and the ticket price, the measure
of incomes, the measures of the price of domestic goods, and the CPI index were considered as
the variables. Apart from the macroeconomic factors considered in the model, other explanatory
features have been explored, such as demographic [21] and geographic [20] factors. The popula-
tion and the type of airport (large, medium, small hub, or non-hub), combined with the price and
income, have been shown to have a significant influence on the passenger demand as well. In Ref-
erence [76], the relationship between the number of passengers and the ticket price as well as the
relationship between the macroeconomic factors and the geographic factors are measured using
the logarithmic-linear model. Delahaye et al. [44] demonstrated the integration between Support
Vector Machines (SVM) and the traditional econometric approach, discrete choice-modeling, to
study the customer’s preference in regards to different flight routes. They also showed how the
proposed technique could be applied to dynamic pricing optimization. Recently, Artificial Neural
Networks (ANNs), which can model demand as a non-linear function, have been proposed to fur-
ther improve the prediction performance. In Reference [105], a Multi-Layer Perceptron (MLP)
approach was applied to model the demand with respect to the passenger number and monthly
flight number. Historical data were collected and used to train the MLP, which, as suggested by
the authors, could be used to predict the future trend of the demand.

Since there are multiple airline carriers in the market, the aforementioned models can only
provide insights into the relationship between passenger demand and various variables, but fail to
deliver insight into the competition among different carriers. To overcome this issue, Hansen [72]
introduced n-player non-cooperative game theory to investigate competition considering price,
frequency, and number of stops. Each carrier is modeled as one of the players of the game, and
their pricing strategies for each origin-determination market form the strategy space. The carriers
in the game compete with each other for market share and reach equilibrium. This formulation of
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Fig. 3. The MAP architecture. Solid lines for input flows and dashed lines for output flows [9].

the n-player non-cooperative game can be solved by using the Multinomial Logit Regression
(Multinomial LOGR), obtaining the estimations of market share for the airline carriers in the
market. Multinomial LOGR (a.k.a. Softmax Regression) is a type of GLM, which can be applied
to the classification problems with more than two categories. Hansen models the market share of
the flight service as the Multinomial LOGR form, where the market share of each type of flight
service is predicted by the features of all flight services in the market. Particularly, the effects of
carrier-specific factors (operational safety and delay duration) [150] and aircraft-specific factors
(aircraft type and seat availability) [170] are added in the game to improve model performance.

However, the previously mentioned studies mainly focus on short-term analysis, which does
not consider the long-term effects on the selected variables nor conduct time-series analysis on the
data. Therefore, these models may fail to respond appropriately during non-stationary situations.
Junwook and Jungho [37] applied Johansen co-integration analysis and a vector error-correction
model for demand prediction and performed an analysis between demand and the NASDAQ index,
along with price and income. This model was more robust and could respond to rapid changes in
market data, such as the ones caused by the 9/11 terrorist attack.

Furthermore, An et al. [9] proposed the Maximizing Airline Profits (MAP) architecture,
which integrates total demand prediction, competition analysis, and RM. This model is able to
provide demand prediction to the airline carrier along with the demand-prediction-based ticket
pricing for profit optimization. As shown in Figure 3, the price, income, and all of the related data
are first used to predict the total demands of each route. Then, a clustering technique is applied
after the competition analysis, which groups the routes into various categories. Due to the het-
erogeneity within the routes, the clustering technique can be helpful to separate different routes
and improve the final profit optimization performance, which is generated by iterative Gaussian
Process Regression (GPR) and RANdom SAmple Consensus (RANSAC). In the MAP model,
both demand prediction and competition analysis are performed based on an ensemble of different
models to enhance the performance of each component.

Recently, with the development of big data techniques and autonomous recommendation sys-
tems, personalized demand analysis has been proposed to predict the future demands of each cus-
tomer, which can provide more detailed information [98]. The travel topic model and relational
travel topic model, for example, combine the latent factor model and the collaborative filtering
method. This proposed model discovers both the travel preferences of airline customers and the
categories of travel based on air routes and airline carriers. The Passenger Name Record (PNR)
data are anonymized and used instead of the statistics of air travel to train the model. These com-
ponents enable the model to have a strong capability to systematically analyze the market and in-
dividual customers to improve the prediction performance of the travel demands at the customer
level.
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2.5 Simulation Tools

Since the early 1970s, when Littlewood [97] first proposed a solution for the airline RM problem,
the airline industry has kept working on identifying optimal policies that could maximize their
revenues. As demonstrated in Reference [141], an effective RM approach could improve airline
earnings by up to 7%. However, RM methods are becoming increasingly sophisticated, and as a
result, it is impossible for airlines to switch from one RM approach to another without incurring
a considerable amount of monetary and time cost. Therefore, it is crucial to develop a practical
methodology to measure and compare the performance of different RM techniques in the early
stages of an airline’s RM strategic timeline. Simulation techniques, emphasized by Talluri in Refer-
ence [153], are frequently utilized to evaluate the RM models by examining potential revenues in
multiple scenarios. A simulation tool can draw a whole picture of the RM strategy under evaluation
by including carefully modeled customer behavior and the firm’s sales practice. A properly config-
ured simulation environment can evaluate and compare different RM methods before deployment,
allowing airlines to decide the RM method that best meets their needs.

The Passenger Origin-Destination Simulator (PODS) is one of the most popular simulation
frameworks that model the air-travel demand. It was initially developed at Boeing and could be
used to study the impact of changing the arrangement of routes and networks, fare products, flight
schedules, and RM system capabilities, especially at the network-level [18]. PODS simulate the in-
teraction between passengers and the airline company regarding their varied choices of airlines,
routes, and fares. The simulation results include the choices of each passenger, the terminated
traffic loads, and total revenues. These results are helpful resources for the researchers to ana-
lyze and evaluate different RM strategies [32, 55]. Figure 4 illustrates the structure of the PODS
framework, which consists of four major components: a historical booking database, demand fore-
caster, seat availability optimizer, and passenger choice model. The historical booking database
keeps all of the simulated booking records. They are the inputs to the demand forecaster, which
predicts the customer demand for an upcoming flight or fare class. The demand forecaster also
affects the seat availability optimizer, which sets up the booking limit for each fare class. Finally,
the passenger choice model generates synthetic passengers with different characteristics, such
as their willingness-to-pay, the costs incurred by choosing the departure/arrival window they do
not prefer, adding legs to the itineraries, and restrictions associated with different fare classes. By
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employing the optimized booking limits and synthetic passenger characteristics, the simulator
generates passenger bookings with the highest-ranking path/fare class.

An event-driven stochastic simulation framework was proposed by Frank et al. [57] in 2006.
As depicted in Figure 5, this framework investigates the impact of continuously adjusted fleet
assignment on revenue. The fleet assignment module assigns a type of aircraft to a specific leg
by considering the forecasted passenger demand from the demand generator module with certain
constraints (e.g., the number of available slots). Booking requests are generated by a series of proba-
bility distribution models with the parameters inferred from the historical data. The pricing engine
module calculates the fare based on passenger’s demand segmentation, leg-level booking classes,
and O-D level fare classes. The forecast and optimization component utilizes an additive pick-up
prediction model. It uses exponential smoothing [171] and the EMSR method, combined with a
heuristic bid price approach for the optimization task [152]. Simulation test results have demon-
strated a positive impact of repeated fleet assignment on the revenue. Recently, Doreswamy et
al. [49] introduced a new simulation analysis tool named Airline Planning and Operations
Simulator (APOS), which has been developed at Sabre Airline Solutions. In this work, APOS was
used to test the impact of migrating from a leg-based RM system to an O-D based RM system. The
simulation results show that revenue could increase from introducing the O-D system by up to
6.6%.

