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Abstract

We analyze a class of stochastic dynamic games among teams with asymmetric information,
where members of a team share their observations internally with a delay of d. Each team is
associated with a controlled Markov Chain, whose dynamics are coupled through the players’
actions. These games exhibit challenges in both theory and practice due to the presence of
signaling and the increasing domain of information over time. We develop a general approach
to characterize a subset of Nash equilibria where the agents can use a compressed version
of their information, instead of the full information, to choose their actions. We identify two
subclasses of strategies: sufficient private information-Based (SPIB) strategies, which only
compress private information, and compressed information-based (CIB) strategies, which
compress both common and private information. We show that SPIB-strategy-based equilibria
exist and the set of payoff profiles of such equilibria is the same as that of all Nash equilibria.
On the other hand, we show that CIB-strategy-based equilibria may not exist. We develop a
backward inductive sequential procedure, whose solution (if it exists) provides a CIB strategy-
based equilibrium. We identify some instances where we can guarantee the existence of a
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solution to the above procedure. Our results highlight the tension among compression of
information, ability of compression-based strategies to sustain all or some of the equilibrium
payoff profiles, and backward inductive sequential computation of equilibria in stochastic
dynamic games with asymmetric information.

Keywords Game theory - Dynamic games - Decentralized control - Stochastic dynamic
systems - Compression-based equilibria - Sequential decomposition

1 Introduction

Dynamic games with asymmetric information appear in many socioeconomic contexts. In
these games, multiple agents/decision makers interact repeatedly in a changing environment.
Agents have different information and seek to optimize their respective long-term payoffs.
For example, multiple companies may compete with each other in a market over time and
each company attempts to optimize its own long-term benefits [5,7,12,32,33]; the market is
also changing over time driven by the actions the companies take. Another instance of such
games arises in cyberphysical systems [1,2,48,52,70]; at each time, attackers make decisions
on which hosts to attack, and the system administrators/defenders choose actions to defend
against the attackers, for example, by isolating some hosts from the rest of the system [52];
the system’s state changes over time as a result of the attackers’ and defenders’ actions. In all
instances of these games, when an agent takes an action, she needs to consider not only how
the action will affect her current payoff but also how it will influence the system’s evolution
and the future actions of all agents, and hence her future payoffs.

In some settings, agents can form groups, or teams [9,49]. The agents in the same group
share a common goal but may have different information available to them. This information
asymmetry among teammates appears in many engineering applications. In most of these
applications, the state of the system changes rapidly, and agents have to make real-time
decisions. Moreover, the communication between agents is either costly, or restricted by
bandwidth or delay. Examples of these settings include competing fleets of automated cars
fromrival companies [ 18] and the DARPA Spectrum Challenge [19]. In the DARPA Spectrum
challenge setup, individual transceivers work in teams to maximize the sum throughput of
their networks. Teams compete with other teams, and members of the same team need to
coordinate and evolve their responses over time. In these settings, agents in the same team aim
to choose their strategy jointly to achieve team optimality (i.e., to choose the joint strategy
profile that maximizes the expected utility of the team over all joint strategy profiles) rather
than just person-by-person optimality (PBPO).! We study a stylized model of such settings
in this paper.

It is worth stating that the games among teams problems we focus on in this paper are
different from cooperative games in economics research (e.g., see [36] Chapters 8-10). In
cooperative game theory, the goal is to study the group formation process among agents with
different objectives. In our setting, groups are assumed to be fixed and given, and we focus
instead on determining the optimal actions and payoffs for each group. A unilateral deviation
in our problems means one or more agents in one group deviates, but the community structure
of the agents stays the same.

1A team strategy is person-by-person optimal (PBPO) when each team member’s strategy is an optimal
response given other team members’ strategy profile.
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The key challenges in the study of dynamic games among single agents with asymmetric
information are: (i) Due to signaling® in many instances, an agent’s assessment of the status
of the game at time ¢, hence her strategy at time ¢, depends on the strategies of agents
who acted before her.> Therefore, we cannot obtain the standard sequential decomposition
(that sequentially determines the components of an equilibrium strategy profile) of the kind
provided by the dynamic programming algorithm for centralized stochastic control (where
the agent’s optimal strategy at any time ¢ does not depend on past strategies) [25]. (ii) The
domain of the agents’ strategies increases with time, as the agents acquire information over
time. Thus, the computational complexity of the agents’ strategies increases with time.

To address these challenges, one can look for compression-based strategies that can be
sequentially computed. This creates an additional challenge: compression-based strategies
could restrict the agents’ ability to sustain all or some of the equilibrium payoffs of the game.

In games among teams, we have the additional challenge of coordination within asymmet-
rically informed team members so as to achieve team optimality instead of person-by-person
optimality.

In this paper, we propose a general approach to characterize a subset of equilibrium
strategy profiles of dynamic games among teams with the following goals: (i) to determine
appropriate compression of information for each agent to base their decision on; (ii) to develop
a sequential decomposition of the game. In addition, we would like to determine sufficient
conditions for the existence of such equilibrium strategies.

1.1 Related Literature

To understand games among teams, we first examine a team’s best-response strategy
when other teams’ strategies are fixed. Team problems, or decentralized control prob-
lems, have been extensively studied in the control literature. Researchers have developed
various methodologies/approaches to decentralized control problems to determine team
optimal strategies or PBPO strategies, and to determine structural results/properties for the
above-mentioned strategies. These methodologies include: (i) the person-by-person approach
[23,30,38,39,54-59,61-64,66] (ii) the designer’s approach [28,65] (iii) the coordinator’s
approach [29,41,43,53]. The person-by-person approach has been used to determine qualita-
tive/structural properties of team optimal or PBPO strategies. In this approach, the strategies
of all team members/agents except one, say agent i, are assumed to be arbitrary but fixed;
then, the qualitative properties of agent i’s best response strategy are determined. These
properties are then valid for all possible (fixed) strategies of the other agents. The designer’s
approach investigates the decentralized control/team problem from the point of view of a
designer who knows the system model and the joint probability distributions of the primitive
random variables (the system’s initial state, the noise driving the system, and the noise in
the agents’ observations). The designer chooses the strategies of all team members at time 0
by solving an open-loop stochastic control problem, where her decision at each time is the
strategy/control law for all the team members/agents. Applying stochastic control results,
the designer can obtain a dynamic programming decomposition. The methodology devel-

2 In contrast to signaling in teams, signaling in games is complicated by the fact that agents have diverging
incentives.

3 Example of such strategy dependencies appears in Ho [20] and in Nayyar and Teneketzis [40] for team
problems with non-classical information structure. Since these strategy dependencies are solely due to the
problem’s information structure, they also appear in dynamic games with non-classical information structure
(see [21]).
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oped in this paper is inspired by the coordinator’s approach used in Nayyar et al. [41,43],
Tavafoghi et al. [53]. Similar to the designer’s approach, the coordinator’s approach assumes
that a fictitious agent, called the coordinator, assigns instructions to agents. However, unlike
the designer’s approach, the coordinator is assumed to know the common information of all
agents and assigns partial strategies (prescriptions) instead of full strategies to agents. The
partial strategies tell an agent how to utilize her private information to generate actions. Both
the designer’s approach and the coordinator’s approach lead to the determination of globally
optimal team strategy profiles.

Research on dynamic games roughly consists of two directions: One direction focuses
on repeated games or multi-stage games, where the instantaneous payoffs at each stage
is only affected by actions in this stage but not by the actions in the previous stages. In
these games, researchers investigated long-term interactions among agents (e.g., punishment
and reward strategies) and characterized the set of equilibrium payoffs (e.g., see [31] or [36]
Chapter 7). The other direction focuses on games with an underlying dynamic system, in other
words, games where instantaneous payoffs can be affected by previous actions. In this more
complicated setting, researchers attempted to develop methodologies for the determination
of equilibria with either a general structure or a specialized structure. In this paper, we focus
on the latter direction.

Games of individual agents (i.e., agents do not form teams) with an underlying dynamic
system have been studied in both the economics and the control literature. Dynamic games
with symmetric information have been studied extensively [4,14]. In Maskin and Tirole
[34], the authors propose the concept of Markov Perfect Equilibrium (MPE) for the case
where the state of the system and agents’ actions are perfectly observable. The research on
dynamic games with asymmetric information can be classified into two categories: zero-sum
games and general (i.e., not necessarily zero-sum) games. Zero-sum games are analyzed in
Renault [46,47], Zheng and Castafidn [69], Gensbittel and Renault [15], Li and Shamma [26],
Cardaliaguet et al. [8], Li et al. [27], Kartik and Nayyar [21]. In these works, the authors
take advantage of many properties of zero-sum games, such as having a unique value and
the interchangeability of equilibrium strategies. These properties do not extend to general
nonzero-sum games. The literature on general dynamic games includes [16,17,35,37,42,44,
45,50,51,60]. In Nayyar et al. [42], the authors extend the MPE concept in Maskin and
Tirole [34] to the case where the underlying dynamics is only partially observable. Under the
crucial assumption that the common information-based (CIB) belief is strategy-independent,
the authors prove that there exist equilibria where agents play CIB strategies, i.e., the agents
choose their actions based on CIB belief and private information instead of full information.
Furthermore, such equilibria can be found through a sequential decomposition of the game.
In our setup, the system state is not perfectly observed; thus, our model is distinctly different
from that of Maskin and Tirole [34]. Furthermore, in contrast to Nayyar et al. [42], the CIB
belief in our model is strategy-dependent.

The closest work to our paper in terms of both model and approach is [45]. In Ouyang
et al. [45], the authors consider a game model where, in contrast to Nayyar et al. [42], the
CIB beliefs are strategy-dependent. They propose the concept of Common Information-
Based Perfect Bayesian Equilibrium (CIB-PBE) as a solution concept for this game model
and prove that CIB-PBE can be found through a sequential decomposition whenever this
decomposition has a solution. The game model of Ouyang et al. [45] has multiple features
that prevent us from directly applying their results in our analysis in Sect. 5. We will make
a more detailed comparison in Sect. 3. Our work is also close in spirit to Maskin and Tirole
[35]. In Maskin and Tirole [35], the authors extend their work in Maskin and Tirole [34] by
considering games where actions are observable, but each agent has a fixed, private utility
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type. They propose Markov Sequential Equilibrium (MSE) as a solution concept for these
games, where the agents choose their actions based on a compression of their information
along with their beliefs on the types of other agents. The authors show by example that MSE
do not necessarily exist. As an alternative to MSE, they propose a new concept obtained from
limits of e-MSE as ¢ goes to 0.

Unlike either team problems or dynamic games among individual agents, games among
teams (in particular, ones with an underlying dynamic system) have not been systematically
studied in the literature. There are only a few works on special models of games among teams.
In Farina et al. [13] and Zhang and An [68], the authors proposed algorithms to compute
equilibria for zero-sum multiplayer extensive form games, where a team of players plays
against an adversary. In Anantharam and Borkar [3], the authors provide an example of a
zero-sum game which involves a team. However, the players in this team have symmetrical
information; hence, the team is equivalent to an individual player with vector-valued actions.
In Nayyar and Bagar [37], the authors briefly extend their results in Nayyar et al. [42] to games
among teams for a specialized model where the CIB belief is strategy independent. In both
Colombino et al. [9] and Summers et al. [49], the authors solve a two-team zero-sum linear
quadratic stochastic dynamic game. In Bhattacharya and Bagar [6], the authors formulate and
solve a game between two teams of mobile agents. The model and information structure of
Bhattacharya and Basar [6] are different from ours. Additionally, games among teams have
been the subject of empirical research (see, for example, [10,11]). In our work, we study
analytically a model of nonzero-sum dynamic stochastic games among teams where the CIB
belief is strategy dependent.

1.2 Contribution

In this paper, we consider a model of dynamic games among teams with asymmetric infor-
mation. We assume that each team is associated with a dynamical system that has Markovian
dynamics driven by the actions of all agents of all teams. The state of each dynamical system is
assumed to be vector-valued, where each component represents an agent’s local state. Agents
can observe their own local states perfectly and communicate them within their respective
teams with a delay of d. All actions are public, i.e., observable by every agent in every
team. We also assume the presence of public noisy observations of the system’s state. The
instantaneous reward of a team depends on the states and actions of all teams. Our model is
a generalization of the model in Ouyang et al. [45] to competing teams.
Our contributions are as follows:

— We identify appropriate compression of information for each agent. The compression is
achieved in two steps: (i) the compression of team-private information that depends only
on the team strategy; (ii) the compression of common information that depends on the
strategy of all agents. The compression steps induce two special classes of strategies: (i)
Sufficient Private Information-Based (SPIB) strategies, where agents only apply the first
step of compression; and (ii) Compressed Information-Based (CIB) strategies, where
agents apply both steps of compression.

— We show that SPIB-strategy-based Nash equilibria always exist, and the set of equilibrium
payoff profiles of such equilibria is the same as that of all Nash equilibria.

— We develop a sequential decomposition of the game where agents play CIB strategies.
We show that any solution of the sequential decomposition forms a Nash equilibrium of
the game.
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— We show that CIB-strategy-based Nash equilibria do not always exist. We identify some
simple instances where CIB-strategy-based equilibria are guaranteed to exist.

1.3 Organization

We organize the rest of the paper as follows: In Sect. 2, we formally present our model and
problem. In Sect. 3, we transform the game among teams into an equivalent game among
coordinators where each coordinator represents a team. In Sect. 4, we introduce our first step
of compression of information and SPIB strategies. We show the existence of SPIB-strategy-
based equilibria and the equivalence of sets of payoff profiles between SPIB-strategy-based
equilibria and Nash equilibria. In Sect. 5, we introduce the second step of compression
and CIB strategies, and we provide a sequential decomposition of the game. We also show
the general non-existence of CIB-strategy-based equilibria and provide some conditions for
existence. We present some extensions and special cases of our results in Sect. 6. Then,
we discuss our results in Sect. 7. We conclude in Sect. 8. Proof details are provided in the
Appendix.

1.4 Notation

We use capital letters to represent random variables, bold capital letters to denote random
vectors, and lower case letters to represent realizations. We use superscripts to indicate teams
and agents, and subscripts to indicate time. We use i to represent a typical team, and —i
represents all teams other than i. We use #; : 1, to indicate the collection of timestamps
(ti,t1 + 1,..., ). For example, X1 stands for the random vector (X1, X}, X1, X}). For
random variables or random vectors represented by Latin letters, we use the corresponding
script capital letters to denote the space of values these random vectors can take. For example,
H! denotes the space of values the random vector H, can take. The products of sets in this
paper are Cartesian products. We use IP(-) and [E[-] to denote probabilities and expectations,
respectively. We use A(£2) to denote the set of probability distributions on a finite set £2.
When writing probabilities, we will omit the random variables when the lower case letters that
represent the realizations clearly indicates the random variable it represents. For example, we
will use ]P’(yf |x¢, uy) as a shorthand for IP(Y} = yti IX; = x;, Uy = uy). When A is a function
from £2; to A(£2,), with some abuse of notation we write A(w2|w1) := (A(wy))(w2) as if A
is a conditional distribution. We use 14 to denote the indicator random variable of an event
A.

In general, probability distributions of random variables in a dynamic system are only
well defined after a complete strategy profile is specified. We specify the strategy profile
that defines the distribution in superscripts, e.g., P$ (xf |h9). When the conditional probabil-
ity is independent of a certain part of the strategy (g!)(i.1)e2, We may omit this part of the
strategy in the notation, e.g., P81~ (x;|y1.1—1, U1:1—1), Ps' (xf |h?) or P(xs41|xs, us). We say
that a realization of some random vector (for example h?) is admissible under a partially
specified strategy profile (for example g /) if the realization has strictly positive probability
under some completion of the partially specified strategy profile (In this example, that means
P88 (h?) > 0 for some g'). Whenever we write a conditional probability or conditional
expectation, we implicitly assume that the condition has nonzero probability under the spec-
ified strategy profile. When only part of the strategy profile is specified in the superscript, we
implicitly assume that the condition is admissible under the specified partial strategy profile.
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2 Problem Formulation
2.1 System Model and Information Structure

We consider a finite horizon dynamic game among finitely many teams each consisting of

a finite number of agents, where agents have asymmetric information. Let Z = {1, ..., I}
denote the set of teams and 7 = {1, ..., T} denote the set of time indices. We use a tuple
(i, j) to indicate the j-th member of team i. Forateami € Z, let N; = {(i, 1), ..., (i, N;)}

denote team i’s members. Let N/ = UzeIN denote the set of all agents. At each time

t € T, each agent (i, j) selects an action U, € L{’ J where L{ "/ denotes the action space
of agent (i, j) at time f. Each team is associated Wlth a vector-valued dynamical system

X! = (X;') . jyen; which evolves according to
§+1 :.fti(XivUts W[iVX), ZGI,

where U, = (U J)(k NEN and (W )lEI re7 1s the noise in the dynamical system. We
assume that X'/ € X"/ for (i, j) e N'and t € T.

We assume that the actions of all agents are publicly observed. Further, at time ¢, after all
the agents take actions, a public observation of team i’s state is generated according to

Y] =X, U, W), e,

where Yti € y;' , and (Wti ’Y)iez,,eq— are the observation noises.
The order of events occurring between time steps ¢ and ¢ + 1 is shown in the figure below:
i i,j i i
X; U; Y Xt

] } 1,,,
T T

}
t t+l

We assume that the functions ( f, ieT.reT> (Z ),61 teT are common knowledge among
all agents. We further assume that (X Yiez, (W) ),EI te7,and (W )lez re7 are mutually
independent primitive random variables whose distributions are also common knowledge
among all agents. As a result, the teams’ dynamics (X;'),GT,i € Z, are conditionally
independent given the actions, and the public observations of different teams’ systems are
conditionally independent given the states and actions of all teams.

At each time 7, the following information is available to all agents:

Hy = (Y1—1, U=,

where Y, = (Y})iez, Ur = (U, )i, jyenr- Werefer to H? as the common information among
teams. o

We assume that each agent (i, j) observes her own state X ;’/ . Further, agents in the same
team share their states with each other with a time delay d > 1. Thus, at time ¢, all agents in
team i have access to H,i , given by

= (Ylil—17U1:[—17Xi1:[7d)» i€l

We call Hti the common information within team i.
Finally, the information available to agent (i, j) at time ¢, denoted by H; 7 s

= (Yoot Unmt, Xy X000, G ) €N
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This model captures the hierarchy of information asymmetry among teams and team
members. It is an abstract representation of dynamic oligopoly games [44,45] where each
member of the oligopoly is a team.

Remark 1 Our model also captures the scenarios where a team has only one member. Such
a team can be incorporated in our framework by adding a dummy agent to it and assuming
a suitable internal communication delay d. If all teams are single-member teams, then d can
be arbitrarily chosen.

