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Abstract—Not only does the destruction caused by natu-
ral disasters impair human lives, but it can also result in
devastating damages to the community infrastructure and
possibly cause the loss of historic structures as well as vital
documents. Technological advances in remote sensing survey
tools such as satellite images and aerial photographs have
allowed emergency responders to rapidly and remotely conduct
a comprehensive assessment of the damages caused by a
disaster event. Most of the previously proposed research in
the automatic identification and prediction of building damage
assessments from optical remote sensing data depends on the
availability of accurate geometric footprints of the affected
area’s structures. However, the available building footprints
may rapidly become outdated as new infrastructures are built
while old ones are demolished or renovated. We propose an
end-to-end weakly-supervised damage assessment model where
the assumption is that the building footprint is unknown during
training.Instead, there is a rough estimate of the building’s
location and the level of damage it sustained. Ablation tests
are conducted on both a large-scale satellite imagery set and
a smaller set of aerial photographs prepared and curated by
our team to demonstrate our proposed model’s performance.

Keywords-damage assessment; deep learning; convolutional
neural networks

I. INTRODUCTION

Damage assessment is a preliminary on-site survey of
damages or failures caused by an accident or natural occur-
rences such as a hurricane, tsunami, or earthquake. These
damage analyses are often conducted right after a disaster
to document the degree of damage that can be replaced,
repaired, or recovered. It can also allow estimating the time
needed for repair, replacement, and rehabilitation. The first
glimpse of the destruction caused by a disaster incident is
made available by high-resolution satellite imagery or aerial
photographs that allow experts to produce precise estimates
of damage to the infrastructure without the need to be
physically present on-site.

Technological developments in remote sensing survey
instruments [1], [2], [3], such as satellite images and
aerial photographs, have enabled emergency responders to
perform a comprehensive damage assessment quickly and
remotely [4]. After a disaster event, government agencies
such as Federal Emergency Management Agency (FEMA)
conduct a preliminary building damage assessment through

(1) predictive modeling to estimate probable damages; and
(2) visual using the imagery captured post-event to assess
actual damages [5]. Nevertheless, manually identifying the
impacted properties can be a slow and laborious job when
disasters cover a wide area of the land.

Deep learning methods demonstrated great success in var-
ious research areas [6], [7], [8], [9], [10]. More specifically,
the Convolutional Neural Network (CNN) is a well-known
architecture that has achieved tremendous breakthroughs in
image recognition and has been the preferred method for
developing damage assessment models using optical remote
sensing data. However, recently proposed approaches that
apply deep learning for building damage assessment are
limited due to their reliance on the availability of accurate
geometries illustrating the footprint of the structure in the
map. High-quality pre-disaster images are also expensive to
produce and may rapidly become outdated as new structures
are developed.

We proposed to apply weak supervision in the detection
of the damaged building and the classification of the level of
damage. The proposed work uniquely considers a scenario
where a rough estimate of the damaged building’s location
and the degree of damage is the only data available to train
the model. Such an approach will be valuable for rapidly
identifying damaged buildings of interest and possibly ex-
panding benchmark datasets for further studies without the
need to review every structure in the image set. The main
contributions of this study are summarized as follows:

¢ A novel fusion module is trained on the correspondent
in-depth features at each spatial location extracted from
the images captured before and after a disaster event.

o« A weakly-supervised training approach is proposed,
using noise regularization to train a robust model.

o Interpretable predictive results that serve as helpful
visualizations in the form of heatmaps can be leveraged
for rapid labeling jobs and further studies in building
damage assessment.

The rest of the paper is organized as follows. Section II
reviews the recent related works that apply deep learning
methods and other statistical techniques to building local-
ization and damage assessment. Section III introduces our
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Figure 1: Proposed two-stream CNN architecture for the weakly-supervised damage assessment model applying the proposed
fusion module to learn the deep feature correspondence at each feature location of the input image pair. Additive Gaussian
noise is randomly applied to the target patches to help the model generalize better.

proposed approach. Section IV provides a brief discussion
of the satellite images and aerial photographs in which
the proposed approach is tested. Section V summarizes the
experimental study with some discussions on the results.
And finally, Section VI concludes the paper by providing
suggestions on potential future work.