2.6 Ancillary Pricing Optimization

Ancillary revenue is the revenue made from goods and services considered as secondary options
to a company’s primary product. Ancillary products were first introduced in 2009, as airlines re-
sponded to the 2008 financial crisis [60]. Airlines quickly realized it is the perfect opportunity
to make a decent amount of revenue by providing their customers the opportunity for some ex-
tra comfort. Ancillary revenue is a pioneering innovation development mainly stemmed from the
LCCs business model. Only recently are traditional networks beginning to pick up on the new
methodologies [115, 145]. Products that were traditionally part of the fare ticket are now unbun-
dled, optional for an extra charge. In the case of baggage fees, the traditional approach was to
include the first two pieces of checked luggage in the ticket purchase, unless these exceeded the
overall weight limitation. However, these priced options for checked baggage are now one of the
fastest growing items in a portfolio of unbundled products [115].

RM for ancillary products is still nowhere near reaching its full potential. In 2013, the Interna-
tional Air Transport Association (IATA) reported that, although airlines can create clear value
for customers, the industry still had difficulty making an adequate level of profits [120]. Recently,
according to IdeaWorks and CarTrawler,! airlines are paying more attention to optimizing their
RM through the sale of ancillaries to improve their profitability. Fiig et al. [56] describes how cur-
rent legacy IT systems delegate the airline’s access of the data to content aggregators, limiting the
airline’s control over offer construction and consequently hiding the customer’s identity. Some
of the identified reasons that airlines may miss significant revenue opportunities include (1) cus-
tomers having a limited access to the value of ancillary products until after the purchase of a ticket;
(2) a reliance on fixed prices that are decided in advanced; and (3) lack of price point optimization,
even prices differ according to the market, time of departure, or sales channel.

The application of advanced ML techniques has started to make an impact in ancillary
revenues. Navitaire, a company that assists newly launched airlines with products that focus on
reservations, revenue, and operations management, developed Ancillary Price Optimization

Thttp://www.ideaworkscompany.com/wp- content/uploads/2017/11/Press-Release- 123-Global- Estimate.pdf.
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(APO)? which applies a combination of A/B testing and ML techniques, making it a robust tool
for high-dimensional data analysis and helps extract essential pricing features without the need of
a customer choice model. Several low-cost/hybrid carriers have started experimenting with APO
by dynamically adjusting the price for premium seats and checked luggage, since these products
can generate higher sale volumes [56]. The process follows a cycle that starts with a collection
of data that contains attributes for a price point, and the customer’s decision—whether there was
a purchase or not. APO then identifies important pricing attributes and selects a model among
standard methods (i.e., Decision Trees (DTs), Random Forest (RF), Regression, and ANNs).
Through uplift analysis [125], the model that has the best performance and results in the largest
benefit is then deployed to production. The model is continuously monitored to verify that it
behaves according to expectations. Even after the deployment of the model, the cycle continues
based on new experiments [56]. ML techniques have also been proposed to solve the problem of
asymmetric dominance (or decoy effect) and drive conversion rates. In marketing, the decoy effect
considers the consumer behavior as irrational. By adding an inferior offer, it generates a cognitive
bias where other alternatives appear more appealing to the customer. Pairwise Choice Markov
Chains (PCMC) have been proposed to overcome the limitations of traditional choice models and
demonstrate the decoy effect occurring within the data. Lhéritier [90] proposed an improvement
of the PCMC based on neural networks (PCMC-Net) and tested on airline choice. Furthermore,
the decoy effects have recently been studied and airlines begin to value such strategy in ancillary
services.” A recent study by Gonzélez-Prieto [64] proposed a theoretical model of the decoy
effect to enhance airline profitability by studying customers’ purchasing process of ancillary
services. Nevertheless, there is a lot of potential to conduct more comprehensive studies and apply
advanced ML techniques in the evaluation of the decoy effect for ancillary revenue optimization.

According to an Amadeus report in 2011,* ancillary products can be segmented into four ba-
sic categories: (1) unbundling fares (a la carte) — service features that are part of the customer’s
trip, including in-flight food/beverages, checked luggage, reserved seats, WiFi access, and so on;
(2) commission-based — opportunities from third-party sellers involving hotel, car rental, and travel
insurance; (3) Frequent Flyer Program (FFP) - loyalty-based incentives that encourage customers
to accumulate airline miles or points to be redeemed for future trips or other rewards; and (4) ad-
vertising — magazines available in-flight or sold in the airline’s airport lounge.

2.6.1 Unbundling Fares (A la Carte). An increasing number of airlines are beginning to rely on
a la carte pricing to generate a boost in revenue [115]. This category includes products for the
customer’s extra comfort during their trip along with punitive prices (change/cancelation fees).
Research in this area mainly focuses on mining the customer’s opinion, acceptance level, and will-
ingness to pay (WTP) for ancillary products through conducted surveys. Some of the techniques
applied to the survey data include applying Causal Inference methods, such as Structural Equa-
tion Modeling (SEM) to convey the connection between perception on price fairness and the
implications towards an emotional response [39, 158]. Logistic Regression is the most commonly
used technique in the airline industry to estimate the probability of observing different fare-seat
management strategies [114] or perform sentiment analysis. Statistical Inference techniques such
as a simple t-test to prove a hypothesis [164] are also used. There have also been studies that focus
on two essential unbundling items, checked bags and premium seats [111]. Scotti et al. [135] ap-
plied OLS to determine if there is an influence between checked luggage fees and flight delays on
the rate of customer complaints. The paper concludes no evidence was found of a possible negative

Zhttps://navitaire.com/Styles/Images/PDFs/APO_Whitepaper.pdf.
Shttps://amadeus.com/en/insights/white-paper/the-importance-of-understanding-travelers-motivation.
4https://amadeus.com/en/insights/blog/ancillary-revenue-coming-soon-around-the-world.
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relationship between the introduction of unbundled pricing and customer satisfaction. However,
in the presence of endogeneity, where there is a correlation between the error and explanatory
variable, the estimates made by OLS are biased.

2.6.2 Commission-based. Commission-based ancillaries allow for opportunities involving ho-
tel, car rental, and travel insurance services provided by third-party organizations. The category
is also known as dynamic packaging, where pricing, constraints, and the final decision are all de-
termined in real-time based on online inventory [115]. Therefore, a system dedicated to creating
a dynamic package requires automatic online configuration and collection of travel products and
services into a package targeted to certain customer segments. Cardoso and Lange [31] evaluated
three major OTAs with support for dynamic packaging (Expedia, Travelocity, and Orbitz) and took
note of their interoperability problems. The architectures of dynamic packaging systems are com-
plex and challenging because of the integration of unstructured data from different sources on the
Web. Although studies have acknowledged the advantages of Al techniques for dynamic packages,
there is yet to be a specifically proposed technique that has been proven to accurately infer the
interest and preferences of airline customers through pattern mining [54].