To illustrate the key ideas of the paper without dealing with the technical difficulties
arising from continuum spaces, we assume that all the system random variables (i.e., all
states, actions, and observations) take values in finite sets.

Assumption 1 X’ J , ViU, are finite sets for all (i, j) e Nt € T.

2.2 Strategies and Reward Functions

For games among teams, there are three possible types of team strategies one could consider:
(1) pure strategies, i.e., deterministic strategies; and (2) randomized strategies where team
members independently randomize; (3) randomized strategies where team members jointly
randomize.

A pure strategy profile of a team is defined to be a collection of functions uo=
( )(, DENi 1T where ,u, H — L{ Deﬁne /\/l as the space of functions from
Hl Trou ) Let M= ],er [Ti jyen; M Any randomized strategy of a team, either

of type 2 or type 3, can be described by a mixed strategy 'a € A(M?). In particular, if team
members independently randomize, the mixed strategy o’ being used to describe the strategy

profile will be a product of measures on M’/ =[], M;] for (i, j) € N;.
Team i’s total reward under a pure strategy profile u© = (M;J)(i,j)e/\/,;eq* is

JH(p) = E* [Z ri (X, Uz):| ;

teT

where the functions (rf),-el teT, r,i : Xy x Uy — R, representing the instantaneous rewards,
are common knowledge among all agents. Team i’s total reward under a mixed strategy
profile 0 = (6%)jez, 0! € A(M?), is then an average of the total rewards under pure
strategy profiles, i.e.,

Iy =) (Ho"(u")) T ).

neM \iel

Note that while members of the same team may jointly randomize their strategies, the
randomizations of different teams are independent of each other.

RemarkZ .F'or convenience of notation and proofs, fort € {—(d — 1), ..., —1, 0}, we define
A =u! =Y ={0}and r/ (X,,U;) =0 foralli € Zand (i, j) € N.

2.3 Solution Concept

In this work, a team refers to a group of agents that have asymmetric information and the same
objective. Because of the shared objective, members of the same team can jointly decide on
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the strategy to use before the start of the game for the collective benefit of the team. Therefore,
when considering an equilibrium concept, we should consider team deviations rather than
individual deviations, i.e., multiple members of the same team may decide to change their
strategies. We consider randomized strategies where team members jointly randomize. To
implement an arbitrary mixed strategy, a team can jointly choose a random strategy profile
out of the distribution specified by the mixed strategy at the beginning of the game. Example 2
of Appendix A.1 illustrates why such strategies must be considered when we study games
among teams.
The above discussion motivates the definition of a Team Nash equilibrium.

Deﬁnition1 (Team Nash equilibrium) A mixed strategy profile o* = (6*)cr,0* €
A(M?), is said to form a Team Nash Equilibrium (TNE) if for all i € Z,

Ji(o,*i,o,*—i) > Ji(ﬁi,a*_i)
for any mixed strategy profile 6' € A(M?).

Since stochastic dynamic games among teams with asymmetric information is a relatively
new class of dynamic games, we start with the simplest equilibrium concept, which is the
Team Nash Equilibrium.

The primary objective of this paper is to characterize compression-based subclasses of
Team Nash Equilibria.

3 Game Among Coordinators

In this section, we present a game among individual players that is equivalent to the game
among teams formulated in Sect. 2.

We view the members of a team as being coordinated by a fictitious coordinator as in
Nayyar et al. [43]: Ateach time 7, team i’s coordinator instructs the members of team i how to
use their private information, H,"’\ H/, based on H; and her past instructions up to time # — 1
(see [43]). Using this vantage point, we can view the game among teams as a game among
coordinators, where the coordinators’ actions are the instructions, or prescriptions, provided
to individual agents. Notice that unlike agents’ actions, coordinators’ actions (prescriptions)
are not publicly observed. To proceed further, we formally define coordinators’ actions and
strategies and prove Lemma 1.

Definition 2 (Prescription) Coordinator i’s prescriptions at time t is a collection of functions
i i, L. il i,
th = (Vt )(i,j)GM where Vi oot thd+l:t > U

Define Ai’j to be the space of functions that map Xti;"d 41z tO Z/{ti J . Define Al =
i.J
I pen; A

Definition 3 (Pure coordination strategy) Define the augmented team-common information
of team i to be ﬁi = (H!, Fil:t—l)’ where F’i:t_l are the past prescriptions assigned by the
coordinator of team i. A pure coordination strategy of team i is a collection of mappings
v = ()T where v} : H, > Al
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Definition 4 We call two strategies g', §' of team i payoff-equivalent if the two strategies
generate the same total expected reward for all agents under all pure team strategy profiles p ™"
of teams other than i, that is, J*(g’, u=%) = J¥(@', u~") forallk € ZTandall u=' € M~ *

The next lemma establishes the equivalence between pure coordination strategies and pure
strategies of a team.

Lemma 1 For every pure strategy |’ of team i, there exists a payoff-equivalent pure coordi-
nation strategy v' and vice versa.

Proof See Appendix B. O

Based on the above lemma, we can immediately conclude that a mixed strategy for a team
is payoff-equivalent to a mixed coordination strategy (i.e., a distribution on the space of pure
coordination strategies). As a result, Team Nash equilibria, as defined in Sect. 2.3, will be
equivalent to Nash equilibria of coordinators, where the coordinators can use mixed coor-
dination strategies. An example illustrating how a mixed team strategy can be transformed
into a payoff-equivalent behavioral coordination strategy is presented in Appendix A.2.

Therefore, we can transform the game among teams to a game among individual players,
where each player is a (team) coordinator whose actions are prescriptions. Following the
standard approach in game theory, we now consider behavioral strategies of the individuals
(i.e., the coordinators) in this lifted game since, unlike mixed strategies, behavioral strategies
allow for independent randomizations across time and therefore, better facilitate a sequential
decomposition of the dynamic game.

Definition 5 (Behavioral coordination strategy) A behavioral coordination strategy of team
i is a collection of mappings g = (gf)teq— where g; : ﬂ; — A(.Ai).

Given that the coordinators have perfect recall, that is, at any time ¢, the coordinator
remembers all her observations up to time ¢, and all her “actions” (prescriptions) up to time
t — 1, we can conclude from Kuhn’s theorem [24] that behavioral coordination strategies are
payoff-equivalent to mixed coordination strategies.

Lemma2 For any mixed coordination strategy ¢' of coordinator i, there exists a payoff-
equivalent behavioral coordination strategy g' and vice versa.

Based on this equivalence, we can first define Nash equilibria for the coordinator’s game
and then restate our objective from Sect. 2.3.

Definition 6 (Coordinators’ Nash equilibrium) For any behavioral coordination strategy pro-
file g, define

T'(g) =E* [Z ri(Xe, U»} :
teT

A behavioral coordination strategy profile g* = (g;ki)ieI,teT where g/ i ﬁi — A(Ai)
is said to form a Coordinator’s Nash Equilibrium (CNE) if for any i € Z,

JigH, g > TN g

for any behavioral coordination strategy profile g’ : ﬁi — A(Ai).

4 We do not restrict the strategy types of ¢' and ' in Definition 4. In particular, each of g and g’ could be a
coordination strategy or a team strategy.
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In other words, a coordination strategy profile g forms a CNE if the behavioral strategies
of coordinators form a Bayes—Nash equilibrium in the game of coordinators.

Given that we have lifted the game among teams to a game among coordinators, we adjust
the terminology for the information structure accordingly. From now on, we will refer to
the common information among all teams (i.e., H) as simply the common information,
while the information that members of team i share but is not known to other teams (i.e.,
HN\H? = (Xi,_, T, ) will be referred to as the private information of coordinator
i. The information that is private to an agent (i.e., X;f J +1:z) will be referred to as hidden
information since none of the coordinators observe this information.

Remark 3 The game among coordinators we obtain has a few differences from the game
model in Ouyang et al. [45]:

— Actions in Ouyang et al. [45] are publicly observable. As mentioned before, in our
game among coordinators, the “actions” (prescriptions) of the coordinators are private
information.

— The local state X! in Ouyang et al. [45] is perfectly observable by player i without delay.
In our game among coordinators, at time ¢, a coordinator can only observe her local state
up to time t — d.

— The transitions of local states in Ouyang et al. [45] are conditionally independent given
the actions, i.e., P(x;41|x, us) = [; IP’(xt"Jrl Ixf, uy). In our game among coordinators,
transition of local states are not independent given the prescriptions.

— The public observations of local states in Ouyang et al. [45] are conditionally independent
given the local states and actions, i.e., P(y;|x;, u;) = []; ]P’(y; |x,i, uy). In our game
among coordinators, public observations of local states are not independent given the
prescriptions and local states.

Due to the above differences, we cannot directly apply the results of Ouyang et al. [45] to
the game of coordinators.

4 Compression of Private Information

In this section, we identify a compression of a coordinator’s private information that is suffi-
cient for decision-making for the game of coordinators formulated in Sect. 3. We refer to this
compression as the Sufficient Private Information (SPI). We restrict attention to Sufficient
Private Information-Based (SPIB) strategies, where coordinators choose prescriptions based
on their sufficient private information along with the common information. As a result, the
coordinators do not need full recall to play SPIB strategies. We show that for any behav-
ioral coordination strategy, there exists a payoff-equivalent (See Definition 4) SPIB strategy.
Consequently, there always exists a Coordinator’s Nash equilibrium where coordinators play
SPIB strategies, and the set of equilibrium payoffs of such equilibria is the same as the set of
equilibrium payoffs for CNE. Therefore, the restriction to SPIB strategies does not hurt the
coordinators’ ability to achieve any payoff profile that is achievable in a CNE.

We proceed as follows. We first present a preliminary result that plays an important role
in the subsequent analysis. We then introduce our results. We then formally define Sufficient
Private Information and Sufficient Private Information-Based (SPIB) strategies. Finally, we
establish the payoff-equivalence between SPIB strategies and general behavioral coordination
strategies.
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4.1 A Preliminary Result

We show that the states and prescriptions of different coordinators are conditionally inde-
pendent given the common information.

Lemma 3 (Conditional independence) Under any behavioral coordination strategy profile g
and for each timet € T, (X!, T’ é:’)iez are conditionally independent across coordinators
given the common information H;, i.e.,
P (x1, v lh) = [ [ PGy v 0D VRO € M),
iel

Furthermore, P8 (x’i:t, yf:t |h?) depends on g only through g'.
Proof See Appendix C. O

As a result of Lemma 3, coordinator i’s estimation of other coordinators’ state and pre-
scriptions is independent of her own strategy and private information. In other words, while
coordinator i has access to both the common information and her private information, her
belief on the other coordinators’ private information (history of states and prescription) is
solely based on the common information.

4.2 Sufficient Private Information and SPIB Strategy

We now identify a compressed version of private information that is sufficient for decision-
making.

Recall that coordinatori’s information at time ¢ consists of (Y.,—1, U1, X’i:t_d, I"’i 1)
To choose her prescriptions at time ¢, coordinator i needs to estimate her hidden information
(ie., XL dt 1.)- When d = 1, the belief on hidden information is simply constructed using
(X;'_1 , U;—1) and the knowledge of the transition probabilities of the underlying system.
However, when d > 1, more information in addition to (XL 4> Ur—a:—1) is needed to form
the belief.

To illustrate this, we start with the case d = 2. When d = 2, the belief of coordina-
tor i on her hidden information would depend on the last prescription I" ;;1 in addition to
(Xiiz, U;_2.;—1). This is due to the signaling effect of the action ULI: since coordinator i
knows Ui_] , she can infer something about Xi_] through the prescription used to produce
these actions (recall that U,”’, = I (X;/,.,,_) for (i, j) € N;). Hence at time 7, coordi-
nator i needs to take I’ ﬁ_l into account when forming her belief on the hidden information.

Furthermore, for d = 2, when making a decision at time ¢, coordinator { can use a
compressed version of the prescription I' Ll instead of I' Ll itself. This is because at time
t, coordinator i has learned X;_z that she did not know at time t — 1. The coordinator can
then focus on the following essential question: given the knowledge of Xﬁ_z, what is the
relationship between X;'_l and Uﬁ_l ?

Similarly, for a general d > 1, to estimate the hidden information, each coordinator needs
to utilize her past (d — 1) prescriptions. Again, a coordinator can use a compressed version of
the past (d — 1) prescriptions, since she can incorporate the additional information she knows
at time ¢ that she did not know back when the prescriptions were chosen. Each coordinator can
now focus on the relationship between the unknown states and the known actions, given what
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is already known. This motivates the definition of (d — 1)-step partially realized prescriptions
(PRPs).

Definition 7 The (d — 1)-step partially realized prescriptions® (PRPs) for coordinator i at
time ¢ is a collection of functions @/ := (<Dt"_]l,l)(,-,j)€/\/i,1§15d_1, where

iLj
(pt—l,l - (Xt l—d+1:t—d> )

ij
is a function from X Cdeta— U

Remark4 When d = 1, the (d — 1)-step PRP &' is empty by definition.

PRPs have smaller dimension than prescriptions. To illustrate this point, consider the case

where d = 2' A prescription ytl’j] can be represented as a table, where the rows represent

ij

/| € X/, and the entries represent the correspond-

x; € X - the columns represent x
ing action utfl = szl(xz 2 ,_1) to take. On the other hand, the 1-step partlally realized
prescription ¢,/ = 171 (xt 2, -) can be represented by one row of the table of yt 1 chosen
based on the realization of X'/ )

When d > 1, in addition to (Xi_ d» Ut—dit—1, dii), coordinator i also needs to use
Yti_ d1i—1 tO forrp a belief on her'hidden informapion since Y _d+14—1 Can provide addi-
tional insighton X;_, 41— that (X;_z» Ur—g:—1, P}) cannot necessarily provide. The belief
coordinator i has on her hidden information is summarized in the following lemma.

Lemma4 Suppose that the behavioral coordination strategy profile g = (g)ier is being

played. Then, the condlllonal distribution of X! given ﬁ; under g can be expressed as

t—d+1:t
a fixed function of (Y} i1 L dtfl,X[ d ,), ie.,

PO g lh) = POy _gqnlYi—agt—ts Wimdu—1. X _g. ) Yhy €M, ey
for some function Pti that does not depend on g.

Proof See Appendix D. O

Remark 5 The above result can be interpreted in the following way: Xi_ 4 1s perfectly
observed; hence, coordinator i can discard X’i:t_ 4—1 Which are irrelevant information due to
the Markov property. Since Xt dali—
public observation and action based upon Xt Al

it can help in estimating the state Xt d+1:4—1- Note that d’f encodes the essential informa-
tion coordinator / needs to remember at tlme t about her previous signaling strategy: how
does X: d+1:4—1 (unknown) map to Ui | (known)? With this piece of information,

| are not perfectly observed by coordinator i, every
| are important to coordinator i since

t—d+1:1—

coordinator i can fully interpret the signals sent through Ut dali1-

‘We now formally define the Sufficient Private Information (SPI) and SPIB strategies which
will be used in the rest of the paper.

5 The (d — 1)-step PRPs are the same as the partial functions defined in the second structural result in Nayyar
etal. [41].
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Definition 8 (Sufficient private information) For a given d > 0, the Sufficient Private Infor-
mation (SPI) for coordinator i at time ¢ is defined as S; = (X]_,, d’;).()

Definition 9 (Sufficient private information-based strategy) A Sufficient Private Information-
Based (SPIB) strategy for coordinator i is a collection of functions p' = (pf)ieT. p; :
HY x S > A(AD).

It can be easily verified that S! can be sequentially updated, i.e., there exists a fixed,
strategy-independent function ¢} such that

Sty =0(SLX_ . Th. )

Therefore, a coordinator does not need full recall to play an SPIB strategy.

4.3 Payoff-equivalence of SPIB Strategies with General Behavioral Coordination
Strategies

To establish the payoff-equivalence between SPIB strategies and general behavioral coordi-
nation strategies, we introduce the following definition.

Definition 10 Consider a behavioral coordination strategy g = (g))1e1 of coordinator i.
An SPIB strategy p' = (0] )se7 18 said to be associated with g' if forall t € T,
Pl s = 3 & Ty g Pl OPF Gy Pl s
}{:tfd'];li:tfl

for all (hY, sti) admissible under gi.

Recall that due to Lemma 3, P$ ()E{ dd 77f:17 | |h0, s,i ) depends on a behavioral coordina-
tion strategy profile g only through g’. Hence, the above definition is independent of other
coordinators’ strategies.

Remark 6 The distribution ,of (hO, sti ) can be seen as the conditional distribution of I' ; given
H? = h?, S| = s! under the behavioral coordination strategy g'. Similar construction is also

used in Lemma 4 of Kartik et al. [22].

Lemma5 Let p' be an SPIB strategy associated with coordinator i’s strategy g'; then p'
and g' are payoff-equivalent.

Proof See Appendix E. O

An SPIB strategy profile p = (0))iez.e7, p! : H? x SF > A(AY) is called a Sufficient
Private Information-Based Coordinators’ Nash Equilibrium (SPIB-CNE) if p, seen as a
profile of behavioral coordination strategies, forms a Coordinator’s Nash equilibrium (see
definition 6). The following theorem follows naturally from Lemma 5.

Theorem 1 SPIB-CNE exist for the dynamic game among coordinators. Furthermore, the
set of equilibrium payoff profiles of SPIB-CNE:s is the same as the set of equilibrium payoff
profiles for CNEs.

6 The compression of private information of coordinators in our model is closely related to Tavafoghi et al.’s
[53] sufficient information approach. One can show that our sufficient private information S; = (Xi_ d <P;)
satisfies the definition of sufficient private information (Definition 4) in Tavafoghi et al. [53] (hence, we choose
to use the same terminology).
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Proof Let g = (g )iez be a CNE. Let o' be an SPIB strategy associated with g’ for each
i € Z,then p = (p');ez is an SPIB-CNE: Using Lemma 5 iteratively, we can show that

Jio, o =J(g e =@ eH=J@E, 0

for any behavioral coordination strategy g’ of coordinator i.

We also know that p has the same equilibrium payoffs as g due to Lemma 5. Therefore,
the set of equilibrium payoff profiles of SPIB-CNEs is the same as the set of equilibrium
payoff profiles for CNEs. O

5 Compression of Common Information and Sequential Decomposition

The SPIB strategies defined in the previous section use sufficient private information instead
of the entire private information for each coordinator. If the sets X}, ), U; are time-invariant,
the set of possible values of sufficient private information used in SPIB strategies is also
time-invariant. However, the common information still increases with time and this means
that the domain of SPIB strategies keeps increasing with time. In order to limit the growing
domain of SPIB strategies, we introduce a subclass of SPIB strategies, named Compressed
Information-Based (CIB) strategies, where the coordinators use a compressed version of
common information instead of the entire common information. We show that this new class
of strategies satisfies a key best-response/closedness property. Based on this property, we
provide a backward inductive procedure that identifies an equilibrium in this subclass of
strategies if each step of this procedure has a solution. While equilibria in CIB strategies may
not exist in general (see example in Sect. 5.5), we identify classes of games among teams
where such equilibria do exist.

