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Abstract—Not only does the destruction caused by natu-
ral disasters impair human lives, but it can also result in
devastating damages to the community infrastructure and
possibly cause the loss of historic structures as well as vital
documents. Technological advances in remote sensing survey
tools such as satellite images and aerial photographs have
allowed emergency responders to rapidly and remotely conduct
a comprehensive assessment of the damages caused by a
disaster event. Most of the previously proposed research in
the automatic identification and prediction of building damage
assessments from optical remote sensing data depends on the
availability of accurate geometric footprints of the affected
area’s structures. However, the available building footprints
may rapidly become outdated as new infrastructures are built
while old ones are demolished or renovated. We propose an
end-to-end weakly-supervised damage assessment model where
the assumption is that the building footprint is unknown during
training.Instead, there is a rough estimate of the building’s
location and the level of damage it sustained. Ablation tests
are conducted on both a large-scale satellite imagery set and
a smaller set of aerial photographs prepared and curated by
our team to demonstrate our proposed model’s performance.

Keywords-damage assessment; deep learning; convolutional
neural networks

I. INTRODUCTION

Damage assessment is a preliminary on-site survey of

damages or failures caused by an accident or natural occur-

rences such as a hurricane, tsunami, or earthquake. These

damage analyses are often conducted right after a disaster

to document the degree of damage that can be replaced,

repaired, or recovered. It can also allow estimating the time

needed for repair, replacement, and rehabilitation. The first

glimpse of the destruction caused by a disaster incident is

made available by high-resolution satellite imagery or aerial

photographs that allow experts to produce precise estimates

of damage to the infrastructure without the need to be

physically present on-site.

Technological developments in remote sensing survey

instruments [1], [2], [3], such as satellite images and

aerial photographs, have enabled emergency responders to

perform a comprehensive damage assessment quickly and

remotely [4]. After a disaster event, government agencies

such as Federal Emergency Management Agency (FEMA)

conduct a preliminary building damage assessment through

(1) predictive modeling to estimate probable damages; and

(2) visual using the imagery captured post-event to assess

actual damages [5]. Nevertheless, manually identifying the

impacted properties can be a slow and laborious job when

disasters cover a wide area of the land.

Deep learning methods demonstrated great success in var-

ious research areas [6], [7], [8], [9], [10]. More specifically,

the Convolutional Neural Network (CNN) is a well-known

architecture that has achieved tremendous breakthroughs in

image recognition and has been the preferred method for

developing damage assessment models using optical remote

sensing data. However, recently proposed approaches that

apply deep learning for building damage assessment are

limited due to their reliance on the availability of accurate

geometries illustrating the footprint of the structure in the

map. High-quality pre-disaster images are also expensive to

produce and may rapidly become outdated as new structures

are developed.

We proposed to apply weak supervision in the detection

of the damaged building and the classification of the level of

damage. The proposed work uniquely considers a scenario

where a rough estimate of the damaged building’s location

and the degree of damage is the only data available to train

the model. Such an approach will be valuable for rapidly

identifying damaged buildings of interest and possibly ex-

panding benchmark datasets for further studies without the

need to review every structure in the image set. The main

contributions of this study are summarized as follows:

• A novel fusion module is trained on the correspondent

in-depth features at each spatial location extracted from

the images captured before and after a disaster event.

• A weakly-supervised training approach is proposed,

using noise regularization to train a robust model.

• Interpretable predictive results that serve as helpful

visualizations in the form of heatmaps can be leveraged

for rapid labeling jobs and further studies in building

damage assessment.

The rest of the paper is organized as follows. Section II

reviews the recent related works that apply deep learning

methods and other statistical techniques to building local-

ization and damage assessment. Section III introduces our
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Figure 1: Proposed two-stream CNN architecture for the weakly-supervised damage assessment model applying the proposed

fusion module to learn the deep feature correspondence at each feature location of the input image pair. Additive Gaussian

noise is randomly applied to the target patches to help the model generalize better.

proposed approach. Section IV provides a brief discussion

of the satellite images and aerial photographs in which

the proposed approach is tested. Section V summarizes the

experimental study with some discussions on the results.

And finally, Section VI concludes the paper by providing

suggestions on potential future work.

