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ABSTRACT: Ultrafast spectroscopy often involves measuring weak signals and
long data acquisition times. Spectra are typically collected as a “pump−probe”
spectrum by measuring differences in intensity across laser shots. Shot-to-shot
intensity fluctuations are most often the primary source of noise in ultrafast
spectroscopy. Here, we present a novel approach for denoising ultrafast two-
dimensional infrared (2D IR) spectra using conditional generative adversarial
neural networks (cGANNs). The cGANN approach is able to eliminate shot-to-
shot noise and reconstruct the line shapes present in the noisy input spectrum. We
present a general approach for training the cGANN using matched pairs of noisy
and clean synthetic 2D IR spectra based on the Kubo-line shape model for a three-
level system. Experimental shot-to-shot laser noise is added to synthetic spectra to recreate the noise profile present in measured
experimental spectra. The cGANNs can recover line shapes from synthetic 2D IR spectra with signal-to-noise ratios as low as 2:1,
while largely preserving the key features such as center frequencies, line widths, and diagonal elongation. In addition, we benchmark
the performance of the cGANN using experimental 2D IR spectra of an ester carbonyl vibrational probe and demonstrate that, by
applying the cGANN denoising approach, we can extract the frequency−frequency time correlation function (FFCF) from
reconstructed spectra using a nodal-line slope analysis. Finally, we provide a set of practical guidelines for extending the denoising
method to other coherent multidimensional spectroscopies.

■ INTRODUCTION
Coherent multidimensional spectroscopy (CMDS) techniques
measure time-resolved molecular structures and dynamics in
heterogeneous systems. Measurements are typically done by
applying a sequence of laser pulses to measure the nonlinear
vibrational or electronic polarization of a system.1−3 Nonlinear
signals are approximately 3 orders of magnitude lower in
amplitude compared to the applied laser pulses. The weak
nonlinear signals are heterodyned with a strong local oscillator
to reconstruct the signal electric field amplitude and phase.2,4

Shot-to-shot subtraction is essential to isolate specific signals of
interest. Since the local oscillator pulse amplitudes are usually
greater than the nonlinear signals, subtraction is highly
susceptible to laser intensity fluctuations. As a consequence,
signal-to-noise ratios (SNRs) in ultrafast measurements are
dominated by instabilities in the laser output intensity as well
fluctuations within the optical setup, such as air currents,
thermal gradients, and optomechanical drift.5−7 This makes
certain measurements particularly challenging, and in some
cases, the measurement of single multidimensional spectra
requires acquisition times of several hours to several days.8−11

Low SNRs and long data acquisition times are arguably the
most severe limitations of ultrafast spectroscopy. Significant
efforts have resulted in several effective noise suppression
schemes. These approaches can be roughly divided into two
categories: (1) methods implemented within the design of the
optical setup9,12−16 and (2) numerical models for on-the-fly

processing of measured laser shots and postprocessing
methods.17−22 The first category includes passive methods
such as using common optical components or active methods
that monitor and correct for optical drift.23−26 These methods
typically target intensity fluctuations and phase drift as well as
spectral shifts, which are the main sources of noise in ultrafast
spectroscopy. High-repetition rate lasers and fast interfero-
metric scanning can further mitigate the 1/f laser noise.27−32 In
addition, it is common to use a secondary detector, where a
copy of the probe spectrum can be detected simultaneously
with and without the nonlinear signal of interest.6,7,33,34 Within
this category, on-the-fly data processing can be used to
suppress fluctuations by either directly referencing “blank”
pixels or taking advantage of spatial correlations between
pulses measured across two detectors.17−19,35 Combinations of
these noise suppression methods have significantly improved
the quality of data produced in ultrafast measurements. Despite
these advancements, collecting high-quality data sets remains a
bottleneck for ultrafast spectroscopy. For these reasons, there
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is a pressing need to develop robust denoising methods that
can be either implemented for on-the-fly processing or used to
denoise data post acquisition. Here, we present a method to
reconstruct spectral line shapes from noisy spectra.
Machine learning (ML) is perhaps one of the most useful

