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Abstract— Pictures or videos captured from a low-altitude air-
craft or an unmanned aerial vehicle are a fast and cost-effective
way to survey the affected scene for the quick and precise
assessment of a catastrophic event’s impacts and damages. Using
advanced techniques, such as deep learning, it is now possible
to automate the description of disaster scenes and identify
features in captured images or recorded videos to gain situa-
tional awareness. However, building a large-scale, high-quality
dataset with annotated disaster-related features for supervised
model training is time-consuming and costly. In this article,
we propose a weakly supervised approach to train a deep neural
network on low-altitude imagery with highly imbalanced and
noisy crowd-sourced labels. We further make use of the rich
spatiotemporal data obtained from the pictures and its sequence
information to enhance the model’s performance during training
via label propagation. Our approach achieves the highest score
among all the submitted runs in the TRECVID2020 Disaster
Scene Description and Indexing (DSDI) Challenge, indicating
its superior capabilities in retrieving disaster-related video clips
compared to other proposed methods.

Index Terms— Convolutional neural networks (CNNs), deep
learning, disaster scene description, weak supervision.

I. INTRODUCTION

CATASTROPHIC event or accident may have disastrous

implications, such as making some of the most impacted
regions completely inaccessible due to outages in communi-
cation lines and disruptions to street-network infrastructures.
Situational awareness in disaster-affected areas is critical for
the safety and effectiveness of first responders. Remote sensing
technology, such as aerial photography, is a viable solution
to rapidly collect situational awareness information across
the impacted regions while the regions remain inaccessible.
Furthermore, the availability of trustworthy and accurate infor-
mation is a crucial challenge for emergency management.
However, the large volume of collected data and the limited
time under a disaster scenario make it extremely challenging
for a human to quickly identify regions that should be priori-
tized. Thus, it becomes crucial to develop automated systems
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to assist the emergency responders in analyzing the collected
data and obtaining immediate situation awareness about the
impacted regions.

Civil Air Patrol (CAP) supports U.S. communities going
through an emergency response by taking pictures or recording
videos from the low-altitude aircraft, which is a crucial and
inexpensive method for the Federal Emergency Management
Agency (FEMA) to quickly and effectively obtain the imagery
to survey the affected region. The footage is often cap-
tured from military aircraft, primarily cargo aircraft, tankers,
or helicopters [1], and, more recently, drones as well [2].
Given the massive volume of data being gathered, developing
sophisticated tools and systems to curate all the information
is also vital. To this end, several large-scale disaster datasets,
including the Incidents Dataset [3], Low Altitude Disaster
Imagery (LADI) [4], and so on, have been recently released to
stimulate the development of new research and technologies
in this field. However, the bird’s eye view of the gathered data
and the disaster-related application provides several challenges
that must be appropriately addressed. Because individuals
are unaccustomed to seeing and interpreting images taken
at low altitudes, producing high-quality LADI annotations
needs specific expertise. Meanwhile, nonprofessionals are not
necessarily familiar with disaster-related concepts. As a result,
collecting high-quality annotations to create an appropriate
training dataset will be very costly.

While deep learning has greatly accelerated the advance-
ment of image recognition capabilities, most of the existing
techniques require large amounts of high-quality annotations to
build high-performance and reliable models to properly auto-
mate image processing and concept detection [5]. Hence, they
cannot meet the expectations for disaster situation awareness
due to the lack of adequate training data [4]. Many techniques
have been recently proposed to reduce the requirement of
deep learning models on the quantity and quality of the train-
ing data. Such techniques include the semisupervised-based
frameworks (such as deep cotraining [6]) that enable one to
train the model with a partially annotated dataset and weakly
supervised techniques, such as deep collaborative embedding
model [7] that can handle mislabeled data. However, it remains
challenging to train a deep learning model when both the
quantity and quality of annotations are limited.

In this study, a weakly supervised deep learning framework
is proposed that can manage noisy, limited, and inaccurate
inputs while detecting descriptive features in connection to
damage and the captured environment. Since the low-altitude
imagery dataset, such as LADI, is partly labeled, the soft labels
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defining the likelihood of an image possessing a given feature
are propagated to the unlabeled data in the training dataset to
enhance the training process. Furthermore, the proposed work
demonstrates how spatiotemporal information obtained from
the image’s metadata can be leveraged to enrich the training
dataset and improve model robustness. Spatiotemporal data,
including the time and location of the picture taken, are used
to query open-source databases for further context details in
regards to the image. The main contributions of this article are
summarized as follows.

