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Abstract—Real-world data often contain multiple modalities
and non-exclusive labels. Multimodal fusion is a vital step in mul-
timodal learning that integrates features from various modalities
in the vector space so that the classifier could utilize the fused
vector to generate the final prediction score. Common multimodal
fusion approaches rarely consider the cross-modality interactions
which play an essential role in exploiting the inter-modality
relationship and subsequently creating the joint modality em-
bedding. In this paper, we propose a hierarchical multimodal
fusion framework with dynamic multi-task learning. It focuses
on modeling the joint embedding space for all cross-modality
interactions and adjusting the task loss for optimal performance.
The proposed model uses a novel hierarchical multimodal fusion
network that learns the cross-modal interactions among all
combinations of modalities and dynamically allocates the weights
for each pair in a sample-aware fashion. Furthermore, a novel
dynamic multi-task learning approach is applied to handle the
multi-label problems by automatically adjusting the learning
progress on both task level and sample level. We show that
the proposed framework outperforms the baselines and some of
the state-of-the-art methods. We also demonstrate the flexibility
and modularity of the proposed hierarchical multimodal fusion
and dynamic multi-task learning units, which can be applied to
various types of networks.

Index Terms—hierarchical multimodal fusion, graph fusion,
multi-task learning

I. INTRODUCTION

Multimodal learning has attracted great interest from the
research community due to its benefit in utilizing the huge
amount of real-world data which often contain multiple data
sources [1] [2] [3]. Compared to its single modality counter-
part, multimodal learning is the technique that focuses on ex-
ploiting the rich information underlying various input modal-
ities. One essential step in multimodal learning is multimodal
fusion, where the input features of each modality are combined
to form a single vector. Therefore, the way features are
fused holds substantial impact on the model’s effectiveness in
harvesting the information provided by multiple input sources.
Contrary to traditional belief, merely increasing the number of
input modalities does not always yield better results [4]. The
main cause that leads to the subpar performance is due to the
oversight of cross-modality interactions.

How to effectively fuse the representations of diverse
modalities has become a pressing issue in multimodal learning
and therefore attracted great attention of the research com-
munity. The heterogeneity nature of multimodal data creates

an emerging barrier in harnessing comprehensive information
across all modalities, which is the key to fully understand and
utilize the rich multimedia information [5]. Early attempts on
multimodal fusion tend to work on each modality separately.
Each modality is trained on its own network with the resulting
intermediate features combined in different stages of the
processing chain, such as early fusion and late fusion [6].
However, due to the heterogeneity nature of multimodal data
and the disconnection among networks, the fused vector still
falls short on representing the complex distribution among
modalities.

Multi-task learning (MTL) is a technique that has been
quite popular in machine learning/deep learning, multi-label
learning, and multi-output regression domains [7]. MTL takes
advantage of the broader coverage of various domains by train-
ing multiple tasks simultaneously. MTL has been functioning
remarkably well in many scenarios since a more generalized
and robust model can be learned. This is achieved by sharing
the knowledge among tasks, as well as a lowered chance
of overfitting. An open topic in MTL is how to balance
the training progress among tasks. A common practice is to
assign equal weights for all tasks or to heuristically weight
the training loss of each task. The former solution often
yields inferior results when one task dominates the training
process with an excessive loss, which can contribute to the
loss function itself or the task complexity [8]. The latter
solution completely relies on human judgment, which lacks
the flexibility on applying to different problem domains and
it usually requires tedious weight tuning process.

In this paper, we propose a novel hierarchical multimodal
fusion network with dynamic multi-task learning. The multi-
modal fusion network hierarchically joins each modality to
form a graph structure where the vertices represent joined
modalities and the edges contain the cross-modality interac-
tions. The relative importance among joined modalities in
the same level is learned on a sample to sample fashion
and applied to formulate the joint embedding that will be
used in the next level. We also propose a dynamic multi-task
learning approach that disintegrates the multi-label classifi-
cation problem into various single-label binary classification
tasks. By monitoring the training complexity in each task,
the dynamic multi-task learning unit automatically adjusts the
weighting of the task loss so that the optimal weight balance
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can be achieved. The dynamic multi-task learning unit also
assigns a set of initial task loss weights at the beginning of
the training cycles and keeps updating them throughout the
training process to ensure the task loss weights are not caught
in the local minimum/maximum.