computational tools that has emerged in the past decade. ML
provides a general approach to extract features from large data
sets without preset physical models.36−41 Indeed, ML
implementations are now commonplace, not only in science,
but ML has transformed nearly all modern consumer
electronics. For example, ML models are now an integral
part of the image-processing workflow in cell phone
photography, particularly because ML models are well suited
for image analysis and processing.41,42 In particular, conditional
generative adversarial neural networks (cGANNs) have been
developed as a general tool for image-to-image translation from
an input domain to an output domain.43−45 cGANNs are
perfectly suited to image processing applications such as
removing artifacts, reducing noise, or generating missing
features. In short, the cGANN architecture is composed of a
generator convolutional neural network, which generates sets
of images, and a corresponding discriminator, which
distinguishes between images derived from the training set
versus the generated image set (Figure 1).44,46,47 Here, the
cGANN model “learns” the general features present in the
training data and can reconstruct spectra that contain the same
features present in the training set.45,48 This makes the model
perfectly suited to extract these features from noisy images and
generate the corresponding “denoised” or reconstructed
images, specifically, for denoising experimental ultrafast spectra
where the underlying features, such as the general number of
peaks and frequencies, are often known a priori, but the new
information is contained in the subtle changes to the line
shapes with varying experimental conditions. Therefore, it is
straightforward to generate synthetic training spectra that
contain the general features of the measured spectra and use
synthetic image pairs to train the cGANN. In this paper, we
demonstrate the use of cGANNs for denoising two-dimen-
sional infrared (2D IR) spectra and describe a general
procedure for the generation of synthetic spectra based on
the Kubo line shape model but with added experimental laser
noise.

■ METHODS
Experimental Two-Dimensional Infrared Spectrosco-

py. The 2D IR spectrometer has been described previously.49

In brief, mid-IR pulses (100 fs, ∼300 cm−1) are generated
using a combination of optical parametric amplification and

difference-frequency generation (TOPAS Prime/N-DFG,
Light Conversion), which is pumped by a 1 kHz Ti:sap-
phire-based regenerative amplifier (Astrella, Coherent Inc.)
The 25 μJ mid-IR pulses are split into excitation (pump)
pulses and detection (probe) pulses using a 0.5 °CaF2 wedge.
The excitation pulses are routed through an acoustooptical-
based pulse shaper (QuickShape, PhaseTech Spectroscopy)50

to generate time-delayed pulse pairs. Each delay is repeated
twice in which the carrier phase of the stationary pulse is
modulated by π, thus producing adjacent “0 0” and “0 π”
pulses, which are subtracted to recover the 2D IR signal and
suppress pump−probe scatter. The delay between the pump
pulses is numerically Fourier-transformed to generate the
excitation frequency axis. The probe pulse is measured using a
128 × 128-pixel MCT array detector (Catalina, Teledyne
Nova Sensors),51 which is used to generate the detection
frequency axis. The pump and probe pulses were maintained at
perpendicular polarizations to reduce pump scatter at the
detector.
We measured 2D IR spectra of the single-peak carbonyl

stretch of dilute ethyl acetate (EtOAc) (99.8%; Sigma-Aldrich)
in dimethyl sulfoxide (DMSO) (>99.7%; Fisher BioReagents)
at a concentration of 0.25 mg/mL at room temperature and
under dry air. All chemicals were used as received. The spectra
were collected at coherence times (t1) scanned from 0 to 3 ps
in steps of 20 fs to generate the excitation axis (ω1) by
numerical Fourier transformation. The waiting times (t2) were
selected at intervals ranging from 150 fs to 3 ps. Spectra were
collected with a rotating frame frequency of 1400 cm−1. The
individual noisy spectra at each waiting time were collected by
averaging 4000 laser shots (∼4 s of data acquisition), and the
final clean spectra were an average of 800 000 laser shots (∼13
min of data acquisition). The 2D IR spectra were normalized
to the highest intensity peak in the frequency domain. The
data set was collected over a period of ∼8 h of continuous laser
operation. Blank shots were collected at a different time by
setting the waiting time to −10 ps, such that the probe arrives
at the sample before the pump, resulting in spectra without the
third-order signal. In total, 100 sets of 128 pixels by 10 000
blank shots were measured sequentially, stored, and later used
to generate synthetic spectra with experimental noise, as
described next.

