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Abstract

A well-known result by Hedetniemi states that for every graph G there
is a graph H whose center is G. We extend this result by showing under
which conditions there exists, for a given graph G in which each vertex v
has an integer label ¢(v), a graph H containing G as an induced subgraph
such that the eccentricity, in H, of every vertex v of G equals £(v). Such a
labelled graph G is said to be eccentric, and strictly eccentric if there exists
such a graph H such that no vertex of H — G has the same eccentricity in H
as any vertex of G. We find necessary and sufficient conditions for a labelled
graph to be eccentric and for a forest to be eccentric or strictly eccentric in
a tree.
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1. INTRODUCTION

If G is a connected graph and v a vertex of GG, then the eccentricity of v, de-
noted e(v), is the maximum distance from v to any vertex of G. The minimum
eccentricity of any vertex in G is its radius, rad G, while the maximum such ec-
centricity is its diameter, diam G. Knowledge of the eccentricities of the vertices
of a graph provides information about the distance structure of that graph, and
has been applied, for example, to facility location problems (a vertex of mini-
mum eccentricity is an optimal location for a facility that minimizes maximum
response time, see, for example, [18]) and as a predictor of the anti-HIV activity
of dihydroseselins (via the eccentric distance sum [10, 14]).

Eccentricity is well-studied. The eccentric sequence (also called eccentric-
ity sequence) of a graph or digraph, defined as the non-increasing sequence of
the eccentricities of its vertices, has attracted much attention in the literature.
The general problem of characterising eccentric sequences of connected graphs
appears difficult. Lesniak [13] showed that a sequence s of nonnegative inte-
gers is eccentric if some subsequence that contains all values that appear in s is
eccentric (since every sequence is a subsequence of itself, this does not lead to
an algorithm to determine if a sequence is the eccentric sequence of a graph or
digraph). She also characterised eccentric sequences of trees. Oellermann and
Tian [17] extended these results to n-Steiner eccentric sequences. Apart from
trees, maximal outerplanar graphs are the only other important class of graphs
whose eccentric sequences have been characterised (see [5]). So-called minimal
eccentric sequences were studied in [16] and [11]. Ferrero and Harary [8] gave a
short survey on results on eccentric sequences of graphs.

The number of vertices of given eccentricity has also been studied. Lesniak
[13] showed that the eccentric sequence has no gaps, i.e., every number between
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the smallest and largest number appears in the sequence, and — with the pos-
sible exception of the smallest value — every value appears at least twice in the
sequence. In [4] it was shown that in k-connected graphs the entries that are
not too far from twice the radius of the graph appear at least 2k times in the
eccentric sequence. Upper and lower bounds on the number of vertices of given
eccentricity in a graph in terms of order and diameter were given by Mubayi and
West [15].

Eccentric sequences of digraphs have been investigated. Gimbert and Lépez
[9] proved that a sequence s of nonnegative integers is the eccentric sequence of a
digraph if some subsequence that contains all values that appear in s is eccentric.
The same authors further characterised eccentric sequences of strong digraphs of
order n, diameter n — 1 and out-radius n — 2 or n — 3. Eccentric sequences of
tournaments have been characterised by Harminc and Ivanco [12].

Suppose that we wish to specify not only an allowed sequence of eccentricities
but also the structure of the subgraph in which they appear. For example, we
might ask whether there is a graph H that contains an induced subgraph G whose
vertices have the eccentricities shown in Figure 1.

Figure 1. A labelled graph.

Hedetniemi’s well-known proof [1] that every graph is the center of a connected
graph shows that if every vertex of G has label 2, then we can always find a
suitable ambient graph H. In [6], the analogous problem for various classes of
digraphs is considered. In this paper, we consider the problem for undirected
graphs.

2. ECCENTRIC LABELLED GRAPHS

Throughout this paper we assume that our graphs are finite and simple. For
convenience, we use interval notation to denote integer rather than real intervals,
e.g., [3,6) = {3,4,5}. If G and H are graphs, then by G U H we mean the graph
with V(GUH) =V(G)UV(H) and E(GU H) = E(G)U E(H). We denote by
G + H the graph obtained from G U H by joining every vertex of G to every
vertex of H. If k is a positive integer, then kG denotes the disjoint union of k
copies of the graph G. The Cartesian product of G and H is the graph G x H
with V(G x H) = V(G) x V(H) and where two vertices (u1,ug2) and (vq,ve) are
adjacent if and only if (u; = ug and vivy € E(H)) or (v1 = ve and ujug € E(Q)).
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If n is a positive integer, then the complete graph of order n is the graph K, with
n vertices that are pairwise adjacent, while the path of order n is the graph P,
with V(P,) = {v1,...,v,} and E(P,) = {vjviy1 : ¢ € [1,n — 1]}. For n > 3, the
cycle of order n is the graph obtained from P, by joining v, to v1. If S C V(G),
then the subgraph induced by S is the graph G[S] with vertex set S and edge set
E(G[S]) ={wv : u,v € S and uwv € E(G)}. If G is a subgraph of H, we call H
an ambient graph (of G). A vertex of degree 1 is an endverter. For notation not
defined here, we follow [2].