II. RELATED WORK

Previously introduced building damaged scale classifica-
tion research have been traditionally centered primarily on
classifying damaged buildings into two categories (i.e., intact
or destroyed) while also focusing on a single damage type
due to lack of well-curated benchmark datasets. Nonetheless,
more recent research works have explored a larger variety
of damage levels and datasets such as xBD [11] have
allowed researchers to develop more complex models that
can address the challenges unique to this direction.

Currently proposed research works in building damage
assessment can be summarized into two categories, instance-
level damage classification [12], [13], [14] and pixel-level
semantic segmentation [15], [16], [17]. Instance-level clas-
sification takes as input the image containing the overhead-
view of the building and aims to predict the level of damage
the building sustained. Semantic segmentation for pixel-level
classification is often the preferred approach which aims to
detect not only the building footprint but also predict the
degree of damage at each pixel-level. Detecting the damage
at each pixel-level has the advantage of obtaining more fine-
grained results

Building damage assessment techniques from previous
works rely on the availability of high-quality geometry of the
building footprint. However, the available building footprints
may rapidly become outdated as new infrastructures are built
while old ones may get demolished. Pre-disaster images may
become outdated as well, implying localization models may
not correctly identify the location of the newly developed
buildings to make the correct assessment.

III. APPROACH

An end-to-end convolutional neural network is developed
in this work to automatically learn how to extract and fuse
the characteristics from the images captured over an affected
region before and after a disaster event. The assumption is to
train a model under an scenario where data is very limited,
and geometric building footprints are scarcely available.
Given a pair of images, the proposed model’s objective is to
generate a two-dimensional predictive patch in a regression-
based approach, where each cell from the patch will contain
a value of the predicted level of damage—the higher the
value, the greater the damage. The proposed approach allows
the model to independently learn the specific patterns in
the image that belong to a building without the apriori
knowledge of the building’s footprint.

A. Data Preprocessing

The damaged point values are encoded in an ordinal
format starting with 1 as the lowest level of damage—the
higher the value, the larger the damage. These values are first
multiplied by 100 and placed into a grid on the location
that corresponds to the location of the damaged building
in the input image and generated the target label patch. A
Gaussian kernel smooths out the point values in the grid,
giving the damage more ground coverage of the surrounding
area. Previously proposed works have demonstrated the
importance of the region surrounding the damage structure
when making predictions about the level of damage a
building has sustained [14]. The Gaussian smoothing process
is similar to the average filter, but make use of a special
kernel representing a Gaussian curve form.

The formula of the Gaussian smoothing function G is
shown in equation 1.

d2+d?
g€ )

Where d,, is the horizontal axis distance from the origin,
d, is the vertical axis distance from the origin, and o is the
Gaussian distribution’s standard deviation.

G(dy, dy,0) =
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During training, additive zero-centered Gaussian noise is
randomly applied to the target label patch in order to create
synthetic perturbations in the data and mitigate over-fitting.
These small perturbations are meant to aid in training a
model that is robust to the noise often found in real-life
data [18] such as Global Positioning System (GPS) location
errors.

B. Framework Configuration

1) Feature Extraction: As shown in Figure 1, our pro-
posed end-to-end framework is configured as a two-stream
CNN network that implements a fusion module to learn from
the correspondence between each image’s feature vector.
Each stream makes use of the ResNet50 architecture [19],
pre-trained on ImageNet, to extract features from the last
convolutional layer and obtain a feature vector that is cor-
respondent to parts of the 2-D image. Both networks’ pre-
trained weights are entirely fine-tuned to the new damage-
assessment datasets. Moreover, the weights between the
networks are unshared, as this has been demonstrated by
previous work [12] to allow each stream the flexibility to
individually fine-tune their weights accordingly and achieve
better results.

2) Fusion Module: The fusion module following the
feature extraction step is trained to learn the deep corre-
spondence between both feature vectors using the capabil-
ities provided by the one-by-one (1 x 1) 2-D convolution
technique [20]. The two-stream networks in the feature
extraction phase take as input an image pair and from
its last convolutional layer generates the feature vectors
Frre frost ¢ REXWXD “\where H, W, D are the height,
width and total number of channels from the corresponding
feature vector. The objective is to develop a fusion module,
or function, such that f Frre fpost s P where
P € REXW js the predictive output patch. The fusion model
requires the vectors FP"¢ and F'P°St to first be stacked at the
same spatial location (x,y) across channel d, namely:

Fstack

__ rpost
z,y,2d—1 — F

z,y,d

— },“PTe

z,y,d’

@

where Fstack ¢ RHXWXC apnd ¢ = 2D. It is also
assumed 1 <z < H, 1 <y <W,1<d< D. As
shown in Figure 1, the 1 x 1 convolution that follows works
as a coordinate-dependent transformation implemented to
takes as input the stacked feature vectors and define the
correspondence at each spatial location (z,y). This con-
volution approach leads to dimensionality reduction with
its combination being mathematically equivalent to a multi-
layer perceptron at each (x,y) [20].