5.1 Compressed Common Information and CIB Strategy

In decentralized control problems [43,53] and games among individuals [45,51], agents can
compress their common information into beliefs on hidden and (sufficient) private informa-
tion for the purpose of decision-making. Similarly, we would like to consider a subclass of
SPIB strategies where each coordinator compresses the common information H? to a belief

on sufficient private information and hidden information, i.e., IP’(X;: dr =" ¢f = -|Ht0) for
k € Z. Due to Lemma 4, these beliefs can be constructed from ]P’(Xf_ 4= d)’t‘ = -|H,0) and
(Ytkf d41:1—1» Ur—a:—1). Therefore, we will consider strategies where coordinators use com-

mon information-based beliefs on the sufficient private information S,k = (Xf_ d> ¢£‘)k€1

along with the uncompressed values of (Y;—g41:1—1, Us—g:1—1), instead of the whole H,O.
‘We formalize the above discussion in the rest of this subsection.

Definition 11 (Belief generation system) A Belief Generation System for coordinator i con-
sists of a sequence of functions ' = (W}’k)kez,;gT where w,”k “([Tex A(Sll)) X Vr—da1:s X
Ui—g1 +> ASE)

Coordinator i can use this system to generate common information-based beliefs H,i ke
A(Stk) for all k € 7 as follows:
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-y ik s the prior distribution of (X (d—1)° ]1‘), i.e., a measure which assigns probability

1 to the event (X¥ -1y = =0, ¢ = ¢)") where (,13’1( is the PRP that always produces

actions ut” =0 for all (k, j) € Nk, t <0 (see Remark 2);

- 1 = AT ez, Yicasin Uima) 1 = 1

H,”k represents coordinator i’s subjective belief on coordinator k’s sufficient private infor-
mation S,k. These beliefs along with (Y;—g+41:+—1, Us—g:r—1) will serve as coordinator i’s
compressed common information.

Definition 12 (Compressed common information) We define coordinator i’s Compressed
Common Information (CCI) at time ¢ as

B,i = ((Hti,l>le1 Y dyti—1, Ut—d:t—l) s

where (17 )161 are generated using the behef generation system defined in Definition 11.
Note that when d = 1, we have B’ = ((I1) )lez, U,_1).

We can write the belief update using B! as H;_fl = wti’k(Bi, Y;, U;). With a slight abuse

of notation, we use Wti to represent the collection (lﬂt’k)kez and write the belief updates
collectively as (H;il)lez =y (B, Y, Uy).

We now define a subclass of strategies where coordinator i uses her CCI instead of the
entire common information.

Definition 13 (Compressed information-based strategy) Let B; = (erI A(S,k)) X
Vica+t1:—1 X Us—g1—1. A Compressed Information-Based (CIB) strategy for coordinator
i is a pair (A1, ¥h), where Al = (Ai),eT is a collection of functions )L; 1By x S,i — A(.Ai),
and ! = (lﬁ,i’k)kez,,eT, I/Iti’k B X Yy x Uy A(Stk_i_l) is a belief generation system as
defined in Definition 11.

Under a CIB strategy, coordinator i uses her belief generation system to compress common
information into beliefs and then uses these beliefs along with (Y,—gy1:1—1, Ur—g:1—1, Sf)
to select a randomized prescription. Thus, a CIB strategy (A', ¥') is equivalent to an SPIB-
strategy

pr(hf,st) =2 (( ! k)keI s Vi—d+1it—15 ut—d:t—l,Sf) VhY € HY, Vs! € S

where (nf ’k)kez is generated from A9 through the belief generation system defined in Defi-
nition 11.

Remark7 One advantage of CIB strategies is that at each time coordinator i only needs to
use her current CCI rather than the full common information (i.e., Hto) which increases with
time. Thus, if the sets A}, V;, U, are time-invariant, the mappings A, ¥/ in a CIB strategy
have a time-invariant domain.

Remark 8 We have not imposed any restriction on the mapping v/ in coordinator i’s belief
generation system (see Definition 11). Intuitively, however, one can imagine that coordinator
i has some prediction about others’ strategies and is rationally using her prediction about
others’ strategies to update her beliefs through the mapping /. In the following discussion,
our focus will be on such “rational” v/ where the notion of rationality will be captured by
Bayes’ rule.
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We end this subsection by pointing out that coordinator i’s belief generated from ¥! canbe
grouped into two parts: (IT,;"');e7 and (IT,"");e7. The first part represents what coordinator
i believes about other coordinators’ SPI. The second part represents what coordinator i thinks
is the other coordinators’ belief on her own SPI.

5.2 Consistency and Closedness of CIB Strategies

As mentioned before, our interest in CIB strategies is motivated by the common information
belief-based strategies that appeared in the solution of decentralized control problems [43,
53] or games among individuals [42,45]. The common beliefs used in these prior works
are compatible with Bayes’ rule (i.e., the beliefs can be obtained using Bayes’ rule along
with the knowledge of the system model and the strategies being used). Inspired by these
observations, we are particularly interested in CIB strategies where the belief generation
system is compatible with Bayes’ rule, i.e., the beliefs generated by coordinator i using
agree with those generated using Bayes’ rule along with the knowledge of the system model
and the strategies being used.

In the following discussion, we identify a key property of such Bayes’ rule compatible
CIB strategies. To do so, we use the following technical definition.

Definition 14 (Consistency) Given Aﬁ : B x Sti — A(.Af), a belief generation function
1//,*‘i By X YV Xx Uy > A(StiH) is said to be consistent with )\ﬁ if the following holds:
For all b; = ((n,l)lez, Vied41:t—1s Ut—d:t—1) € By, w:“’i(bt, V¢, uy) is equal to the conditional
distribution of Sti 11 given the event (Y; = y;, U; = u,) found using Bayes rule (whenever
Bayes rule applies), assuming that y;_44+1.,—1 and u;_4;— are the realization of recent
observations and actions, S! has prior distribution 7/, and given S! = s/, I'! has distribution
Al(by, s!). That is,

th (b, y;» s, S,I_H)
Z;;H Y/ (br, yisurs 5y )

whenever the denominator of (3) is nonzero, where

W, (be, yr, u)1(sl, ) = 3)

Ttl(bh y[l7ulasll‘+])
— izl . S :
=X Y X [rolEotg e,
St Ko ViV G gy =0
x A (P |by, § PI(R! |y! U1, §Hm! (51
t\Ve lOr, S ) 5 (X gy 1.1 Ve —d 410 =15 Wr—dir—15 ¢ )04 (S
for all
; ) . . )
by = (())iez, Yi—d+1:—1, Ui—a:1—1) € B, Y; € ytl, Ur € Ut,S,l_H € 5;_,_1,

¢ is defined in (2) and P/ is as described in Lemma 4.
For any index set £2 C Z x 7, we say that Yol = (W,*’l)(,",)eg is consistent with
A= (M) .nes if ¥, is consistent with A! for all (i, 7) € £2.

A CIB strategy (A, ') for coordinator i is said to be self-consistent if ¥+ is consis-
tent with L. Since self-consistency can be viewed as Bayes’ rule compatibility, the beliefs
(IT;"")seT represents true conditional distributions of coordinator i’s SPI given the common
information under a self-consistent strategy.
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Lemma 6 Let (M, ') be a self-consistent CIB strategy of coordinator i. Denote the behav-
ioral strategy generated from (\', ¥') as g'. Let h(t) € H? be admissible under g\.,_,, then

i i 0 IR N i i
P81La-1(sy, x;7d+1:t|ht) =7, () P/ (xtlfd+l:z|ytl7d+1:t717 Ur—d:t—1, ;)

i i i i
Vs €8 VX g1y € Xi_gyia

where 1t;"' is the belief obtained using W' under the realization h? of common information
and P} is as described in Lemma 4.

Proof See Appendix F. O

Now, consider a game with two coordinators: Suppose that coordinator 1 plays a self-
consistent CIB strategy with belief generation system v!. Since the belief IT ,1’1 generated
from 1'is a true conditional distribution on coordinator 1’s SPL, coordinator 2 can use I7 ,1’ las
her belief on coordinator 1’s SPI. Further, coordinator 2 can use v Lo compute coordinator 1’s
belief about coordinator 2’s SPI. This suggests that coordinator 2 should mimic coordinator
1’s belief generation system when coordinator 1°s strategy is self-consistent. This observation,
along with results from Markov decision theory, leads to the following crucial best-response
property of CIB strategies.

Lemma 7 (Closedness of CIB strategies) Suppose that all coordinators other than coordina-
tor i are using self-consistent CIB strategies. Let (A, y*) be the CIB strategy of coordinator
k € I\{i}. Suppose that y/ = ¥ for all j, k € T\{i}. Then, a best-response strategy for
coordinator i is a CIB strategy with the same belief generation system as the other coordi-
nators.

Proof See Appendix G. O

5.3 Interpretation and Discussion of Consistency and Closedness Property

Lemma 7 imposes two conditions on the CIB strategies of coordinators other than i, namely
(D they are self-consistent, and (I) their belief generation systems are identical. In order to
illustrate the significance of both conditions, we first describe how coordinator i could form
her best response when all coordinators other than i are playing some generic CIB strategies
that are not necessarily self-consistent or do not have an identical belief generation system.

The problem of finding coordinator i’s best response to others’ CIB strategies can be
thought of as a stochastic control problem with partial observation. This suggests that in
order to form a best response at time ¢, coordinator i needs to compute (or form beliefs
on) the data that coordinators —i’s CIB strategies use, i.e., the CCI and the SPI of other
coordinators. Coordinator i also needs to estimate all the hidden information in order to
evaluate the payoffs. Coordinator i’s estimation task can be divided into three sub-tasks: (i)
to form a belief on her own hidden information XL d41:0 (1) to recover coordinators —i’s
CCI (Btk )kez\{i}> and (iii) to form a belief on coordinators —i’s SPI and hidden information
thd+1:t’ )

For the first sub-task, coordinator i can compute the belief through the function P/ defined
in Lemma 4 using (Yli_ dali—1° Ui—gii—1, Sti) , without using any belief generation system.
For the second sub-task, recall that BZ‘ includes (YL dali—
already knows. Thus, to complete the second task, coordinator i can simply use (¥ YkeT\{i}
and the common information Ht0 to compute all the beliefs in (Bt/‘ )kez\(i}- Condition (I),

1» Ut—d:1—1), which coordinator i
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namely that the CIB strategies for coordinators other than i are self-consistent, ensures that
coordinator i can also accomplish the third sub-task using the beliefs in (B,k)kez\{i} due
to Lemma 6. By using self-consistent CIB strategies, coordinators —i effectively “invite”
coordinator i to use the same belief generation system as —i.

Thus, all of coordinator i’s sub-tasks can be done if she keeps track of her own S! and
the CCI (B,k )kez\{i} used by others. Therefore, coordinator i can form a best response with
a strategy that chooses prescriptions based on (Btk)keI\{i} and St" at time ¢. Condition (II),
namely that the belief generation systems are identical, ensures that B,k ’s are identical for all
k € Z\{i}, and hence, the best response described above becomes a CIB strategy with the
same belief generation system as the one used by all coordinators other than i.

Remark 9 Note the CIB strategy that is a best-response strategy for coordinator i in Lemma 7
may not necessarily be self-consistent. However, the equilibrium strategies in a CIB-CNE
(which we will introduce later) will be self-consistent for all players.

5.4 Coordinators’ Nash Equilibrium in CIB Strategies and Sequential Decomposition

The fact that one of coordinator i ’s best responses to others using CIB strategies (with identical
and self-consistent belief generation systems) is itself a CIB strategy (with the same belief
generation system as others) suggests the possibility of a Coordinators’ Nash equilibrium
(CNE) where all coordinators are using CIB strategies with identical and self-consistent belief
generation systems. We refer to such a CNE as a CIB-CNE. More formally, a CIB-CNE is a
CIB strategy profile (A, 1) ez where (i) all coordinators have the same belief generation
system, i.e., foralli € Z, 1//i = y* for some ¥ *, (ii) for each k € Z, 1//*'/‘ is consistent with
A%, and (iii) for each i € Z, the CIB strategy (A*, /') is a best response for coordinator i to
W, YR e i)

Notice that in a CIB-CNE all coordinators are using the same belief generation system,
hence the CCI B{ (as defined in Definition 12) is the same for all coordinators. We denote the
identical B{ for all coordinators by B;. Furthermore, when all coordinators other than i are
using fixed CIB strategies, (B;, S!) can be viewed as an information state for coordinator i’s
stochastic control problem (see proof of Lemma 7 for details). Based on this observation, we
introduce a backward inductive computation procedure for determining CIB-CNEs where
By is used as an information state. Our procedure decomposes the game into a collection of
one-stage games, one for each time ¢ and each realization of B;. These one-stage games are
used to characterize a CIB-CNE in a backward inductive manner.

Definition 15 (Stage game) Given the value functions Vi4, = (Vti +1)i61’ where V,"_~_1
Biy1 x S, I e R, a realization of the compressed common information b, =
(TT¢y Yi—dt1:4—1, U—d:1—1) Where T, = (1])iez, m; € A(S;), and update functions ¥;* =
(wf’i)iez, w,*’i By X YV x Uy A(Sf+1), we define a stage game for the coordinators
dynamic game as follows:

Stage Game G;(V;y1, by, ¥[):

— There are |Z| players, each representing a coordinator.

(Vit1, by, ") are commonly known.

Nature chooses Z; = (S¢, X¢—d+1:» W,Y),7 where S; = (S,k)keI~
Player i observes Sti = sf.

7 Since Xy, Us, Yy are finite sets, one can assume that W,Y also takes finite values without lost of generality.
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— Player i’s belief on Z; is given by
B Gils) = Ly [ [ GH %

ki
k =k k ~k ~k,Y
X l_[ P (5 _agre | Ye—agra—1s Wi—di—1, )P, ),
ke
~ - = -y Y
VZr = (8¢, Xi—d+1:1» Wy ) €S X Xi—gq14 X W, . “)

where P,k is the belief function deﬁne(_i in Eq. (1).
— Player i selects a prescription I'; € A} as her action.
— Player i has utility
Q4(Zs, T1) = r{ Xy, Up) + Vi (Brr1, i), ®)
where
S=rN X Yk ) eN,
Bz+1 = (T} Dkets Or—dr2:1-1, Y0, (i—az1:—-1, Up),
t+] wz*k(btaYtaUt) Vk €T,

_K’(X",U,, whYy vk e,

U,

St+1 = Lz( Iz t—d+1’ ry
Given the stage game G;(V;41, b;, ¥,;"), we define two associated concepts:
Deﬁnltlon 16 (IBNE correspondence) Given the value functions Vt+1 = (V +l)l€I’ where
B,+1 X S g~ R and belief update functions ¥, = (lﬁt Yiet, wt By x Y x

Z/lt — A(S! +1) the Interim Bayeszan Nash equilibrium correspondence IBNE; (V; 11, ¥[)
is defined as the set of all A; = (A ieT, A By x S’ — A(A’) such that

by, s)) € argmax | Y | 0 QLG 78] Gals) [ [ s 7 1br, 57)

neAA) \z,.7, ki
Vb, € By, 5! € s;',\ﬁ €1,

where /3, and Q’ are defined using (V} 10 e ¥;) in (4) and (5), respectively.

Definition 17 (DP operator) Given a value function V', | : Biyq x S! 41 — RandaCIB
strategy profile (AF, W;*) at time 7, where A} = (A} ),EI, *i : By x S’ — A(A’) and

Ut = ie, B x Yy x Uy > A(S +l) the dynamlcprogmmmmg operator DP’
defines the value function at time ¢ through

[DP)(V/ 1. A5 U s)) == QLG 7B Galsh [ [ A7 G 1be. 7).
2tV keZ

where ,8, and Q’ are defined using (V} 1 by, ¥) in (4) and (5), respectively.

Theorem 2 (Sequential decomposition) Let (A, ¥*); <1 be a CIB strategy profile with iden-
tical belief generation system * for all i € Z. If this strategy profile satisfies the dynamic
program defined below:

Vi (L) =0 VieT;
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and fort € T
Af € IBNE;(Vig1, ¥/); (6)
Y is consistent with AY;
Vi i=DPUV/ |, Af, ) Viel, )

then (A, y*)ie1 forms a CIB-CNE.
Proof See Appendix H. O

Remark 10 Note that (6) and (7) can be verified for each realization b; € B; separately, i.e.,
one can check that 17 (b, -) is an IBNE of the stage game G,(V;+1, b;, ¥, (b, -)), and that
¥ (by, -) is consistent with A} (b;, -) for each b;.

5.5 Existence of CIB-CNE

We have shown in Theorem 1 that an SPIB-CNE always exists. However, a CIB-CNE does
not necessarily exist, even when each team contains only one member (i.e., in games among
individuals). We present below one example where CIB-CNEs do not exist.

Example 1 Consider a 3-stage dynamic game (i.e., 7 = {l, 2, 3}) with two players: Alice
(A) and Bob (B). Each player forms a one-person team. Let X ,A € {—1,1} and X IB = J,
i.e., Bob is not associated with a state. Let Y; = &, i.e., there is no public observation of
the states. The initial state X f‘ is uniformly distributed on {—1, 1}. At = 1, (a) Alice can
choose an action U IA € {—1, 1} and Bob has no actions to take; (b) the next state is given by
X 5‘ =X f‘ U IA; (c) the instantaneous reward is given by

(X1, U = —rf X, U = ¢ - 1{U1A=+1},

where ¢ € (0, 1).
Att = 2, (a) neither player has any action to take; (b) the state at next time is given by
X ? =X 5‘; (c) the instantaneous rewards are O for both players; (This stage is a dummy stage
inserted in the game to alter the definition of the CCI at the beginning of the last stage.)
At t = 3, (a) Alice has no action to take, and Bob chooses USB e {L,R}; (b) The
instantaneous reward rf (X3, U3) for Alice is given by
r(-1,L) =0, r{(-1,R)=1
L) =2, 1 +1,R) =0
and r# (X3, U3) = —r{' (X3, U3).
In a game where each team contains only one person, we can assume the delay d to be
any number (see Remark 1). In the next proposition, we view Example 1 as a game among
teams with internal delay d = 1.

Proposition 1 There exist no CIB-CNE in the game described in Example 1.