If G is a graph and ¢ : V(G) — N a labelling that assigns a positive integer
£(v) to every vertex v of G, then we denote by G the associated labelled graph.
If there is no possible ambiguity, we shall denote the labelled graph G, simply
by G. We define ¢(G) = {{(v) : v € V(GQ)}, lmin(G) = minl(G) and lpax(G) =
max ¢(G). If there exists a graph H such that (i) G is an induced subgraph of
H, and, (ii) for all v € V(G), e (v) = £(v), then we say that G has an eccentric
embedding in H and that G is eccentric in H. If there exists at least one graph H
in which the labelled graph G is eccentric, then G is eccentric. As an example,
consider the labelled graph G with £pin(G) = 3 and ax(G) = 4 shown on the
left side of Figure 2. On the right hand side is an eccentric embedding of G in a
graph H. Hence the labelled graph G is eccentric.

4 3 4 3 4 2
G- 000060 I

3

4

Figure 2. On the left is shown a labelled graph G, and on the right G as an eccentric
subgraph of a graph H. Each vertex of H is labelled with its eccentricity.

There are three obvious necessary conditions for a labelled graph to be ec-
centric (we shall shortly see that these conditions are also sufficient). Suppose
that G is a labelled graph and H a graph such that G is eccentric in H. If v
is a vertex of G with label 1, then v must be adjacent to every other vertex of
G (such a vertex is frequently called universal). Since the eccentricities of ad-
jacent vertices in a graph cannot differ by more than 1, we must have that for
every pair u,v of adjacent vertices of G, |¢(u) — ¢(v)| < 1. Furthermore, since
lhnax(G) < diam H < 2 rad H < 20p,;,(G), we must have lhax(G) < 2000 (G).
This leads directly to the following observation.

Observation 1. If a labelled graph G with fiax = 20min 1S eccentric in a graph
H, then rad H = lin and diam H = lay.
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If /(G) = [lmin, lmax], then we say ((G) is connected. If G is a connected
labelled graph and wu,v vertices of G with f(u) = lyin(G) and £(v) = lax(G),
then there is a u — v path P. If GG is eccentric, then consecutive vertices of P
have labels that differ by at most 1. Hence we have the following.

Observation 2. If G is a labelled graph that is connected and eccentric, then
((Q) is connected.

If G and H are graphs, then the strong product of G and H, which we denote
G X H, is the graph with V(G X H) = V(G) x V(H) and where two vertices
(u1,v1) and (ug,v2) are adjacent if and only if (i) u; = ug and vive € E(H),
or, (ii) v1 = v2 and wug € E(G), or, (iii) wyue € E(G) and vivy € E(H). It is
well-known that G X H is connected if and only if G and H are connected, and
dexm ((u1,v1), (ug,v2)) = max{dg(u1,us), dg(v1,v2)}. The next result, which is
also well-known, follows from this.

Lemma 3. If G and H are connected graphs and (u,v) € V(G) x V(H), then
ecwn (u,v) = max{eg(u), ex(v)}. Furthermore, rad GKH = max{rad G,rad H}
and diam G ® H = max{diam G, diam H}.

We shall in part of the proof below use a modified version of Hedetniemi’s
construction [1]. For some integer r > 2, let G, be the graph obtained from
G U 2P, by joining one endvertex of each P, to every vertex of G. Then in G,
every vertex of G has eccentricity r and rad Gr=r.

Theorem 4. A labelled graph G is eccentric if and only if (1) lmax(G) < 2lmin(G),
(ii) |f(u) — L(v)| < 1 for every pair u,v of adjacent vertices of G, and, (iii) every
verter w of G with £(w) = 1 is universal. If G is eccentric, then for every pair
r,d of positive integers with v < d < 2r and lnin(G), lmax(G) € [r,d], there is a
graph H of radius r and diameter d such that G is eccentric in H.

Proof. The necessity of the conditions has already been discussed, so we turn
our attention to the other direction of the proof.

Suppose that G is a labelled graph satisfying conditions (i), (ii), and (iii),
and let r and d be positive integers such that r < d < 2r and lyin, fmax € |1, d]
(where, for convenience, we have written £y, for £min(G) and £pax for fnax(G)).
We show that there is a graph H of radius r and diameter d in which G is
eccentric. Suppose that £y = 1. If d = 1, then fh,x = 1, i.e., £(v) =1 for every
vertex v of G and the graph G is complete, so we may take H = G. Suppose then
that d = 2. If lax = 1, we let H = G+ K. If, on the other hand, £;.x = 2, then
take H to be the graph formed from G by adding a new vertex x and joining x
to every universal vertex of G.