Response Functions and Experimental Laser Noise.
Time-domain response functions were generated using the
standard three-level Kubo line shape model as described
previously and are numerically Fourier-transformed to generate
2D IR spectra.3,52 Specifically, within the Kubo model, the
frequency−frequency correlation function is assumed to reflect

Figure 1. Diagram of the conditional generative adversarial neural network (cGANN) architecture and general training approach. The generator is
simultaneously trained on a combination of two L1 loss functions: one derived from the output of the discriminator (LD) and one on the difference
between generated and target spectra (L1G).
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sub-100 fs relaxation, resulting from inertial dynamics, followed
by single-exponential picosecond relaxation:
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where Δω is the amplitude of frequency fluctuations, τc is the
frequency−fluctuation correlation decay time, δ(t) represents
the limit of fast dynamics, and T2* is the pure dephasing time.
The fast relaxation is below the time resolution of the 2D IR
spectrometer. The line shape function is then used to generate
spectra using the associated response functions for the
rephasing (Rr) and nonrephasing (Rnr) signals respectively:
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in which χ is a scaling factor to account for the number of
oscillators, μ01 is the transition dipole moment of the oscillator,
ω01 is the center frequency of the transition, ωrot is a rotating-
frame frequency, Δ is the anharmonicity, t1, t2, and t3 are the
three corresponding time delays, respectively, and T1 is the
vibrational lifetime of the transition. The total response
function is the sum of the rephasing and nonrephasing signals.
This function is then Fourier-transformed along t1 and t3 to
generate a complex signal S2DIR(ω1, t2, ω3) that is comparable
to the 2D IR measurements. The t1 axis is chosen to be the
same as the t1 steps measured in the experiment.
In typical experimental 2D IR spectra, the intensities of the

ground state-bleach and excited state-absorption peaks do not
match as a result of anharmonicities, non-Condon effects, and
other solvation effects53 that affect the line shapes for the ν1→2
transition. In principle, this can also be incorporated in the
training set by modifying the values of the transition dipole
moments for the ν0→1 and ν1→2 transitions in the Kubo
model.54,55 The cGANN model is agnostic with respect to the
training set, so more complex line shapes, such as those derived
from molecular dynamics simulations or vibrational maps, can
be used for training. The non-Condon coefficient may be
included in the line shape mode for systems where the Condon
approximation fails.
Next, a series of “blank” experimental probe shots are used

to generate the noise contributions to the spectra. Sets were
selected at random to generate a sequence of 15 000 shots.

This sequence was then split into pulse pairs, chosen to
represent the “0 0” and “0 π” shots in the experimental
measurements, and the pulses are pairwise subtracted. This
noise trajectory is then split into sequential sets containing the
same number of elements as the t1 delays in the 2D IR
measurement (151 delays), and the sets are then averaged
together. The subsequent laser shot noise series is Fourier-
transformed to obtain ω1 and ω3 noise spectra. Next, the noise
spectra are interpolated to the same ω1 and ω3 axes as the S2DIR
signal. Finally, the noise spectrum is normalized by the root-
mean-squared (RMS) amplitudes across all frequencies and
then multiplied by a scaling factor to produce the desired
signal-to-noise ratio (SNR) of the synthetic spectrum. Here,
the signal-to-noise ratio is defined as the ratio of the maximum
amplitude of the 2D IR signal prior to noise addition (S2DIR) to
the RMS amplitude of the noise floor. The 2D IR signal and
the noise spectrum are then added together to generate the
final noisy spectrum. Each set is exported as a pair of two
single-channel 8-bit uncompressed images corresponding to
the spectra with and without noise, which then serve as the
labeled pairs for cGANN training.