1) We present a new semisupervised training method that

utilizes labeled and unlabeled data by further employ-
ing label propagation and weak supervision to acquire
knowledge from noisy, restricted, and inaccurate labels.
Multimodal information (such as geospecific tags,
historical events, and weather) is merged with
sequence-based information retrieved from low-altitude
photographs to enrich the training dataset.
The proposed method is evaluated on the LADI dataset
as one of the submitted runs in the TRECVID2020 [8]
Disaster Scene Description and Indexing (DSDI) Chal-
lenge. Our proposed solution achieved the best score
among all the participants and other appropriate methods
from the literature.

2)

3)

The next sections of this article are structured in the
following order. Section II reviews related studies that apply
deep learning methods to low-altitude imagery. Section III
introduces our proposed weakly supervised framework, specif-
ically label propagation and feature fusion. In Section IV, the
effectiveness of our proposed framework is shown through
both quantitative and qualitative experimental results. Finally,
Section V covers some of the potential future work and
concludes this article.

II. RELATED WORK

The advent of deep learning tools and techniques, especially
the convolutional neural network (CNN) [5], [9], has revolu-
tionized image and video recognition and greatly improved
object detection accuracy and robustness. Considering how
images and videos are a prevalent way for emergency respon-
ders to quickly survey affected areas after a natural disaster,
it is no surprise that deep learning methods, such as CNNs,
are being applied to automate the curation and retrieval of
such images. Nonprofessionals may not be acquainted with
disaster-related concepts or rarely come across low-altitude
images. As a consequence, gathering enough high-quality
annotations to build a good training dataset will be very
expensive. However, most existing techniques require large
volumes of high-quality annotations to develop reliable models
that can help automate image processing and concept detection
properly.

To reduce the reliance on the quality and quantity of
training and testing data, researchers have developed a variety
of deep learning techniques. Previous studies have proposed
methods to integrate visual and text tag features into a common
space based on deep canonical correlation analysis (DCCA)
[10], [11]. The DCCA method has been extended to han-
dle noisy labels and improve the annotation quality using
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techniques, such as the weakly supervised deep matrix fac-
torization framework [12] and the unified deep collaborative
embedding [7]. Many of the previously described techniques
used sparse line reconstruction, sparse coding, and dictionary
learning to recover textual tags, which takes a long time and
takes up much space, making it unsuitable for large-scale
applications.

Although research on automatic disaster scene description
from images has become more prevalent in recent years,
most of the existing approaches are confined to one disaster
type. In addition, they are often incomparable due to the lack
of well-curated datasets and benchmarks. This has recently
changed with the introduction of large-scale disaster datasets,
such as the Incidents Dataset [3] and LADI [4]. The Incidents
Dataset is well-curated; however, it focuses on a ground-level
perspective, which does not assist with the large intraclass
variances shown on low-altitude images. Most of the previ-
ously proposed methods in the disaster scene description from
both image and video data also focused on the ground-level
point of view. These methods often aim to address challenges
commonly found in the disaster image data by developing
sophisticated models, such as adversarial data augmentation
to deal with the limited data [13] or common techniques that
put a higher penalty to errors on the minority class to address
the class-imbalance issue [14], [15].

The LADI dataset features a wide range of low-altitude
images and has presented a number of challenges, including
noisy annotations with imbalanced samples per class and the
fact that some objects and features are shown at different sizes
and angles depending on the altitude at which the picture
was taken, making some of these features difficult to detect.
The earlier research on the disaster scene description from
low-altitude images tested different supervised methods by
considering the image’s optical properties [16]-[18]. More
recent studies started to explore an ensemble learning approach
to tackle the class-imbalance and noisy-label issues [19]-[21].

Moreover, the previously proposed methods seldom lever-
age the rich spatiotemporal information from data and have yet
to exploit the sequential-based information of the low-altitude
images to improve the model performance during training.
Our proposed framework leverages the weakly supervised deep
learning approach with a unique label propagation model that
enhances the training data as the model learns and uses the
spatiotemporal information to improve the contextual aware-
ness of the model.

III. PROPOSED METHODS

In this article, a weakly supervised learning framework for
disaster scene description, as illustrated in Fig. 1, is proposed
to address the challenges that data labels are limited in both
quantity and quality. In light of these limitations, classifiers
pretrained on other well-curated benchmarks are leveraged
to supply supervision signals by connecting their predicted
concepts to the target features at the semantic level. Soft
labels are created initially from human workers’ annotations,
and the more workers who annotate an image with a target
feature, the greater the weight that is allocated to the image
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Fig. 1.
information obtained from the metadata of low-altitude images.

under that target feature. These soft-label features are then
fused with SoftMax weights of well-known deep-learning
methods that have been pretrained with well-curated large
image datasets. The final soft labels defining the likelihood of
an image possessing a given feature are propagated throughout
the training dataset to enrich the training data appropriately.
While the deep learning-based model learns, it helps to iden-
tify more samples of a certain feature and expand the label
set. The proposed method reduces the difficulty of obtaining
well-curated expert hand-labeled datasets, which may be either
expensive or unfeasible. Instead, low-cost weak labels are
utilized with the goal that, though they may be flawed, they
can still be leveraged to build a robust predictive model. The
aim of the proposed approach is to estimate the likelihood of
a certain disaster or environment-related feature being present
inside a low-altitude image or video.