Proof See Appendix L. O
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Remark 11 One can provide an example for non-existence of CIB-CNE for any d > 0 by
inserting d — 1 additional dummy stages (analogous to stage 2) into Example 1, and viewing
it as a game among teams with internal delay d. Example 1 can also be used to show that the
CIB-PBE concept defined in Ouyang et al. [45] for games among individuals does not exist
in general, hence the conjecture in Ouyang et al. [45] that a CIB-PBE always exists is not
true.

Intuitively, the reason that a CIB-CNE does not exist in this game is that at + = 3, a
CIB strategy requires Bob to choose his action based only on a compressed version of his
information rather than the full information. This compression does not hurt Bob’s ability to
form a best response. However, in an equilibrium, Bob needs to carefully choose from the
set of optimal responses to induce Alice to play the predicted mixed strategy. Being unable
to choose different actions under different histories due to information compression makes
Bob unable to sustain an equilibrium. In this game, as in the example in Maskin and Tirole
[35], payoff irrelevant information plays an essential role in sustaining the equilibrium.

In the remainder of this section, we present two subclasses of the dynamic games described
in Sect. 2 where CIB-CNE:s exist.

5.5.1 Signaling-Neutral Teams

In this subsection, we consider d = 1. One subclass of games where CIB-CNEs exist is when
the teams are signaling-neutral. In these games, the agents are indifferent in terms of signaling
to other teams, i.e., revealing more or less information about their private information to
the other teams does not affect their utility. (Note that agents can always actively reveal
information to their teammates through their actions.)

We shall now describe the game:

Definition 18 A team i whose state Xj can be recovered from (Yi , Up) (i.e., for every fixed u;,
Kf (xf Jug, W Y) has disjoint support for different x[i € X,i) is called a public team. Otherwise,
it is called private team.

For a public team i, the private state Xi_l is effectively part of the common information
of all members of all teams at time .

Definition 19 (Information dependency graph) The information dependency graph G of a
dynamic game is a directed graph defined as follows: The vertices represent the teams.
A directed edge i < j is present if either the state transition, the observation, or the
instantaneous reward of team i at some time ¢ depends directly on either the state or the
actlons of team j. In other words, there is no directed edge from j to i if and only if

Xl = fiX. U’ W’ X, Y =i (XE U, WYy and rE(X,, Uy = rE (X, U for
some functions f!, ¢%, ! for all ¢. Self-loops are not considered in this graph.

Theorem 3 Letd = 1. If every strongly connected component of the information dependency
graph G of a dynamic game consists of either (1) a single team, or (II) multiple public teams,
then a CIB-CNE exists.

Proof See Appendix J. O

Remark 12 The precedence relation among teams considered in Theorem 3 is similar to the
s-partition of teams that was presented and analyzed in Yoshikawa [67].
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When the condition in Theorem 3 is satisfied, all teams will be neutral in signaling: When
a private team i sends information, this information is only useful to those teams whose
actions do not affect team i’s utility. Public players are always neutral in signaling since their
state history is publicly available.

Notice that in Example 1, Alice (as a one-person team) is a private team while Bob is a
public team. The instantaneous reward of Bob at + = 3 depends on Alice’s state Xﬁ‘, while
Alice’s instantaneous reward at + = 3 depends on Bob’s action. Hence, Alice and Bob form
a strongly connected component in the information dependency graph.

5.5.2 Signaling-Free Equilibria

In this section, we introduce another class of games where CIB-CNE exists. These games
are games-among-teams extensions of Game M defined in Ouyang et al. [45]. We present
the result for a general d > 0.

Theorem 4 A dynamic game that satisfies all of the following conditions has a CIB-CNE:

(i) States are uncontrolled, i.e., Xr+1 = fiXE, W, wh X).

(ii) Observations are uncontrolled, i.e., Y’ = E’ (X’, W’ y).

(iii) Instantaneous rewards of team i can be expressed as rti X, Z, U,).

Proof See Appendix K for a direct proof. Alternatively, one can first assume that the teams
share information with a delay of d = 0, then we can view a team as one individual since
team members have the same information. One can then apply results for Game M in Ouyang
et al. [45] to obtain an equilibrium where each player/team plays a public strategy (i.e., a
strategy that does not use private information), in particular, a strategy where actions are
solely based on the common information-based belief. Since public strategies can also be
played when d > 0, we conclude that the equilibrium we obtained is also an equilibrium for
the original game. O

6 Additional Result

Consider a special case of the model in Sect. 2 where both the evolution and the observations
of the local states of each member of each team are conditionally independent given the
actions, i.e.,

,+1—f,”(X” U, W),
Yi = v/, N
Yti,j lj(Xl JJ U, z/ Y)

where (W, % Wiy, o (i, j)eN” are mutually independent primitive random variables.

In this case, we show that the independence among team members’ state dynamics enables
us to consider equlhbrla where the coordinators assign prescriptions that map X;’ RET

(instead of mapping X'/ to U;"’). This is because given H/, the belief of member (i, j)

t—d+1:t

about her teammates’ states is independent of X +~d41.- In other words, one can replace the

hidden information X! with the sufficient hidden information X;.g

t—d+1:t

8 The compression of hidden information to sufficient hidden information is similar to the shedding of irrel-
evant information in Mahajan [29].
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Definition 20 (Simple prescriptions) A simple prescription for coordinator i at time 7 is a
collections of functions 7 = (7). jyeni, 717+ X7 = Uy

Lemma8 Let g be a behavioral coordination strategy of coordinator i. Then, there exists a
behavioral coordination strategy g' payoff-equivalent to g' such that g' only assigns simple
prescriptions.

Proof See Appendix L. O

Given the above result, one can restrict attention to sufficient hidden information-based
strategies where each coordinator i assigns simple prescriptions based on ﬁ;. With this
restriction, results analogous to that of Sects. 4 and 5 can be derived considering similar
compression of private and common information.

7 Discussion
7.1 Implementation of Behavioral Coordination Strategies

One can interpret behavioral coordination strategies as strategies with coordinated random-
ization, i.e., the strategies are randomized, but all the team members know exactly how this
randomization is done. We note that one can view the main purpose of randomization as to
“confuse” other teams. As such, it is best to use coordinated randomization where every team
member knows what partial mapping their teammate is using; such coordinated randomiza-
tion is superior to private and independent randomization by each individual member in a
team: This is because individual randomization can create information that are unknown to
teammates, while the same “confusion” effect to other teams can be achieved with coordi-
nated randomization.

To implement behavioral coordination strategies, a team can utilize a correlation device
which generates a random seed at each time 7. Then, each member (i, j) of the team i
can choose an action based on H,"/ and present and past random seeds generated by the
correlation device, or equivalently, choose an action based on (H,' Jor "1:,71) and the current

random seed, where I ’izk | is sequentially updated. If the behavioral coordination strategy is
aCIB strategy, then member (i, j) needs touse (B;. X, @0 X,
seed to chose an action, where (B;, ®}) are sequentially updated.

In the absence of correlation devices accessible at every time, a behavioral coordination
strategy can also be implemented as its equivalent mixed strategy (recall Lemma 1 and
Lemma 2): Before the beginning of the game, the team can jointly pick a strategy profile in
G’ randomly, according to a distribution induced from the behavioral coordination strategy.

) and current random

7.2 Stage Game: IBNE Versus BNE

One can observe that the belief of the agents defined in the stage game (Definition 15) can
be seen as a conditional distribution derived from the common prior

B = [ [ GO PEEE Y g i SHPGET] ®)
ke

However, in the aforementioned stage game we focus on the beliefs of agents instead of a
common prior, and we use Interim Bayesian Nash equilibrium (IBNE) as the equilibrium
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concept instead of BNE. This is because, unlike a standard Bayesian game with a common
prior, the true prior of the stage game is dependent on the actual strategy played in previous
stages. The prior B; described in (8) may not be a true prior, since some coordinator i may
have already deviated from the strategy prediction which nf ’s were relying on. However,
coordinator i is always trying to optimize her reward given (b, s!), no matter 7/ (s/) = 0
or not. Hence, in this stage game, we must consider the player’s belief and strategy for all
possible realizations s; under any strategy profile, not just those with positive probability
under the prior in (8). The corresponding equilibrium concept is Interim Bayesian Nash
Equilibrium instead of Bayes—Nash equilibrium. IBNE strengthens BNE by requiring the
strategy of an agent to be optimal under a/l private information realizations, including those
with zero probability under the common prior.

7.3 Choice of Compressed Common Information

In decentralized control [43] and certain settings of games among individuals [42,45], a
common information-based belief I1; on the state is usually enough to serve as an information
state, or compression of common information. However, in our setting we use a subset of
actions and observations in addition to the CIB belief as the compressed common information.
We argue below that this is necessary for our setting.

To illustrate the point, consider the case d = 1 and assume that all coordinators use the
same belief generatlon system and hence, the same CCI (denoted by B/"). An alternative for
the CCI B} = ((IT;"")iez, U;—1) is the CIB bellefH = (T")ier, I € A(X!_,.) where

ﬁ,*’i represents the belief on X! based on common information. One might argue that

t—1:t
we can use IT, , instead of B} through the following argument: After we transform the game
into games among coordinators, because of the full recall of coordinator i, coordinator i’s
belief (on other coordinators’ private information and all hidden information) is independent
of her behavioral coordination strategy &'. Hence, coordinator i can always form this belief
as if she was using the strategy prediction g*/ no matter what strategy she is actually using.

However, this argument can run into technical problems: A crucial step for Lemma 7
is Eq. (26), which establishes that coordinator i’s belief can be expressed as a function of
(Bf, Xi_l) for any behavioral coordination strategy g’ coordinator i might use. To use IT ;k
alone as the information state, one needs to argue that coordinator i’s belief on her hidden
information, P(X! = -|x/_,,u,_1), can be computed solely through (7", x!_|) without
using u,—1. Through belief independence of strategy, one may argue that

P *i k—i P
Py lx,_y, ue—1) =P8 8 (x/|x,_y, us—1)
* *,—i0 Poq
=P8 (X1, _1h Yia—1, U1d—1)

w0 ok, —i . -
P87 (xy, x| Y1e—1, U1:—1)

Petg™ I(X 1|y1 =1, ULt—1)

_ ~*l(xz—1’xt) )
s ,fr,*’(xt &)

However, the above argument is not always valid. It is only valid when the denominator
of (9) is nonzero, but it can be zero. One simple example is the following: Let )2;71 € XILI

be some fixed state and 12?71 € Xt’;l be some fixed action profile. Let ALI be the set of
prescriptions that maps )25_1 to ﬁi_l. Suppose that the strategy prediction g*! is a behavioral
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coordination strategy satisfying the following:
gt*il(zi—l)(yti—]) =0 VE;—I € ﬁ;—p Vzi—l € Ai—l’

i.e., under g*, coordinator i never assigns any prescription that maps )?I’;l to IQL IR s
consistent with the strategy prediction g*, then

kil i i gl i 0
AR X)) =88 (% k) =0

=i
Xt

if ui_l = ﬁi_l. When coordinator i uses a strategy g such that X;'_l = )2;_1 , U;'_l = ﬁﬁ_l
could happen with nonzero probability, coordinator i cannot use 7, to form her belief on
her hidden information. This is contrary to what we need in Eq. (26) in the proof of Lemma 7,
which states that the belief function is compatible with any behavioral coordination strategy

ol

8

8 Conclusion and Future Work

We studied a model of dynamic games among teams with asymmetric information, where
agents in each team share their observations with a delay of d. Each team is associated with
a controlled Markov Chain whose dynamics are controlled by the actions of all agents. We
developed a general approach to characterize a subset of Nash equilibria with the following
feature: At each time, each agent can make their decision based on a compressed version of
their information, instead of the full information. We identified two subclasses of strategies:
sufficient private information-based (SPIB) strategies, which only compresses private infor-
mation, and compressed information-based (CIB) strategies, which compresses both common
and private information. We showed that SPIB-strategy-based equilibria always exist and can
attain all the payoff profiles of Nash Equilibria. On the other hand, CIB strategy-based equi-
libria do not always exist. We developed a backward inductive sequential procedure, whose
solution (if it exists) is a CIB strategy-based equilibrium. We characterized certain game
environments where the solution exists. Our results highlight the discord between compres-
sion of information, ability of compression-based strategies to sustain all or some of the
equilibrium payoff profiles, and backward inductive sequential computation of equilibria in
stochastic dynamic games.

Moving forward, there are a few research problems arising from this work: (i) discovering
broader conditions for the existence of CIB-CNE in the model of this paper; (ii) developing an
efficient algorithm which solves the dynamic program of CIB-CNE (when a solution exists);
(iii) determining minimal additional information needed to be added to the CCI such that CIB-
CNE (under the new CCI) is guaranteed to attain some or all of the equilibrium payoff profiles;
(iv) defining a notion of €-CIB-CNE, analyzing its existence, and developing sequential
computation procedures to find them; (v) characterizing compression-based subclasses of
equilibrium refinements for games among teams.

Other future research directions include identifying a suitable compression of information
and developing a sequential decomposition for other models of games among teams, for
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example (i) games with continuous state and action spaces (e.g., linear quadratic Gaussian
settings), and (ii) general models with non-observable actions.
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A Two Examples
A.1 A Motivating Example for Sect. 2

The following example illustrates the importance of considering jointly randomized mixed
strategies when we study games among teams. Similar to the role mixed strategies play in
games among individual players, the space of jointly randomized mixed strategies contains
the minimum richness of strategies that ensures an equilibrium exists in games among teams.
In particular, if we restrict the teams to use independently randomized strategies, i.e., type 1
and type 2 strategies described in Sect. 2.2, then an equilibrium may not exist. This example
is similar to the examples in Farina et al. [13], Zhang and An [68], Anantharam and Borkar
[3] in spirit, despite the fact that in our example the players in the same team have asymmetric
information.

Example 2 (Guessing game) Consider a two-stage game (i.e., 7 = {1,2}) of two teams
Z = {A, B}, each consisting of two players. The set of all agents is given by N' =
{(A, 1), (A,2), (B, 1), (B,2)}. Let X* = (X!, x?) € {1, 1)% and Team B does not
have a state, i.e., X? = @. Assume U,/ = {—1,1}fort = 1,i = Aort =2,i = B and
Z/Itl” = O otherwise, i.e., Team A moves at time 1, and Team B moves at time 2. At time
1, X f"l and X f‘z are independently uniformly distributed on {—1, 1}. Team A’s system is
assumed to be static, i.e., Xf = X’]“.
The rewards of Team A are given by

A —
riy X1, Up) = l{XiA,IU]A.IX,IA,2U1A.2=71}a

r3' (X2, U) = -1 -1

s 2 2
D R i

and the rewards of Team B are given by
rf (X1, Up) =0,

rf(Xz, Uy) = l{X;,I:UZR,I} + 1{X§’2=UZB'2}'

Assume that there are no additional common observations other than gast actions, i.e.,
Y; = . We set the delay d = 2, i.e., agent (A, 1) does not know X,A’ throughout the
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game and a similar property is true for agent (A, 2). In this game, the task of Team A is to
choose actions according to their states at t = 1 in order to earn a positive reward, while not
revealing too much information through their actions to Team B. The task of Team B is to
guess Team A’s state.

It can be verified (see Appendix A.2.1 for a detailed derivation) that if we restrict both
teams to use independently randomized strategies (including deterministic strategies), then
there exists no equilibria. However, there does exist an equilibrium where Team A randomizes
in a correlated manner, specifically, the following strategy profile o*: At7 = 1, Team A plays
yA = (y41, y42) with probability 1/2, and 74 = (4!, 74-2) with probability 1/2, where

Al Al Al A2, A2y _ A2
Yy =xp, i) = Xy,
~A1, Al Al 5A2, A2 A2
Yoyt = —xp, v = x
and at t = 2, the two members of Team B choose independent and uniformly distributed
actions on {—1, 1}, independent of their action and observation history. In o *, each agent
(A, j) chooses a uniform random action irrespective of their states. It is important to have
(A, 1) and (A, 2) choose these actions in a correlated way to ensure that they obtain the full
instantaneous reward while not revealing any information.

A.2 An lllustrative Example for Sect. 3

The following example illustrates how to visualize games among teams from the coordinators’
viewpoint.

Example 3 Consider a variant of the Guessing Game in Example 2 with the same system
model and information structure but different action sets and reward functions. In the new
game, Team A moves atboth = l andt = 2, withU,A’/ ={—1,1}fort =1,2andj =1, 2.
Team B moves only at time + = 2 as in the original game. The new reward functions are
given by

r{' (X1, U =0,
A
Xo,Up) =14 1 A, , 1 ,

72X U2) =L bt —ppy + it ety

rE(X1, U =0,

ry (X, Uz) = Lixp—usy-
In this example, Team A’s task is to guess its own state after a round of publicly observable
communication while not leaking information to Team B.

A Team Nash equilibrium (o*4, o*8) of this game is as follows: Team A chooses one of
the four pure strategy profiles listed below with equal probability:

Al, Al Al A2, A2 A2
® [ (xl ):_xl s My (xl ):xl )
Al Al A2 A2 A2 A,l,
Mo (ulax]:2)=u] s Mo (ul»x1:2)=_’41 5
AL, AL AL A2, A2y A2
® [y ()Cl )—_xl > My ()Cl )—_Xl s
Al Al A2 A2 A2 Al
152 (ulsxl;z):_ul s My (ulsxl;Z):_ul )

AL, AL AL A2, A2, _ A2
o Uy (xl )_xl > My (xl )_xl ,

Al Aly A2 A2 A2, ALl
My (U, xps) =upt pwy agL xpy ) =uy
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eu' ot =t uf M) = —xf

A 2 Al

Al s .
Hy (ul,x1:2)= ,Mz (1x12)— ;

while Team B choose Ug uniformly at random independent of U;. In words, from Team
B’s point of view, Team A chooses Uf‘ to be a uniform random vector independent of Xf‘.
However, the randomization is done in a coordinated manner: Before the game starts, both
members of team A randomly draw a card from two cards, where one card says “lie” and the
other says “tell the truth.” Both players then tell each other what card they have drawn before
the game starts. At time r = 1, both players in Team A play the strategy indicated by their
cards. At time ¢+ = 2, Team A can then perfectly recover Xf from U‘l4 and the knowledge
about the strategy being used at t = 1.

Now, we describe Team A’s equilibrium strategy by the equivalent coordinator A’s behav-
ioral strategy. Use ng to denote the prescription thatmaps —1to 1 and 1 to —1. Use id to denote
the identity map prescription, i.e., the prescription that maps —1 to —1 and 1 to 1. Use cp,,
to denote the constant prescription that always instruct individuals to play b € {—1, 1}. The
mixed strategy profile o*4 is e(?uwalent to the following behavioral coordination strategy:
Attimer =1, gl (@) € A(AA X A‘f’z) satisfies

1
2 2 .
@M M = Z vyt e (ng, id).