Synthetic Spectra Generated for Training. Synthetic
spectra were generated using the three-level response function
and experimental noise profiles described above. The training
set consisted of 1000 total synthetic spectra as five sets of 200
spectra, with four sets with increasing signal-to-noise ratios
from 2 to 5, 10, and 20, and one set without noise. Using the
same parameters, an additional set of 200 spectra within each
SNR was generated for benchmarking. The waiting time (t2)
was randomly selected from 150 fs to 3 ps. The response
function parameters were randomly selected from a uniform
distribution within the parameter bounds shown in Table 1,
and the random experimental noise was added to each
spectrum individually. The noise trajectories and source code
used to generate the synthetic spectra are available on GitHub
(https://github.com/baizgroup/SyntheticSpectra).
The frequency−fluctuation correlation decay time in the

training set can be within a relatively broad range of values to
avoid biasing the cGANN. However, it is important to mention
that the denoising does not include any t2 information, so the
only important consideration is that the training set must have
peaks with diagonal elongation that are representative of the
experimental spectra to be denoised.

cGANN Architecture and Training Protocol. As
described above, the cGANN architecture consists of two
separate neural networks: a generator and a discriminator. The
cGANN loss function represents the L1 distance to the target
ground truth, and the discriminator loss is used to describe
whether a generated spectrum is a member of the ground truth
data set. In other words, the discriminator loss is a measure of
how “realistic” a spectrum is. The two loss functions are
minimized simultaneously. Here, the discriminator consisted of
a convolutional neural network of a depth of 8 “convolution-
batch normalization-ReLU” layers with additional dropout
layers for the first 4 steps, and the discriminator depth was set
to 4 convolutions with a similar architecture that follows the

Table 1. Response Function Parameters Used for cGANN Training

parameter

ω01 (cm
−1) Δ (cm−1) Δω (cm−1) τc (ps) T2* (ps) χ (arb) μ01 (arb)

min 1680 12.8 5 1.5 1 1 1
max 1712 19.2 20 1.5 4 1 1
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implementation of Radford et al., as adopted into the pix2pix
framework.56 Here, the set of generated synthetic images was
used to train the cGANN by splitting the images into 1000
mini-batches, and the training was run as a direct simultaneous
steepest-decent minimization of the generator and discrim-
inator loss for a total of 10 epochs with a learning rate for both
the generator and discriminator set to 0.002, although the
generator loss function quickly converged as the features
present in the training spectra are relatively simple. The
training data set and training scripts used here are available on
GitHub (https://github.com/baizgroup/cGANN_denoising).

■ RESULTS AND DISCUSSION

Benchmarking Peak Center and Width. Once trained,
the cGANN was benchmarked against the synthetic spectra
generated using the same parameters but not included in the
training set. Figure 2A shows three example noisy input spectra
with an SNR of 2. These spectra contain the highest noise
levels in the benchmarking set and, therefore, are the most
challenging to reconstruct. The three spectra were chosen at
random from the 200-spectrum benchmarking set. In all three
spectra, the peaks are only just visible above the noise floor.
Figure 2B shows the ground truth synthetic spectra used to
generate the noisy input spectra. The first spectrum contains
peaks that are relatively well centered along the pump axis; the
second spectrum contains peaks around the same frequency
but with broader inhomogeneous width, and the third
spectrum shows a narrow peak toward the low-frequency
region. In the spectra, the shot-to-shot laser noise is visible as
vertical bands, as it is typically observed in experimentally
measured spectra. Figure 2C shows the corresponding output
spectra generated by seeding the cGANN with the
corresponding noisy spectra. The reconstructed spectra have
peak center frequencies and widths that are very similar to the
ground truth spectra, showing that the cGANN is able to
“extract” the important features from noisy spectra and
generate reconstructed spectra that closely match features of