II. RELATED WORK

Previously introduced building damaged scale classifica-

tion research have been traditionally centered primarily on

classifying damaged buildings into two categories (i.e., intact

or destroyed) while also focusing on a single damage type

due to lack of well-curated benchmark datasets. Nonetheless,

more recent research works have explored a larger variety

of damage levels and datasets such as xBD [11] have

allowed researchers to develop more complex models that

can address the challenges unique to this direction.

Currently proposed research works in building damage

assessment can be summarized into two categories, instance-

level damage classification [12], [13], [14] and pixel-level

semantic segmentation [15], [16], [17]. Instance-level clas-

sification takes as input the image containing the overhead-

view of the building and aims to predict the level of damage

the building sustained. Semantic segmentation for pixel-level

classification is often the preferred approach which aims to

detect not only the building footprint but also predict the

degree of damage at each pixel-level. Detecting the damage

at each pixel-level has the advantage of obtaining more fine-

grained results

Building damage assessment techniques from previous

works rely on the availability of high-quality geometry of the

building footprint. However, the available building footprints

may rapidly become outdated as new infrastructures are built

while old ones may get demolished. Pre-disaster images may

become outdated as well, implying localization models may

not correctly identify the location of the newly developed

buildings to make the correct assessment.

III. APPROACH

An end-to-end convolutional neural network is developed

in this work to automatically learn how to extract and fuse

the characteristics from the images captured over an affected

region before and after a disaster event. The assumption is to

train a model under an scenario where data is very limited,

and geometric building footprints are scarcely available.

Given a pair of images, the proposed model’s objective is to

generate a two-dimensional predictive patch in a regression-

based approach, where each cell from the patch will contain

a value of the predicted level of damage—the higher the

value, the greater the damage. The proposed approach allows

the model to independently learn the specific patterns in

the image that belong to a building without the apriori

knowledge of the building’s footprint.

A. Data Preprocessing
The damaged point values are encoded in an ordinal

format starting with 1 as the lowest level of damage—the

higher the value, the larger the damage. These values are first

multiplied by 100 and placed into a grid on the location

that corresponds to the location of the damaged building

in the input image and generated the target label patch. A

Gaussian kernel smooths out the point values in the grid,

giving the damage more ground coverage of the surrounding

area. Previously proposed works have demonstrated the

importance of the region surrounding the damage structure

when making predictions about the level of damage a

building has sustained [14]. The Gaussian smoothing process

is similar to the average filter, but make use of a special

kernel representing a Gaussian curve form.
The formula of the Gaussian smoothing function G is

shown in equation 1.

G(dx, dy, σ) =
1

2πσ2
e

d2x+d2y

2σ2 (1)

Where dx is the horizontal axis distance from the origin,

dy is the vertical axis distance from the origin, and σ is the

Gaussian distribution’s standard deviation.

9

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on June 15,2022 at 17:13:12 UTC from IEEE Xplore.  Restrictions apply. 



During training, additive zero-centered Gaussian noise is

randomly applied to the target label patch in order to create

synthetic perturbations in the data and mitigate over-fitting.

These small perturbations are meant to aid in training a

model that is robust to the noise often found in real-life

data [18] such as Global Positioning System (GPS) location

errors.

B. Framework Configuration

1) Feature Extraction: As shown in Figure 1, our pro-

posed end-to-end framework is configured as a two-stream

CNN network that implements a fusion module to learn from

the correspondence between each image’s feature vector.

Each stream makes use of the ResNet50 architecture [19],

pre-trained on ImageNet, to extract features from the last

convolutional layer and obtain a feature vector that is cor-

respondent to parts of the 2-D image. Both networks’ pre-

trained weights are entirely fine-tuned to the new damage-

assessment datasets. Moreover, the weights between the

networks are unshared, as this has been demonstrated by

previous work [12] to allow each stream the flexibility to

individually fine-tune their weights accordingly and achieve

better results.