A. Feature Score Engineering

1) Worker Annotations: The LADI dataset uses a hierarchi-
cal labeling approach featuring five general categories, includ-
ing damage, environment, infrastructure, water, and vehicle.
Within each category, features of more specific categories
are annotated. Using the Amazon Mechanical Turk (MTurk)
service [22], a subset of the LADI dataset, representing more
than forty thousand images, was hand-annotated by human
annotators.

Assuming that the data are either labeled by nonexpert
human workers through crowd-sourcing or obtained from a
web crawler, label engineering is a critical initial step in
reducing label noise and preventing erroneous labels from
deceiving the model. Given an image i in the dataset, it may
be labeled by one or more workers as containing a feature f.
However, not all the worker’s labels can be treated with an
equal level of confidence. Let C; ¢ be the number of workers
who labeled the image i as containing feature £. Each image’s
feature score is S;r = (Cif — C™7)/(CT* — C™7), where
C™® and CT®* are the minimum and maximum counts of
workers for all the annotated images with feature £. The soft-
score function is formulated under the assumption that there

>
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Proposed weakly supervised deep learning framework implements feature score fusion and automatic score propagation based on the spatiotemporal

will be at least one human worker annotating an image for
target features under the same category. The assumption is that
C?#* > 0. Under this assumption, CT* = C™® implies that
all the positive samples are annotated by the same amount of
workers. Thus, we assign the labels of all these samples as 1,
i.e., Vi, Sijf =1.

In our investigations, we employ these normalized soft-label
vectors as the ground-truth confidence. Soft labels provide
a model with more information about the relevance of each
target feature. Such a strategy works well in a ranking problem
scenario, provided that the goal is to help index the most
relevant images. However, these crowd-sourced human labels
are highly imbalanced. Because of the extreme disparity
between different labeled samples, the calculated S;  may be
imprecise for extremely underrepresented features. In addition,
some images also bear incorrect or ambiguous labels. Hence,
the dataset requires further enhancements through the addition
of new data and new information.

2) Machine Annotations: The LADI dataset includes sev-
eral machine-generated feature scores from commercial and
open-source image recognition platforms to provide additional
knowledge for various features found in the images. These
feature scores are in the form of SoftMax weights that can be
defined as follows:

exp(x;)
> iy exp(u)

where, given the input vector £ = (x1,...,xx) € RX, the
equation applies a normalization term to output a probability
distribution for K classes. The SoftMax weights are, thus,
numerical scores indicating the relative confidence of the
pretrained model in detecting the existence of a certain feature,
and these machine annotations contain the names of the
detected features, allowing us to match them with the features
in LADI via semantic similarity.

The first machine annotator is a ResNet50 model [23]
pretrained on Places365 [24], which includes 365 categories
of common scenes. It is crucial to improve the efficacy of
detecting the scenes and environments in the LADI imagery.
Many features present in LADI are broad terms and can be

(1

(%) =
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Fig. 2. Visualization of the polygons and an indicated timestamp of when the
picture was captured following the sequence. The image highlighted in red
has been annotated by the human worker for three features under the damage
category (namely, flood water, misc., and rubble). Images taken before and
after the annotated image are shown to also contain these same features.

matched with many available features in Places365 according
to the semantic meaning of a feature. For instance, the
concept for “building” has a close semantic meaning with
the Places365 concepts, including apartment building outdoor,
basement, beach house, building facade, construction site,
downtown, residential neighborhood, roof garden, skyscraper,
and so on. Therefore, many of the matched concepts could be
safely regarded as “building” for disaster scene description.

Machine-generated annotations from Google Cloud Vision
(GCV) [25] are also part of the machine annotators. The GCV
API provides robust pretrained machine learning models for
instantly assigning labels to images and classifying them into
millions of preset categories. The scores from GCV label
detection and web entity detection services are available for
a subset of the LADI dataset.

We further made use of the predictions from the
YOLOV4 [26] model pretrained on the COCO dataset [27].
The annotations supplied by the YOLOv4 model trained on
COCO contain significant characteristics, such as car and
truck, and have shown to be significant in improving the
vehicle category model.