While the first 1 x 1 convolution layer takes care of
learning the deep correspondence between FP"¢ and FPost,
the 1 x 1 convolutional layer that follows further refines the
fused features and reduces the dimensions, while the last
convolutional layer applies a single 1 x 1 convolutional layer

stack
Fm,yﬁd

followed by a Linear activation generates the final predictive
patch P.

3) Predictive Results Post-processing: When running in-
ference, the proposed model makes overlapping strides
throughout the test dataset and outputs the predictive patches
for each stride. These predictive patches are then merged
together, with the maximum value of the overlapping cells
calculated to generate the final predictive heatmap where
the higher the values of the output grid cell, the higher the
damage that was sustained by the building located in that
specific area.

IV. DATA

1) Satellite Imagery: As a benchmark to test our tech-
niques, xBD [11] is a newly introduced large-scale dataset
built for the advancement of building detection and damage
assessment across various levels of damage and types of
damage. xBD provides multi-band satellite pre- and post-
event imagery with building polygons, damage type classifi-
cation labels, ordinal damage level labels, and corresponding
satellite metadata from a variety of disaster events. The
dataset includes about 700,000 building annotations from
15 countries across more than 5,000km? of imagery.

There is a broad variety of disaster events that can be
found in the xBD dataset, including hurricanes, earthquakes,
fires, etc. Within the xBD dataset, hurricane and flooding
events are well represented but also indicate intra-class
differences that need to be considered. For example, a
large wind damage that is mirrored in their rooftop could
have been sustained by other buildings. On the other hand,
their rooftop may have left other buildings that experienced
a significant flooding effect intact. Therefore, the water
covering the building is a crucial clue to assessing this form
of damage when identifying damage caused by floods. In
addition, building damage, depending on the form and size
of the building, is often visually varied.

The xBD data is delivered in the form of image tiles
of size 1024 x 1024 that is padded with empty pixels
bringing the size of the patch up to 1120 x 1120 in order
to allow the corner buildings to be closer to the center
of the cropped image patch in some cases while training
the model and improving its predictive capabilities. While
training the model, random 224 x224 crops are made to these
tiles to feed into the model. The centroids of the building’s
polygons are computed as the damage assessment points.
Table I summarizes the number of damage point instances
available from both datasets.

2) Aerial Photographs: The Irma dataset of aerial pho-
tographs represent one disaster event with a focus on the
wind damage. This dataset was processed and curated by
our team and is composed of aerial imagery and damage
assessment labels from open sources with a focus on the
damages caused by Hurricane Irma in 2017 at the Florida
Keys [21]. The aerial imagery was collected in the affected
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Table I: Data summary of the Irma data and xBD data

Irma xBD
No. | Concepts # of damage instances
1 Affected 1219 -
2 Minor Damage 2739 36860
3 Major Damage 1082 29904
4 Destroyed 577 31560
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Figure 2: Irma damaged building location and damage level
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visualization from the Big Pine Key south area, one of the
most affected regions after Hurricane Irma.
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areas identified by FEMA and the National Weather Service
during Hurricane Irma, where the Monroe county area
located in South Florida received most of the substantial
damages [22]. Hurricane Irma struck the Florida Keys as a
category four storm with the maximum sustained wind speed
of 132 mph and storm surge reaching up to 8 feet [21].
The eye of the storm made landfall over Cudjoe Key, and
consequently, the Lower and Middle Keys received the
highest impact.

The Irma data is composed of high resolution aerial pho-
tographs representing a Ground Sampling Distance (GSD)
of 50 cm. Along-side the aerial photographs taken before
and after the disaster event, the damage assessment labels
were also gathered by our team from public sources, as
well as combined and curated. Various damage assessment
reports were combined from different data sources which
include Monroe County’s official public preliminary damage
assessment report [23], Xian et al’s assessment of the
damages of more than 1600 residential buildings [24], and
FEMA'’s Historical Damage Assessment Database [25].