Suppose that £, > 2. If r =1, then d = 2 = liuin = fmax, and we may take
H to be the graph formed from G by joining every vertex of G to one vertex of
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P If r =2 and d = 2, then fnin = fmax = 2 and we may let H be the graph
obtained by adding an edge between the two endvertices of Go. If r = 2 and
d = 3, then there are three possibilities: (a) lyin = max = 2, in which case we
let H be the graph obtained by deleting an endvertex of Go, or, (b) £min = 2 and
lmax = 3, in which case we let H be the graph obtained by joining one endvertex
of P53 to every vertex of G and then the middle vertex of P to all the vertices v
of G with ¢(v) =2, or, (¢) lmin = lmax = 3, in which case we let H be the graph
obtained by joining one endvertex of P3 to every vertex of G. If r = d = 3, then
linin = fmax = 3 and we may take H to be the graph obtained by joining every
vertex of GG to both endvertices of Fg.

We hence assume that » > 2 and d > 4. Let C, 4 be the graph formed from
Co and Py, @ Tpy1,Tyy2,--.,2Tq Dy joining a vertex z, of Ca, to z,41. Note that
Cp,q has radius r and diameter d and for each i € [r,d], we have ec, ,(zi) = i.
Let H = G, X C)q. Since rad Gy = 2 and diam Gy = 4, by Lemma 3 we have
rad H = r and diam H = d. Consider the subgraph G* of H induced by the
set S = {(v,zy)) : v € V(G)}. By Lemma 3, for every vertex v of G, we have
e ((v, 2g))) = £(v). We claim that G* = G. If uv € E(G), then [{(u)—{(v)| < 1,
which implies that zy,)@) € E(Cra). Hence, (u, zyw))(v, 24w)) € E(G*), and
hence G < G*. Suppose now that (u, () (v, o)) € E(G"). If uv ¢ E(G), then
u = v and Ty(,)T¢y) € E(Crq), which from our choice of the set S is impossible.
It follows that G* < G, and hence that G* is an induced subgraph of H that is
isomorphic to G and in which the vertices have the required eccentricities. [

In the proof of Theorem 4, we made use of the fact that the graph C, 4
contains a path z,, Z,11, ..., 24 such that for each i € [r, d], we have ec, ,(z;) = i.
If G’ is a connected graph with radius r and diameter d that contains such a path,
then it is easy to see that the graph C, 4 can be replaced by G’. It’s worth noting,
though, that not every graph has this property (see, for example, Figure 3).

3. STRICTLY ECCENTRIC LABELLED GRAPHS

Hedetniemi’s construction implies that the subgraph induced by all the vertices
of minimum eccentricity can have arbitrary structure. Suppose that we are inter-
ested in the subgraph induced by all vertices from a specified set of eccentricities.
What structure can such a subgraph have? To address this question, we make
the following definitions. For a labelled graph G, let ¢(G) = {{(v) : v € V(G)}.
If G is eccentric in H and there is no v € V(H)\ V(G) with ey (v) € £(G), then
G is strictly eccentric in H.

We note some obvious necessary conditions for a labelled graph G to be
strictly eccentric. Clearly, every graph that is strictly eccentric is eccentric, and
hence we must have that fiax < 20,0, every edge uv satisfies [£(u)—£(v)| < 1, and
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Figure 3. A graph of radius 4 and diameter 6 (the labels on the vertices are their eccen-
tricities) that does not contain a path of length 2 between a vertex of eccentricity 4 and
a vertex of eccentricity 6.

every vertex with label 1 is universal. If £1,,x(G) = 201in(G), U(G) = [lmin, lmax)
and G is strictly eccentric, then by Observation 1, we must have that ¢,;,(G) and
lmax(G) are, respectively, the radius and diameter of the ambient graph H, and
hence that G = H. Hence, if l1ax(G) = 20nin(G) and ¢(G) = [lmin, fmax), then
G is strictly eccentric if and only if eg(v) = ¢(v) for all v € V(G). Lesniak [13]
proved that for every connected graph G and for every integer k € (r(G), d(G)],
there are at least two vertices of eccentricity k in G. We shall shortly strengthen
this result.

Let G be a labelled graph that is connected and strictly eccentric in a graph
H. We denote by V; the set of vertices of H of eccentricity ¢ in H. If uw,v are
vertices of G for which dg(u,v) = |[€(u) — £(v)|, then since dy(u,v) < dg(u,v),
we have dg(u,v) = [¢(u) — £(v)|. If, on the other hand, dg(u,v) = |[¢(u) — £(v)],
then, since G is strictly eccentric in H, every vertex on a u — v geodesic in H
is a vertex of G, and thus dg(u,v) = [l(u) — £(v)|. If u and v are vertices of
G such that dg(u,v) = [¢(u) — £(v)| = dg(u,v), we say that u and v are an /-
monotone pair, or simply a monotone pair (and note that this relation is reflexive
and symmetric). If u and v are a monotone pair and P a u — v geodesic, then we
say P is £-monotone or simply monotone. For a vertex v, we define

(" (v) = max{/(w) : v and w are a monotone pair}.
Trivially, £ (v) > £(v).