Attime t = 2, g : L[lA’l X Z/llA’2 X .Af’l X Af’z > A(A?’1 X A?’z) is a deterministic
strategy that satisfies

gy (u', u?, ng,id) = DM(cp,2, ep_,1),

Al 2

gy (u',u”,ng,ng) = DM(cp_,2, cp_,1),

g8 ', u?,id, id) = DM(cp,2, cp,1),

gy (u', u?,id, ng) = DM(cp_,2, cp,1),

. 4ALL A2 Al A2

where DM : A" x A5"" = A(A," x A;°7) represents the delta measure. In words, the
coordinator of Team A randomly chooses one of all four possible prescription profiles at time
t = 1. Attime t = 2, based on the observed action and the prescriptions chosen before, the
coordinator of Team A directly assign actions to agents to instruct them to recover the state
from the actions at + = 1. Note that the behavioral coordination strategy at t = 2 depends
explicitly on the past prescription I" ‘14 in addition to the realization of past actions. This is

because the coordinator needs to remember not only the agents’ actions, but also the rationale
behind those actions in order to interpret the signals sent through the actions.

A.2.1 Proof of Claim in Example 2

Define two pure strategies 4 and 14 of Team A as follows:

A,l Al A2, A2 A2
(x )—x s M) = Xy,
~A1 Al ~A2
(x 1 ):_xl , (xl ):Xl

Now, assume that Team A and Team B are restricted to use independently randomized
strategies (type 2 strategies defined in Sect. 2.2). We will show in two steps that there exist
no equilibria within this class of strategies.
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Step 1: If Team A and Team B’s type 2 strategies form an equilibrium, then Team A is
playing either u4 or fi4. ' ‘

Let p;(x) denote the probability that player (A, j) plays Uf"] = —x given Xf"j = x.
Define

1 1
qj = Epj(_l) + 51?,/(-1—1),

i.e., the ex-ante probability that player (A, j) “lies.”
Then, we have

Elr{ (X1, UD1 = q1(1 — q2) + q2(1 — q1).

Under an equilibrium, Team B will optimally respond to Team A strategy’s described
through (p1, p2). We can find alower bound of Team B’s reward by fixing a strategy: Consider
the “random guess” strategy of Team B, where each of (B, j) (for j = 1, 2) chooses UzB J
uniformly at random irrespective of U{‘ and independent of the other team member. Team B
can thus guarantee an expected reward of % + % = 1 given any strategy of Team A. Since
r2A X3, Uy) = —rf (X2, Uy), we conclude that Team A’s total reward in an equilibrium is
upper bounded by

g1 —q2) +q2(1 —q1) =1 =—q1g2 — (1 —q1)(1 —q2) <0

Let o 8 denote the strategy of Team B. Let 7 j (u', u?) denote the probability that player
(B, j) plays UZB’J = —ul given UM = u', UM = u? (i.e., the probability that player (B,
J) believes that (A, j) was “lying” hence guesses the opposite of what was signaled). If Team
A plays p4, then the total reward of Team A is

JA 0 ®) =1 =Bl —m(X{ =X + m !, —x 1)

1
=1 > (m®) + mx).

xe{—1,1}2
If Team A plays /14, then the total reward of Team A is
JAEM 0%) = 1= Elm (=X X)) + 1= m(=x{ X))

1
=7 2 m®-m).

xe{—1,1}2

Observe that J4(u?, 0 8)+J4(14, 08) = 0. Hence, forany o 8, either J4 (14, 6 8) > 0
or J A(,ELA, O‘B) > 0. In particular, we can conclude that Team A’s total reward is at least O
in any equilibrium.

We have established both an upper bound and lower bound for Team A’s total reward in
an equilibrium. Hence, we must have

—q192 — (1 —q1)(1 — q2) =0,

which implies g1 = 0,92 = 1 or g1 = 1, g2 = 0. The former case corresponds to Team A
playing the pure strategy 14, and the latter to playing 4.

Step 2: There does not exist equilibria where Team A plays u” or 4.

Suppose that Team A plays 4. Then, the only best response of Team B is to play UZB -

UIA’], UZB'2 = —UIA’Z. Then, Team A’s total reward is JA(,uA, oBy=1-1-1=-1.1f
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Team A deviate to i, then Team A can obtain a total reward of +1 (recall that J A (u?, o 8)+
JA(RA, 08) = 0 for any o B). Hence, Team A does not play ul at equilibrium.
Similar arguments apply to i, which completes the proof.

B Proof of Lemma 1

Given a pure strategy profile ;! of team i, define a pure coordination strategy profile v’ by
VOt Vi) = (1 s D jpens Yhy € Ho vy € Ay

We first prove that for every pure strategy profile u!, there exist a payoff-equivalent
coordination strategy profile v’ by coupling two systems. In one of the systems, we assume
that team i uses a pure strategy. In the other system, we assume that team/coordinator i
uses the corresponding pure coordination strategies. We assume that all teams other than
i use the same pure strategy profile uwh = (,uk )kez\{i} in both systems. The realizations

of primitive random variables (i.e., (Xli),'g, (W,”X, W,”Y)iez,,eT) are assumed to be the
same for two systems. We proceed to show that the realizations of all system variables (i.e.,
(Xt, Yy, Up)ser) will be the same for both systems. As a result, the expected payoffs are the
same for both systems.
We prove that the realizations of (X;, Y;, U;);e7 are the same by induction on time ¢.
Induction Base: At + = 1, the realizations of X; are the same for two systems by
assumption. For the first system, we have

Uy =uy (XY VG, j) e N,
and for the second system we have
Ty =vi(H) = (' )i pens:
Uy = I VG ) e N

which means that U{’j = /Lll (Xi’j) also holds in the second system for all (i, j) € N;.

It is clear that U] are the same for both systems since in both systems,
k,j kj ki .
Uljzﬂlj(xlj) Yk, j) € N\N;.

We conclude that U; are the same for both systems. Since (Wlk ’Y)kez are the same for
both systems, Yk = E’i (x*, Uy, Wf’y), k € 7 are the same for both systems.

Induction Step: Suppose that X, Yy, U are the same for both systems for all s < .
Now, we prove it for ¢.

First, since the realizations of X!

-1 U1, W;fi are the same for both systems and
kX
Xf = fA X Ui, W) VkeT,

X, are the same for both systems.
Consider the actions taken by the members of team i at time ¢. For the first system,
UM = ) (HPY = ) (HE XD YL ) € NG

In the second system,
T =vi(H) = ()’ (H )i gjen;
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UM =0 YL ) e N
which means that

U —U'z ( td+lt) V(i j) € Ni.
The actions taken by the members of other teams at time ¢ are

ki _ k,j

Ui il (HL X X Zgpra) V&, j) € N\NL.

for both systems.

We conclude that U; has the same realization for two systems since (H xk P d +1:0)keT
have the same realization by the induction hypothesis and the argument above. Since
;) ),ez are the same for both systems, Yk Kk(Xk, U, w k ),k € 7 are same for
both systems.

Therefore, we have established the induction step, proving that ui/ and v’ generate the same
realization of (X;, Y;, Us);c7 under the same realization of the primitive random variables.
Therefore, V' is a payoff-equivalent pure coordination strategy profile of ji'.

To complete the other half of the proof, for each glven coordination strategy v’ of
team/coordinator i we define a pure team strategy u! (/L, )i, j)eN;,reT through

ue (Y = v ) Y e HYT VG, ) e N,
where y/ = (yti’j )i, j)eN; is recursively defined by Vi:r and h! through
vi = vy vigy) VieT.

Then using an argument similar to the one for the proof of the first half we can show that
u' is payoff-equivalent to v'.

C Proof of Lemma 3

Induction on time 7.

Induction Base: At ¢ = 1, we have X’l‘ to be independent for different k£ because of the
assumption on primitive random variables. Furthermore, since H' {‘ is a deterministic random
vector (see Remark 2) and the randomization of different coordinators are independent, we
conclude that (X¥, I’ '{) are mutually independent for different k. The distribution of Xk r ’f)
depends on g only through g*.

Inductlon Step: Suppose that (xk
Ps(xk

Lo ]f:l) are conditionally independent given Ht0 and
l:t |H,0) depends on g only through g¥. Now, we have

1:t°
P8 (X1t 1, Vi1 104 )
=P8y 11011y X1ty Vit )DPE Gt 1By X1, v PE (e, v 1B, )

= (1"[ POt It ugr o i e Xy g yﬁ,)) P8 (x1:0, yialhiy ).
kel

‘We then claim that

P& (x1., Y1t YVts Mz|h?) = 1_[ Ftk(xlf;p Vlk;t» h?+1)
keZ
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where for each k € Z, F} is a function that depends only on g*.
To establish the claim, we note that

P8 (x1., Yiits Yts Mt|h?)
=P8 (yr, urlh?, X1, Y1:0)PE (K10, Y1 1BD)

= (1_[ P(ytklxtk: ut)l{“f=}’rk(xtkd+1;,)}> P8 (x1y, yl:t|h9)

kel
k. .k k k 11,0
= <1—[ Pl lx, u’)l{ulf—)’rk(xxk—ﬁlq)}) (1_[ P& (g vrg 1y )>
keT ' keT
ko .k k 0
= 1_[ (g Vi Big)s
kel

where in the third step we have used the induction hypothesis.
Given the claim, we have

P (X105 Yiits Vi Mt|h?)
Z;,:M;m P& (X1:1, V1:ts Vis u,|h?)
_ nkeI Ftk(xlf:t’ J/1kzt’ h?+l)
Zil:n?l:r [kez Ftk(illc:t’ J71k:t7 h9+1)
[Tkez Ff & v h?+1)

- kozk Sk 0
nkel' (Zi’l‘:r,)}{‘:r F (X1 Vi hr+1)>

kixk k30
— 1‘[ ( FE Oy Vi hiyy) )
= kizk Sk 10
Zi{ﬁ,,;;{i, FE O Vi higy)

P (1, Y1 lhYyy) =

keZ

and then

0 ko k ko0
PE @ty Vit ) = [ [ GF Ot Viars B0,
keZ

where Gf is given by

ko k k 0\ _myk |k Kok 10k k
G (Tt Vi Pee) =POG I u) gy (Vi R Xy —gers Vi) X
kook Lk 30
Ft (xl:t’ yl:t’ ht-H)

X
kizk Sk 70 3°
Z;’;,,;?{i, FF (X Vi hiyy)

One can check that Gf depends on g only through g* and

k =k ~k 0\ _
§ G (X1g1s Vi1 i) = 1,
~k ~k
XL+ V1u41
therefore
ko k k 0 _ mgk ok k 0
Gy (g1 Vi hp) = P51 Vi i)

Hence, we establish the induction step.
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D Proof of Lemma 4

Assume that Ei € ﬂﬁ is admissible under g. From Lemma 3, we know that P8 (xi:t, yli:t |h9)
does not depend on g~%. As a conditional distribution obtained from P& (xi:t, yf:tlh,o),

s (xtifd+l it . )
Therefore, we can compute the belief of coordinator i by replacing ¢~ with ¢, which

is an open-loop strategy profile that always generates the actions u ;.

|ﬁi) does not depend on g~ either.

i IR i
PEE O ggra ) =P8 (g lhy).

Note that we always have PS8 (ﬁ;) > ( for all E; admissible under g.
Furthermore, we can also introduce additional random variables into the condition that
are conditionally independent according to Lemma 3, i.e.,

g8 (i Ty e i
P (xt7d+l:t|ht) =P (xtfd+l:t|ht’ ‘xt—d:t)’

where x 7, € X7, is such that PS¢~ (x, 7 B}) > 0.
Letr—t—d—i—l By Bayes’ rule

Qi o—i s
ps-$ (x;::t|ht’xriltt)
ami

i 5 . .
P88 (Xeuy, You—1, Uri—1, Vrl;,,1|h?l)

= i i =i —i i %y (10)
Zii:t g8 ('x‘[;ta X Yri—1, Uzit—1, Vf:t_1|hr )
where
htl = (Y1:o—1, Ul:z—1, xi:r—l’ x;ila )/11;1-_1)-
We have
i p—i i i
P&8 (xey, Yrit—1, Ur:it—1, Vrl;;_1|htl)
d—
i p—i i i
= 1_[ I:]Pg & (X1t 1s yt—llhtlv Xrit—1s Yrit—I—1, Uzit—1» J/;;tfz)
=1
ia—i : .
x g8 (u;_[|htl» Xit—1 Yrit—I—1, Urit—1—1, Vrl;t_l)
Qoami g . .
x P88 (V,l_1|hil» Xri—1s Yri—I—1, Urit—I—1, Vfl;,_l_l):l
i p—i ;
X P (e ). (1)

The first three terms in the above product are

i oA . .
. *
P88 Ctrmiget, it hE Xru—t, Yeu—i—1, Uzl Vi)

= [TPOf et ueDPOE Xy ),
keZ

i oA . . .
g8 (u;_1|hjla Xrit—1 Yrit—1—1, Urit—]—1, )’;;1_[)

- 1 1

(D)eN; = I—Vz l(xz I—d41a-1)
i,J

1
l_[ 0=, (Y

(i,))eN;
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i oA . . .
PE8 (v B Xty Yesr—i— 15 Ueit—1—1 Vay—i—1)
= g VIVl = 1 Ut = =1, Xy g s Vig—i—1)s (12)

respectively.
The last term satisfies

PR (e 1) = [ [ POk Iy ue).
kel
Substituting (11) - (12) into (10), we obtain
F s Yoy Weta—1, Xy 81)
Zii:z Fti (ii;p yi:,_l, Ur—1:t—1, xi—l ) ¢;)

ol 871 it —i _
ps-8 (xr:t|ht’xr—l:t)_

where

F{(Xpps Yooy 1> Ur—1:—1, @1) := P(xplxs_ |, tr—1)
d

-1
X Py 13— )PVl s 1) 1_[ l{u

et )
=1 (i, /)N #0 i

Therefore, we have proved that

g (i 7N _ pigyi i i i
Py _gralh) = Pr g YVi—agpra—1s Wi—dio—15 X, g, §1)
() i i i
Fr g Vi d+1it— 1> Ur—dit—1, X, _ d’d)t)

. [ i
Zi;_tH_]:,F Xi— d—Ht’yt d+1:t—1> Wi—d:t—1, xt a P

where Pti is independent of g.

E Proof of Lemma 5

For notational convenience, define

Hz :(Y12[71!U121717Xl:;_d7 1,«_1)

Claim 1 P8 (x;—g41:4|¥s» sli, E;i) does not depend on g.9
Claim2 P8(y,. sl 7, ) = PP 8 (y, sl T, Y forall yy € A, st € ST, e M
Given Claims 1 and 2, we conclude that

P8 (X a1, Vi Sty By ) = PP (gt Vi 81 By ) (13)

. . 77[ _:
forall x;_g414 € Xe—gy1:, vr € Aryst €S R, € H!

9 We claim that the value of this conditional probability is the same for g and g¢ whenever the conditional
probability is well-defined under both g and g. However, whether or not the the conditional probability is well-
defined does depend on g. In the lemma, we always apply Claim 1 by multiplying P8 (x;_g11.¢1ys, sj, ﬁ:l)

with some other terms. Those terms will be 0 whenever P8 (x;—g41:¢ |z, sf Jhy ") is not well defined.
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Marginalizing (13), we obtain

P (-t 10> Vi) = PP 8 (Xr—atioe, V1)- (14)

Since U,k’j = Ftk’j(Xf’f;Hl:t) for all (k,j) € N, we can write rtk(X,,U,) =

F,k (X¢—g+1:, I'y) for some function F,k that does not depend on the strategy profile. Then,
using linearity of expectation and (14) we obtain

J*(g) = B8 [Z X —aria, m}

teT
= Y B Kimavre, Tl = Y B8 (7 (Ximaya, To)]
teT teT
=8 [Z X1, m} =J5 ' g7
teT

for all behavioral coordination strategy profile g . Hence, g’ and p’ are payoff-equivalent.

Proof of Claim 1 For notational convenience, define

H = Uﬁi = (Y1.-1, Ur—1, Xii—d, T1:0—1)-
iel

Consider P8 (x;—g41:¢11, h;) first. Since I'; is a randomized prescription generated based
on H; which enters the system after X;_;.1., are realized, we have

Pg(xtfd+1:t|yt’ E) = Pg(x,,d+1:t|ﬁt). (15)
Due to Lemma 3, we have
- —k
PE(xy—arralhe) = [ [ PGy l)- (16)
keT
By Lemma 4,
7k .
Pg(xf—d-rl:t'ht) = Ptk(xt]{—d-t-l:z'ytk—d-&-l:t—l’ Ur—d+1:4—1, 5;) )

where Ptk is a function that does not depend on g.
Combining (15), (16), (17), we have

7 k. .k k k
IED<(’7()Cz—tl—¢—1:t|)/t» hy) = 1_[ P, (xt,d+1;;|y;7d+1;,,1, Ut—d+1:t—15 5 ).
keZ

Since (¢, ﬁt_i) is a function of H;, by Smoothing Property of Conditional Probability
we conclude that

IP)g(xtﬂiJrl:r|)/t’ S,i, E_l) = l_[ P;k(xtk_d.,.l;,|ytk_d+1;z_1, Ut—d+1:1—1, 5;()
keT
where the right-hand side does not depend on g. O
Proof of Claim 2 Proof by induction on ¢.