Different from xBD, the Irma data includes the affected
damage level, along with minor damage, major damage, and
destroyed. As shown in Figure 2, damage labels from the
Irma data are only the estimates of the damaged building’s
location and do not include the geometric information of
the building footprint. The damage labels can be matched
with building footprint geometries gathered from other data
sources. Nonetheless, there is also the challenge of matching

the location of the points to the right footprint.

The different damage levels are summarized as follows
in accordance to FEMA’s official guide in damage assess-
ment [5]:

e No damage: the structure remains unchanged as seen

from the birds’ eye-view.

o Affected: the structure exhibits minimal effects, such as
some missing shingles in the building rooftop but it is
still habitable according to FEMA’s standards.

e Minor damage: it constitutes of damages that do not
necessarily affect the integrity of the structure but may
make it inhabitable until repairs are done.

e Major damage: the structure sustained substantial dam-
age and requires extensive repairs in order to make it
habitable

o Destroyed: the structure is a total loss to the point where
repair will not be feasible for recovery.

V. EXPERIMENTS AND ANALYSES
A. Experimental Setup

In this paper, two datasets are tested on the proposed
methods. The Irma data samples are split into three non-
overlapping areas for training, validation, and testing. Two
of the lower and middle keys, Sugarloaf Key and Cudjoe
Key, are selected as validation and testing set areas. The
xBD satellite images are also split in a similar manner
following the original xBD data split provided in train,
test, and holdout splits in the 80/10/10% split ratio. In the
proposed approach, the test set is used as a validation set
to make an unbiased evaluation of our model while training
and storing the best performing results. The holdout set is
used to test the final already trained model.

Using the Mean Squared Error (MSE) formula, two
loss functions are defined and assessed for the proposed
approach—the patch loss L4, function and the pixel loss
Lyizer function. As demonstrated in equation 3, Lpg¢cp first
calculates the losses for each grid cell (7,j) at each patch
level P,,, where (i,j) € P, € RV*2 and N is the total
number of cells in the grid. These losses are then summed-
up across a batch and divided by the total number patches M
in the batch to obtain the average loss from each patch-level.

M . O 2
1 Z[Zi,jepm(Y(w)*Y(w))] 3

L atch = 7 r

: m=0 N

As an alternative, the pixel loss £z function demon-

strated in equation 4 calculates losses for the individual cells

in the grid, treating each predicted cell as its own individual

sample. The variable K represents total number of individual

cells in each training batch, and is also assumed to be equal
to M x N.

K
Lpizer = Z (Vi — Y2)? )
k;:
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Figure 3: Violin plots of the sampled damaged points from predictions made on the xBD (left) and Irma (right) test split,

grouped by the different levels of damage.

The performance improvements made by the proposed
fusion module are also corroborated by comparing the
results from the post-only model and pre-post fusion model
configurations detailed as follows:

Post-only configuration: A single CNN model, based on
the ResNet50 architecture and pre-trained on ImageNet is
entirely fine-tuned to extract the features from the images
taken after the disaster event. The original classification head
is removed and replaced with a 1 x 1 2-D convolutional
layer followed by a linear activation function to output the
predictive patch.

Pre-post fusion configuration: This configuration makes
use of the proposed fusion module highlighted in Figure 1,
more details about this configuration have be found in
Section III-B.

Each epoch, the model is trained on the entire training set
using a small batch size of 32 samples to further regularize
and improve the model’s generalization capability [26]. As
the model trains, it is evaluated at the end of each epoch on
the validation set with the best performing model that has
the lowest validation loss saved—models are trained for no
longer than 100 epochs. In these experiments, the model’s
weights are optimized using the Stochastic Gradient Descent
with an initial learning rate of n = 0.001. During training,
the learning rate is multiplied by factor of 0.1 after there
have been no improvements to the validation loss for 10
consecutive epochs.