Theorem 5. Let G be a labelled graph that is connected and strictly eccentric, and
let v € V(G). For every integer k € [luin, T (v)] there exists a vertex w € V(G)
with {(w) = k and dg(v,w) > 0(v) + k — 2 lin.

Proof. Suppose G is strictly eccentric in H and v € V(G). Suppose, first, that
k € [lmin, £(v)]. Then there exists a vertex v' with dgy(v,v") = £(v). Necessarily,
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ep(v') > 4(v). Let u € V. and P a shortest u — v’ path in H. Then P contains
a vertex w € Vj. Since dy(u,v') < epy(u) = lpin, we have

(1) d (u, w) + dg (w,v") = dg (u, v") < liin.
On the other hand, the triangle inequality yields
(2) du(v,w) + dp(w,v') > dp (v, v') = £(v).
Subtracting (1) from (2), we get
dy(v,w) — dp(u,w) > £(v) = lmin,
and so
da (v, w) > dp (v, w) > £(v) = bin + dp(u,w) > £(V) = bin + & — Lmin,

as desired. Suppose then that k € (£(v),£* (v)] and let z € Vj+(,) be in a monotone
pair with v. By the first part of the proof, there exists w € Vj, for which dg(z, w) >
(2)+k—2lmin, so dg(v,w) > dg(z,w)—dg(v, z) > €(2)+k—2lmin—(0(2)—L(v)) =
g(U) +k — 20min. [ |

Note that Theorem 5 is no longer true if we allow k > ¢* (v) (see, for example,
Figure 4).

Figure 4. The vertices of the graph G shown above (taken from [3]) are labelled with
their eccentricities. Every vertex u in this graph has £*(u) = 4 except the black vertex v,
which has ¢*(v) = 3. Every vertex u € V(G) \ {v} has a vertex with label 4 at distance
l(u) +4 — 4 = £(u) or more. Every vertex of eccentricity 4 is, however, distance 2 away
from v.

Theorems 4 and 5 collectively give a set of necessary conditions for a labelled
graph to be strictly eccentric. A natural question is whether these conditions are
also sufficient (i.e., if G is a labelled graph for which (i) fpmax < 20min, (ii) every
vertex with label 1 is universal, (iii) uv € E(G) = |{(u) — £(v)| < 1, and, (iv)
for every vertex v € V(G) and every integer k € [liin, £T (v)] there exists a vertex
w € Vj, for which dg (v, w) > £(v)+k—2 lmin, is G strictly eccentric?) The answer
is no. To see this, let G be the labelled graph shown in Figure 5 and v, z, y, z the
indicated vertices.
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Figure 5. A labelled graph G that satisfies Theorems 4 and 5 but which is not strictly
eccentric.

It is easy to verify that GG satisfies Theorems 4 and 5. Suppose that G is
strictly eccentric in some graph H, let v" be an eccentric vertex of v, and note
that ey (v') > ey(v) = 5. Since v is distance 3 or less from every vertex of
G, we have v € V(H)\V(G) and diam H > 7, and thus rad H = 4. Then
di(xz,v") = 2 = dg(y,v") (otherwise v’ is too far from a vertex with label 4),
there is a cycle containing = and y and dy(z,y) < 4. Thus every eccentric vertex
2 of zisin V(H)\ V(G), but then dy(z,2') > 7, a contradiction.

We now explore some consequences of Theorem 5.

Corollary 6. Let G be a labelled graph that is connected and strictly eccentric.
Then for every vertex v € V(G) there exists a vertex w € V(G) with {(w) = £(v)
and dg(v,w) > 2(€(v) — lrin)-

Corollary 7. Let G be a labelled graph and k € N with £(v) = k for allv € V(G).
Let r € N with r < k < 2r. The following are equivalent.

(i) G is strictly eccentric in some graph of radius at most r.
(ii) rad G > 2(k — ).

Proof. (i) = (ii): Assume that G is strictly eccentric in a graph H with radius
not more than r. Then H contains a vertex of eccentricity r. Let G' = H[V, UVj]
and ¢ be the labelling of the vertices of G’ that assigns r to the vertices in V.
and k to the vertices in Vi. Then G’ has a strictly eccentric embedding in H. By
Corollary 6, every vertex of Vj is at distance at least 2(k — r) in G from some
other vertex in V4. Hence rad G > 2(k —r).

(ii) = (i): Assume that rad G > 2(k — ). We construct a graph H and
show that G has a strictly eccentric embedding in H. Let the vertices of G be
U1, U2, ..., Uupy. Fori=1,2,... nlet P bea path on the vertices v?, vf;H, cee v%r.
Let H be obtained from the disjoint union of the P(®) by identifying the vertices
v, v2, ..., 0" to a single vertex v,, and then adding an edge between v,(;) and v,(j)
whenever uju; € E(G). Let Vi = {v} :i=1,2,...,n}. Then clearly H[V}] = G.

We now determine the eccentricity of every vertex of H. Clearly, eg(v,) = 7.
We show that for i € {r+ 1,7 +2,...,2r} and j € {1,2,...,n} we have

(3) ern (vf) = 1.