2.6.3 Frequent Flyer Program. A point-based system or mileage program is a well-known in-
centive companies use to retain its customers and encourage loyalty. Studies in regards to this
category often aim to identify what are the main factors that influence a passenger into signing
up for a loyalty program. Wong and Chung [173] studied the loyal passenger’s decision pattern by
analyzing their personal characteristics, consumer behavior, and overall perception towards the
quality of service. Examinations of the characteristics from loyal customers were done using a DT
to identify the possible strategies that can be utilized to attract more attention. They made use
of the C4.5 algorithm [124] to build DTs from a set of training data. The training dataset focused
on the customers’ personal information (i.e., gender, age), consumption features (i.e., airline mem-
bership, most frequent location for ticket purchase), and degree of satisfaction for various service
items (including airport service, cabin facilities, etc.). The C4.5 DT is fitted to the data considering
a target variable that defines a passenger as either loyal or disloyal. A similar study by Dolnicar
et al. [48] investigated the main drivers of airline loyalty and identified best discriminative vari-
ables between loyal travelers and those who are not, which included frequent flyer membership,
fares, carrier status, and the airline’s reputation. Through the application of DTs that are trained on
the survey data through recursive partitioning, the approach essentially generates a customer seg-
mentation by recursively splitting the data into two subsets according to an explanatory variable.
Therefore, customers from the same sub-groups convey a similar behavioral loyalty.

2.6.4 Advertising. Advertising revenue is generated through the sales of ads funded by third-
party organizations, including in-flight magazines, and fee-based products sample placements. Ac-
cording to a report by the Wall Street Journal in 2009, over 80% of passengers read the in-flight
magazines for an average of 30 min per flight.” Al techniques can improve advertising for the air-
lines by creating personalized offers and a suggestion of products specifically targeted to individual
customers [169].

2.7 Service Improvement and Customer Experience

Airline companies are under the constant pressure of balancing between cost-cutting and service
improvement. Cutting cost alone without keeping satisfactory levels of service quality cannot guar-
antee a successful business [34]. The ability to quickly capture the opinions of customers about

Shttp://www.wsj.com/articles/SB10001424052748703819904574555701528290902.
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their service experience and company products has become the indicator of how well an airline
company can adapt to a fast-changing market. OTAs and social media networks have evolved into
platforms for passengers to express their views on certain airline and airport companies. Conse-
quently, significant amounts of data are produced in the form of product ratings, social media posts,
and feedback. Therefore, there is a rise in demand for solutions that can handle data at this scale,
such as automatic sentiment analysis, polarity detection, and opinion information extraction.

Sentiment analysis is considered to be the study of using text and natural language process-
ing (NLP) techniques to systematically solve problems related to people’s opinion, attitude, and
emotions. Millions of messages, containing customer opinions about airline services and goods,
are shared on social networking sites including Twitter and Facebook. As a result, numerous stud-
ies have proposed to classify the sentiment of social media posts in regard to a certain airline or
airport services from social networks [85, 147] and dedicated air travel rating websites [175].

In general, sentiment classification approaches may be divided into three types: ML-based, lexi-
con based, and hybrid methods. The ML-based approach leverages different statistical algorithms
to analyze the sentiment by following a typical text classification methodology that uses syntactic
or linguistic features. Frequently used algorithms for the classification of customer’s sentiment
include Naive Bayes (NB), LR, DT, RF, and SVM. The lexicon-based approach [151] will either
manually or automatically build a dictionary with opinion terms to derive the polarity of each
entity through term-matching. The hybrid approach integrates both methods, in which it applies
ML classification to lexicon-based textual features [161].

2.7.1 Machine Learning-based Approaches. Supervised learning relies on having (1) a large
enough quantity of the training data and (2) labels for each sample. The quantity of data espe-
cially affects the model’s performance. To overcome the challenge of limited labeled data, Drury
et al. [50] proposed a semi-supervised learning approach for sentiment classification. An iterative
self-training process uses NB classifier as the base learner to label the training candidates that are
selected by a high precision linguistic rule-based classifier. If the confidence score generated by the
base learner is greater than a default threshold, then the data is labeled and added to the next iter-
ation. Experiments conducted on user-generated reviews of airline meals® make use of randomly
selected documents as training data. The proposed method has demonstrated promising results for
classifying text documents into sentiment categories with a small training dataset. Another study
focusing on sentiment analysis for airline reviews was carried out by Wan and Gao [165] in 2015.
The study proposed an ensemble learning framework involving multiple supervised ML models,
such as NB, SVM, Bayesian Network, DT, and RF. A total of 12,864 public tweets regarding 16 of
the largest U.S. carriers were collected and their sentiment was classified into negative, positive,
and neutral. The best result reaches an F1 score of 91.7%.

2.7.2  Lexicon-based Approaches. Lexicon-based approaches focus on the identification of opin-
ion key terms that can convey sentiment in either desired (positive) or undesired (negative) states.
Lexicon-based methods [151] use a handcrafted or automatically generated sentiment dictionary
to match the opinion word list with the target corpus to determine sentiment polarity. The ad-
vantage of lexicon-based methods is that training data is not required. In Reference [102], airline-
related tweets are classified as either service-related or product-related, where four specific airlines
are studied. The lexicon dictionary consists of 20 terms, which means that a 20-dimension vector
represents each tweet. The proposed model assesses the sentiment polarity of Twitter posts that
contain information related to customer’s feedback and experience on pricing and service quality.

%airlinemeals.net.
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Recently, Kaur and Balakrishnan [78] developed an enhanced lexicon-based sentiment scoring sys-
tem by analyzing the letter repetition patterns. The model was developed and tested using posts
from the airlines’ official Facebook pages. The experimental result shows that the proposed Sen-
timent Intensity Calculator (SentI-Cal) gains a significant edge over the traditional Semantic
Orientation Calculator (SO-CAL) in terms of performance. The accuracy reached 90.7% com-
pared to the baseline (58.33%).

2.7.3  Hybrid Approaches. The combination of ML- and lexicon-based methods has generated
promising results for sentiment analysis applied to airline customer reviews. Khan et al. [80] pro-
posed a notable sentence-level sentiment analysis framework for 700 reviews from Skytrax.” First,
each sentence is labeled as negative or positive based on the result of the NB classifier using
word-level features. Then, the labeled sentences are used to train an SVM classifier for detecting
sentiment polarity. While a lexicon dictionary detects positive polarity in consumers’ opinion, clus-
tering analysis discovers the main topics involved in the discussion. Yee and Pei [176] incorporated
text mining and clustering techniques on 10,895 tweets that hashtag (#) or mention (@) Malaysian
airline companies. Subjects such as itinerary promotion and cancellation, customer service, and
post-booking management were identified. Intuitively, sentiment polarities vary depending on
specific topics or contexts. Therefore, opinion mining and summarization require functions that
can detect both topic and sentiment together. More recently, Lacic et al. [85] crawled information
from Skytrax to illustrate the rating features (i.e., lounge comfort, boarding time, seat legroom
space, and cabin staff service quality) that have the most impact on travelers’ satisfaction. Suffix
tree clustering [178] is used to identify topics that cover reviews and additional features that are
useful in the rating schema. The Hoeffding Tree algorithm has demonstrated to have both the
highest accuracy and fastest training time when mining data in real-time compared to other classi-
fiers. Smith et al. [142] implemented a user-centered human reinforcement topic modeling system
that generates topics from airline service reviews interactively. The authors extended their origi-
nal work by adding more user refinements. The experiment used the Kaggle Twitter U.S. Airline
Sentiment dataset, which includes more than 14,000 tweets.