Induction Base: The claim is true at ¢t = 1 since pi and g’i are the same strategies.
Induction Step: Suppose that the claim is true for time # — 1. Prove the result for ¢.
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First,

Py, sl )

——i

. 7_1 ~i i ~i - .
= > PE(yilsi By L E g Pl PRy g Py s By )

=i S i
Rl VL= )1 =5

. . 0 i i k kfk i o . 7_1‘

= > PACALI e 7N [ [ FALC 7AW B LGNS IRy
(ii:t—d’);li:lfl):‘;?i:s;‘ k#i

. . 0 _ _ k kfk i o . 7_1

= > PACALI I N I [ FAIC 20N R C I I N
(ii:t—d’?fztfl):‘;;:‘g; k#i

x PS(si T )

. fo ~i o ~i . 7_1
= S GO R g Pl ROBE G g P Isl Ry

(ii:lfd‘fli:tfl):gii :S;
< | [Ter o in) | PEcst .
ki

Using Lemma 3, we have
o i < i 7N opet oz =i i 10
PEXY gy Vi—alse by ) =P8 (X _gs Vi st 1)
Therefore,
Qg Qi ~i 0 ~i ~i i i i i 0 i
Z 8 WF i Vi1 BOPE Gy Vi ISt By ) = o (v LRy s sp)
(ill.:t—d’?li:lfl):‘gj:‘y;.

for all (h?, s!) admissible under g. Notice that P§ (Y, s!) = 0 implies that P8 (s/ E:i) =0,
hence we conclude that

” ] . . . —k , ]
P (i, s by ) = pi IR s [ T ef ik | PEcst B
ki

forall y, € A, si € S e Mt
Similarly,

io—i . — . . . —k i PR
P8 (st by ) = pf il I sp) | T T et G 1) | 2708 sl )
ki

—i

for all y, € A, sl € S, h,
P8 (s, k).
Given the induction hypothesis, it suffices to show that

€ 'H;'. Hence, it suffices to show that P8(si, i, ') =

Lo . — Po—i i ——i . —
]P)g(stlah[ |)/t—l7stl71»hl_1)=]P)p 8 (Stl»hl |)/[_1,Stl71,hl_l)
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for all (yy—1, st 1’ ;_i]) admissible under g (or admissible under (pi, g_i), which is an
equivalent condition because of the induction hypothesis).
Given that
Sl —‘t l(St X T i —1)s
= (H . Y1, U, LX),
k
Ytkfl=z (Xt 1’ t 1 t—’)l/) Vk e 1,

k.j .
Ut—Jl = (Xz dit— 1) Yk, j) eN,
it follows that (Sf,ﬁ_i) is a strategy -independent  function of (I';_p,
St

pendent of (I';_1, S

H, l,X, dit—1, Wt 1) Since WY =W 1)k€1 is a primitive random vector inde-

1 ,_1 ), it suffices to show that

PE (a1 Vi1, 511 By ) = PP ot |Viet, 81y By ). (18)

We know that (18) is true due to Claim 1. Hence, we established the induction step. 0O

Remark 13 In general, a behavioral coordination strategy profile yields different distributions
on the trajectory of the system in comparison with the distributions generated from its asso-
ciated SPIB strategy profile. It is the equivalence of marginal distributions that allows us to
establish the equivalence of payoffs using linearity of expectation. This (payoff) equivalence
between behavioral coordination strategies and their associated SPIB strategy profiles is dif-
ferent from the equivalence of behavioral coordination strategies with mixed team strategies
where not only are the payoffs equivalent, but distributions on the trajectory of the system
are also the same.

F Proof of Lemma 6

We will prove a stronger result.

Lemma9 Let (A, y*) be a CIB strategy such that ¥** is consistent with \*K. Let g** be
the behavioral strategy profile generated from (\**, yr*). Let ¥ represent the belief on Sk
generated by y* at time t based 0n ho. Lett < 1. Consider a fixed h? € H(,) and some
g1 .11 (not necessarily equal to g1 _1)- Assume that h? is admissible under (g’l‘:l_l, g;k:];_l).
Suppose that

PRt (58 kg1 1h0) =1 E) PF O e 6Kt t—air—1. 8)
Vs € Sf th—d+l 1 € X —d+1:1° (19)

Then,

k 0 k kN pk ..k k k
]P)é“ V8 I(S[’ r—dt1o ) =0 ) Pr (g1 Ve g 11> Uo—dir—1, 57)

k k k
VS‘L' € ’Sr vxt—d+1:r € X —d+1:T*
The assertion of Lemma 6 follows from Lemma 9 and the fact that (19) is true for r = 1.

Proof of Lemma 9 We only need to prove the result for t = ¢ + 1.
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Since h?ﬂ is admissible under (g’f:tfl, g,*k), we have
e &8 (10, ) > 0 (20)

where ;:7;? is the open-loop strategy where all coordinators except k choose prescriptions
that generate the actions ul_f

ok ok o= .. _
From Lemma 3, we know that P81:-1-8: -8 ( 1% ) isindependent of g—*. Therefore,
Sy p 8

~k sk ~—k
81.—1:81 81 (gk 0
ok ; P (S5 15 yrs urlhy)
P&1:—1-81 (Szk+1|h?+1) = R ! , (21)

& Ak
Z~lk+1 PSii—1-81 81 (stk—&-l’ Vis ut|h?)

and the denominator of (21) is nonzero due to (20).
‘We have

~k sk 53—k
a8 81 (K 0
PS1a—1:81 81 (Spy s Vs Uelhy)

=X XX X [PofEwrortEt e

st z —d+1:t x, AR (Xr d41:)= uf

*k sy pata_1-8* 4r k7,0
X1{5+1_l;(5r,xr 170 nh 7 |b”s)IP“1’ lf(x il X St|ht)

-2 XX X [PofiEwrortiEtm

5 1d+1txt ket (x 1) uf

ELPRN N Y §5 110
Xl —L,(Y,,xt d+1° y)}L (V; |bt,S[)IP>“1 ! 1f(x d—Ht’st |h[)

X Pglzt—l’gt ’31:: (fﬂﬂh?)]

~k *k A=k
= | DoPOFIET u )PR8T 8 (77K ()

ik

k~k
X Z Z > [P(yr IXe u) ik kg, 70

s Fk dﬂ,y, FHEE dr1:)= uf
x A (K by, PR 8 &t CHI 5,’<|h9)]. (22)
where by = (T, Yi—d+41:1—1, Ut—g1—1) and T, = (ntl)lez is generated from v*.
Recall that we assume
et 188 (FF_yt0 SE1RD)
=7 GO P E gy Va0 edi—15 7). (23)
Using (21), (22), and (23), we obtain

k
by, v ur, sk )
k k <k
thkH T[ (btv yt s Uty st+1)

Pglt l’gt (st+l|ht+l) =

where

k k k
T} (bh y, s Uty S[+])
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= Z Z Z I:P(yt |x1 ’ ll[)l 1—‘t(51 s , d+]»yt )}

5t x d+1z3’1 878 (xx d41)= u

k <k <ky pk k <k
)\'* ( |b[,St )ﬂt (S )P (X,_d+1;;|yt_d+1;;_17 Ut—d:t—1, ¢ )]a
Therefore by the definition of consistency of ¥** with respect to A*, we conclude that
gk ek 1,0 k ok
PEL-08 (s g Ty ) = 700 (554

818t
Now, consider P81:—1-8: (x, doziet SE 1RO D).

— Pt (s lIh +1) = 0, then we have ’Tr+1(sz+1) =0and

ok *k
81 1.8 (=k k 0 _
PoL=18 (X 010 S 1Rig) = 0.

— If PRl (Sl+l|ht+l) > 0, then

sk sk
8118 (3K k 0
POL—08 (X o> Stg1 [Big)
sk sk
R Y N 0 k k ok
=POr8 (X g S DT (1)
‘We have shown in Lemma 4 that
sk sk —k
1. 1,8 k
Pota-18 (xt—d+2:z+l|ht+1)
k ~k k k
= P (g [ Vi—agous Wi—di1as Si4)

and (ht 1Sy + 1) is a function of ht _1- By the law of iterated expectation, we have

g .8 78
PSEi—1-81 lt(xt d+2,+1|hz+1v t+1)

= t+1(xt7d+2:t+l |)’z—d+2:z’ Ur—d+1:t5 SH—I)'
‘We conclude that

ek e
PoL-1 (xz d42:1 41 z+1|hr+1)

_ pk/~k k k k
= P/ (X _gy2:41 |yt—d+2:t’ Ur—d+1its S )T 1 (S 1)

k k
for all stJrl € Sthl and all X _gynqi1 € X A4l O

G Proof of Lemma 7

Let g~! denote the behavioral strategy profile of all coordinators other than i generated from
—i

the CIB strategy profile (Ak, wk)kez\{,-}. Let (F,, y}) be admissible under g
Let g' denote coordinator i’s behavioral coordination strategy. Because of Lemma 3, we
have

Vl' ,i _ 71 .
PE8 ty—agtzs ¥y 'y v
5 g o .
=P8 Oy—agra, Vi VB X gy Vi)

_mg i 0 i i gk ok k70
=P% g1y X Vi) | |]P gt Ve 1)
ki
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We know that I'; "and Xl d + 1 ATe conditionally independent given ﬁ; since I" ; is chosen

as a randomized function of H at a time when X' are already realized. Therefore,

1—d+1:1
ps-s (xti—d—}—l:z“/l(t)7 xi:t—d’ yli:t) =P¢ £ (x;—d+1:t|h?’ xi:t—d’ yli:t—l)
= POy |V —asra—1s Wi—di—1 5¢),

where s,i = (xt’; a> ¢f) and P,i is the belief function defined in Eq. (1).

We conclude that

P (rmarts ¥y s 7))
. . . . ok
= P (gl Vi a1 =1, 5) | [BS gy v RD). 24)
ki

Since all coordinators other than coordinator i are using the same belief generation
systems, we have B] = Btk for j,k # i. Denote B, = B,k for all k € Z\{i}. Let
b, = ((n,*’l)l oo Vimdiri1, u,,d;,,l) be a realization of B;. Also define ¥* = y* for all

€

k#i.

Consider k # i. Coordinator k’s strategy gk is a self-consistent CIB strategy. We also have
ht0 admissible under gk since (ﬁi, ¥}) is admissible under g—*. Hence, applying Lemma 6
we have

P (st’ t—d+1: x|h0) =" k)Pk(xr d+1: t|yt d+1:t—1> Wi—dit—1, Srk)
Hence, the second term of the right hand side of (24) satisfies
k ko
PE (X grs VIR = D P G X v/ D)

<k
St

—Z[ VPECH gV a1 SO GEBLTH ] @9)

where P,k is the belief function defined in Eq. (1).
Recall that b, = ((71,* l)z L Vi—d+1:—1, u,,d;,q). From (24) and (25), we conclude
€
that
P Ot v s v = Fl Gemarias v 'l s7) (26)
for some function F; for all (Eﬁ, ¥!) admissible under g 7.
Consider the total reward of coordinator i. By the law of iterated expectation, we can write

T g =EF " [Z B [r (X, Up) [ H, r;‘]} :

teT

i

For (ﬁi, y,i) admissible under g,
ES™ [l Xy, Uiy, v/
= > Zr, G 0 G g 7 Gl gy Goman 777 b))

Fr—d+1: yf

=7 (b, st ¥,
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for some function ?i that depends on g~ (specifically, on Afi) but not on g'.

We claim that (B;, S;) is a controlled Markov process controlled by coordinator i’s pre-
scriptions, given that other coordinators are using the strategy profile g 7. Let g’ denote an
arbitrary strategy for coordinator i (not necessarily a CIB strategy). We need to prove that

T . : . i . o
PEE (bryrs 5411010, 81 Vi) =8 (bryrs s71bes 53, v4)
. . ~i . .
V(bllt’ Sll;tz )/1[;,) s.t. Pg 8 (blil‘s sll;tv V]l;,) >0

for some function &/ independent of g'.
We know that

Bii1 = 1, Ye—agv2:, Urmayn),
O =y (B, Y, Up),
k= gk xk U, why vk ez,
k,j k .
U’ = f(x, d+lz) Yk, j) e N,
Stl+1 = ‘z(Sz’ t—d+1’ ;)

Hence, (By41, S?) is a fixed function of (B, S,', X;—at1:4, T, W), where WY is a prim-
itive random vector independent of (B, S, I'}.,» X¢—a+1.1). Therefore, it suffices to prove
that

Pgl’gﬂ (Xr—d+1:1 J/;_i|b1:t» S’i;,y Vf;;) = E; (Xr—d+1: )/,_i|br» S,i, )/;i)

for some function 5/ independent of g'.
(B14, S i:t, r ’i:t) is a function of (ﬁ;, r ﬁ). Therefore, by applying smoothing property of
conditional expectations to both sides of (26) we obtain
PES rmais v 1brs s Vi) = F Gueare v b s7),

where we know that F/, as defined in (26), is independent of g'.
We conclude that coordinator i faces a Markov Decision Problem where the state process
is (B;, S7), the control action is I'}, and the total reward is

|:Zr (B, S, T }
teT

By standard MDP theory, coordinator i can form a best response by choosing I'? as a function
of (B, S1).

H Proof of Theorem 2

Let (A*, ¥*) be a pair that solves the dynamic program defined in the statement of the theorem.
Let g** denote the behavioral coordination strategy corresponding to Wk, ) for k € 7.
We only need to show the following: Suppose that the coordinators other than coordinator i
play g*~i, then g*! is a best response to g*

Let h? € H? be admissible under g*_i. Then,

*k
k _k 0 k k
P8 (S,,x,7d+1:t|ht) =T (St)P (xt d+lt|yt d+1:—1> Yi—dit—1, st) (27)
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for all k # i by Lemma 6, where 7} is the belief generated by y* when 1 occurs.
By Lemma 4, we also have

~]  ~7 O 1 [/~ [ ~l
P(s;, x;—d+1:t|h ,S) =P/ (x;—d+1:t|ytl—d+l:z—l7 Ur—d:t—1, 5;) (28)

Combining (27) and (28), the belief for coordinator i defined in the stage game according
to Definition 15 satisfies

Bl Gils)
k =k ko k <k _y
= 1{5{=s;‘} nnt (1) (1_[ Pr g Vi—ayri—1s Wi—du—1, 5 )> P(w, )
ki keT

- . sk -~ ~

= PG] 5 _apralhfsh [ TP GE T gy 1)) | PG

ki

=P8 G, Fraral] sHPGOET) = BT G IAY, 5))
for all (hto, sf) admissible under g*_i ,1.e., the belief represents a true conditional distribution.
Since B; (:|s;) is a fixed function of (b;, s;), by applying smoothing property on both sides
of the above equation we can obtain

Bl Gilsh) =P8 Gylbr, ).

for all (b;, sli) admissible under g*—*.10

Then, the interim expected utility considered in the definition of IBNE correspondences
(Definition 16) can be written as

D o n@H LG B Gilxl ) [ [ G 1be, 56

N ki
= nGHES Q)2 Ty, s}, 71
v

for all (b, s!) admissible under g*~'.
The condition of Theorem 2 then implies

3 by st € argmax Y OB [H X0 U + Vi B, SLplbe st 7 29)
neA(AD 5,
Vi e = D2 [A @b, sOES 1 (X0 U+ Vi B Sy b o) 7] 30)
v
for all (b;, sli) admissible under g* 7.
Recall that in the proof of Lemma 7, we have already proved that fixing (A*™", ¢*),
(B, S}) is a controlled Markov process controlled by I';. Hence, (29) and (30) show that A}

10 Note that P&~ (Zt by, sf) is different from ﬂ; (Z;Isf). Since By is just a compression of the common
information based on an predetermined update rule ¥, which may or may not be consistent with the actually
played strategy, B; may not represent the true belief. P8 - (z¢|bs, s;) is the belief an agent inferred from the
event B; = by, S} = s;. The agent knows that b, might not contain the true belief, but it is useful anyway in

inferring the true state. ,3; (Zr |s§) is a conditional distribution computed with by, pretending that by contains
the true belief.

Birkhduser



Dynamic Games and Applications

is a dynamic programming solution of the MDP with instantaneous reward
FL(By, S{. T =B [r[(X,, UpIB,. S, T).
Therefore, A* maximizes
EX [Z (B S|, T }
teT

overall A' = (M)ser, A} - By X S] > A(A)).
Notice that for any A', if g’ is the behavioral coordination strategy corresponding to the
CIB strategy (A', ¥), then by Law of Iterated Expectation

B [Z 7B, S r’)} =BT Y X, U»] .
teT LteT
Hence, we know that g*i maximizes

Ee & |:Z ri(X,,Uy)

teT .

over all g’ generated from a CIB strategy with the belief generation system /*.

By the closedness property of CIB strategies (Lemma 7), we conclude that g*' is a best
response to g*~' over all behavioral coordination strategies of coordinator i, proving the
result.

I Proof of Proposition 1

We will characterize all the Bayes—Nash equilibria of Example 1 in terms of individual
players’ behavioral strategies. Then, we will show that none of the BNE correspond to a
CIB-CNE.

Let p = (p1, p2) € [0, 172 describe Alice’s behavioral strategy: p is the probability that
Alice plays U lA = —1lgiven X f\ = —1; py is the probability that Alice plays U ]A = +1 given
X {‘ = +1.Letg = (q1. q2) € [0, 1]*> denote Bob’s behavioral strategy: ¢ is the probability
that Bob plays U3B = L when observing Uf1 = —1, ¢ is the probability that Bob plays
U3B = L when observing U# = +1.

11 1 1
L * [ 2 -
p _<3’3>9 q <3+833 8)

is the unique BNE of Example 1.

Claim

Given the claim, one can conclude that a CIB-CNE does not exist in this game: Suppose
that (A*, ¥*) forms a CIB-CNE, then by the definition of CIB strategies, at t = 1 the team
of Alice chooses a prescription (which maps XlA to Z/IlA) based on no information. At ¢ = 3,
the team of Bob chooses a prescription (which is equivalent to an action since Bob has no
state) based solely on B3. Define the induced behavioral strategy of Alice and Bob through

p1 = A Gd|2) + AT (ep_|9),
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p2 =114 (1d|2) + 2714 (cp.119),

q1 = 23" (LIbs[~11),

¢ = 257 (LIb3[+1D),
where b3[u] is the CCI under belief generation system v * when U IA = u.id is the prescription
that chooses U IA =X f‘; cp,, is the prescription that chooses U lA = u irrespective of X f‘; L

is Bob’s prescription that chooses U3B =L.
The consistency of v/} with respect to A} implies that

M- =—2> — ifp£0,1). U, = —1,
p1+1—p>

M) =—22 ifp#(1,0),U) = +1,
p2+1—p

The consistency of v/ with respect to A3 implies that
M3(+1) = ILHU).

If a CIB-CNE induces behavioral strategy p* = (3, %), then the CIB belief T3 € A(X2)
will be the same for both U; = +1 and U; = —1 under any consistent belief generation
system *. Then, B3 = (I13, Uy) will be the same for both U; = +1 and U; = —1 since
U, only takes one value. Hence, Bob’s-induced stage behavioral strategy g should satisty
g1 = ¢». However, g* = (% + &, % — z-:) is such that g # ¢5; hence, (p*, ¢g*) cannot be
induced from any CIB-CNE.

Since the induced behavioral strategy of any CIB-CNE should form a BNE in the game
among individuals, we conclude that a CIB-CNE does not exist in Example 1.

Proof of Claim Denote Alice’s total expected payoff to be J(p, ¢). Then,
J(p.q)

1 1
= 58(1 —p1+p2)+ 5 (I =pDA —g2)+ p1-2q1)+
1
+ 3 (A= p2)A —q1) + p2-292)

1 1 1 1
= 58(1 —p1+p2)+ 5(2 —pL—p2)+ 5(2171 +p2— Dag1 + 5(2172 + p1 — Daa.