the spectra in the absence of noise. Figure 2D,E shows a pump-
slice amplitude (PSA) and probe-axis projection57 of the same
three spectra, respectively. The PSA analysis is described
elsewhere, but in brief, the difference between the maximum
and minimum amplitudes along ω3 for a given ω1 slice is
measured. This analysis generates a spectrum that is
comparable to the absorption spectrum of the same system.58

The comparison between the reconstructed and ground truth
PSA spectra in the figure more clearly shows that the
reconstructed spectra closely match the ground truth.
However, it is apparent that the peaks in the reconstructed
spectra are slightly broader compared to the ground truth. The
probe-axis projection shows that the cGANN greatly reduced
the baseline shift present in the noisy spectra.
The cGANN output spectra can be more quantitively

benchmarked by plotting the center frequencies and full-width-
at-half-maximum (fwhm) corresponding to the benchmarking
spectra. Figure 3 shows a plot of the reconstructed spectra
against the ground truth for all 200 SNR = 2 spectra in the
benchmarking data set. The plots show that the cGANN
produces an accurate center frequency with an RMSD to
ground truth of 3.1 cm−1 (Figure 3A). However, the spectrum
appears broader, as the fwhm increases significantly with an
RMSD of 6.6 cm−1 compared to ground truth. With the (SNR
= 5) benchmarking set, the peak center and fwhm RMSD
decrease to 1.9 and 4.4 cm−1, respectively (Figure 3B). The
results show that the cGANN denoising produces broader
peaks, and this broadening is similarly observed when using
higher SNR spectra as the input. This could be a result of the
training set biasing the output; however, it is unclear what the
origin of this broadening could be since the benchmarking set
is obtained from the same parameter set as the training set.
Nonetheless, the comparison shows that the cGANN can
generate high-quality reconstructed spectra that closely match
the features present in the noisy spectra, demonstrating that
this approach is ideal for extracting features from spectra with
high noise levels.

Figure 2. Example spectra as a test of the cGANN performance. (A) Synthetic spectra generated with a signal-to-noise ratio of 2 (SNR = 2) used as
the input to the cGANN. (B) Ground truth “clean” spectra generated without noise. (C) cGANN reconstructed spectrum generated from the input
spectrum. (D) Pump-slice amplitude and (E) probe-axis projections of the noisy input (gray), ground truth (cyan), and reconstructed (green)
spectra for comparison.
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Extracting Frequency−Frequency Correlation Func-
tions from Reconstructed Synthetic Spectra. Two-
dimensional spectroscopy is often used to extract dynamical
information. Dynamics are reflected in the frequency−
frequency time correlation function (FFCF) of the vibrational
probe.1,3,13,57,59−63 The correlation function can be extracted
from absorptive 2D IR spectra through line shape analysis.
Two commonly used methods are the center line slope (CLS)
analysis and nodal-line slope (NLS) analysis.64−71 While both
methods are equivalent in the absence of noise, the NLS is
more robust. In brief, NLS quantifies the slope of the nodal
line between the positive ground state-bleach peak, which
appears along the diagonal, and the negative excited state-
absorption peak appearing below the diagonal. This is
accomplished by slicing the 2D spectrum along the pump
axis (ω1) and fitting each slice to a sigmoidal function. The
zero-crossing probe frequency is then used to generate the
NLS. This is then fit to a line for each 2D IR spectrum, and the
slope is computed. The NLS is computed for different waiting-
time (t2) spectra representing the FFCF. The decay is typically
fitted to a monoexponential, and the relaxation time constant is