Information from other sources was retrieved for a subset
of the features that were highly underrepresented. Crawling
for more data helps to alleviate some of the training datasets’
imbalanced problems and mistakes found within the labels.
A small number of sample images under these features are
crawled using an image search engine, such as Microsoft Bing
Image!, while also making sure the queries contain words,
such as drone and aerial along with the target feature name.
The noise from the crawled images is reduced by applying the
CNN model trained on the human workers’ limited labeled
data and selecting the images that are most relevant to their
target feature (i.e., score > 0.5). The scores from all relevant
crawled images are then set to 1.

3) Metadata Concept Lookup: To include more concepts
relevant to real-life events, we further utilize time and location
metadata obtained from each image. The focal length (F), alti-
tude (A), latitude, longitude, and camera type are all contained
in the data that may be retrieved from an image’s metadata,

'Microsoft Bing Image: https://www.bing.com/images
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provided that the image’s format supports the exchangeable
image file format (Exif). This information is useful to approx-
imate the geographical region covered by the image taken from
an airplane. Although there is no direct access via Exif to the
height H and width W of the camera sensor, the camera model
provided by the metadata was used to acquire this information
from other sources. The simple trigonometry can specify
the current footprint through the computation of width
(A x W)/F and height (A x H)/F of the geographic
region. The measured area is only a rough approximation of
the area photographed, as illustrated in Fig. 2, and is limited
by its assumption that the camera takes the picture while
being pointed directly downward. The angle from which the
image was taken is a required parameter in order to be able
to determine the exact geographical boundaries covered by
the image. Nonetheless, several drones on the market today
feature more detailed information regarding location captured
and camera angle.

The image’s time and location metadata offer multiple
useful indications in relation to the image’s contextual content.
Additional information about the photographed region can
be accessed from open datasets by considering the particular
incidents, locations, and special weather conditions that may
have been recorded at the time and place where the picture
was taken. Open databases used for the retrieval of the images’
contextual data are summarized as follows.

1) OpenStreetMaps OSM: The computed geographical
region represented as a polygon is used to index
open-source geodatabases OpenStreetMaps [28] that
provide a valuable location-based context of the aer-
ial images captured. OSM tags are crowd-sourced and
describe specific features of map elements. The more
area covered by the image, the more tags it contains
in terms of buildings, roads, and so on. Bringing in
the OSM data starts with collecting the total number
of tags that fall inside the image’s capture region and
using a min—max normalization to provide more confi-
dence over the images containing a higher number of
a particular tag. Nonetheless, as illustrated in Fig. 2,
there is a noticeable shift between the computed region
and the actual area that is shown in the image. Despite
the limitations of the OSM’s geographic information-
based approach, our proposed methods of combining
several modalities help to generate more reliable scores.
In addition, Fig. 3 demonstrates the logistic regression
fit on the relationship between the LADI soft labels
and the matching OSM scores, further supporting our
hypothesis that there is a positive relationship between
the relevant OSM tags and the target features that can be
found in an image. The plot illustrates the most relevant
target features that are semantically similar to the OSM
tags. Section III-B details the matching procedure and
aggregation method for the OSM scores.

FEMA: FEMA Disaster Declarations are an excel-
lent resource for records of historical disasters in the
United States, such as coastal storms, earthquakes, fires,
floods, hurricanes, tornadoes, and volcanic activities.
The FEMA data are used to confirm that the images

2)
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TABLE I

SUMMARY OF THE CONFLICTS BETWEEN LADI’S INITIAL LABELS
SPECIFIED BY HUMAN WORKERS AND THE LABELS RECTIFIED
UTILIZING EXTERNAL DATABASES, NAMELY,

FEMA AND NOAA CDO
Feature P—P P—N U—P
(1) Damage (misc) 5146 (12.7%) 7839 (19.3%) -
(2) Flood/water 12554 (30.9%) 4236 (10.4%) -
(6) Smoke/fire 4 (0%) 1614 (4.0%) 100 (0.2%)
(12) Snow/ice 0 (0%) 115 (0.3%) 198 (0.5%)

in the LADI dataset annotated with the specific reported
damage correspond to the actual real-life incident. If an
annotator or pretrained model declares that a label
contains certain damage caused by a type of disaster
in contradiction with the FEMA records, the score
for that feature is set to 0. Otherwise, the score’s
confidence is increased to 1. Table I summarizes the
concordance and conflicts between the original worker
labels and the labels rectified using the external data-
bases, including FEMA. The positive-to-positive (P—P)
category demonstrates the agreement that an image
under a relevant target feature was annotated as pos-
itive. On the other hand, the conflicts between actual
and rectified labels are shown through the positive-
to-negative (P—N) category, meaning that the actual
label was set to positive in conflict with the rectified
negative label. In the unknown-to-positive (U—P) cate-
gory, because of the very poor reliability of the original
annotations, positive samples are drawn from the LADI
unlabeled set for the target features, such as smoke/fire
by using the information from the external databases.
Later, in Section IV-Al, we show how a reliability
measure further helps to explain the high degree of
conflicts observed in the LADI label set for many target
features, including smoke/fire and snow/ice.