B. Results and Discussion

For testing purposes, values for damaged location points
in the testing set are sampled using bilinear interpola-
tion [27] from the final predictive heatmaps’ output predic-
tive value cells to compare with the labeled assessment data.
In bilinear interpolation, given the sampling point’s location,
the four cell centers from the input predictive patch that
are nearest to the sampled cell’s center are weighted based
on the distances and then averaged. Table II and Table III

12

Pre-Disaster

Post-Disaster

Predictions

|
100 150 200 250 300 0 200

|
0 50

Figure 4: Qualitative results summary of the model’s output
predictive values on the test set for the xBD and the
Irma data. The point locations for the damage buildings
are overlaid on the post-disaster images and the model’s
predictive patch. The legend for the damage point labels is
as follows: ¢ - affected, (J - minor-damaged, A - major-
damaged, and * - destroyed.

summarize the performance results for the xBD data and the
Irma data test splits using well-known regression metrics
MSE and Mean Absolute Error (MAE). These metrics
are utilized to compare the performance among the model
configurations described in previous sections. The closer the
predictions made by the model are to the target damage
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instances, the more confidence can be place into the model
to more accurately detect the different damaged buildings.

The pre-post fusion model has consistently achieved the
best performance. Moreover, losses calculated from each
individual pixel-level may perform better on smaller datasets
due to MSE’s sensitivity to outliers, which is essential
when detecting the minority classes. Noise regularization
plays an essential role in augmenting the training data and
helping to train a more robust model. As part of the ablation
study, the proposed pre-post fusion model is tested with and
without noise regularization, demonstrating the performance
improvements that can be achieved by applying it. Although
the proposed noise regularization hinders the performance of
the smaller and more limited Irma data, it has proven to be
an essential technique when working with larger datasets
such as xBD.

Furthermore, the proposed patch-level loss function has
also helped the model achieve better performance and reduce
errors. Unlike the pixel-level loss function, the patch-level
loss is not as sensitive to noise and places more weights on
the surrounding regions.

Table II: Performance summary on the xBD data

Method Loss — Noise  njqp  MAE
Function  Reg.
post-only v 1.2259  0.9951
. Lpizel 11867  0.9900
pre-post fusion
v 1.1285  0.9344
post-only v 1.2111  0.9828
. Lpateh 11437 0.9436
pre-post fusion
v 1.1282  0.9266

Table III: Performance summary on the Irma data

Method Loss — Noise  \iqp  MAE
Function  Reg.
post-only v 1.7227  1.4860
. Lpizel 14714 12342
pre-post fusion
v 1.5663  1.3203
post-only v 1.5356  1.2722
. Lpateh 13893 1.1235
pre-post fusion
v 1.5282  1.3039

Figure 3 demonstrates the violin plots of the best perform-
ing model configurations for the xXBD and Irma data—its
broader segments represent members of the population that
are more inclined to take on the given value; the skinnier
sections express a lower likelihood. It can be observed that
the weakly-supervised model can find an evident pattern
among different damage-levels—this is especially true with
the results of the xBD data. Even if there is an offset between

the target values and the predicted values, it is clear that the
majority of the sampled predicted points are grouped on
a segment following an ordinal paradigm—the higher the
value from the predictive cell, the higher the level of damage
sustained by the building located in that cell.

The model has successfully, and through implicit means,
learned to detect different damage levels sustained by build-
ings. Figure 4 illustrates the qualitative results generated by
the proposed model on the xBD and Irma datasets. These
predictive outputs serve as the interpretable visualizations
that can be leveraged for rapid labeling jobs and further
studies in the weakly-supervised building damage assess-
ment effort. Further refinement must be done to the predic-
tive outputs to train a model that can further separate the
individual buildings and detect the damages they sustained.

VI. CONCLUSION AND FUTURE WORK

This paper describes a novel approach to identifying dam-
aged buildings from remote sensing images and predicting
the level of damage that the building sustained after a
disaster event. The proposed model removes the dependency
on the available high-quality building footprint geometries
by assuming that only an estimate of the damaged building’s
location and damage level is available to train the model.
Weak supervision, together with the inclusion of pertur-
bations and noise regularization, are critical elements to
develop a robust model to label noise, which can adapt better
across multiple domains and various types of areas. The
proposed model’s predictive results can be further used to
visualize, identify quickly, and flag damaged buildings, and
conduct further studies and research. As part of the future
work, we will continue to improve the model’s performance
and develop techniques to better handle the class imbalance
in the data by assigning higher weights to the samples from
minority classes during training.
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