extracted to quantify the time scale of the frequency
fluctuations. One advantage of NLS over CLS is that NLS
produces more robust results in the presence of pump-axis
noise because a constant amplitude offset along this axis,
namely, vertical stripes in 2D spectra, does not significantly
affect the NLS.
Here, we quantify the ability of the cGANN to accurately

reconstruct the line shapes in synthetic spectra through NLS
analysis; we compare the reconstructed NLS decay with the
ground truth analysis. Spectra are generated at 200 equally
spaced waiting times between 150 and 3000 fs with the line
shape parameters in Table 2. In brief, the parameters are within
a similar range to those used in generating the training set
(Table 1); however, unlike the training set, the values of the
line shape parameters are fixed while generating waiting-time
2D IR spectra. One specific parameter to note is the
correlation time (τc), which is set to 1.5 ps, and this value is
then what is expected to be extracted through the NLS analysis
of spectra.
Single-peak spectra generated using the response function

parameters in Table 2 are shown in Figures S1, S2, and S4. It is
evident that, without further processing, spectra with an SNR
of 2 are inadequate for NLS line shape analysis by the
randomness of the slopes shown in Figure S1. Figure 4C shows
the NLS decay recovered from the waiting-time series of the
noisy spectra with an SNR of 2. The random nature of the plot
shows that, using traditional NLS analysis, it would be nearly
impossible to extract correlation times from these highly noisy
2D IR spectra. Next, Figure 4E shows the ground truth spectra
with a near-perfect single-exponential decay with a time
constant of 1.5 ps. This shows that the NLS analysis recovers
the correlation time used to generate the spectra as expected. It
is important to note that the errors may arise from numerical
noise and discrete quantization of the spectra due to the 8-bit
depth used in generating the images. Finally, the same analysis
is performed on the cGANN reconstructed data. The NLS
shows a monoexponential decay with a time constant of 1.54 ±
0.24 ps. The error bounds are computed by the bootstrapping
methods described previously.72 In short, sets containing 50%
of the data points are selected at random from the full 200-
point set, and a total of 100 monoexponential fits are
performed for each data set. The reported decay time
constants above correspond to the average of the 100 fits,
and the standard deviation across the fits is reported as the
uncertainty. In conclusion, this analysis clearly shows that
cGANNs can recover the NLS decay from a waiting-time 2D
IR series that would be nearly impossible to analyze otherwise.
The recovered NLS time constant accurately captures the
dynamics of the ground truth spectra.

Extracting Frequency−Frequency Correlation Func-
tions from Reconstructed Experimental Spectra. The
performance of the cGANNs can be directly evaluated on
experimental 2D IR spectra. We perform the same PSA
analysis and probe-axis projection to compare the cGANN-
reconstructed spectra to the noisy and clean experimental
spectra (Figure 5). Here the “clean” spectra are collected at the
same time as the noisy spectra but averaged over a 200×

Figure 3. (A) Center peak frequencies computed as the first moment
of the PSA spectrum (pump axis, ω1) and (B) full-width-at-half-
maximum of the cGANN reconstructed and ground truth spectra in
the benchmarking data set using the SNR = 2 spectra as the input.
The root-mean-squared-error (RMSE) for the peak center and peak
width is 3.1 and 6.6 cm−1, respectively.

Table 2. Response Function Parameters Used for Benchmarking cGANN Performance in Extracting Waiting-Time Dynamics

ω01 (cm
−1) Δ (cm−1) Δω (cm−1) τc (ps) T2* (ps) χ (arb) μ01 (arb)