3) NOAA Climate Data Online (CDO): NOAA allows for
public access to the National Climatic Data Center’s
(NCDC) [29] data, which is an archive of global his-
torical meteorological and climatic data. For features
related to the climate, such as snow, weather details
were obtained from the NCDC API using the time
and location information. Similar to FEMA, the NCDC
data are used to confirm that the annotation given to
the image does not contradict the real-life event. For
example, to ensure that a given image’s snow feature
is valid, the image’s time and location are compared to
the NCDC data, and the feature score is adjusted to 1
if snow has been reported or 0 otherwise. As shown in
Table I, similar to the smoke/fire target feature, snow/ice
was further enhanced through the addition of positive
samples from the unlabeled set.

B. Final Score Fusion

The model is trained to identify a particular feature inside an
image and its confidence level by employing soft labels. This
also makes it easier to integrate soft labels generated from
human annotations with SoftMax weights supplied by various
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pretrained classifiers assessed on the LADI dataset. Prior to the
actual fusion of the scores, a semantic match of the feature’s
name in both LADI and the pretrained model’s own feature
list is formed. Semantic similarity borrows techniques from
natural language processing (NLP), such as word embedding,
to determine how similar two words are, even when they are
not exact matches. The feature’s word vectors were first gener-
ated using the pretrained model from spaCy [30] followed by
a pairwise computation of the vector’s cosine similarity [31].
Since some features are composed of two or more words,
spaCy helps to identify the unique words (or tokens) within
the feature name and generate the word vector. Considering
that the features found in the LADI dataset are very broad in
concepts, we take advantage of the variety provided by the
scores generated from both the pretrained models and OSM
tags. Selecting the relevant OSM tags is also done through
semantic nearness by finding the similarity between two word
vectors for the OSM tags and the target feature name in the
vector space.

Because the SoftMax weights are a probability distribution
that awards the highest score to the best-detected classification
in each image, a min—max normalization is applied before
working on the final score fusion. Let © represent the word
vector of the ith word in the name that describes the target
feature £, and 12)? represents the word vector of the jth word
in the name that describes the auxiliary feature p in either the
pretrained classifiers or the OSM tags. All the word vectors
are generated by spaCy [30]. The final score fusion is decided
based on the distance of the word vectors, as shown in the
following:

St = max (S’f,max Sp> )
pelPy
Af . AP
l

;- W; 9 3)

Pr=4qp max e >
ielLNeL el ) || f ||| @5 |

where S} is the final score assigned to a certain image for
feature £, S; € [0, 1] is the score of the image for target
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Algorithm 1 Weakly Supervised Model Training Implement-
ing Label Propagation

1: M} < Ms,r < 100,06 < 00,p < 5,i < 1
2: repeat

3: pPi < 0

4:  while p; < p do >

5: M* < Train(M! |; X,,Y,)

6: pi < pi+1

7 o; < Loss(M*; X,,Y,) >
8 if 0; < o then >

9; M! <~ M*,6 <0, pi <0
10: end if

11:  end while

12:  for each feature £; € F' do

13: = TopScores(y; j,r) ©

14: Xy < NearestSamples(X, 7
15:  end for

16: Yy < Predict(M}; Xp) >
17 X, < Merge(X;, Xp), Y < Merge(Y;, Yp)
18: i «<—i+1

19: until Srop Condition is met >

feature f integrating the human annotations and machine
annotations, S, € [0, 1] is the score integrating pretrained
classifiers and OSM tags for the auxiliary feature p, and N¢
and N, are the numbers of words that describe the target
feature £ and auxiliary feature p, respectively. The final score
fusion first checks that the cosine distance between ®f and
12)1;-) must be greater than a given threshold ¥ (0.5 in this
study) for the concepts to be considered semantically similar.
The final score for the target feature £, i.e., Sf, is thus the
largest score among the original score S; and the scores of
any auxiliary features whose names contain at least a word
semantically similar to any word in the name of target feature
f, as illustrated in (2) and (3).

C. Weakly Supervised Training

Weak supervision discussed in this article is a strategy
that learns from the partially annotated and noisy labels and
the low-quality information from various data sources. Our
proposed system combines a novel label propagation approach
with a weakly supervised deep learning framework to improve
the data quality as the deep learning model trains. The sug-
gested technique aims to make acquiring well-curated expert
hand-labeled datasets easier by using low-cost weak labels.
Algorithm 1 illustrates the steps to train one of the categorical
models in a weakly supervised approach via label propagation.
The proposed approach extracts deep features from the final
convolutional layer. It then outputs a feature vector corre-
sponding to the 2-D picture using the InceptionV3 architecture,
pretrained using the ImageNet weights. The pretrained weights
of the networks have been completely fine-tuned to the new
low-altitude image dataset. The model’s original classification
head is replaced with a dense layer followed by a sigmoid
activation function to enable multifeature score prediction,
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indicating the likelihood that an image includes a certain
feature.