2) Fusion Module: The fusion module following the

feature extraction step is trained to learn the deep corre-

spondence between both feature vectors using the capabil-

ities provided by the one-by-one (1 × 1) 2-D convolution

technique [20]. The two-stream networks in the feature

extraction phase take as input an image pair and from

its last convolutional layer generates the feature vectors

F pre, F post ∈ R
H×W×D, where H , W , D are the height,

width and total number of channels from the corresponding

feature vector. The objective is to develop a fusion module,

or function, such that f : F pre F post → P , where

P ∈ R
H×W is the predictive output patch. The fusion model

requires the vectors F pre and F post to first be stacked at the

same spatial location (x, y) across channel d, namely:

F stack
x,y,2d = F pre

x,y,d, F stack
x,y,2d−1 = F post

x,y,d, (2)

where Fstack ∈ R
H×W×C and C = 2D. It is also

assumed 1 ≤ x ≤ H , 1 ≤ y ≤ W , 1 ≤ d ≤ D. As

shown in Figure 1, the 1×1 convolution that follows works

as a coordinate-dependent transformation implemented to

takes as input the stacked feature vectors and define the

correspondence at each spatial location (x, y). This con-

volution approach leads to dimensionality reduction with

its combination being mathematically equivalent to a multi-

layer perceptron at each (x, y) [20].

While the first 1 × 1 convolution layer takes care of

learning the deep correspondence between F pre and F post,

the 1× 1 convolutional layer that follows further refines the

fused features and reduces the dimensions, while the last

convolutional layer applies a single 1×1 convolutional layer

followed by a Linear activation generates the final predictive

patch P .

3) Predictive Results Post-processing: When running in-

ference, the proposed model makes overlapping strides

throughout the test dataset and outputs the predictive patches

for each stride. These predictive patches are then merged

together, with the maximum value of the overlapping cells

calculated to generate the final predictive heatmap where

the higher the values of the output grid cell, the higher the

damage that was sustained by the building located in that

specific area.

IV. DATA

1) Satellite Imagery: As a benchmark to test our tech-

niques, xBD [11] is a newly introduced large-scale dataset

built for the advancement of building detection and damage

assessment across various levels of damage and types of

damage. xBD provides multi-band satellite pre- and post-

event imagery with building polygons, damage type classifi-

cation labels, ordinal damage level labels, and corresponding

satellite metadata from a variety of disaster events. The

dataset includes about 700,000 building annotations from

15 countries across more than 5, 000km2 of imagery.

There is a broad variety of disaster events that can be

found in the xBD dataset, including hurricanes, earthquakes,

fires, etc. Within the xBD dataset, hurricane and flooding

events are well represented but also indicate intra-class

differences that need to be considered. For example, a

large wind damage that is mirrored in their rooftop could

have been sustained by other buildings. On the other hand,

their rooftop may have left other buildings that experienced

a significant flooding effect intact. Therefore, the water

covering the building is a crucial clue to assessing this form

of damage when identifying damage caused by floods. In

addition, building damage, depending on the form and size

of the building, is often visually varied.

The xBD data is delivered in the form of image tiles

of size 1024 × 1024 that is padded with empty pixels

bringing the size of the patch up to 1120 × 1120 in order

to allow the corner buildings to be closer to the center

of the cropped image patch in some cases while training

the model and improving its predictive capabilities. While

training the model, random 224×224 crops are made to these

tiles to feed into the model. The centroids of the building’s

polygons are computed as the damage assessment points.

Table I summarizes the number of damage point instances

available from both datasets.

2) Aerial Photographs: The Irma dataset of aerial pho-

tographs represent one disaster event with a focus on the

wind damage. This dataset was processed and curated by

our team and is composed of aerial imagery and damage

assessment labels from open sources with a focus on the

damages caused by Hurricane Irma in 2017 at the Florida

Keys [21]. The aerial imagery was collected in the affected
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Table I: Data summary of the Irma data and xBD data

No. Concepts Irma xBD
# of damage instances

1 Affected 1219 -
2 Minor Damage 2739 36860
3 Major Damage 1082 29904
4 Destroyed 577 31560

Figure 2: Irma damaged building location and damage level

visualization from the Big Pine Key south area, one of the

most affected regions after Hurricane Irma.

areas identified by FEMA and the National Weather Service

during Hurricane Irma, where the Monroe county area

located in South Florida received most of the substantial

damages [22]. Hurricane Irma struck the Florida Keys as a

category four storm with the maximum sustained wind speed

of 132 mph and storm surge reaching up to 8 feet [21].

The eye of the storm made landfall over Cudjoe Key, and

consequently, the Lower and Middle Keys received the

highest impact.