1675 16 20 1.5 1 1 1
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Figure 4. NLS analysis single-peak synthetic spectra. (A) Example of a noisy 2D IR spectrum (SNR = 2) at 150 fs. The purple line represents the
computed NLS, shown primarily to demonstrate that NLS values cannot be extracted with such high noise levels. (B) Ground truth spectrum at the
same waiting time. The spectra were generated using the response function parameters in Table 2. (C) cGANN reconstructed spectrum using the
noisy spectrum as the input. (D) Recovered NLS values as a function of waiting time extracted from the analysis of noisy spectra at a signal-to-noise
level of 2. Only values in the range of 0 to 0.5 are shown in this plot. The NLS values do not follow any trends, and a time scale cannot be extracted
from the plot. (E) Recovered NLS decay from ground truth spectra in the absence of noise. The relaxation follows a single-exponential function
with a time constant of 1.5 ps, which matches the correlation time input into the response function. (F) NLS analysis after cGANN denoising of the
SNR = 2 spectra in (D). Here, the exponential relaxation is recovered and matches the time scale of the synthetic spectra without noise. The nodal
line slopes of 20 selected spectra within this data set are shown in Figures S1−S3.

Figure 5. Example experimental 2D IR spectra of the carbonyl stretching mode of dilute ethyl acetate in DMSO. (A) Noisy spectrum with an
average of 4000 laser shots collected at a waiting time of 300 fs. (B) The same spectrum but collected with much higher SNR by averaging over
800 000 shots; this is considered the ground truth spectrum. (C) Reconstructed spectrum using the noisy spectrum as the input. The purple line in
(A−C) is the computed nodal line. (D) Pump-slice amplitude and (E) probe-axis projection comparisons of the noisy (gray), ground truth (cyan),
and reconstructed (green) spectra. A set of 24 2D IR spectra collected at a range of waiting times are included in Figures S6−S8.
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greater number of shots, which produces spectra with very
little noise. The spectra are processed using the same cGANN
network trained from the synthetic spectra described above.
Note that, since the frequency axis is not included in the
cGANN training, a cGANN trained using a synthetic peak can
be used for experimental (or synthetic) spectra within a
different frequency range as long as the peak widths
correspond to a similar fraction of the frequency axes. Similar
to the analysis of synthetic spectra shown above, the
reconstructed experimental spectra also closely match the
“clean” reference spectra. An example set of noisy, reference,
and reconstructed spectra at 300 fs are shown in Figure 5A−C,
respectively. The spectra across all 24 delays are shown in
Figures S6−S8. The reconstructed spectra show a slightly
broader peak, as can be observed in the comparison of PSA
and probe-axis projections in Figure 5D,E. Similar to the
analysis described above, NLS was used to extract the
dynamics from the experimental spectra. The pump-axis
frequency cutoff range for computing the NLS was 1724−
1745 cm−1. Reliable fits could not be extracted from the noisy
spectra, as shown in Figure 6A. The clean spectra and the
cGANN-reconstructed spectra in Figure 6B,C show a
monoexponential NLS with a decay constant of 1.67 ± 0.43
and 1.42 ± 0.94 ps, respectively. This analysis demonstrates
that the cGANN can recover the proper line shapes from the
noisy experimental spectra while nearly eliminating back-
ground noise, vertical banding, and baseline shifts that result
from shot-to-shot noise as well as recover the NLS decay
within an error of ∼15%. The increased peak width in the
reconstructed spectra does not appear to affect the initial NLS
values in the analysis. However, it is possible that a model
could contain a bias in the NLS, and for that reason, the
training set should be constructed appropriately. In conclusion,
we demonstrated the capabilities of the cGANN approach to
extract dynamics from highly noisy experimental spectra of a
single-peak vibrational probe. Most importantly, we demon-
strated that the NLS can be extracted from noisy data that
could not otherwise be analyzed.
General Considerations for Denoising Spectra Using

cGANNs. In principle, the cGANN approach described here
can be used to denoise a wide range of multidimensional
spectra, not only 2D IR spectra but also 2D visible or extreme
cross-peak spectra. Here, we provide a set of recommendations
as a guide for the generation of data sets and application of the
cGANN approach presented.