Since dy (vlﬂj, v,,) = i—r, and since ey (v,) = r, there exists a path from vf through
vy of length at most (i—r)+r to every vertex of H, so ey (Uf) < 4. In order to prove
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(3) it remains to show that ey (vf) > i. By our assumption rad G > 2(k —r) we
have eg(uj) > 2(k—r), so there exists a vertex uj of G with dg(u;, u;) > 2(k—r).

We show that dg (vg, ’U%;) >1i. Let P bea (v?, vg;>—path. If P contains v,., then

P has length at least dH(vg,vr) + dy (vr,vg;) = (i —r)+r =i If P does

not contain v,, then P contains necessarily vi and vi,, and so P has length at

least dp (v{,vi) +dy (vi,vél) +du (Uil,vg;) =li—k|l+2k—7)+2r—k) =
|k —i| + k > i. Hence (3) follows.

It follows from (3) that the vertices of the set {v,i,v,%, e ,v,?} are exactly
the vertices of eccentricity k in H. But H [{UI}J, v,%, cee vg}] = @, so G is strictly
eccentric in H. [

Corollary 8. Let G be a graph and k € N, k > 2. Then G 1is the subgraph
induced by the vertices of eccentricity k of some graph if and only if rad G > 2.

4. TREE-ECCENTRIC LABELLED GRAPHS

Every labelled tree T that satisfies the conditions of Theorem 4 is eccentric.
However, since the strong product of two nontrivial connected graphs contains
a cycle, the ambient graph H containing T" will almost always not be a tree. If
a labelled forest or tree T is eccentric in a tree T, we shall say that T is tree-
eccentric. Recall that every tree is central (if the center is K;) or bicentral (if
the center is Ky). If T is a central tree, then diam T' = 2 rad 7', while if T is a
bicentral tree, then diam T' = 2 rad T'— 1. If u and v are vertices of a tree T,
then the unique w — v path in 7' is denoted [u, v]. A vertex x is said to lie between
w and v if x lies on a shortest u — v path, i.e., d(u,v) = d(u, x) 4+ d(z,v). We shall
need the following results.

Lemma 9 [7]. Let u and v be two vertices of a tree T having e(u) = e(v).
o Ifd(u,v) is odd, then T is bicentral and the center of T is the center of [u,v].

o Ifd(u,v) is even, then T may be central or bicentral, and the central vertex
of [u,v] lies between u and the center of T

The next result is well-known (see, for example, [7]).

Lemma 10. If T is a tree, v € V(T) and C is the center of T, then e(v) =
rad T + d(v,C).

If T is a labelled tree and v a vertex of T with ¢(v) = £yin(T"), we shall call
v an £-central vertex.
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Lemma 11. If a labelled tree T is eccentric in a tree T', then T has no more
than two £-central vertices. If T has one £-central vertex, u, then u lies between
the center of T' and every vertex of T. If T has two ¢-central vertices uy and us,
then T" is bicentral and wy and us are the adjacent central vertices of T".

Proof. If T has one (-central vertex, the result follows immediately from Lemma
10. Suppose then that w1, us are f-central vertices of a tree T" that is eccentric in
a tree T". If d(u1,us2) is even, then by Lemma 9, the central vertex z of [uq, usg]
lies between u; and the center of 77, but then z € [uj,us] € T and by Lemma
10, 4(z) < liin, a contradiction. If, on the other hand, d(uq,us) is odd, then by
Lemma 9 the tree 7" is bicentral and both central vertices of 7" lie on [u1, ug].
Since [ug,ug] C T, it follows that the center of 7" is in T and hence that u; and
ug are central vertices of T'. Hence, if there are two f-central vertices, then they
are adjacent and central in 7" (and consequently, there cannot be three (-central
vertices). |

It follows from Lemmas 10 and 11 that if v is a vertex in a tree-eccentric
labelled tree T and c is the ¢-central vertex closest to v, then ¢(v) = £(c) +d(u,v).
We hence define two classes of labelled trees.

e If T is alabelled tree with exactly one ¢-central vertex u, and, for each vertex
v e V(T), we have £(v) = lyin(T) + d(u,v), we say that T' € T;.

o If T is a labelled tree with exactly two f-central vertices ui,uo, these two
vertices are adjacent, and, for each vertex v € V(T'), we have £(v) = d({u1,
u2},v) + min(T), we say that T € Ts.

Theorem 12. A labelled tree T is tree-eccentric if and only if bhnax < 20min and
T € Ti, or bmax < 2lmin — 1 and T € Ta. If T € T1 and d € [lmax, 20min], then
there exists a tree T' of diameter d and radius [d/2] in which T is tree-eccentric.
If T € T3 and T is tree-eccentric in T', then T' is bicentral, rad T' = frin and

diam T' = 20550 — 1.