In summary, the major contributions of this paper are listed
below:
• We propose a novel hierarchical multimodal fusion

network that exploits the cross-modal interactions.
• A novel dynamic multi-task learning approach that

automatically optimizes the model training process
based on both task level and sample level training
complexities. It also re-balances the loss weights
for each task at the onset of the training cycles to
minimize the chance of task weights being caught in
the local minimum/maximum.

The remainder of this paper is organized as follows. In
Section II, the literature in multimodal fusion and multi-task
learning is briefly discussed. Section III provides a detailed
discussion about the proposed hierarchical multimodal multi-
task learning framework. Section IV presents the experimental
setup and results. Finally, in Section V, we summarize the
paper by discussing the key components and contributions.

II. RELATED WORK

Traditional Multimodal fusion often operates on three levels:
early fusion, late fusion, and hybrid fusion. Early fusion
is usually implemented by concatenating the raw or pre-
processed features of each modality immediately after the
feature extraction stage [9] [10] [11]. Early fusion is simple
to implement and requires a less complex network structure.
However, early fusion will encounter issues when one input
modality is a continuous data stream while another modal-
ity contains discrete data. Furthermore, as the number of
modalities increases, it is significantly difficult to learn the
cross-model interactions among heterogeneous features. Late
fusion utilizes multiple networks to generate modality-specific
prediction scores. Then it analyzes and manipulates the scores
to arrive at the final decision [12] [13] [14] [15]. Late fusion
offers several benefits over early fusion. First, the modality-
specific networks enable the model to learn different semantic
representations from each modality. Second, it takes advantage
of the domain-specific models and algorithms, such as apply-
ing the convolutional neural network (CNN) based models on
visual data, or recurrent neural network (RNN) based models
on sequential data. However, late fusion omits the feature-
level cross-modality interactions. This will lead to the loss of
crucial inter-modality information. Hybrid fusion combines the
strengths of late fusion and early fusion by transforming the
raw input data into their higher-level representations to make
it easier to fuse different modalities and learn the cross-modal
representation [16] [17] [18].

Recently, Tensor fusion has attracted the attention of many
studies. Tensor fusion tackles the heterogeneous data distribu-
tion challenge in multimodal learning by fusing each modality
at the tensor level. As a result, it enables the model to learn

the granularity of cross-modal interactions. Tensor fusion has
demonstrated promising results in multimodal deep learning
for visual question answering [19] and sentiment analysis [20].
Ben-younes et al. proposed a framework in order to solve
the visual question answering problem [19]. They extracted
features from both visual images and textual questions using
GRU (Gated Recurrent Unit) and ResNet [21]. Then, features
are fused using the tensor fusion approach. During the fusion
process, a tensor based Tucker decomposition approach is
utilized to parametrize the tensor correlation between visual
and textual representations. Another work by Zhao et al. [22]
used a multi-agent tensor layer and convolutional fusion to
capture the cross-modal interactions.

Graph-based fusion networks transform modalities and the
interactions among them into fusion graphs. Features from
each modality are considered as vertices and the relationships
between them are implemented as the edges. Zadeh et al.
tried to use a Dynamic Fusion Graph (DFG) to model the
n-modal dynamics [23]. Compared to Tensor Fusion, DFG
achieves better training efficiency where much fewer learnable
parameters are introduced. It also uses learned parameters to
control the activation of certain edges, and thus dynamically
changes the network structure. Multimodal metrics learning
and graph-based fusion are combined to measure feature
similarity between modalities [24]. Chen et al. [25] proposed a
heterogeneous graph-based fusion network that focuses on the
fusion of multimodal data with missing modalities. It uses a
graph network to project the missing data with other modalities
into a joint embedding space.