(1) The training set must contain the same type of noise as
the experimental spectra. For example, in 2D IR
spectroscopy, shot-to-shot fluctuations are often much
greater compared to pixel-to-pixel noise; however, this
may not be the case for other techniques. Therefore, it is
important to collect “blank” shots, which contain the
same noise characteristics as the experimental spectra
and perform the same subtraction and averaging on the
blank shots as the experimentally measured spectra.

(2) One important consideration is that the training data set
must contain the same features present in the
experimental data set. For instance, to reconstruct
spectra containing cross-peaks, the training set must
also contain cross-peaks. This is best accomplished using
a response-function approach, as presented above, to
generate synthetic spectra. For example, one could
collect one “clean” spectrum at a single delay, use that
data to fit a set of response function parameters, and
subsequently use the parameter set to generate synthetic
spectra.

(3) Similarly, the spectra must contain peaks of varying
amplitudes, center frequencies, and widths. The training
set should contain a range of peaks to avoid biasing the
cGANN toward one particular feature. For example, if
the peaks in the training set are too broad compared to
the experimental peaks, the cGANN could be biased to
produce peaks that may be too broad. Similarly, to
obtain accurate NLS decays, a range of waiting times
must be selected, and the correlation times should be
similar to what is expected in the experiment. One
would likely not know the exact correlation time prior to
the measurements, but an estimate should be made to
avoid biasing the cGANN. The cGANN bias can be
benchmarked using synthetic spectra or experimental
spectra collected at low and high signal-to-noise ratios.

(4) The training set should contain spectra with varying
levels of noise. Here, we selected different levels of
SNRs, 2, 5, 10, and 20, and each batch of 1000 spectra
contained 250 spectra of each level. This ensures that
the cGANN performs optimally with input spectra of
different noise levels.

(5) Finally, when spectra contain high levels of noise, the
cGANN may not be able to accurately reconstruct the
spectra. It is therefore important to perform a
“hallucination test” using pure noise as the input spectra
and confirm that there are no specific peaks in the

Figure 6. NLS analysis of experimental spectra of the carbonyl stretching mode of dilute ethyl acetate in DMSO. (A) NLS of the noisy spectra
collected with an average of 4000 laser shots. Points that fell outside the NLS range were not included in the plot.(B) NLS of the clean spectra
collected with an average of 800 000 laser shots. (C) NLS of the cGANN reconstructed spectra using the noisy data as the input. NLS analyses of a
set of 24 2D IR spectra collected at a range of waiting times are included in Figures S6−S8.
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output spectra. If the output contains peaks within the
expected range, it may suggest that the quality of the
noisy spectra may be too poor to use as cGANN input.

■ CONCLUSIONS AND OUTLOOK
Noise suppression approaches are essential to continue
pushing the boundaries of sensitivity in 2D spectroscopy and
continue to work toward increasingly challenging samples.
Shot-to-shot fluctuations are the dominant source of noise in
laser spectroscopy. Thus far, referencing approaches beyond
simple dual-stripe detection methods have been proposed as a
means of denoising spectra. Here, we demonstrate the use of
machine learning as a new tool in the spectroscopists’ toolbox.
This approach can be combined with other methods such as
edge-pixel referencing19 or probe-reference correlation ap-
proaches17,18 to further enhance signal-to-noise and further
reduce acquisition times. The method presented here is
general to any spectra, but it is important to understand which
features are present in the spectra in order to generate the
training set. In principle, the cGANN can be used to denoise
more complex spectra that include partially overlapping peaks
or cross peaks. However, the Kubo line shapes for such spectra
would include a large number of parameters, and properly
sampling the parameter space may be challenging. In this case,
a larger training set with some “ground truth” control spectra
would be recommended to ensure that the model is capable of
properly capturing the line shapes present in the experimental
spectra. In addition, this denoising approach can also be
combined with any desired analysis including CLS, NLS, or
even further machine-learning approaches to extract parame-
ters from the reconstructed line shapes.73
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