The training process starts with the model M| initialized
to the ImageNet weights Mg. From line 4, the model trains
on the training dataset composed of the images X, and scores
Y;, where X is the entire set of low-altitude images whether
labeled or unlabeled, and X; € X. In each epoch, the total
loss L is calculated by aggregating the binary cross-entropy
(BCE) loss across all the individual features as follows:

1
L(ps,qs) = ———

] 2 (pelog(as) + (1= po) log(l - g2)

feF
(4)

where pr is the probability (or soft label) of the image con-
taining the target feature £, and g« is the predicted probability
of the image containing f as calculated by the model. As the
model trains, it is validated on the validation samples X, in
which its predicted values are compared to the target scores
Y, using the loss function. The variable o keeps track of the
lowest validation loss such that only the best model is kept at
the end of the training process.

Once the model reaches a point where it is no longer
improving for p consecutive epochs, the algorithm starts the
label propagation process at line 12 by first sampling the top
scores from each feature in X, to later acquire the nearest
samples. For r unique observations identified from X, under
a certain feature f, the algorithm finds the nearest unclassi-
fied samples and stores them in Xy. Scores are propagated
throughout the identified image’s neighboring images. The
idea is that, if a picture taken at a particular moment contains
a certain feature, the picture taken before and after it will most
likely have the same feature. The training process is terminated
when the Stop Condition is met, i.e., the model is considered
to be fully trained. The stop condition is defined as the model
not being improved after two consecutive label propagations.

IV. EXPERIMENT RESULTS

A. Experimental Setup

1) Dataset: This article uses the LADI dataset that con-
sists of pictures captured from a low-flying aircraft by CAP
and hosted by FEMA. The National Institute of Standards
and Technology (NIST)’s TREC Video Retrieval Evalua-
tion (TRECVID) competition released the dataset to partic-
ipants in the middle of 2020. The LADI training dataset is a
collection of pictures acquired from an aircraft, whereas the
LADI test dataset is a collection of short video clips recorded
from a UAV. According to the LADI developers [4], [32], each
Human Intelligence Task (HIT) on the MTurk platform asks
the human worker if any of the labels in each of the coarse
categories is accurate—each HIT only asks about one category
at a time. Consequently, each HIT is assigned to three workers
to reach an agreement on the label quality. If further validation
was required, the HIT was outsourced to two more workers,
for a total of five workers per category and image.

With only about 6%—7% of the 500k images in the LADI
training dataset being labeled by human workers, we tackle
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Fig. 4. PN ratios of the 31 target features from the LADI training and testing datasets before any of the proposed rectification techniques was applied. The
reliability coefficient Krippendorff’s alpha (a) indicates the measure of the agreement among the workers when annotating the training dataset for each target

feature.

several challenges that arise from working with a highly imbal-
anced and noisy dataset to train a reliable model. The datasets
class imbalance and label noise are illustrated in Fig. 4.
The positive-to-negative (PN) ratios of the 31 target features
calculated from LADI illustrate how the training dataset varies
from mostly severely imbalanced (low PN ratios) to reasonably
balanced (high PN ratios) representations. We further compute
Krippendorft’s alpha (a) [33], a well-known reliability metric
used to measure interrater agreement for the annotated labeled
training dataset. Unlike other reliability techniques, o handles
missing data and is flexible in sample size, category, and the
number of workers. The a coefficient is calculated following
LADT’s described annotation procedure, in which each worker
will have the chance to determine whether an image contains
a target feature or not. If an annotator never comes across
a certain image, this is declared as a missing value. The
maximum value for each target feature’s o coefficient can only
reach o = 0.51, indicating the need to correct the label noise
and augment the training dataset.

The LADI training dataset was further expanded by includ-
ing web-crawled images for those very underrepresented
features, such as water-tower, utility-lines, communication
tower, snow/ice, rock, landslide, and smoke/fire. Less than
1000 images for each feature were added from web-crawling
to improve these features and avoid adding more noise into
the data. While crawling for new pictures helps retrieve more
relevant samples, the web-crawled pictures may add extra
noise into the training data if not utilized properly. In addition,
it is challenging to acquire high-quality low-altitude pictures
from the image engine for many of these target features,
considering that people seldom take photographs from this
viewpoint. Thus, the web-crawled pictures were not used to
balance the training dataset, and the impact of the additional
crawled images on the PN ratio is shown in Fig. 4. Data
augmentation methods were used on the training data to
improve the model performance, especially for the minor-
ity classes. Specifically, the applied augmentation methods
include horizontal and vertical flipping with 0.5 probability,
90° rotations with 0.1 probability, contrast change by a factor

between O and 0.25, and the horizontal and vertical shifts
within £10% of the width and height, respectively.