Proof. The necessity is provided by Lemma 11 and the preceding discussion. We
prove the sufficiency. Suppose first that 1" € 77, let u be the £-central vertex of T,
and z a vertex of T with £(z) = liax. Let T' be the tree obtained from T and two
paths P : xg,21,...,%¢,,, and Q : Yo, Y1, - - -, Yd—ty.. DY identifying u with xg and
z with yo. Every vertex v of T is distance at most (£(v) — £min) + (Cmax — fmin) <
¢(v) from every vertex of T', distance £(v) — liin +fmin from x,_, , and distance at
most ¢(v) from every vertex of @, so epr(v) = £(v) as required and T is eccentric
in 7", which has diameter d as required. Suppose, then, that T' € 75 and let the
two f-central vertices of T be u; and us. Let T7 and Ty be the components of
T — uque that contain the vertices u; and wuo, respectively. Let z1, zo be vertices
of Ty and T, respectively, with £(z1) = liax(T1) and (z2) = lmax(T2), and for
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i € {1,2} define §; = 20, — £(z;) — 1. Let T” be the tree obtained from 7" by
adding paths P : zg,x1,...,25 and P : yo,v1,...,Ys, and identifying z; with
xo and z9 with yo. If, without loss of generality, v € V(11), then v is distance at
most (£(v) — fmin) + (€(21) — lmin) + 61 = £(v) — 1 from every vertex of T3 U P,
distance (£(v) —lmin) + 14 (€(22) — €min) +02 = £(v) from ys,, and distance at most
£(v) from every vertex of T U P,. Hence e7r(v) = £(v) and thus T is eccentric in
T'. Furthermore, rad T" = {1ni, and diam 77 = 20,5, — 1. [ ]

If a labelled forest F' is tree-eccentric, then every component of F' is tree-
eccentric. If T is a component of a tree-eccentric forest, we shall adopt the
convention that T' € T;UT3 if the underlying tree T' together with the restriction of
Lto V(T) isin T1UT; (i.e., to judge which vertices of a component T" are ¢-central,
we set lin = min(7T)). It follows from Theorem 12 that if F' is a tree-eccentric
labelled forest, then every component of F'is in 73 U73. A component of F' that
contains an (-central vertex (i.e., a component T of F' with lmin(T") = lmin(F))
is an ¢-central component.

Theorem 13. A labelled forest F' is tree-eccentric if and only if exactly one of
the following holds.

1. F has exactly two (-central vertices, they are adjacent, the £-central compo-
nent Te is in T2, lmax < 20min — 1, nin(F — T¢) > lin(F) + 2, and every
component of F — T, is in Ty.

2. F has no adjacent £-central vertices, every component of F is in Ti, and
exactly one of the following holds.

(a) lmax € {20min — 1,20min}, there is a unique £-central component T,, and
emin(F - Tc) > Emin(F) +2.
(b) gmax S 2£min - 2.

Proof. Suppose that F' is a labelled forest that is eccentric in a tree T. If
two f-central vertices ui,ue are adjacent, then by Lemma 11 the vertices wuy
and wusy are central in T, every component of F' — T, is in 77, the tree T" is
bicentral, and consequently fp.x < 20min — 1. If some component of F' — T,
contains a vertex v with £(v) = lyin(F) + 1, then v is adjacent in T' to an ¢-
central vertex in T, a contradiction. We suppose, then, that no pair of /-central
vertices of I is adjacent. If £,.x = 201min, then by Observation 1, diam T = fax
and rad T = fpin, hence T is central, every f-central vertex of F' is central in
T, and consequently there is exactly one ¢-central vertex. Suppose, then, that
lrnax = 20min— 1. If there are two or more /-central vertices, then rad T' < i —1,
implying that diam T < 20,;, — 2, a contradiction. Thus there is exactly one
f-central vertex and, by the same argument, ¢,,;, = rad 1. Whether £,.x = 20mmin
Or Yimax = 20min —1, in either case the f-central vertices are central in T and hence,
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as previously, min (F — T¢) > lmin(F') + 2. This completes the first direction of
the proof.

Suppose now that F'is a labelled forest that satisfies exactly one of the stated
conditions. If F' satisfies condition 1, by Theorem 12 there exists a bicentral tree
T' with rad T" = i, and diam 77 = 20, — 1 in which T, is eccentric. Form a
new tree 7" from T" as follows. Add a path P of length rad 7" — 1, identify an
end-vertex of P with a central vertex of T”, then for each component T of F' — T,
join the ¢-central vertex of T" to that vertex v of P for which epr(v) = lpin(T) — 1.
Since no vertex of F' — T, is adjacent to a central vertex of T”, the forest F' is an
induced subgraph of 7", and it can be shown as previously that F' is eccentric
in 7”. A similar argument holds for case 2(a). Suppose, then, that F satisfies
condition 2(b). Let T” be the tree obtained from F by adding a path P of length
20 min — 2 and for each component 1" of F joining the /-central vertex u of T to a
vertex v of P having ep(v) = ¢(u) — 1. Then F is an eccentric subgraph of the
tree T” with rad T" = lpin — 1 and diam T = 20,0 — 2. [ |

A labelled tree or forest is strictly tree-eccentric if it is strictly eccentric
in a tree. We consider first the general question of when a labelled forest is
strictly tree-eccentric. A forest that is strictly tree-eccentric is tree-eccentric and
hence must satisfy Theorem 13. Furthermore, every component of a strictly tree-
eccentric forest is tree-eccentric, but not necessarily strictly (see, for example,
Figure 6).