Since this is a zero-sum game, Alice’s expected payoff at equilibrium can be characterized
as

J* = maxmin J(p, q).
P4

Alice plays p at some equilibrium if and only if min, J(p, q) = J*. Define J*(p) =
ming J(p, q). We compute

1 1
J*(p) = 58(1 —-p1+p)+ 5(2 —p1—p2)

16p1+3p) =1 2p1+p2<1.2pp+p <1
1Cp+pi—1 2pi+p>12pm+p <1
1Cpi+pa—1) 2pi+pr<1,2pp+pr > 1
0 2pi+p2>1.2pp+p1>1

=
=
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Fig.1 The pieces (polygons) for
which J*(p) is linear on. The
extreme points of the pieces are
labeled

(0,0)@

(1,0 (1,0) P1

The set of equilibrium strategies for Alice is the set of maximizers of J*(p). Since J*(p)
is a continuous piecewise linear function, the set of maximizers can be found by comparing
the values at the extreme points of the pieces.

We have

J*(0,0):le—l—l—l:ls;
2 2

2’ 22722722 4" Ty
o1y 1 3 1.3 13 31
/ <°’§>=58 2Tt EeE Y
J0) = e 04142021,

2 2 2 2

J*(O,l)z18-2+l~1+1~0:8+1;

2 2 2 2

3°3) "2 72372 2" T3

FaD=2e+ oro= e
2" 2 2

Since & < %, we have (%, %) to be the unique maximum among the extreme points. Hence,
we have argmax, J*(p) = {(%, %)}, i.e., Alice always plays p* = (%, %) in any BNE of the
game.

Now, consider Bob’s equilibrium strategy. ¢* is an equilibrium strategy of Bob only if
p* € argmax, J(p, q").

For each ¢, J(p, q) is a linear function of p and

1 1 1 1 1 1
V,J(p.q) =—=¢—= —q, =6 — =+ = Vp e (0, 1)2.
»J (P, q) ( 28 2+q1-|-2q2 28 2+2ql+Q2) pe (1)
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We need V,J (p, ¢%) = (0, 0). Hence,
p=p*

(S T
_58_§+q1+§q220;
27 2ttt TR

L_ ), proving the claim. O

which implies that ¢* = (% +e 3

J Proof of Theorem 3

We use Theorem 2 to establish the existence of CIB-CNE: We show that for each ¢ there
always exists a pair (A}, ;) such that A} forms an equilibrium at ¢ given v/, and v is
consistent with 1. We provide a constructive proof of existence of CIB-CNE by proceeding
backwards in time.

Since d = 1, we have Sti = Xi_l. The CCI consists of the beliefs along with U;_.

Consider the condensation of the information graph into a directed acyclic graph (DAG)
whose nodes are strongly connected components. Each node may contain multiple teams.
Consider one topological ordering of this DAG. Denote the nodes by [1], [2], --- ([j] is
reachable from [k] only if £ < j.) We use the notation X ,[k], H,[k] to denote the vector of
the system variables of the teams in a node. In particular, following Definition 15, we define
zM = xM W) We also use [1 : k] as a short hand for the set [1]U [2] U - - - U [k].

t—1:t°
Define Bt[ L] = (11, (L:4] U[1 ol 1) (Note that the usage of superscript here is different from the
CCI B! defined in Deﬁnmon 12.)

‘We construct the solution first backwards in time, then in the order of the node for each
stage. For this purpose, we an some induction invariant on the value functions V;' (as defined
in Theorem 2) for the solution we are going to construct.

Induction Invariant: For each time ¢ and each node index &,

— V/ (b, x_,) depends on b, only through (b/'"* ™", ul ) for all teams i € [k], if [k]
i
t—

consists of only one team. (With some abuse of notation, we write V,i (bryx,_y) =

vi (blk 1] ul_, ;il)inthiscase‘)

- Vt (by, x t_l) depends on b; only through bp:k] for all teams i € [k], if [k] consists of
multiple public teams. (We write V,i (by, x,’;l) = V,i (bt“:k], x[’;l) in this case.)

Induction Base: Fort = T + 1, we have V% +1() = 0 for all coordinators i € T hence
the induction invariant is true.

Induction Step: Suppose that the induction invariant is true at time ¢ + 1 for all nodes.
We construct the solution so that it is also true at time 7.

To complete this step, we provide a procedure to solve the stage game. We argue that one
can solve a series of optimization problems or finite games following the topological order
of the nodes through an inner induction step.

Inner Induction Step: Suppose that the first k — 1 nodes has been solved, and the
equilibrium strategy )L*[l 1] Lk=1] along with private information. Sup-

uses only bt[ :
pose that the update rules y,;~!'*~!

have also been determined, and they use only

(o= IR =1 We now establish the same property for (X, 3141y,
— If the k-th node contains a single coordinator i, the value to go is V/ Via (Btilf ) Ui, XI)

by the induction hypothesis. The instantaneous reward for a coordinator i in the k-th
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node can be expressed by r/ (X,“:k], UE”‘]) by the information graph. In the stage game,
coordinator i chooses a prescription to maximize the expected value of

Q (b[lk 1] Zlk 1k]) (Xlk] U[lk])+th+](Bz-l|-]1{ l],U;,Xi),

where

[1:k—1] [1:k—1] [1:k—1]
Bt+1 (Ht+1 ’ U[ )a

il =y ey Uy ek -1,

Y/ = X/ U Wi ek -1,
U/ =r/(X)) Vjell:kl.

The expectation is computed using the belief g/ (defined through Eq. (4) in Definition 15)

*[1:k—1]

along with A; that has already been determined. It can be written as

Y G i@ gl )

~ ~[lk—1]
Sty Yy

X l_[ )»j |b[1k IJ ~] )

je[l:k—1]

- [1:k],Y o~ ~ji~J [1:k—1]
= > Lo g P@H T A GLOPGIE T
1A L1 jellk—1]
k=11 _j
< | [T ~/ @ w1l
jelk—1]
~ig i 1:k j 1:k—1] ~[1:k ~[1:k i
x PG [xi_y a0l * 1 5 M ).
Therefore, the expected reward of coordinator i depends on b, through (b,[ k=11 ui_l).
Coordinator i can choose the optimal prescription based on (b,“tk_l], “le xl’;l), ie.,
¥ (b,, Xy = a et u§ . x{_y). We then have V/ (b, x{_)) = V] =1,
ul X, l) The update rule w, = ;"' is then determined to be an arbitrary update

rule consistent with A;*', which can be chosen as a function from B“ LY y”“ Z/I,H:k]
(instead of B; x y}k] X Uy) to HZTI
If the k-th node contains a group of public teams, then update rules 1/},* [k are fixed,
irrespective of the stage game strategies, i.e., there exist a unique update rule w, that is
compatible with any A" for a public team i. ThlS update rule is a map from y [k] x U, [L:k]
to a vector of delta measures on []; etk A, '_1), i.e., the map to recover Xz | from the

observations (see Definition 18). The functlon takes U[1 K1 a5 its argument due to the fact

that the observations of the k-th node depends on U; only through U[1 k]
The value to go for each coordinator i can be expressed as V/ 1 (B l) by induction
hypothesis. The instantaneous reward can be written as r; (X,1 k] 1 k ) by the definition

of the information dependency graph.
In the stage game, coordinator i in the k-th node chooses a distribution 7} on prescriptions
to maximize the expected value of
i o1.[1:k 1:k 1:k i 1:k 1:k i 1:k
Qi)™ ™, I = LU 4+ v (B XD,

Birkhauser



Dynamic Games and Applications

where

[1:k] [1:k] [1:k]
By =T, U,

s [1:k— j k— .
/=y Gy oy e -1,
k EALS 1:k 1:k 1:k
1 = e, v o,

Y/ = ¢/ x!, UM Wiy vje ik,
U/ =r/(X)) Vjell:kl.

The expectation is taken with respect to the belief ﬂ,i (defined through Eq. (4) in Defini-
tion 15) and the strategy prediction )»5”(]. This expectation can be written as

i~ i 1:k] ~[L:k] ~[1:k i o~ 1:k—1] =~
o G @M kgl s TT M @l w1 50
jeli

- [1:k],Y
T g )

~[1:k] ~[1:k
s g1

i ~] 1:k] [1:k] ~
< | ] =/ G_prG 1 " o/ 1™, %)
jel[lk]
J#

x PG xl, ul™hpi gy @i ™4, 514 p AT,

which dependents only on b; only through b,“:kj. Therefore, the stage game defined in
Definition 15 induces a finite game between the coordinators in the k-th node (instead of
all coordinators) with parameter (b [1:k] , (U k=1 1/f* a )) (instead of (b;, ¥;)), where
Af“ *=1I has been fixed. Teams in the k-th node form/play a stage game where the first
k — 1 nodes act like nature, while the coordinators after k-th node have no effect in the
payoffs of the coordinators in the k-th node. Hence, a coordinator i in the k-th node
can based their decision on (bt[lzk], xl_ ) ien Af (b, X)) = A (b,[l:k], x!_}). We also
have V/ (by, x'_) = Vi (b!"™*, xI_). The update rule is determined by ;" = 1%,

which is guaranteed to be consistent with A*[k]

In summary, we determine (A}, ¥;*) using a node-by-node approach. If the k-th node
consists of one team, then we first determine A} ] from an optimization problem dependent
on (A *1:k=1] T k= 1]) and then determine ;" I] 1f the k-th node consists of multiple public

*,[K]

players, then we first determine ;""" and then solve )\f[k] from a finite game dependent on

O R=1 KD ‘Hence, we have constructed the solution and established both inner and
outer induction steps, proving the theorem.

K Proof of Theorem 4

We prove the Theorem for d = 1. The proof idea for d > 1 is similar.
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We will prove a stronger result. For each 17; € A(X,’;l), define the corresponding ﬁf €
A(X:) by
() =Y I G PG IF).
o
Define @,’ to be the signaling-free update function, i.e., the belief update function such
that

1T, (x))P(Y;1x7)
7l . o P
S TGP 1)
Define open-loop prescriptions as the prescriptions that simply instruct members of a
team to take a certain action irrespective their private information. We will show that there
exist an equilibrium where each team plays a common information-based signaling-free

(CIBSF) strategy, i.e., the common belief generation system for all coordinators is given
by the signaling-free update functions r, and coordinator i chooses randomized open-loop

I, (x) = (IT,. Y}) =

prescriptions based on IT, = (IT,);e7 instead of (B;, X! _)).

Induction Invariant: V/ (B, X!_)) = V/(IT,, X!_)).

Induction Base: The induction variant is true for t = T + 1 since V} +1() =0 forall
iel.

Induction Step: Suppose that the induction variant is true for ¢ + 1, prove it for time ¢.

Let &r be the signaling-free update rule. We solve the stage game G;(V;41, &t, b;). In the
stage game, coordinator i chooses a prescription to maximize the expectation of

rt XU + Vo (g, XD,
where

~k k
t+1(xt+l) = Z +l(xt )]P(xt+l|xt) th+l € X+lv

A =k
k= 1//,’<(17,,Y§<) Vk € Z,
YE = hxk, WhY) vk e,
k,j k,j k,j .
U~ =17 X7 Yk, j)eN.

Hk

Since V! il (M1, X!) does not depend on coordinator i ’s prescriptions, coordinator i only

need to maximize the expectation of r, (Xt , Uy), which is

Yo TGP 15 M G 1be %) | riGE G GEDL v ).
it:il:t‘];tii 7
Claim In the stage game, if all coordinators —i use CIBSF strategy, then coordinator i can
respond with a CIBSF strategy.

Proof of Claim Let nf c I, — A(Z/[,k) be the CIBSF strategy of coordinator k # i. Then,
coordinator i’s expected payoff given y; can be written as

o T+ GLprGl i pnl @l | G @t vl )
it \J#

~—i
Y-t
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ST Glppaiz_p | ol @limo | < riG a@ vl @)

glart \J7 &

ST = Ghnl Gl mn | riGT @ vi o))
har \J#
= ALy (),
Hence, coordinator i can respond with a prescription yti such that )/ti (xf) = u; for all xti ,
where

i i =i i
up € argmax v (e, 0, ' i),
uy

can be chosen based on (77, n; i), proving the claim. ]

Given the claim, we conclude that there exist a stage game equilibrium where all coordi-
nators play CIBSF strategies: Define a new stage game where we restrict each coordinator to
CIBSF strategies. A best response in the restricted stage game will be also a best response in
the original stage game due to the claim. The restricted game is a finite game (It is a game of
symmetrical information with parameter 77; where coordinator i’s action is u! and its payoff
is a function of 7, and u;.) that always has an equilibrium. The equilibrium strategy will be
consistent with &, due to Lemma 10.

Lemma 10 The signaling-free update rule 1/7,’ is consistent with any A;' 1 B x Xti_] — A(Aﬁ)
that corresponds to a CIBSF strategy at time t.

Proof 1t follows from standard arguments related to strategy independence of belief (See
Chapter 6 of Kumar and Varaiya [25]). ]

Let n} = (n;kj)jez, n,*j (I — A(Z/{,j) be a CIBSF strategy profile that is a stage game
equilibrium. Then, the value function

Vi, xi_y) = (rqe;xri(n,, T aﬁ))
uy
+ D VGG §0, EDPGROPE 1w, (F7)

X, Yt

depends on (b, xf_l) only through (7;, xf_l), establishing the induction step.

L Proof of Lemma 8

In this appendix, when we specify a team’s strategy through a profile of individual strategies,
for example ¢! = (¢" )(i.l)eN;» We assume that members of team i apply these strategies
independent of their teammates.

We first show three auxiliary results, Lemmas 11-13 that forms the basis of our proof of
Lemma 8.
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Lemma 11 (Conditional mdependence among teammates) Suppose that members of team i
use behavioral strategies ¢' = (¢" )(, heN; where ga = (¢, )zeT <p, Ht — A(Z/l, ).
Suppose that all teams other than i use a behavioral coordination strategy profile g~'.
Then, (Xt A1 ).heN; are conditionally mdependent given the common information H}. i

Furthermore, the conditional distribution of X’ given H,i depends on (¢', g7%) only

t—d+1:t
through ¢'J.

D= (@) G neNi\(. ) reT s

[ Hi s A(Z/l, ) be behavioral strategles of all members of team i except (i, j). Then,

Lemma 12 Let u'J be a pure strategy of agent (i, j). Let (p;’

there exist a behavioral strategy ¢'/ = (¢, )ieT, @7+ Hi x X’ J s A(Z/{' J) such that
(uh7, b1 is payoff-equivalent to (@7, ¢'77).

Lemma 13 Let i be a pure strategy of team i. There exists a payoff-equivalent behavioral
strategy profile g' that only assigns simple prescriptions.

Based on Lemmas 11-13, we proceed to complete the proof of Lemma 8 via the following
steps.

1. Let o be a payoff-equivalent mixed team strategy to g’. (See Sect. 3).

2. Foreach ' € supp(c’), let g'['] be a payoff-equivalent behavioral strategy profile g’
that only assigns simple prescriptions (Lemma 13)

3. Let &'[u'] be a payoff-equivalent mixed coordination strategy of g'[u'] constructed from
Kuhn’s Theorem [24].

4. Define a new mixed coordination strategy & by

d= > -l

i esupp(o?)

5. Let g be a payoff-equivalent behavioral coordination strategy profile to &' constructed
from Kuhn’s Theorem [24].

It is clear that g’ will be payoff-equivalent to o*. Furthermore, g’ always assigns simple
prescriptions since the construction in Kuhn’s Theorem does not change the set of possible
prescriptions.

Proof of Lemma 11 Assume that i’ is admissible under ¢'. Let g’ be abehavioral coordination
strategy defined by

g;()’z |h ) = 1_[ H ‘le j(th j(xz d+1: z)|hl’ P d+1 4>

eN;
@5 ! Xt d+1:t

i.e., attime ¢, the coordinator generate independent prescriptions for each member of the team.
If we view the prescription I, as a table of actions, then it is determined as follows Each

entry of the table is determined 1ndependently, where the entry corresponding to xt d 1]

randomly drawn with distribution ¢, J (h, x: _’ A1)
Using arguments similar to those in the proof of Lemma 1 one can show that (g, g =)

and (¢, g~) generate the same distributions of (Y1.;, U1/, X1.), hence

i, P : i —i . .
P8 _gpr b)) = P88 oy By
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By Lemma 3, we know that P§ (xi:t, )’f;,|h?) does not depend on g~/ As a conditional
distribution obtained from P8 (x{.,, y{.,[h), P8 (x/_, ., |h}) does not depend on g~ either.
Therefore, we have

i o—i ; ip—i ;
PES Oy _gyr ) =P8 (g )

where g~ is an open-loop strategy profile that always generates the actions ul_j_].
Again, (g%, 87 and (¢', §71) generate the same distributions on (Y., Uy, X1./), hence

ol g7 i iy _ g8 (i i
P (xt7d+l:z|ht) =P (xtfd+l:t|ht)'
‘We now have
i o—i : ia—i ;
P28 g hy) = P28 (g 1)
Due to Lemma 3, we also have
o 8 i iy _mpe g7 i =i
P (xtfd+1:t|ht) =P (xtfd+l:z|ht’ ‘xt—d:t)

where x, ', € X7, is such that P& (x " _|hi) > 0,
Letr—t—d—i—l By Bayes’ rule,

i oA—i . . .
P8 (X;:tlhl’xrilzt)

et 0 —i
P98 (Xeut, Yeu—1, Urir—1 |h17 X1:t—1, xr,l)

= T — 31)
Z}i:t Pe'-¢ l(xlf;p x,;;, Yri—1, ut:t71|h97 Xl:r—1, x,il)
We have
peé 1o —i
(s Yrue—1, Urp—1lhg, X10—1, X))
a-1_
15—l ; —7
= 1_[ [W Xt s Vet |V L= 1 W15 X s X1 p)
=1
i a—i : ; i
X P8 (uy | Y1—1—1s UL —1-1, X1y xrilz,,l)]
i p—i ;
, 0 -
x P¥-8 (xclhy, X101, xril)
ij i iy s
= 1_[ [( 1_[ P(-xt_l_;,_] |-xt_[s ut—l)]P)(yt_”x[_]v ul‘—l)
I=1 (i, j)eN;
i . . L
X @ i ) VPO PO e i) |
) [T PO i ey | PG Iy ue). (32)

(i, ))eN;
Substituting (32) into (31), we obtain
[li pens Fl’/(xi{’h’)
fo H(l JEN; l j(ir - )

ijo i,j
_ 1—[ F (xr:t’h;)
L =isj pi
(i,j)EN; Z;;{ Fy0 (x5t he)

i oA—i . . .
POE Gy i ) =
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where
ijo i 70
Fy o (xgy s hy)
i, i,j i, i, i, i, i, i jr i
= TT[POi b e 0P O g e ) | < Pt 1607 )
N

Il
-

is a function that depends on ¢’/ but not o>~/ .
Therefore, we have proved that

i i . . Fivj )Ciij,hi
POl = [T e (33)
(i, ))eN; Z,%‘T{ Fo7(x7p s hy)
Marginaling (33) we have
Fi o i)
Yo F L B

i

fgl e i iy
P8 (xgy 1) =

which depends on (¢, g~%) only through ¢’/ .
Hence, we conclude that

ig=l i iy _ IR | i
P28 (g lhy) = l_[ P8 g D)
(i,/)eN;

and P# 87 (xf’_jd+1:t|h§) depends on (¢!, g~7) only through ¢/ .