2.8 Price Mining for Strategic Customers

Traditional statistical approaches are broadly applied to industrial practices due to their simplicity
and generally good performance. While airline industry stakeholders are exploring more pricing
approaches to generate higher revenue, some research work aims to minimize the cost of purchas-
ing a flight ticket for the customer’s benefit. Traditional models that generate hand-crafted rules
are straightforward compared to the rules generated automatically by ML algorithms. Therefore,
the behavior of airfares change is getting more complicated. Early in 2003, Oren et al. [52] studied
the pricing pattern for two specific markets and developed an algorithm to show when passengers
should buy a ticket to minimize cost. Though the data they collected is limited, their multi-strategy
data mining algorithm, Hamlet, has shown promising predictions. It incorporates RL, rule learning,
and time series methods. In 2014, Li et al. [93] brought up the question of whether air-travel con-
sumers are strategic. By creating a structural demand model of alternative pricing strategies, it not
only proves strategic consumers exist, but also analyzes the potential consequences to the revenue.
As the portion of strategic customers varies in different city-pair markets and booking to departure
times, it tends to increase revenues in leisure markets. Other than the aforementioned techniques,
rule-based feature selection methods explicitly designed for the objective are also widely adopted

7Website for airline, airport, and associated air travel traveler reviews: skytrax.com.
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in the airline related studies. Lhéritier et al. [91] built a ticket choice model using RFs to generate
the score of reduction in impurity for each feature. Groves and Gini [69] used the lagged feature
computation strategy to prune certain features related to a later time window than the flight depar-
ture date time, based on the type of the flight. Recently, Mottini et al. [107] proposed leveraging
Recurrent Neural Networks (RNNs) with attention to learn the conditional probabilities of a
customer’s choice. In their study, the decision-making process of the customers was modeled to
predict the customers’ preferred itinerary in different flight booking scenarios. In the proposed
model, a variant of Pointer Networks [162] was implemented to select the preferred item among
any provided set of inputs. A dense representation was first generated by normalizing and em-
bedding a total of 15 features related to the flight, including Origin/Destination pair, price, and so
on. Then, the Pointer Network utilizes an encoder-decoder structure based on Long-Short Term
Memory (LSTM) networks [75] along with an attention mechanism to generate an estimated
probability for an itinerary being selected out of all given itineraries. By combining all these tech-
niques, the proposed model was able to represent a more complex relationship between the inputs
and the outputs without relying on an assumption of independence, and achieved a higher pre-
diction accuracy as compared to a conventional multinominal logit model. This is the first neural
network structure that models discrete choice problems. One framework described in Reference
[77] assists Skyscanner users by allowing them to create cheap and exclusive round-trip flight
itineraries by combining outbound and inbound tickets from various airlines. After analyzing tem-
poral patterns, the authors pointed out that when the departure approaches, a search considering
combined airlines provides more competitive results, as the traditional single flight tickets get
more expensive. The predictive itinerary construction is formalized as a supervised learning prob-
lem. Several popular models are utilized including LR, multi-armed bandit, and RF. Additionally,
location information is represented by different types of embeddings. Experiments show further
improvement by incorporating deep neural networks as compared to RF, regardless of the model
complexity.

2.9 Connectivity

Developing a robust air transport network greatly facilitates the globalization of the markets, tech-
nology, and economic growth [86]. The air transport network connectivity is defined as the degree
of connection of a specific node (airport, city, or even region) to all of its neighbors [30]. This is an
essential measurement that demonstrates how well a node in the network is connected to the rest
of the world and becomes an important domain in the airline industry. The network connectivity
can be categorized either based on the measurement (e.g., node accessibility or betweenness) or
the data source (supply or demand data) [148]. Supply data includes data relating to flight sched-
ules, while the demand data provides information related to passengers. Both data sources are
found to be used together in recent studies. Arvis and Shepherd [10] introduced the concept of
Air Connectivity Index (ACI), which sets a comprehensive guideline on how to interpret con-
nectivity in the air transportation domain. The ACI is a metric to indicate the significance of a
node in the global air transportation system. It measures the degree, closeness, and betweenness
of nodes. Multiple attributes are defined for each node in the network to meet certain criteria: (1)
The connection between a pair of nodes needs to be supported by a well-established transportation
model; (2) Two nodes with the same connection to the rest of the network should have the same
connectivity, regardless of the differences between their size, which can be measured by passenger
volumes or amount of traffic; (3) The calculation of the metric should consider the full network,
not only the target nodes and its immediate neighbors. The authors borrow the basic idea of bi-
proportional structure from the generalized spatial interaction model framework [113] to develop
an ACI model that satisfies the above-mentioned criteria. The model incorporates the concept of
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attraction and impedance factors between a pair of nodes. Attraction is proportionate to the size,
economic development of the origin, and destination pair. Impedance represents all the costs in-
volved between the interaction of the pair, which includes travel time and distance. In practice, an
attractive potential can be derived from the data such as the total number of flights, seat capacity,
passenger flows, and cargo volumes. In addition, the impedance can be derived from geological
distance from the O-D pairs. As a result, ACI can be categorized by both its measurement and data
source.

Allroggen et al. [6] address the connectivity problem from a different angle. They focused on
assessing the quality of air transportation between each pair of nodes by utilizing the “connection
quality-weighting” approach and proposed the Global Connectivity Index (GCI). GCI evaluates
the connection quality of a specific airport/region by summing up the potential destination quality
weighted by the attributes of each connection. The closeness between nodes is considered when
creating the GCI. The absolute destination quality of a specific node is obtained by considering
both the travel distance and the market potential, which is the total population of the accessible
market. When compared with ACI, GCI models the connectivity factor by incorporating additional
perspectives, such as the connection quality and destination levels.

A more recent work by Zhu et al. [183] defines the connectivity metric from the perspective of
passengers. They model the air transport connectivity by using a multiplicative utility function
that integrates three major components: seating capacity, trip duration, and flight transfer quality.
The capacity factor is represented by the square root of the ratio of the seating capacity of a
specific connection to the seating capacity of the benchmark aircraft. The velocity factor contains
the flight duration, as well as the penalty for the time spent on the indirect flight. The transfer
quality factor consists of time quality and service quality of indirect flights. The velocity factor
represents the time spent on transfer flight, and the transfer quality factor takes into consideration
the characteristics of the waiting lounge (i.e., comfort).