Multi-task learning provides several benefits by training
multiple tasks simultaneously. Besides the obvious advantage
of the shortened training time by performing only one training
pass, it also helps the model learn a more generalized repre-
sentation of the entire problem domain. This greatly reduces
the chance of overfitting [7]. Multi-task learning also shows
a great potential in the multimodal learning domain. Sener et
al. [26] utilized multi-objective optimization to find the Pareto
optimal solution to minimize the weighted combination of
task losses. Vandenhende et al. [27] applied a multi-modal
distillation unit to model task correlation from various levels
of the network. A more recent work by Hu and Singh [28]
employed an encoder-decoder mechanism to encode each input
modality and decode them into a shared embedding space.

III. METHODOLOGY

A. Architecture Design

In this section, we present the architecture design of the
hierarchical multimodal fusion multi-task learning framework.
The framework is composed of two main components: a Hier-
archical Graph Fusion Network (HGFN) and a dynamic MTL
(DMTL) module. In the first step, the feature representations
of each modality are fused by the HGFN. In step two, the
joint feature produced in step one will be used by the DMTL
module to dynamically adjust the training progress on each
task.
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Fig. 1: Hierarchical Graph Fusion Network (HGFN) with 3 input modalities

B. Hierarchical Graph Fusion Network

Inspired by [29], we form the HGFN by exploiting the n-
modal interactions. HGFN combines all modalities on uni-
modal, bimodal, and trimodal levels and models the interac-
tions and relationships between each pair of combinations. An
overview of the HGFN is shown in Figure 1.

The first level contains all unimodal and their interactions.
We define the unimodal input feature vector Vi, where M
is the total number of modalities and i = [1,M ]. Although
HGFN can be applied to any number of modalities, here
we consider M = 3 in the rest of the paper. To model the
relative importance of each modality and assign weights to
the edges, we apply a Dynamic Attention Unit (DAU) to
learn the importance of each modality and assign it as the
weights of the connected edges. More specifically, features
from each modality are first concatenated together and then
pass to a network composed of 2 convolutional layers with 5
by 5 and 1 by 1 kernel size and LeakyRelu activation. Padding
is performed to ensure the features of each modality have the
same dimension. This process can be described as follows.

w1 ⊕ w2...⊕ wM = DAU(V1 ⊕ V2...⊕ VM ) (1)

where ⊕ is the concatenation operation, V1, V2, ...VM are the
unimodal vectors of the M modalities, and w1, w2, ...wM
are the corresponding weights. DAU learns the dynamic of
importance score that should be assigned to each vector in a
sample-based fashion. Such importance score will be used as
the foundation to form the edge weights in higher levels.

In the next step, the final unimodal level vector can be
obtained as the weighted average of vectors from all unimodal
level vertices:

Funimodal =
1

M

M∑
i=1

wi · Vi (2)

where Funimodal is the combined unimodal vector.
In the bimodal level, each pair of unimodal vectors are

combined to form the vertices in this level. A neural network
CONV with one 1D convolutional layer and one dense layer
with LeakyRelu activation is used to combine the unimodal
vectors and produce all bimodal level vertices. This procedure
can be described as:

V(a,b) = CONV (Va ⊕ Vb)
a = 1, 2, ...M ; b = 1, 2, ...M ; a 6= b

(3)

where V(a,b) is the bimodal vector. Regarding the edges that
connect the vertices between unimodal and bimodal levels, we
assume that the closer the two features in the vector space, the
more homogeneous the information they possess. Therefore,
the combination of such two features will not provide as
much information as two distinct features do. Based on this
assumption, we calculate the similarity between each pair of
vertices at the bimodal level. The calculation can be described
as:

Sa,b = COS(Ṽa, Ṽb) (4)

where Sa,b represents the similarity score between vertices
a and b, COS is the cosine similarity function, and Ṽa and
Ṽb are the softmax normalized form of vector Va and Vb.
The purpose of softmax normalization is to constrain the
values of both vectors to be between 0 and 1. According to
our assumption, the more similar two vectors are, the less
weight they should carry when combined. In other word, the
edge weight between the two vertices should grow in inverse
proportion to the similarity score. Therefore, the edge weight
that connects vertex a in the unimodal level and vertex ab in
the bimodal level is calculated as wa

Sa,b+θ
. Similarly, the edge

weight that connects vertex b and ab is defined as wb

Sa,b+θ
.