The Irma data is composed of high resolution aerial pho-

tographs representing a Ground Sampling Distance (GSD)

of 50 cm. Along-side the aerial photographs taken before

and after the disaster event, the damage assessment labels

were also gathered by our team from public sources, as

well as combined and curated. Various damage assessment

reports were combined from different data sources which

include Monroe County’s official public preliminary damage

assessment report [23], Xian et al.’s assessment of the

damages of more than 1600 residential buildings [24], and

FEMA’s Historical Damage Assessment Database [25].

Different from xBD, the Irma data includes the affected

damage level, along with minor damage, major damage, and

destroyed. As shown in Figure 2, damage labels from the

Irma data are only the estimates of the damaged building’s

location and do not include the geometric information of

the building footprint. The damage labels can be matched

with building footprint geometries gathered from other data

sources. Nonetheless, there is also the challenge of matching

the location of the points to the right footprint.
The different damage levels are summarized as follows

in accordance to FEMA’s official guide in damage assess-

ment [5]:

• No damage: the structure remains unchanged as seen

from the birds’ eye-view.

• Affected: the structure exhibits minimal effects, such as

some missing shingles in the building rooftop but it is

still habitable according to FEMA’s standards.

• Minor damage: it constitutes of damages that do not

necessarily affect the integrity of the structure but may

make it inhabitable until repairs are done.

• Major damage: the structure sustained substantial dam-

age and requires extensive repairs in order to make it

habitable

• Destroyed: the structure is a total loss to the point where

repair will not be feasible for recovery.

V. EXPERIMENTS AND ANALYSES

A. Experimental Setup
In this paper, two datasets are tested on the proposed

methods. The Irma data samples are split into three non-

overlapping areas for training, validation, and testing. Two

of the lower and middle keys, Sugarloaf Key and Cudjoe

Key, are selected as validation and testing set areas. The

xBD satellite images are also split in a similar manner

following the original xBD data split provided in train,

test, and holdout splits in the 80/10/10% split ratio. In the

proposed approach, the test set is used as a validation set

to make an unbiased evaluation of our model while training

and storing the best performing results. The holdout set is

used to test the final already trained model.
Using the Mean Squared Error (MSE) formula, two

loss functions are defined and assessed for the proposed

approach—the patch loss Lpatch function and the pixel loss

Lpixel function. As demonstrated in equation 3, Lpatch first

calculates the losses for each grid cell (i, j) at each patch

level Pm, where (i, j) ∈ Pm ∈ R
N×2 and N is the total

number of cells in the grid. These losses are then summed-

up across a batch and divided by the total number patches M
in the batch to obtain the average loss from each patch-level.

Lpatch =
1

M

M∑

m=0

[

∑
i,j∈Pm

(Y (i, j)− Ŷ (i, j))2

N
] (3)

As an alternative, the pixel loss Lpixel function demon-

strated in equation 4 calculates losses for the individual cells

in the grid, treating each predicted cell as its own individual

sample. The variable K represents total number of individual

cells in each training batch, and is also assumed to be equal

to M ×N .

Lpixel =
1

K

K∑

k=0

(Yk − Ŷk)
2 (4)
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Figure 3: Violin plots of the sampled damaged points from predictions made on the xBD (left) and Irma (right) test split,

grouped by the different levels of damage.

The performance improvements made by the proposed

fusion module are also corroborated by comparing the

results from the post-only model and pre-post fusion model

configurations detailed as follows:

Post-only configuration: A single CNN model, based on

the ResNet50 architecture and pre-trained on ImageNet is

entirely fine-tuned to extract the features from the images

taken after the disaster event. The original classification head

is removed and replaced with a 1 × 1 2-D convolutional

layer followed by a linear activation function to output the

predictive patch.

Pre-post fusion configuration: This configuration makes

use of the proposed fusion module highlighted in Figure 1,

more details about this configuration have be found in

Section III-B.

Each epoch, the model is trained on the entire training set

using a small batch size of 32 samples to further regularize

and improve the model’s generalization capability [26]. As

the model trains, it is evaluated at the end of each epoch on

the validation set with the best performing model that has

the lowest validation loss saved—models are trained for no

longer than 100 epochs. In these experiments, the model’s

weights are optimized using the Stochastic Gradient Descent

with an initial learning rate of η = 0.001. During training,

the learning rate is multiplied by factor of 0.1 after there

have been no improvements to the validation loss for 10
consecutive epochs.