2.10 Air Traffic Management

In the previous subsections, we cover the vast majority of airline research topics that use customer-
and/or market-oriented air travel data for RM, which are the major focus areas of this survey. In
this subsection, we review other research topics that are not specific to airlines and customers.
Air Traffic Management (ATM) is another topic that also utilizes air travel data to assist gen-
eral aircraft and airport operations. The increasing prevalence of LCCs along with the global rise
of the middle-class have resulted in the rapid growth of the world’s air traffic. Trajectory-Based
Operations (TBO) uses time-based management to improve proactive forecasting of aircraft flows
and minimize capacity-to-demand imbalances in the National Airspace System (NAS). In the
near future, TBO will be used as the core component of the ATM systems, which will significantly
improve the accuracy, safety, and efficiency of air traffic control [61, 104]. As a result, during the
past few years, aircraft trajectory prediction, a key technology in TBO, has attracted significant
attentions in ATM research and recent modernization programs. Advanced data analytics tech-
niques have been leveraged in this area to enhance the prediction accuracy in complex flight
environments. Ayhan and Samet [13] proposed a stochastic trajectory prediction method based
on Hidden Markov Model (HMM) and 4D trajectory data including 3D spatio-temporal pa-
rameters and weather features. Similarly, HMM has been used for online aircraft prediction of
trajectories in Reference [117]. Zhao et al. [181] integrated multi-dimensional features of aircraft
trajectories into deep LSTM to predict the aircraft trajectory. Bastas et al. [15] turned this prob-
lem into an imitation learning task and utilized the Generative Adversarial Imitation Learn-
ing (GAIL) framework [74] aiming to imitate experts “shaping” the trajectory. Finally, in Refer-
ence [118], Conditional Generative Adversarial Network (CGAN) was used for weather-based
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trajectory prediction to alleviate the issue with limited data. Due to accidental events, such as traf-
fic congestion and convective weather, the flight trajectories might need to be rerouted accordingly
and thus reroute prediction becomes critical to enhance the accuracy of trajectory prediction, re-
duce the flying time, and improve the quality of airline operations. Since most of the reroutes are
caused by severe weather, Michael et al. [101] developed a severe weather-modeling mechanism
and integrated it with the airspace planning component to determine when and how the flight
trajectory can be rerouted using a probability model. Recently, an ensemble of machine learning
models, including DT, SVMs, and so on, has been utilized by Antony et al. [53] to predict flight
reroute requests. Another important topic in ATM related to aircraft trajectory prediction is Con-
flict Detection and Resolution (CD&R) [155]. Many existing studies in CD&R used predicted
aircraft trajectories to declare a conflict. Ayhan et al. [12] presented a framework based on their
previous HMM trajectory prediction model [13] to detect the conflict. In Reference [33], a neural
network binary classifier was used to discover which aircraft configuration might break the avia-
tion regulation for minimum separation between in-flight aircrafts. The authors used a simulation
tool to obtain the training dataset, which includes aircraft positions and each sample is labeled as
a conflict or not. Finally, Wang et al. [168] developed a deep RL model for CD&R, based on the
K-control actor-critic algorithm in which the agent generates a two-dimensional action to avoid
the conflict.

Estimated time of arrival prediction, or flight delay prediction, is another application in air traffic
control that provides critical information to facilitate ATM and the decision-making process. The
flight delay prediction problem can be approached in a variety of ways. Zhang et al. [180] used a
fuzzy LR model to evaluate the airport arrival delay and the estimated delay. The model takes into
consideration both traffic and weather features. In another study, an asymmetric logit probability
model was used as a tool to estimate the daily flight arrival delay probabilities [121]. It focuses
on tackling the asymmetric nature of on-time and delayed flight frequencies. In recent years,
ML techniques have been widely applied to predict the flight arrival and departure delays. For
instance, RF is used to predict the estimated time of arrival in Reference [79], which combines the
features from flight information, air traffic, and weather domains. In Reference [38], Synthetic
Minority Over-sampling Technique (SMOTE) [35] was used to overcome the common data
imbalance issue in flight on-time arrival data. Several ML algorithms were compared and RF was
shown to demonstrate the best performance. Compared to previous studies, more weather-related
features were added, such as visibility, snow depth, and various obscuration factors caused by
different weather conditions. More advanced deep learning approaches are also used for flight
delay prediction. For instance, Reference [82] applied RNNs on the daily on-time status data, and
the model was capable of predicting the day-to-day delay status.

As the traffic volumes increase, to evaluate the system loads and allocate resources accordingly,
the traffic density prediction at the sector-level becomes important for the ATM systems. Dynamic
density was first proposed to determine how the traffic in all the sectors could be measured [83].
Due to the complexity of the air traffic system, David and Kevin [62] proposed to utilize neural
networks to better model the traffic density. Furthermore, to utilize the spatial patterns of the
sector-level traffic density, deep convolutional neural networks recently were developed to eval-
uate the traffic density and complexity [174]. In addition to estimating the density in real-time,
Tian and Pan [157] proposed an LSTM model to predict the short-term traffic density with high
accuracy.

With the increasing demand for air transportation with environmental considerations, many
key challenges have been raised and caught lots of attentions at the airports, especially those busy
hubs, to provide ground operations that support the on-time performance of flights. Airport run-
way configuration is an active and less-expensive approach for better airport capacity utilization
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than airport expansion for increasing capacity. It tends to solve airport congestion by considering
many factors that could also affect aircraft operations. According to References [11] and [126],
weather conditions, airport demands, operator decision-making, coordination with surrounding
airports, and runway characteristics are some of the key influencing factors for airport conges-
tion. In the late 2010s, neural networks were popularly used to predict the runway configuration
for maximizing the runway capacity. In Reference [5], a Multi-layer Artificial Neural Network
model was presented by adopting different neural network techniques, including feed-forward
back-propagation, recurrent back-propagation, and so on. Most recent research also illustrated
the use of Convolutional Neural Networks in multiple airport systems [167]. The model used as-
sembled grid weather forecast to obtain runway configurations and airport acceptance rates.

An accurate taxi time prediction is essential for both on-stand time prediction and take-off time
prediction improvements and consists of the taxi-in time prediction and taxi-out time prediction. In
2010, Reference [14] leveraged RL to estimate runway taxi-out delays. The system models the taxi-
out time prediction as an MDP. Ravizza et al. [128] presented a prediction model using a multiple
LR analysis. The inputs are the airport layout and the historical taxi time. An airport layout was
used to solve the airport ground movement problem, which could be generalized as a routing
and scheduling problem. Relevant factors affecting the taxi time were identified, including the
amount of traffic that could reduce the taxi speed, total taxiing distance to the gates, total amount
of turning angels, and so on. Reference [140] studied the airport runway departure process and
proposed a queuing model to estimate the taxi-out time distribution by attempting to forecast taxi
wait times, queuing delays, and airport congestion levels. Other factors such as meteorological
conditions, pilot behaviors, and system-wide taxi delays can also increase the uncertainties of
making an accurate taxi time prediction. To measure those uncertainties and help comprehensive
taxi planning, Chen et al. [36] employed the multi-objective fuzzy rule-based systems. Herrema et
al. [73] focused on taxi-out time prediction models and identified the regression tree as the most
efficient method with an average error of 1.6 minutes when comparing with the performance of
using neural networks, RL, and MLP models. Recently, Li et al. [94] proposed a wide-deep neural
network model (WDM) that works for both taxi-in and taxi-out time predictions, where the wide
component is based on the GLM. The model involved the SMOTE method for data re-sampling, and
its input contains both categorical and numerical parameters describing the weather conditions,
runway configuration, aircraft type, taxiing distance, and so on. In another work, Wang et al. [166]
first conducted a comprehensive review of the state-of-the-art taxi time prediction methodologies
and reported RF as the best ML model that wins all the evaluation metrics, including accuracy,
R?, MAE, RMSE, and so on, when compared to the other models. The study also stated that it is
critical to determine the values of the features for optimizing taxi time modeling accuracy and
performance.