Term θ is an adjustable factor that controls the growth rate
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with a value between 0 and 1. Based on the empirical study,
θ = 0.5 is used in this paper. Consequently, the vertex weight
in the bimodal level is formulated as:

qa,b =
wa + wb
Sa,b + θ

wa,b =
eqa,b∑M

j=1

∑M
k=1,j 6=k e

qj,k

(5)

where qa,b is the vertex weight for V(a,b) in the bimodal level,
and wa,b represents the softmax normalized form of qa,b. Then,
the final combined bimodal level vector can be described as:

Fbimodal =
M∑
a=1

M∑
b=1,a6=b

wa,b · V(a,b) (6)

where Fbimodal is the combined bimodal vector
In the trimodal level, all calculations are similar to the pro-

cedure illustrated in the bimodal part. Equations (4), (5), and
(6) are used to calculate the trimodal level similarity scores,
vertex weight, and combined trimodal vector. The trimodal
level contains two types of vertices: 1) the combination of
bimodal vertices; and 2) each bimodal vertex is combined
with the unimodal vertex that is not included in the formation
of this bimodal vertex. Therefore, for a dataset with 3 input
modalities, there will be a total of 6 vertices in the trimodal
level.

In the last step, the combined vectors from unimodal,
bimodal, and trimodal levels are concatenated to form the final
combined vector Fcombined:

Fcombined = Funimomdal ⊕ Fbimodal ⊕ Ftrimodal (7)

C. Dynamic Multi-tasking Learning Module

MTL calculates the final training loss as a linear com-
bination of all task losses, which is used to optimize the
model parameters. Common MTL approaches either assign
equal weights to all tasks or assign each task with a different
weight according to the empirical study. Based on our prior
studies [8] [30], we introduce the dynamic MTL (DMTL)
module that is capable of learning the task loss weights on
both sample level and task level. It also re-balances the initial
task loss at each training cycle to avoid the loss weights from
falling in the local minimum/maximum.

DMTL on sample level aims to allocate a higher priority in
learning the input samples that are misclassified. By using the
Cross-Entropy loss function as an example, we can describe
this process as:

CE(pd) = −log(pd) (8)

where

pd =

{
p, if y = 1

1− p, otherwise
(9)

where the ground truth label is y ∈ {0, 1}, and 0 ≤ p ≤ 1
is the probability of a sample to be labeled as 1. The sample
level loss weighting function Ls is defined as:

Ls(x) = −(1− pd)β log(pd) (10)

where x is the input data and β is the sample level focusing
parameter that controls the magnitude of weight reduction for
easy (true negative) samples. When pd is small and the sample
is misclassified, the value of (1 − pd)β is closer to 1, which
has very limited impact on the loss. On the other hand, as
the value of pd increases, (1 − pd)

β gradually becomes 0,
which down-weights the loss produced by correctly classified
samples. This forces the model to allocate more resources on
learning hard (false negative) samples.

In comparison, DMTL on task level automatically adjusts
the weights on losses generated by each task-specific network.
The training loss of each task is monitored and used as
the metric to adjust the weighted gradient in each layer.
In practice, we use a custom loss function to minimize the
differences between: 1) weight gradient among all tasks; and
2) the training rate weighted average gradient. The L1 norm
task level dynamic balancing (TDB) loss function LTDB at
training iteration t is defined as:

LTDB(t) =
∑
f

N

nf

∣∣∣G(f)
W (t)−GW (t)× [rf (t)]

α
∣∣∣
1

(11)

where N represents the total number of samples, nf is the
number of positive samples in task f , N

nf
is the inverted task

sample distribution ratio for task f , W represents the weight
parameter of the last task-specific network layer, G(f)

W (t) is
the L2 norm gradient of the weighted task loss for task f
at iteration t, GW (t) is the average gradient of all tasks at
iteration t, rf (t) represents the inverse training rate of task f ,
and term α controls the magnitude of the inverse training rate.