2) Competing Methods: To ensure that the suggested
method is effective, we compare it to a baseline and several
competing methods, which are listed as follows.

1) DCCA [10]: The DCCA employs neural networks to
exploit the nonlinear transformations and learns the
representations of images and texts that maximize their
correlations.

2) DCE [7]: The deep collaborative embedding employs a
weak supervision technique for refining initial tags and
assigning tags to new images via discovering the unified
latent space for images and tags.

3) SHIELD [21]: Experimented with various CNN com-
binations on the LADI dataset and extended the LADI
training data by labeling an unlabeled subset from LADI
using Amazon MTurk.

4) VCL [18]: Perform a series of experiments to evaluate
the roles that objects play in scene comprehension,
utilizing various methods for integrating the local-level
information (e.g., objects and entities).

5) Ours-InceptionV3-Base: The baseline model consists of
five categorical models based on Inception-V3, but,
different from the proposed approach, it is trained solely
on the soft labels generated from the human annotators,
following the method introduced in Section III-Al.

3) Feature Score Model: The feature score model consists
of five categorical models based on the InceptionV3 architec-
ture, with each model being trained on the feature scores of a
particular category. The weights of these models are pretrained
on ImageNet and then fine-tuned on the disaster-related dataset
following the transfer learning process. The last classification
head of the network replaces a dense layer implementing the
sigmoid activation function for multiclass soft-label classifi-
cation. The binary cross-entropy function measures the model
loss during training and adjusts the model weights accordingly.
Separating each model by category gives more flexibility and
alleviates the high class-imbalance problem in the data.
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Fig. 5. Comparison of the boxplot distribution for feature’s precision score among all submissions to TRECVID2020-DSDI regardless of the track. The

interquartile range of the boxplot is from 25th to 75th percentiles. The red dot indicates the placement of our best run among all the submissions. The blue

diamond indicates our second-best run.

The LADI data are randomly split into two parts: 80% for
training and 20% for validation. Each model is trained on small
batch sizes containing 16 sample images from the training
set. At the end of each epoch, the model’s performance is
evaluated on the validation set—only the best model with the
lowest validation loss is kept. With an initial learning rate of
n = le — 4, the Adam [34] solver is employed to fine-tune
the model weights. Models are trained for 100 epochs.

4) Inference and Ranking: The LADI test dataset is com-
posed of 41 original videos segmented into 1825 short video
clips ranging between two to twenty seconds. Unlike the train-
ing dataset, the test set is composed majorly of drone footage.
Nonetheless, our methods prove successful in generalizing
well across the different tools used to capture the low-altitude
images. During inference, the test video shots are split into
multiple unique keyframes and fed to the five categorical
models to obtain the scores for the 31 features. In order to
facilitate content-based retrieval, a shot-level aggregation of
the keyframe-level scores is then introduced to rate the video
shot according to its significance.

B. Results and Discussion

1) Quantitative Results: For each run, the mean average
precision (MAP) across 1000 retrieved shots is determined
as a measure of the accuracy in identifying the most rele-
vant features in a shot. For a fair comparison among other
methods tested on the LADI dataset, variants of the proposed
framework are compared to the submission of the LADI +
Others (O) track—where “Others” in our proposed approach
involves the inclusion of data obtained from the web crawler
along with the LADI data to improve the performance of
some of the most underrepresented features. A summary of the
result comparison is demonstrated in Table II. The proposed
method significantly outperforms other tested methods under
the same training type. It is worth mentioning that our best-
performed approach ranks first among all the solutions in the
TRECVID2020-DSDI competition, regardless of the training
type.

Furthermore, the average precision (AP) per feature is
summarized in Fig. 5. A boxplot is used to visualize the

TABLE II

COMPARING THE MEAN PRECISION AT 10, 100, AND 1000 PRECISION
DEPTHS, ALONG WITH THE MAP OF OUR SUGGESTED
METHODOLOGY, OF OUR PROPOSED APPROACH TO VARIOUS
COMPETING METHODS AND A BASELINE

Method P@10 P@100 P@1000 MAP

DCCA [10] 0.177 0.196 0.210 0.167
DCE [7] 0.329 0.282 0.238 0.205
SHIELD [21] 0.506 0.379 0.236 0.297
0.232 0.218 0.225 0.176