2.11 COVID-19 Impacts on the Airline Industry

The newly emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), also known
as COVID-19, was formally proclaimed a pandemic by the World Health Organization (WHO)
on March 11, 2020. COVID-19 has had a major global impact on air travel mobility and the avia-
tion sector in general. As a result, various studies have been published tackling the uncertainties
brought by COVID-19, trying to make accurate forecasts of its impacts and proposing ways for
rapid recovery post-pandemic. In the earlier months of COVID-19, Sobieralski [143] used time-
series analysis to investigate the dynamics of recent global crises, including 9/11, SARS, and other
disruptions, and examined the impact of instability shocks posed by COVID-19 on the U.S. airline
labor. The analysis demonstrated that the effects of COVID-19 will continue for several years, and
the airline workers will be the hardest hit. One major obstacle faced by the airlines is to leverage
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their established methodologies and data analytics techniques, both during COVID-19 and during
the recovery period. Many of the previously described traditional and machine learning methods,
majorly trained and fine-tuned on historical data, struggled to overcome the difficulty of adapting
to the new era due to the elevated schedule uncertainty and constantly evolving travel restric-
tions. Times of high uncertainty have pushed the airline companies to transition to more manual
methods. Researchers are beginning to explore ways to reduce the traditional model’s reliance on
historical data, develop strategies that can pick up on the recent trends quicker, and integrate the
domain knowledge generated by human revenue management experts [59].

3 SUMMARY OF DATA ANALYTICS TECHNIQUES IN CURRENT USE

Airline-related data are not only large in volume (number of instances), but also high in dimension-
ality (number of attributes). Most of the ML models are not designed to handle data with very large
number of features (attributes), which will significantly decrease the model performance [182].
Moreover, irrelevant information in the data can also increase the difficulty of the learning pro-
cess due to the additional training cost and the distraction of unrelated features. As a result, feature
analysis is always introduced at an early stage to analyze, extract, and select relevant features from
the raw data before translating it into an optimal representation that is tailored for each specific
problem domain. Feature selection, either by hand or automatically, can (1) effectively reduce the
impact of overfitting by reducing the dimensionality of the input vector; (2) improve the accuracy
by including less misleading features; and (3) reduce training time, since the total number of param-
eters that the model needs to optimize is decreased. Several feature selection methods have been
applied to airline-related tasks. For example, Berechman [4] developed a model using Principle
Component Analysis (PCA) to determine the efficiency and quality of the airports. In another
work, Gursoy et al. [71] used correspondent analysis, which is a special case of PCA, to analyze 15
features including on-time performance, mishandled baggage, customer complaints, and so on, to
evaluate the service quality of the 10 major airlines in the US. Similarly, Dobruszkes [47] analyzed
the European low-cost airline’s network using PCA to select and reconstruct 75% of the features
in the original data. The generated components were able to identify the features related to the
importance of supply and exclusive routes. Term Frequency-Inverse Document Frequency
(TF-IDF) and Latent Semantic Analysis (LSA) are two widely used strategies for text mining
and sentiment analysis to classify relevant keywords and conduct dimension reduction with mini-
mal knowledge loss. In Reference [70], TF-IDF was used to select important features from airline
customer reviews by mapping the most frequent words to the feature collection and weight them
across the entire corpus. However, TF-IDF lacks the ability to utilize semantic similarities between
words, which makes it less ideal for tasks that involve complex semantic context. Gunarathne et
al. [70] combined LSA with TF-IDF to generate a low-dimension feature space for further cluster-
ing of airline social media posts.

After the raw data is properly cleaned and the essential features are identified for a particular re-
search topic, ML models can then be applied to solve the data modeling problems. Until this point
in time, the airline industry has relied heavily on traditional ML techniques, particularly regres-
sion and MDP for RM. However, advanced techniques such as Neural Networks and RF models
have been more frequently used in the ATM systems for a decade. Only recently, more advanced
techniques such as Deep Neural Networks and Deep Reinforcement Learning (DRL) have been
introduced to the airline RM domain. Table 3 summarizes the ML techniques used frequently to
answer different airline research topic questions, as mentioned in the previous section. It provides
an overview of how ML techniques in different categories have been utilized in the airline industry
to model air travel data.
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Table 3. Popular Machine Learning Models in Airline Industry

Categories

Models

Techniques/Papers

Supervised
Learning

Regression

Linear Regression: Bilotkach and Pejcinovska [23],
Mumbower et al. [110], Ravizza et al. [128], Scotti et al. [135],
Zhang et al. [180]

Logarithmic-Linear Model: Jung and Fujii [76]

Artificial Neural Network: Ahmed et al. [5], Ali et al. [105]
Convolutional Neural Network: Wang et al.[167], Xie et al. [174]
Deep Neural Network: David and Kevin [62], Li et al. [94],
Pang and Liu [118], Tian and Pan [157], Zhao et al.[181]
Hidden Markov Model: Ayhan and Samet [13], Pan et al. [117]
Regression Tree: Herrema et al. [73]

Random Forest: Kern et al. [79], Wang et al. [166]

Classification

Logistic Regression: Obeng and Sakano [114]

Multinomial LOGR: Hansen [72]

Neural Networks: Casado and Bermudez [33]

Recurrent Neural Networks: Michaela et al. [68], Kim et al. [82],
Mottini and Acuna-Agost [107]

Decision Trees: Dolnicar et al. [48] , Antony et al. [53], Fiig et al. [56],
Wong and Chung [173]

Support Vector Machine: Delahaye et al. [44]

Unsupervised
Learning

Clustering

Partitioning: Obeng and Sakano [114], Pritscher and Feyen [123]
Hierarchical: Dai et al. [43]
Distribution-based: Piggott [122]

Reinforcement
Learning

Markov
Decision
Process

SARSA: Collins and Thomas [40, 41]
Q-Learning: Gosavii et al. [67]
Deep Q-Learning: Shihab et al. [136]

167:23

Actor-Critic: Wang et al. [168]

4 DATASETS AND DATA SOURCES

As companies collect more and more data, they develop effective techniques to tackle differ-
ent objectives with the same ultimate goal, keep the business environment stable and running
healthy—the airline industry is no exception. Collected data includes not only details on general
performance, but also data on supply and demand, information that is not easily accessible to the
public. A summary of popularly used datasets for airline related topics is listed in Table 4. This
section describes datasets that mainly focus on airline functions along with research references
that indicate how these datasets have been utilized in data analytic and ML approaches.