In some cases, the task loss weight update through TDB
may not be sufficient if the task difficulty is overly skewed.
This may slow down the task loss updating process and
cause the loss weights of some tasks to fall into the local
minimum/maximum. To resolve this issue, we re-balance the
task loss weights after a complete training cycle. This ensures
a more aggressive loss updating process which helps the model
quickly reach the optimal task loss weight and avoid the loss
weights from falling into the local minimum/maximum.

In practice, the average training losses for each task through
the entire training cycle are calculated. Then, a weight scalar
is generated by dividing the largest value among all average
training losses with the average training loss of each task.
Finally, the weight scalar is applied to all tasks to re-balance
the task losses at the beginning of the training cycle. We keep
track of the validation loss and the training process will stop
if the validation loss stopped decreasing.

IV. EXPERIMENTS

A. Datasets

CrisisMMD [31] is a multimedia Twitter dataset with more
than 16,000 tweets and 18,000 images that are related to seven
major natural disaster events. Each sample is labeled with 3
groups of concepts: data informative level, humanitarian cate-
gory, and damage level. The data informative level represents
the amount of information carried, the humanitarian category
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covers the type of humanitarian crisis and relieving efforts
occurred in the scene, and the damage level is the severity of
damage on infrastructures and utilities. We report F1 score,
Hamming Loss (HL), and Mean Average Precision (MAP) on
this dataset. For F1 and MAP, the higher the score the better,
whereas for HL the lower the score the better.

YouTube Disaster dataset [32] is a multi-label YouTube
hurricane disaster video dataset that contains more than
1,500 video clips and the corresponding text descriptions.
Each sample is manually labeled with 7 concepts based on
the elements present in the scene. These concepts include
demonstration, emergency response, flood/storm, human relief,
damage, victim, and speak/briefing/interview. We report the
model performance in F1 score, Hamming Loss, and Mean
Average Precision on this dataset as well.

TABLE I: Data informative concept performance evaluation
on the CrissMMD dataset

Method F1 HL MAP
CFC + LSEW 0.623 0.237 0.587

MATF + LSEW 0.774 0.151 0.738
GFN + LSEW 0.813 0.104 0.762

HGFN + LSEW 0.839 0.097 0.794
CFC + MOO 0.685 0.202 0.638

CFC + MTI-NET 0.673 0.214 0.625
CFC + DMTL 0.736 0.164 0.709

HGFN + DMTL 0.862 0.041 0.825

TABLE II: Humanitarian category concept performance eval-
uation on the CrissMMD dataset

Method F1 HL MAP
CFC + LSEW 0.527 0.293 0.496

MATF + LSEW 0.681 0.207 0.649
GFN + LSEW 0.677 0.209 0.642

HGFN + LSEW 0.712 0.181 0.695
CFC + MOO 0.603 0.246 0.571

CFC + MTI-NET 0.614 0.237 0.588
CFC + DMTL 0.686 0.194 0.660

HGFN + DMTL 0.762 0.153 0.749

TABLE III: Damage level concept performance evaluation on
the CrissMMD dataset

Method F1 HL MAP
CFC + LSEW 0.634 0.229 0.607

MATF + LSEW 0.781 0.148 0.745
GFN + LSEW 0.819 0.117 0.793

HGFN + LSEW 0.852 0.080 0.839
CFC + MOO 0.693 0.181 0.664

CFC + MTI-NET 0.688 0.186 0.650
CFC + DMTL 0.746 0.149 0.715

HGFN + DMTL 0.913 0.029 0.897

B. Experimental Setup

Visual Feature Extraction: We use ImageNet [33] pre-
trained Inception V3 [34] model as the feature extractor for
the visual data. Regarding the YouTube Disaster dataset, each