4 3 3 4 4 3 2 3 4
F: 9@ oo 7 606000

Figure 6. A labelled forest I that is strictly tree-eccentric in a tree T while, by Corollary
6, neither component of F' is strictly tree-eccentric.

Suppose that F'is a labelled forest. If for some integer ¢ € ({yin, fmax) there
is no vertex labelled ¢, then ¢ is called an £-gap (or just a gap if there is no possible
ambiguity); similarly, a set S C Z is a gap if every integer in S is a gap. If T is
a component of a strictly tree-eccentric forest F' with £inin(T) > lmin(F), then,
by essentially the same argument used in the proof of Theorem 13, lp,in(7) — 1
is a gap. Consequently, if T, 7" are components of F with ¢(T) N ¢(T") # 0, then
linin(T) = liin(T"). If F is a labelled forest, recall that a u — v path in F is
Z-monotone (or simply monotone) if d(u,v) = [¢(u) — £(v)|. A monotone path is
maximal if it is not properly contained in another monotone path. If a,b € ¢(F)
with a < b, then an (a, b) virtual ¢-path (or simply (a, b) virtual path) is a sequence
Py, ..., P of maximal monotone paths such that a € ¢(Py), b € ¢(Py), for each
i € [1,k — 1], we have lmax(P;) < lmin(Pi+1), and if ¢ € £(F) N [a,b], then
ce E(Ule V(P)). If P: Py,..., Py is a virtual path, we let V(P) = Ule V(F;).
The intersection of two virtual paths P and @ is V/(P)NV(Q); two virtual paths



14 P. DANKELMANN, M. DEVILBISS, D.J. ERWIN, K. GUEST AND R. MATZKE

with an empty intersection are disjoint. The f-center of a labelled tree T is the
subgraph induced by its ¢-central vertices.

Theorem 14. A labelled forest F is strictly tree-eccentric if and only if exactly
one of the following three conditions holds.

1. F has exactly two £-central vertices, they are adjacent, and all of the following
conditions are satisfied.

(a) Emax(F) < 2€m1n(F) - 1;
(b) the £-central component T, is in Ta,

(¢) if T" is a component of F — T, then T" € Ty and lumin(T") — 1 is a gap,
and,

(d) there exist two disjoint (bmin, max) virtual paths.

2. F has two or more £-central vertices, they are pairwise non-adjacent, and all
of the following conditions are satisfied.

(a) gmax(F) < 2€m1n(F) - 2}
(b) if T" is a component of F, then T" € Ty and lmin(T") — 1 is a gap, and,
(c) there exist two disjoint (buin, lmax) virtual paths.

3. F has exactly one {-central vertex and all of the following conditions are
satisfied.
(a) Lmax(F) < 20min(F),
(b) if T' is a component of F, then T' € T1 and lumin(T') — 1 is a gap, and,
(c) there exist two (Lmin, fmax) virtual paths whose intersection is the £-central
vertex.

Proof. Suppose first that F' is a labelled forest that is strictly eccentric in a
tree T'. We consider two cases.

Case 1. F has two adjacent £-central vertices, u; and us. By Lemma 11 and
Theorem 12, T is bicentral, u; and ug are central vertices of T, conditions 1(a)
and 1(b) in the current theorem are satisfied, and every component 7" of F' that
is not f-central is in Tq. If v € V(T") with £(v) = €pin(T”), then there is a vertex
x € Np(v)\ V(F) with ep(z) = £(v) — 1, which implies that £,in(7”) — 1 is a gap.
If e; is an eccentric vertex of uq in 7', then the uy — e path in T consists of u1,
the central edge ujuo, and the us —e; path Pa1. Since F' is strictly eccentric in T,
every vertex y of Py with ep(y) € £(F) is a vertex of F. Hence there is a vertex
z of Py with e(z) = lpax(F'). Let Py, ..., Py be the components of the subgraph
induced by those vertices of P»; that are in F', numbered such that for each
i € [1,k — 1], we have lmax(P;) < lmin(Pit1). Clearly, u; € V(P;) and the vertex
with label yax is in Py. If ¢ € £(F) — 4( Ule V(P;)), then there is a vertex of
V(P21) \ V(F) that is labelled ¢, contradicting the fact that F' is strictly eccentric
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in T. Thus Py,..., Py is an ({yin, fmax) virtual path. A similar argument proves
the existence of a disjoint second (¢min, fmax) virtual path containing u;. Thus F
satisfies all of the conditions 1(a)—(d).

Case 2. No (-central vertices of F' are adjacent. Then by Lemma 11, every
component 7" of T is in 77 and, as before, £,y (T") — 1 is a gap.