Public datasets in relation to the airline industry are limited, with academic research having
to rely on either the data that is made available by the government or scrape their own data
from public websites to test their hypotheses. The U.S. Department of Transportation website®
is a rich source of information regarding airline operations, performance, and finance. BTS’s Of-
fice of Airline Information maintains the Airline Origin and Destination Survey (DB1B), a 10%
random sample of U.S. domestic carriers’ ticket data. The DB1B dataset is used to determine pat-
terns of air traffic, air carrier market share, and passenger flows. Each record contains information
regarding a purchased ticket—origin and destination airports, miles the aircraft has flown, total
fare, and whether the itinerary is a round-trip or one-way. DB1B data is beneficial for studies that
determine the roles of aircraft characteristics in airlines’ market share and demand [170], examine

8www.transtats.bts.gov.
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Table 4. Popular Air Travel Datasets and Data Sources Used in Published Papers

Datasets/ Publi- Content Focus Number of... Geographic Time Range Data
Sources cations F O-D [Feed-| PAX |Trajec- Airli Ai ts| PAX Coverage g Quality
¢ Flows | back |Profile tory trimes| Arports
Access: Public
DBIB/BTS | [9,20,170] | v v 21 414 - US 1993—-present | Quaterly
T-100/BTS [100] v 127 1K - Us 1990—present | Monthly
Air-TCR/BTS [135] v 31 360 - US 1998-present | Monthly
OTA/Crawled | [23, 93] v - - - | Multi-country - -
Skytrax/ . .
Crawled [80, 85, 175] v 492 895 - | Multi-country |2002-present| Daily
AirlineMeals/ . .
Crawled [50] v 745 - - | Multi-country |2004-present| Daily
Data/OpenSky | [15, 133] v v - - - | Multi-country |2013-present | Real-time
Access: Commercial
MIDT/GDSs | [106-109] | v v - - - | Multi-country
OAG_CS)Z}gdUIE/ [72, 100] v 1K 4K - | Multi-country | 1979-present | Real-time
Data/ . .
Skyscanner [77, 145] v - - - |Multi-country - Real-time
ASDI/FAA [13, 15] v v - - - |North America|1991-present |Real-time
Access: Private
Beijing &
PEK & CAN/ [98] v v 63 2 3M | Guangzhou, (2 years)
TravelSky ;
China
Data/CAOIRL | [105] 7 B 12 B Tran 2011-2015

the core of the air travel market’s O-D structure and dynamics [20], and predict demand [9]. Air
Carrier Statistics (T-100), also maintained by BTS, includes air passenger flows for U.S. domestic
and international markets. BTS disseminates the Air Travel Consumer Report (TCR) disclos-
ing flight delays, mishandled luggage, overbooking, and consumer complaints. The TCR is used
in a study by Scotti et al. [135] to identify if there is a relationship between factors such as flight
delays and mishandled luggage on the rate of consumer complaints. Researchers may crawl infor-
mation from OTAs, such as Travelocity, Expedia, and Orbitz, a convenient resource for users to
compare prices among different airlines. The top three OTAs have an overall 22% market share
and 58% eyeball share in the U.S. market. With OTA data, researchers can conduct inter-market
analysis utilizing time-series [93] and investigate potential discriminative factors from distributors
for or against a specific airline [23]. For studies with a focus on customer feedback, Skytrax and
AirlineMeals are two popular sources. Skytrax is a leading web resource collecting customer feed-
back and ranking concerning global airlines, lounges, and airports. Reviews and ratings crawled
from both Skytrax and AirlineMeals have been utilized in sentiment analysis [50, 80], opinion
mining about the airline service [175], and traveler satisfaction prediction [85].

Global Distribution Systems (GDSs) including Sabre, Amadeus, and TravelPort, create, main-
tain, and commercialize their own Market Information Data Tapes (MIDT). Airlines pay mil-
lions of dollars each year to purchase this MIDT data made up of valuable Passenger Name
Records (PNRs). A PNR is a customer profile created at reservation time by air travel providers
and includes passenger-specific details such as gender, carrier, origin, and destination airport.
Amadeus publicized several studies proposing advanced DL techniques, including Pointer Net-
works and Generative Adversarial Networks (GAN), and applying these techniques on a subset
of their MIDT data, with records coming from approximately 420 airlines and over 93,000 travel
agencies [106-109].

The Official Airline Guide (OAG) is a good resource of O-D flows information, providing
the most comprehensive airline schedule and flight status from around the world. Both T-100
and OAG have been utilized in the prediction of monthly passenger volumes between directly
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connected airports [100]. Another comparative web source known as Skyscanner contains records
of user clicks on a chosen price point. Soyk et al. [145] assessed the performance for long-haul
LCCs and developed a revenue model by combining the traffic, fare, load factor, and seat data
from provided by Skyscanner. Karamshuk and Mathews [77] identified the factors that contribute
towards a competitive combination itinerary, also using Skyscanner data.

Although some studies harnessed datasets that appear to be private, their described methodolo-
gies provide some valuable insights. TravelSky Technology Limited provided a private dataset to
Liu et al. [98] of PNRs for travel records taking place during a two-year period from passengers of
two cities in China: Beijing (PEK airport) and Guangzhou (CAN airport). The private flight data
provided by Civil Aviation Organization of Islamic Republic of Iran (CAO.IRI) segmented
by O-D where passenger counts, load factor, and the number of trips, has been used for the devel-
opment of a model that can predict air travel demand [105].

Aside from the airline data, aircraft trajectories are highly crucial for air traffic control and
there exist several public sources. The FAA’s Traffic Flow Management System (TFMS) pro-
vides actual and planned aircraft positions during their flights in Aircraft Situation Display to
Industry (ASDI) dataset. While the FAA provides data covering North America, EUROCONTROL
provides similar data for flights in Europe. Data from FAA and EUROCONTROL have supported
much air traffic control research [15, 181], but they are not publicly available and have limited
access. Alternatively, Automatic Dependent Surveillance Broadcast (ADS-B) technology can
be leveraged and used to collect the aircraft trajectories in real-time. OpenSky Network provides
public access to the real-time and historical aircraft trajectory data for research purposes, which
is the largest public aircraft trajectory database and now covers 40% of the flights [133]. There
are many other commercialized ADS-B data sources with broader data coverage, including Fligh-
tradar24 and FlightAware. In addition to the trajectories, many other air traffic data, including
Terminal Area Forecasts (TAF) data, FAA Aviation System Performance Metrics (ASPM),
Airport Collaborative Decision Making (A-CDM), and so on, have been used in various air
traffic control research [11, 13, 15, 126].

Other data sources that may not have a direct focus on the airline industry but can be com-
plementary and add values to various studies include weather data used as features in various
models for air traffic control and management [79, 101, 118, 180], Twitter data utilized to evaluate
customer service in the airline industry [102, 165], economic, income, wealth-related data such as
Consumer Price Index (CPI), and Census Data [9, 100].

5 FUTURE WORK

Data analytics and ML provide excellent opportunities for the airline industry to improve their
products and operations. Despite the vast amounts of available data and the advanced tools that
have been developed in the last decades, the airline industry applications, as well as ML techniques
used in this domain, are still limited. In this section, we discuss possible future directions and av-
enues of data analytics research using data from the airline industry. Specifically, future directions
are divided into airline applications and advanced ML techniques.

5.1 Airline Applications

5.1.1 Ancillary Service Optimization. Industries using RM have witnessed the significant boost
in revenue that is being generated through the sale of ancillary services. The airline industry is
a prime example, offering unbundled services such as reserved seats, priority boarding, in-flight
food/beverage, checked luggage, and more. Figures 6 and 7 demonstrate the steady increase in rev-
enue for three major air carriers in regards to two essential ancillary-based products: (1) checked
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—American Airlines  —Delta Airlines United Airlines —American Airlines —Delta Airlines —United Airlines
Fig. 6. Baggage fees. Fig. 7. Reservation change/cancelation fees.

baggage and (2) reservation change or cancelation.” However, the prices for these unbundled items
are not optimized, causing airlines to miss significant revenue opportunities [56]. With the recent
success of unbundled items, optimization models for ancillary revenue are getting an increasing
amount of attention. A recent work by Navitaire, known as APO, is a good example of how the
industry is starting to see the benefits of applying ML techniques to dynamically decide prices for
ancillary products. As Identified by Fiig et al. [56], two possible research directions regarding the
ancillary revenue optimization can be suggested for the future work: (1) mixed bundles and (2)
correlated reservation prices.