TABLE IV: Performance evaluation on the YouTube Disaster
dataset

Method F1 HL MAP
CFC + LSEW 0.769 0.157 0.722

MATF + LSEW 0.865 0.053 0.818
GFN + LSEW 0.889 0.041 0.805

HGFN + LSEW 0.931 0.024 0.890
CFC + MOO 0.874 0.040 0.828

CFC + MTI-NET 0.882 0.035 0.831
CFC + DMTL 0.922 0.027 0.904

HGFN + DMTL 0.987 0.011 0.958

video clip is subsampled into 40 frames and resized and
cropped into 224 by 224 pixels.

Textual Feature Extraction: Embeddings from Language
Models (ELMo) representation [35] is used to generate the
word embedding for textual data. Compared to traditional text
embedding techniques such as Word2vec [36] and Glove [37],
ELMo can capture the morphological information and also
excel in handling out of vocabulary words.

Audio Feature Extraction: A pre-trained SoundNet [38] is
used to extract the audio features.

For the CrissMMD dataset, features generated by each
pre-trained model are directly passed to HGFN to perform
multimodal fusion. To exploit the temporal information in
the YouTube Disaster dataset, features generated by the pre-
trained models are first fed into a small neural network
with 2 Bidirectional Gated Recurrent Unit (Bi-GRU) layers
with attention enabled. Then, the intermediate vectors are
processed by HGFN, which is similar to the process applied
to CrissMMD.

For both datasets, 60% of the data is used for training, 20%
for validation, and 20% for testing. The validation set is used
to tune all hyperparameters, and the term α in the TDB loss
function is set to 1 based on the empirical study. Adam [39] is
used for optimizing the training process and the initial learning
rate is set to 0.01.

The DMTL module is applied to 3 concept groups of
the CrissMMD dataset, in which each concept is modeled
as a distinct task. In comparison, we consider each label in
the YouTube Disaster dataset as a single task. This converts
the original multi-label classification problem into an MTL
problem.

C. Results and Discussion

Several baselines including the state-of-the-art methods are
selected to demonstrate the performance of our proposed
framework. The multimodal fusion baselines include : 1) a
common fuse by concatenation (CFC) approach that sim-
ply concatenates each modality immediately after the ini-
tial feature extraction step; 2) tensor-based fusion method
MAFT [22]; and 3) Graph Fusion Network (GFN) [29]. The
baselines for MTL include: 1) a linear sum of all task loss
with equal weights (LSEW); 2) Multi-Objective Optimization
(MOO) [26]; and 3) Multi-scale Task Interaction NETwork
(MTI-NET) [27]. For comparison purposes, we replace the
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TABLE V: Per-concept classification accuracy on YouTube Disaster dataset

Approach Demonstration Emergency Response Flood/Storm Human Relief Damage Victim Briefing
CFC + LSEW 0.823 0.812 0.866 0.829 0.787 0.780 0.875

MATF + LSEW 0.853 0.841 0.897 0.854 0.811 0.804 0.905
GFN + LSEW 0.866 0.851 0.902 0.865 0.831 0.824 0.880

HGFN + LSEW 0.914 0.909 0.960 0.927 0.913 0.895 0.923
CFC + MOO 0.841 0.835 0.887 0.853 0.819 0.804 0.890

CFC + MTI-NET 0.866 0.852 0.875 0.841 0.833 0.812 0.906
CFC + DMTL 0.933 0.908 0.932 0.931 0.942 0.903 0.915

HGFN + DMTL 0.955 0.971 0.989 0.973 0.952 0.917 0.982

model low-level layers of each baseline with the aforemen-
tioned pre-trained models.