Case 2.1. F has two or more /-central vertices. Since these are not adjacent,
rad T < lpin — 1, which implies that £pax(F) < 20min — 2. As previously, we can
find two disjoint (fmin, fmax) virtual paths.

Case 2.2. F has exactly one ¢-central vertex, u. Since F' is strictly eccentric
in T, by Lemma 11 the vertex w is the central vertex of 7" and we get the desired
(Lmin, fmax) virtual paths from two maximum length paths starting at w.

We now prove that a labelled forest F' satisfying the stated conditions is
strictly tree-eccentric. The construction is similar for all three cases, so we con-
sider only the first. Suppose that F' is a labelled forest satisfying the condi-
tions 1(a)—(d). Let the ¢-central vertices of F' be p and q. Let P : Pp,..., Py
and Q : Q1,...,Qx be disjoint ({yin, fmax) virtual paths, where p € V(P;) and
q € V(Q1). We now construct a tree T as follows. Let X = [linin, 2lmin — 1] —£(F')
and for each ¢ € X, add two new vertices p. and ¢.. For each i € [2, k], the num-
ber lmin(P;) — 1 = lyin(Qi) — 1 is by assumption a gap. Hence there exist p.
and g with ¢ = £pin(FP;) — 1, so join p. (respectively, g.) to that vertex v of the
component of F' containing P; (Q;) that has ¢(v) = lmin(F;). Whenever there
are two consecutive integers ¢ and ¢+ 1 in X, join p. to p.+1 and ¢ to qey1. If
2lmin — 1 > lax, then join py . 41 to a vertex of Py with label fiax and g, +1
to a vertex of @ with label /... Finally, for each component 1" of F' that
does not contain some P; or Q;, join the vertex v of TV with £(v) = lpin(T”) to
either py . (pry—1 or g, (7)—1 (the construction is illustrated in Figure 7). It is
straightforward to prove that F' is strictly eccentric in the tree T'. [

q10 @11 12 13

P11 P1o
13 12 8 9

Figure 7. The construction of Theorem 14 applied to a labelled forest F' to produce a
tree T' containing F' as a strictly eccentric subgraph. Vertices of F' are black and vertices
of T — F are white.

We now turn our attention to the special case when the forest F' is a tree. If
a,b are integers with a < b and P an (a,b) virtual path that consists of a single
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monotone path, then we shall call P an (a,b) path. An immediate consequence
of Theorem 14 is the following.

Corollary 15. A labelled tree T is strictly tree-eccentric if and only if

1. T € To, binax(T) < 2nin(T) — 1, and there exist two disjoint ({min, fmax)
paths, or,

2. T € Ti, bmax(T) < 2lnin(T), and there exist two (Umin, fmax) paths whose
intersection is the £-central verter.

With a little work, we can restate this result in simpler language. If T' € Ty
and there exist two ({min, fmax) Paths whose intersection is the ¢-central vertex,
or if T € T and there exist two disjoint ({yin, fmax) paths, then the labelled tree
T is f-balanced. A tree T is £-centered if T' € 71 U T3 and its f-center and center
are equal. This is equivalent to the statement that there exists an integer k£ such
that for all v € V(T), {(v) = e(v) + k.

Lemma 16. A labelled tree is £-balanced if and only if it is £-centered.

Proof. Let T be a labelled tree and suppose first that 7" is -balanced. If T' € T;
and w is the f-central vertex, then e(u) = lynax — lmin, while for v € V(T)\ {u}
we have e(v) > 14 lpax — fmin- Thus u is a central vertex of T'. If on other hand
c is a central vertex of T, then e(c) > d(c,u) 4+ lmax — min, Which implies that
d(c,u) = 0 and ¢ = u. Thus T is {-centered. A similar proof is easily found when
T € 7T5. Suppose then that T is f-centered. If T' € 77, then T is a central tree
with radius pax — fmin and diameter 2({yax — min), implying the existence of
a pair of vertices with label £, that are in different components of T — u. A
similar proof holds when T' € 7s. [

The next results follow directly from Theorem 14 and Lemma 16.

Corollary 17. A labelled tree T is strictly tree-eccentric if and only T is tree-
eccentric and £-centered.

Corollary 18. A labelled tree T is strictly tree-eccentric if and only if there exists
an integer k such that {(v) = e(v) + k for all v € V(T).

5. FURTHER DIRECTIONS

Theorem 4 gives a complete characterization of eccentric labelled graphs. We have
not, however, found an equivalent characterization of strictly eccentric labelled
graphs. While such graphs must satisfy the conditions stated in Theorems 4 and
5, the discussion on page 8 shows that these conditions are not sufficient for a
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labelled graph to be strictly eccentric. It would clearly be interesting to find such
a set of conditions.

In this paper, we have given necessary and sufficient conditions for a tree (or

forest) to be eccentric or strictly eccentric in a tree. In a similar vein, given a
class C of graphs, one might ask under what conditions a graph G € C is eccentric
or strictly eccentric in some graph H € C.
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