Mixed Bundles: Companies can sell products separately (a la carte), as one entity (pure bun-
dles), or as a component mix of two options (mixed bundles). The choice between these categories
requires an internal pricing consistency. Mixed bundling has been proven to be an optimal ap-
proach to making more revenue rather than relying on pure bundling [2]. Nonetheless, the choice
of bundles for maximizing revenue has been shown to be NP-hard when allowing more than two
items in the same bundle [46]. Therefore, future research on mixed bundling should focus on more
efficient and practical data-driven solutions for maximizing the revenue.

Correlated Reservation Prices: As of today, the fares for a customer’s different itineraries
are determined simultaneously. This is achieved through the advent of the fare adjustment
theory [55]. The current challenge is to determine the prices for all correlated ancillary products
simultaneously. A recent study by Bockelie and Belobaba [25] proposed an Ancillary Choice
Model (ACM) by integrating passenger choice-models for the itinerary, fare class, and ancillary
service. ACM serves to define the consumers’ selection of specific ancillary services after deciding
their preferred airline itinerary along with the fare class. Airlines have recently noted the benefits
of employing the decoy effect to better predict customer choice and drive up sales. However, a
comprehensive study is demanding to explain how the decoy effect can be modeled for the an-
cillary pricing optimization and analyze its benefits and limitations. In the future, ML and deep
learning can be used to automatically model the passenger choices of ancillary services [107].

5.1.2  Recommender Systems. A recommender system can make suggestions that will appeal
to users, giving them support during the decision-making process. It requires rich information
on users, items, and the users’ shopping patterns, along with domain knowledge of the under-
lying behavioral process that led to a specific decision. Al-supported recommendation systems
are essential for web-applications and OTAs, and must rapidly and accurately infer these patterns
from the users [54] in near real-time. By combining merchandising techniques (the way an offer is

9Data from BTS, Form 41 Financial Reports.
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presented), psychological factors (how the user responds to the offer) and ML methods, companies
can train models that generalize the process and automatically predict the users’ preferred prod-
ucts and services [56]. A good example is the use of sentiment analysis on consumer reviews to
identify the airline services users recommend. A study by Siering et al. [138] provides a look into
which airline service consumers pay more attention to and how these factors explain a consumer’s
recommendation by making use of sentence-level sentiment polarity. Recently, Mottini et al. [109]
introduced a novel benchmark on three choice-model methods (traditional, ML-based, and deep
learning-based) to identify the most suitable approach for the recommender problem.

5.2 Advanced Machine Learning Techniques

Despite the great success of ML and DL in recent years and the increasing role of Al in many
industrial applications, there are still considerably few ML techniques applied to the airline’s ap-
plications. Nevertheless, many airlines have planned to leverage Al and more advanced ML tech-
niques in the near future to address the existing challenges in dynamic pricing, ancillary service
optimization, overbooking, EMSR, WTP, and costumers’ feedback analysis.!® An example of these
techniques includes ensemble learning models for automatic air ticket pricing, as suggested by
Abdella et al. [1]. In addition, more recently, Multi-Agent Systems (MAS) have attracted signif-
icant attention in the airline industry [129, 146]. MAS has been studied for two decades to tackle
congestion problems in the transportation domain. However, there are still very few research stud-
ies using MAS to solve demand and capacity imbalance problems that are essential to solve in the
airline industry. In the case of RM, deep RL, combining both DL and RL, has the capability of adapt-
ing to a dynamically changing environment. Airline RM could leverage techniques from Reference
[96], where a deep multi-agent RL model is developed for maximizing the gross merchandise vol-
ume of the large-scale ride-sharing car fleet. Also, the idea of using RL for energy consumption
scheduling [81] can be borrowed to solve the issue of dynamic pricing and energy consumption
for the airlines. In terms of the importance of fairness in the airline marketplace, DRL can be
considered in the future to develop dynamic pricing strategies [99].

Moreover, based on the publications described in Section 2.7.1, it is apparent there are limited
numbers of advanced deep learning techniques for sentiment and opinion mining in the airline
industry. Sentiment mining for airline reviews can benefit from advanced techniques proposed
by Tang et al. [154], which utilized Convolutional Neural Network and LSTM networks on online
reviews and even introduced a novel network that integrates the semantic representations of user
and product information. Multi-aspect level sentiment analysis also contributes essential informa-
tion for companies to gain a comprehensive understanding of the customers’ perception of their
services and products. The recently introduced attention mechanism has been advantageous for
aspect-level representations of documents [92, 177].

DL also shows great potential in analyzing time-series data, which are commonly seen in the
airline industry. Recently, Li and Cao [95] proposed to use LSTM to predict the tourism flow in
local landscapes, while Silva et al. [139] proposed to apply autoregressive neural networks to es-
timate the tourism demand in multiple countries in Europe. Both methods achieve better perfor-
mance than conventional methods. In the airline industry, the estimation of customer demand and
O-D flow tackles very similar problems, and the performance of these problems can be potentially
improved in the future with the help of DL. Moreover, other topics in this industry, such as ticket
pricing and simulation tools, are built upon the demand and O-D flow prediction and thus benefit
from deep neural networks as well.

Ohttps://www.altexsoft.com/blog/datascience/7-ways-how-airlines-use-artificial-intelligence-and- data-science-to-
improve-their-operations.
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6 CONCLUSION

There is an increasing demand for computer science domain knowledge in the airline industry to
conduct adequate data analysis. However, not much work has been done to consolidate this field
across the various sectors of the industry. Thus, the airlines have yet to fully realize the benefits
of embracing cutting-edge ML techniques for data analytics. To the best of our knowledge, this is
the first comprehensive work that presents a multi-perspective look into the details of how ML is
being applied to analyze airlines’ data.

This article provides a detailed review of the state-of-the-art Al applications for data analytics in
the most fundamental aspects of the airline domain. The authors investigate how the introduction
of the free market stimulates the development of the airline industry after the Airline Deregulation
Act of 1978; moreover, how computer science gradually becomes involved within the industry
through the application of advanced ML techniques. Major studies involving critical components
of the airline industry were identified along with frameworks and popular techniques in both
traditional and ML domains. The most popular ML algorithms and models tested in the airline
industry are presented. Moreover, a comprehensive list of datasets and data sources is provided.
Although most of the sources in this list are public, several commercial or private data sources are
also included based on the impact and frequency of their respective research references.

ML has the potential to deliver substantial impact based on the following challenges and future
research directions:

e The traditional analytic approach has dominated the ancillary price optimization problem.
Advanced ML methods can provide essential techniques to solve the mixed bundles and
correlated reservation prices problem.

e ML recommendation system has been deployed in many fields, such as online retail and
video streaming services, with great success. Air travel products and services can benefit
the revenue generated through these sophisticated recommendation systems.

e With the help of advanced ML techniques (e.g., deep learning), the airline industry can lever-
age large amounts of data from different sources to generate better strategies and further
improve the overall performance of their operations. Techniques such as deep customer
opinion analysis and deep RL can assist the industry to better adapt to the dynamic market.

We hope this survey provides readers with a comprehensive understanding of the relationship
between the airline industry and data analytics and sheds light on future research directions and
opportunities.
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