0.400 0.346 0.260 0.275

VCL [18] 0355 0360 0264 0285
0.471 0.394 0.272 0.333

Ours-InceptionV3-base  0.445 0.404 0.274 0.283
Ours-InceptionV3-top 0.568 0.446 0.278 0.388
Ours-InceptionV3-max  0.580 0.444 0.279 0.390
Ours-InceptionV3-avg 0.561 0.460 0.281 0.391

distribution of the feature-level performance across all compe-
tition entries, independent of the training type. The red dot and
blue diamond represent our best and our second-best submis-
sions, respectively. The comparisons to the feature-level mea-
surements reveal that our proposed method excels in snow/ice,
bridge, building, road, and puddle features. We attribute the
great performance for most of these features to the effective
exploitation of the contextual information derived from the
image’s metadata. For instance, infrastructure locations, such
as roads and buildings, are well-documented in OSM, which
our proposed method was able to effectively leverage to refine
and enhance the soft labels used to train the model to recognize
these types of target features.

The proposed approach is also compared to a baseline
model. It is noteworthy that the baseline method already
achieves a comparable performance to other proposed tech-
niques, confirming that the proposed technique to calculate soft
labels from human-workers’ annotations effectively reduces
some of the noise in the feature scores. By applying the
proposed feature fusion with label propagation, we can see
the improvements made compared to the final score and
each feature’s score, as shown in Fig. 6. Very significant
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Fig. 6. Percentage difference between each feature’s AP values from both
the baseline and our proposed method. The feature IDs are aligned with those
in Fig. 5.

TABLE III

QUALITATIVE RESULTS OF THE FIRST FIVE VIDEO CLIPS RETRIEVED BY
THE BASELINE AND THE PROPOSED METHOD. BELOW EACH VIDEO’S
SCREENSHOT, THE CHECK (v”) INDICATES ITS RELEVANCE TO THE
FEATURE, WHILE THE CROSS (X) MARKS THOSE VIDEOS THAT
HAVE BEEN INCORRECTLY RETRIEVED
AS FALSE POSITIVES

Retrieval

Baseline

Smoke/Fire

Baseline | Proposed

Snow/Ice

Baseline | Proposed

Shrubs

Proposed

improvements can be observed for most of the features. More
notably, smoke/fire and snow/ice demonstrated improvements
of 792% and 587%. By virtue of the proposed methods, time
and location data were effectively used in instances where
labels were extremely limited. Certain features, including
landslide and lake, performed worse due to the overlap and
ambiguity in some feature definitions—further discussed in
Section IV-B2.

2) Qualitative Results: Table III illustrates the qualitative
results from the top five videos retrieved by the baseline and
the proposed method for some features, where the video’s
keyframe that achieves the highest score for that particular

4704510

feature is displayed. Because the LADI’s target features are so
broad, there are many variations in what may be regarded as
valid observations within each feature target. Moreover, many
of the features have vague meanings that may overlap. The
false positives obtained from the retrieval further demonstrate
the ambiguity and broadness that are present in some of the
features’ meanings and how these limitations have affected
the results. As can be seen from this table, for the smoke/fire
feature, the baseline method retrieved many examples of
environments surrounded by “fog,” which means that the
model might have identified some characteristics in “fog” to
be very similar to “smoke.” However, we also observe that
the proposed approach’s fifth retrieved observation is a false
positive, as the model most likely misconstrues the feature
of “dust” for smoke. Despite the ambiguity and broadness
of the feature, the proposed method significantly improves
the retrieval performance for smoke/fire by incorporating the
historical data of the relevant real-life events. The snow/ice is
another feature that benefits a lot from matching the historical
data in NOAA’s CDO database using time and location from
the training image’s metadata as queries. The uncertainty and
overlap in these feature definitions may be seen more clearly
in the case of the feature, shrub. A shrub is a kind of foliage
that might be difficult to tell apart from a tree from afar.
Although our proposed framework effectively retrieves more
relevant videos with shrubs, some of the videos categorized
as not relevant may include shrubs as well, or it is not easy
to discern.

V. CONCLUSION AND FUTURE WORK

It is now feasible, more than ever, to dispatch a drone ahead
of the rescue crew to inspect the impacted region and aid
responders to automatically identify those areas that are the
most affected and should be prioritized to deliver a timely and
appropriate response. The proposed framework aims to predict
the chance of a certain catastrophe or environment-related
characteristic being present inside a low-altitude snapshot
or video. This article introduces a weakly supervised deep
learning approach developed for automatic disaster scene
description of low-altitude pictures captured from an aircraft.
The proposed approach is also intended to cut down the
time and effort that human annotators spend labeling images.
As part of our future work, we will continue to work on
improving the model’s performance by further analyzing the
image’s sequential characteristics. The proposed approaches
will also be evaluated on additional comparable datasets that
may be noisy, imbalanced, or lacking ground truth.
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