B. Results and Discussion

For testing purposes, values for damaged location points

in the testing set are sampled using bilinear interpola-

tion [27] from the final predictive heatmaps’ output predic-

tive value cells to compare with the labeled assessment data.

In bilinear interpolation, given the sampling point’s location,

the four cell centers from the input predictive patch that

are nearest to the sampled cell’s center are weighted based

on the distances and then averaged. Table II and Table III
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Figure 4: Qualitative results summary of the model’s output

predictive values on the test set for the xBD and the

Irma data. The point locations for the damage buildings

are overlaid on the post-disaster images and the model’s

predictive patch. The legend for the damage point labels is

as follows: ♦ - affected, � - minor-damaged, � - major-

damaged, and � - destroyed.

summarize the performance results for the xBD data and the

Irma data test splits using well-known regression metrics

MSE and Mean Absolute Error (MAE). These metrics

are utilized to compare the performance among the model

configurations described in previous sections. The closer the

predictions made by the model are to the target damage
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instances, the more confidence can be place into the model

to more accurately detect the different damaged buildings.

The pre-post fusion model has consistently achieved the

best performance. Moreover, losses calculated from each

individual pixel-level may perform better on smaller datasets

due to MSE’s sensitivity to outliers, which is essential

when detecting the minority classes. Noise regularization

plays an essential role in augmenting the training data and

helping to train a more robust model. As part of the ablation

study, the proposed pre-post fusion model is tested with and

without noise regularization, demonstrating the performance

improvements that can be achieved by applying it. Although

the proposed noise regularization hinders the performance of

the smaller and more limited Irma data, it has proven to be

an essential technique when working with larger datasets

such as xBD.

Furthermore, the proposed patch-level loss function has

also helped the model achieve better performance and reduce

errors. Unlike the pixel-level loss function, the patch-level

loss is not as sensitive to noise and places more weights on

the surrounding regions.

Table II: Performance summary on the xBD data

Method Loss
Function

Noise
Reg. MSE MAE

post-only
Lpixel

� 1.2259 0.9951

pre-post fusion
1.1867 0.9900

� 1.1285 0.9344

post-only
Lpatch

� 1.2111 0.9828

pre-post fusion
1.1437 0.9436

� 1.1282 0.9266

Table III: Performance summary on the Irma data

Method Loss
Function

Noise
Reg. MSE MAE

post-only
Lpixel

� 1.7227 1.4860

pre-post fusion
1.4714 1.2342

� 1.5663 1.3203

post-only
Lpatch

� 1.5356 1.2722

pre-post fusion
1.3893 1.1235

� 1.5282 1.3039

Figure 3 demonstrates the violin plots of the best perform-

ing model configurations for the xBD and Irma data—its

broader segments represent members of the population that

are more inclined to take on the given value; the skinnier

sections express a lower likelihood. It can be observed that

the weakly-supervised model can find an evident pattern

among different damage-levels—this is especially true with

the results of the xBD data. Even if there is an offset between

the target values and the predicted values, it is clear that the

majority of the sampled predicted points are grouped on

a segment following an ordinal paradigm—the higher the

value from the predictive cell, the higher the level of damage

sustained by the building located in that cell.

The model has successfully, and through implicit means,

learned to detect different damage levels sustained by build-

ings. Figure 4 illustrates the qualitative results generated by

the proposed model on the xBD and Irma datasets. These

predictive outputs serve as the interpretable visualizations

that can be leveraged for rapid labeling jobs and further

studies in the weakly-supervised building damage assess-

ment effort. Further refinement must be done to the predic-

tive outputs to train a model that can further separate the

individual buildings and detect the damages they sustained.

VI. CONCLUSION AND FUTURE WORK

This paper describes a novel approach to identifying dam-

aged buildings from remote sensing images and predicting

the level of damage that the building sustained after a

disaster event. The proposed model removes the dependency

on the available high-quality building footprint geometries

by assuming that only an estimate of the damaged building’s

location and damage level is available to train the model.

Weak supervision, together with the inclusion of pertur-

bations and noise regularization, are critical elements to

develop a robust model to label noise, which can adapt better

across multiple domains and various types of areas. The

proposed model’s predictive results can be further used to

visualize, identify quickly, and flag damaged buildings, and

conduct further studies and research. As part of the future

work, we will continue to improve the model’s performance

and develop techniques to better handle the class imbalance

in the data by assigning higher weights to the samples from

minority classes during training.
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