Multimodal fusion strategies: Table I, Table II, and Ta-
ble III demonstrate the performance of the proposed HGFN
and DMTL approaches, as well as other baseline methods
on the data informative, humanitarian category, and damage
level concepts of the CrissMMD dataset. Table IV shows the
experimental results on the YouTube Disaster dataset. It can be
observed that for both datasets, the CFC+LSEW combination
yields the lowest score in all metrics. This is not surprising
since a simple concatenation of features in the early stage
often fails to reflect the heterogeneous distribution of different
modalities. Moreover, an equal weight linear sum of task loss
in MTL has very limited effectiveness or even negative impact
when a few tasks dominate the training process.

Tensor-based fusion method MATF and graph-based fusion
method GFN both demonstrate performance improvements
comparing to the CFC+LSEW vanilla approach. GFN exhibits
a clear edge over MATF, especially on data with more input
modalities, such as the YouTube Disaster dataset. This is partly
due to the fact that common tensor fusion approaches like
MATF only model the joint embedding representation after
the fusion operation, whereas GFN fills this gap by learning
the inter-modality interaction during the early stage.

Our proposed HGFN outperforms all baselines and beat the
2nd best performer by 4.2% in F1 score and 8.5% in MAP.
We argue that this can partly be contributed to the DAU that
learns the relative importance of each modality and integrates
it at the very beginning of the graph fusion network. We
also report the per-concept results on the YouTube Disaster
dataset in Table V which shows the classification accuracy of
all 7 concepts. It can be observed that our proposed approach
outperforms GFN+LSEW (the second best result) by up to
8.2% in the damage concept. Our model exhibits consistent
performance on both datasets regarding the multimodal fusion
results.

Multi-task learning strategies: Table I, Table II, Table III,
and Table IV also illustrate the results of MTL methods on
both CrissMMD and YouTube Disaster datasets. Both MOO
and MTI-NET exhibit stronger performance comparing to the
equal weight linear sum MTL approach. However, the overall
improvement is not quite significant. A probable explanation is
in the situation of severe class imbalance, where there will be
a substantial performance hit on both methods. Our proposed
approach handles the class imbalance issue by introducing

the inverted task sample distribution ratio term in the DMTL
loss function, which helps the model further penalize the
majority classes by allocating more resources to the minority
classes. We also argue that re-balancing the task loss weight
at the beginning of a training cycle helps our model continue
reducing the total training loss; while this mechanism is absent
in the other two methods.

For the CrissMMD dataset, our proposed DMTL approach
outperforms the 2nd best method by 7.2% in F1 score and
7.3% in MAP. Regarding the YouTube Disaster dataset, our
approach also leads the 2nd best performer in classification
accuracy by 9.1% in the victim concept.

Overall, Our proposed model with hierarchical graph fusion
network and dynamic MTL achieves the best performance
among all baselines in both CrissMMD and YouTube Disaster
datasets. Furthermore, the modularity design of HGFN and
DMTL module makes it very flexible and easy to apply to
other data types and model structures.

V. CONCLUSION

In this paper, we propose a hierarchical multimodal multi-
task learning framework that learns the joint embedding space
for all cross-modality interactions and handles input data with
multiple non-exclusive labels. We first analyzed the challenges
of multimodal fusion and designed a novel hierarchical graph
fusion network that is capable of exploiting joint embedding
among all cross-modality interactions. The proposed HGFN
first produces the importance score for each unimodal ver-
tice and utilizes it to derive the interactions among bimodal
and trimodal vertices. Furthermore, we introduced a novel
DMTL module that automatically adjusts the loss weight for
each task based on their learning complexity. The DMTL
module also takes into account the sample difficulty factors
by allocating more resources to the hard samples. A task
loss weight re-balancing mechanism is in place to ensure an
optimal weight distribution at the beginning of the training
cycle, which effectively prevents the weight from falling
into the local minimum/maximum. Experimental results on
two multimedia datasets show that our method outperforms
baseline approaches by a clear margin. Moreover, our proposed
framework can be applied to other data domains and network
structures with little effort due to its modular nature.
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