Remark 14 1In general, the conditional independence among teammates is not true when team
members jointly randomize.

[m}
Proof of Lemma 12 For notational convenience, define
H; = U H = (Y11-1, U1, X14-a)-
iel
Due to Lemma 11, P#-¢"" ()?li’_jd+1:,_1|hi,x;”j) depends on the strategy profile only
through ¢’/
Set
o @t Xy = 1 ij i o P G B, xid
@ (uy [y, x,) . Z (T =l i F i) (x,_d+1:,_1| 2 x)
~1,
Xr—jd+1:r—1

for all (hi,'x,i’j) admissible under p!>7. Otherwise, @;’ (hf, xi’j) is set arbitrarily.
Let ™" be a pure team strategy profile of teams other than i. Let the superscript —(i, j)
denote all agents (of all teams) other than (i, j). We will prove by induction that

Lo i —Gi.)) Gy )
PAbe o (g, Xy, X—d+1:1—1° he) =P (g, Xy, X—d+1:1—1° hy) (34)

Given (34), the claim can be established with linearity of expectation similar to the proof
of Lemma 5. o o

Induction Base: (34) is true for = 1 since @ll‘] is the same strategy as /Lll‘] .

Induction Step: Suppose that (34) is true for time r — 1. Prove the result for time 7.
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First,
R AN ~(i.j)
I N (/7S 7 X IRy 19
— il g i -G, )
= Z P Ce|Xe, X, g 11> Xe—arz—1o 1)
i;gd+l:t—l
RN AN ~Gi.J)
X PR O X 1 X d 1 he)
l l il
= Z 1 ii_ W (19 5 L l_[ |h )
i R LA VT
Y d1a—1 b g
) S i o i ~i,j —(@i,j)
x l_[ l{ul;’I:Mf'j(hl;’l)} P (s X, 21—t Xe—gp1a—10 1)
(k, j)eN—;
i,J i, iy 0,
— Gl’] X 1—[ BLodbt Rt 1_[ 1 . . .
t ' N @ (g [hy) ' (T =k d k)
@,DeN\{G, )} (k, j)eN_;
pwivd oI i —(@i,))
x PR s X, gy 110 1)
where
Gil= Y [1 e g
! A {uivjzr“'ij(hi)vxifjdﬂ;,,]ax?/)}
i
XiZd+1-1

wid o i )
x P (& X a—1 X X g g Be) |-

From Lemmas 3 and 11, we know that
i o e —(i.)) wid o~ j iy
P (% Xl xS h) =P @ X -1 1% )
ij o . - ij =) =i —G.j
for all (x//, hi) admissible under ¢/ Note that P*"/#" -+ (x,, x, ) | k) = 0 for

(xi"/, hi)) not admissible under 11+ .
Hence, we conclude that

G = Z L, i) X nd
! RN v iy P NG a1 by

xt—dﬂ:t—l

@ ! |k, xi T

and
ij o), —i ,
Pre T (g, xy, t(d-{-)l t—l’h)
il il il
=@ Gy 1y, xp ) [T el imH) | TT Yeioeige,
@,DEN\G, )} (k, )eN—;
ij o, —i —(,))
x Prer ok (xf’xt—zl-ij-lzt—l’h’)'

Similarly, we have
R T =G, )
P g, x ODe)
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i J 0 i J l_l il iyl | I ) R
- (,0; (ut |h s ) (2 (ut |ht ) l{ultajzuiw (h];'J)}
@ DEN\G, 1)} (k, )eN—;
Sivj bl —i i
x oo (xr, x Xy (cliJrl t— hy).

Hence, it suffices to prove that

i i-—j’ —i —(i,)) 5, i,—j’ —i —(i,))
R € 2 Xi—d¥1:u— hl):PW oo (x”xtfdﬂztfl’hl)'

Given the induction hypothesis, it suffices to show that

wisd b= i —@i.)) —@i.))
P ! ey X, _ g 1o ele—1, Xe—1, X, _ 4o ha1) (35)

R —Gi.)) G
=Py e oy X g 11 helue—1, X1, X, jal s hi1)

]

for all (x,—1.x, (t'“ 5, hi—1) admissible under (u'-/ ¢/, u=1) (or admissible under

(@7 (p,’ =/, u=1), which is the same condition due to the induction hypothesis).
Since
k X
= XL UL W), keT
H; = (Ht—let—lvUt—l),
kY
Vi =65 U, W), kel
we have (X;, X, (ﬁj _{_)1 .4+_1» Hy) to be a strategy-independent function of the random vec-
tor (Uy—1, X,—1, X, 57 H—, WX |, WY ), where (WX |, WY ) is a primitive random

vector independent of (U,_1, X;_1, X,f;zjtl »» Hy—1). Therefore, (35) is true and we estab-

lished the induction step. O

Proof of Lemma 13 Through iterative application of Lemma 12, we conclude that for
every pure strategy u', there exist a payoff-equivalent behavioral strategy profile ¢ =

(@), jyeni reT» where @, @ HE x X’ N AU 7). Define ' by

n(i’j)g./\/}l_[ LJ‘/)zj(Vt j(xtlj)|hpxtj) V; G-Al

g/ Ih}) =
otherwise

where fiﬁ - Ai is the set of simple prescriptions. Then, using arguments similar to those in

the proof of Lemma 1 one can show that g' is payoff-equivalent to ¢, and hence payoff-
equivalent to p'. O

References

1. Amin S, Litrico X, Sastry S, Bayen AM (2013) Cyber security of water SCADA systems—Part I: analysis
and experimentation of stealthy deception attacks. IEEE Trans Control Syst Technol 21(5):1963-1970.
https://doi.org/10.1109/tcst.2012.2211873

2. Amin S, Schwartz GA, Cardenas AA, Sastry SS (2015) Game-theoretic models of electricity theft detec-
tion in smart utility networks: providing new capabilities with advanced metering infrastructure. IEEE
Control Syst Mag 35(1):66-81. https://doi.org/10.1109/mcs.2014.2364711

3. Anantharam V, Borkar V (2007) Common randomness and distributed control: a counterexample. Syst
Control Lett 56(7-8):568-572. https://doi.org/10.1016/j.sysconle.2007.03.010

4. Bagar T, Olsder GJ (1999) Dynamic noncooperative game theory, vol 23. SIAM, Philadelphia

Birkhauser


https://doi.org/10.1109/tcst.2012.2211873
https://doi.org/10.1109/mcs.2014.2364711
https://doi.org/10.1016/j.sysconle.2007.03.010

Dynamic Games and Applications

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

Bergemann D, Vilimiki J (2006) Dynamic price competition. J Econ Theory 127(1):232-263. https://
doi.org/10.1016/j.jet.2005.01.002

Bhattacharya S, Basar T (2012) Multi-layer hierarchical approach to double sided jamming games among
teams of mobile agents. In: 2012 IEEE 51st IEEE conference on decision and control (CDC), IEEE, pp
5774-5779. https://doi.org/10.1109/cdc.2012.6426411

Cabral L (2011) Dynamic price competition with network effects. Rev Econ Stud 78(1):83-111. https://
doi.org/10.1093/restud/rdq007

Cardaliaguet P, Rainer C, Rosenberg D, Vieille N (2016) Markov games with frequent actions and incom-
plete information-the limit case. Math Oper Res 41(1):49-71. https://doi.org/10.1287/moor.2015.0715
Colombino M, Smith RS, Summers TH (2017) Mutually quadratically invariant information structures
in two-team stochastic dynamic games. IEEE Trans Autom Control 63(7):2256-2263. https://doi.org/10.
1109/tac.2017.2772020

Cooper DJ, Kagel JH (2005) Are two heads better than one? Team versus individual play in signaling
games. Am Econ Rev 95(3):477-509. https://doi.org/10.1257/0002828054201431

. Cox CA, Stoddard B (2018) Strategic thinking in public goods games with teams. J Public Econ 161:31-

43. https://doi.org/10.1016/j.jpubeco.2018.03.007

Doganoglu T (2003) Dynamic price competition with consumption externalities. NETNOMICS Econ
Res Electron Netw 5(1):43-69. https://doi.org/10.1023/A:1024994117734

Farina G, Celli A, Gatti N, Sandholm T (2018) Ex-ante coordination and collusion in zero-sum multi-
player extensive-form games. In: Conference on neural information processing systems (NIPS)

Filar J, Vrieze K (2012) Competitive Markov decision processes. Springer, New York

Gensbittel F, Renault J (2015) The value of Markov chain games with incomplete information on both
sides. Math Oper Res 40(4):820-841. https://doi.org/10.1287/moor.2014.0697

Gupta A, Nayyar A, Langbort C, Basar T (2014) Common information based Markov perfect equilibria for
linear-Gaussian games with asymmetric information. SIAM J Control Optim 52(5):3228-3260. https://
doi.org/10.1137/140953514

Gupta A, Langbort C, Basar T (2016) Dynamic games with asymmetric information and resource con-
strained players with applications to security of cyberphysical systems. IEEE Trans Control Netw Syst
4(1):71-81. https://doi.org/10.1109/tcns.2016.2584183

Hancock PA, Nourbakhsh I, Stewart J (2019) On the future of transportation in an era of automated and
autonomous vehicles. Proc Natl Acad Sci 116(16):7684-7691. https://doi.org/10.1073/pnas.1805770115
Harbert T (2014) Radio wrestlers fight it out at the DARPA Spectrum Challenge. https://spectrum.ieee.
org/telecom/wireless/radio- wrestlers- fight-it-out- at- the-darpa-spectrum-challenge

Ho YC (1980) Team decision theory and information structures. Proc IEEE 68(6):644—654. https://doi.
org/10.1109/proc.1980.11718

Kartik D, Nayyar A (2020) Upper and lower values in zero-sum stochastic games with asymmetric
information. Dyn Games Appl 1-26. https://doi.org/10.1007/s13235-020-00364-x

Kartik D, Nayyar A, Mitra U (2021) Common information belief based dynamic programs for stochastic
zero-sum games with competing teams. arXiv preprint arXiv:2102.05838

Kaspi Y, Merhav N (2010) Structure theorem for real-time variable-rate lossy source encoders and
memory-limited decoders with side information. In: 2010 IEEE international symposium on informa-
tion theory (ISIT), pp 86-90. https://doi.org/10.1109/isit.2010.5513283

Kuhn H (1953) Extensive games and the problem of information. In: Contributions to the theory of games
(AM-28), volume II. Princeton University Press, pp 193-216. https://doi.org/10.1515/9781400881970-
012

Kumar PR, Varaiya P (1986) Stochastic systems: estimation, identification and adaptive control. Prentice-
Hall, Inc, Englewood Cliffs

Li L, Shamma J (2014) LP formulation of asymmetric zero-sum stochastic games. In: 2014 53rd IEEE
conference on decision and control. IEEE, pp 1930-1935. https://doi.org/10.1109/cdc.2014.7039680

Li L, Langbort C, Shamma J (2019) An LP approach for solving two-player zero-sum repeated Bayesian
games. IEEE Trans Autom Control 64(9):3716-3731. https://doi.org/10.1109/tac.2018.2885644
Mahajan A (2008) Sequential decomposition of sequential dynamic teams: Applications to real-time
communication and networked control systems. PhD thesis, University of Michigan, Ann Arbor
Mahajan A (2013) Optimal decentralized control of coupled subsystems with control sharing. IEEE Trans
Autom Control 58(9):2377-2382. https://doi.org/10.1109/cdc.2011.6160970

Mahajan A, Teneketzis D (2009) Optimal performance of networked control systems with nonclassical
information structures. SIAM J Control Optim 48(3):1377-1404. https://doi.org/10.1137/060678130
Mailath GJ, Samuelson L (2006) Repeated games and reputations: long-run relationships. Oxford Uni-
versity Press, Oxford

Birkhauser


https://doi.org/10.1016/j.jet.2005.01.002
https://doi.org/10.1016/j.jet.2005.01.002
https://doi.org/10.1109/cdc.2012.6426411
https://doi.org/10.1093/restud/rdq007
https://doi.org/10.1093/restud/rdq007
https://doi.org/10.1287/moor.2015.0715
https://doi.org/10.1109/tac.2017.2772020
https://doi.org/10.1109/tac.2017.2772020
https://doi.org/10.1257/0002828054201431
https://doi.org/10.1016/j.jpubeco.2018.03.007
https://doi.org/10.1023/A:1024994117734
https://doi.org/10.1287/moor.2014.0697
https://doi.org/10.1137/140953514
https://doi.org/10.1137/140953514
https://doi.org/10.1109/tcns.2016.2584183
https://doi.org/10.1073/pnas.1805770115
https://spectrum.ieee.org/telecom/wireless/radio-wrestlers-fight-it-out-at-the-darpa-spectrum-challenge
https://spectrum.ieee.org/telecom/wireless/radio-wrestlers-fight-it-out-at-the-darpa-spectrum-challenge
https://doi.org/10.1109/proc.1980.11718
https://doi.org/10.1109/proc.1980.11718
https://doi.org/10.1007/s13235-020-00364-x
http://arxiv.org/abs/2102.05838
https://doi.org/10.1109/isit.2010.5513283
https://doi.org/10.1515/9781400881970-012
https://doi.org/10.1515/9781400881970-012
https://doi.org/10.1109/cdc.2014.7039680
https://doi.org/10.1109/tac.2018.2885644
https://doi.org/10.1109/cdc.2011.6160970
https://doi.org/10.1137/060678130

Dynamic Games and Applications

32.

33.

34.

3s.

36.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

Maskin E, Tirole J (1988) A theory of dynamic oligopoly. I: Overview and quantity competition with
large fixed costs. Econom J Econom Soc 549-569. https://doi.org/10.2307/1911700

Maskin E, Tirole J (1988) A theory of dynamic oligopoly. II: Price competition, kinked demand curves,
and edgeworth cycles. Econom J Econom Soc. https://doi.org/10.2307/1911701

Maskin E, Tirole J (2001) Markov perfect equilibrium: 1. observable actions. J Econ Theory 100(2):191—
219. https://doi.org/10.1006/jeth.2000.2785

Maskin E, Tirole J (2013) Markov equilibrium. In: J. F. Mertens memorial conference. https://youtu.be/
UNtLnKJzrhs

Myerson RB (2013) Game theory. Harvard University Press, Harvard

Nayyar A, Basar T (2012) Dynamic stochastic games with asymmetric information. In: 2012 IEEE 51st
IEEE conference on decision and control (CDC). IEEE, pp 7145-7150. https://doi.org/10.1109/cdc.2012.
6426857

Nayyar A, Teneketzis D (2011) On the structure of real-time encoding and decoding functions in a
multiterminal communication system. IEEE Trans Inf Theory 57(9):6196—6214. https://doi.org/10.1109/
tit.2011.2161915

Nayyar A, Teneketzis D (2011) Sequential problems in decentralized detection with communication.
IEEE Trans Inf Theory 57(8):5410-5435. https://doi.org/10.1109/tit.2011.2158478

Nayyar A, Teneketzis D (2019) Common knowledge and sequential team problems. IEEE Trans Autom
Control 64(12):5108-5115. https://doi.org/10.1109/tac.2019.2912536

Nayyar A, Mahajan A, Teneketzis D (2011) Optimal control strategies in delayed sharing information
structures. IEEE Trans Autom Control 56(7):1606—1620. https://doi.org/10.1109/tac.2010.2089381
Nayyar A, Gupta A, Langbort C, Bagar T (2013) Common information based Markov perfect equilibria for
stochastic games with asymmetric information: finite games. IEEE Trans Autom Control 59(3):555-570.
https://doi.org/10.1109/tac.2013.2283743

Nayyar A, Mahajan A, Teneketzis D (2013) Decentralized stochastic control with partial history sharing:
a common information approach. IEEE Trans Autom Control 58(7):1644—-1658. https://doi.org/10.1109/
tac.2013.2239000

Ouyang Y, Tavafoghi H, Teneketzis D (2015) Dynamic oligopoly games with private Markovian dynamics.
In: 2015 54th IEEE conference on decision and control (CDC). IEEE, pp 5851-5858. https://doi.org/10.
1109/cdc.2015.7403139

Ouyang Y, Tavafoghi H, Teneketzis D (2016) Dynamic games with asymmetric information: common
information based perfect Bayesian equilibria and sequential decomposition. IEEE Trans Autom Control
62(1):222-237. https://doi.org/10.1109/tac.2016.2544936

Renault J (2006) The value of Markov chain games with lack of information on one side. Math Oper Res
31(3):490-512. https://doi.org/10.1287/moor.1060.0199

RenaultJ (2012) The value of repeated games with an informed controller. Math Oper Res 37(1):154-179.
https://doi.org/10.1287/moor.1110.0518

Shelar D, Amin S (2017) Security assessment of electricity distribution networks under DER node com-
promises. IEEE Trans Control Netw Syst 4(1):23-36. https://doi.org/10.1109/tcns.2016.2598427
Summers T, Li C, Kamgarpour M (2017) Information structure design in team decision problems. IFAC-
PapersOnLine 50(1):2530-2535. https://doi.org/10.1016/j.ifacol.2017.08.067

Tavafoghi H (2017) On design and analysis of cyber-physical systems with strategic agents. PhD thesis,
University of Michigan, Ann Arbor

Tavafoghi H, Ouyang Y, Teneketzis D (2016) On stochastic dynamic games with delayed sharing infor-
mation structure. In: 2016 IEEE 55th conference on decision and control (CDC). IEEE, pp 7002-7009.
https://doi.org/10.1109/cdc.2016.7799348

Tavafoghi H, Ouyang Y, Teneketzis D, Wellman M (2019) Game theoretic approaches to cyber security:
challenges, results, and open problems. In: Jajodia S, Cybenko G, Liu P, Wang C, Wellman M (eds)
Adversarial and uncertain reasoning for adaptive cyber defense: control-and game-theoretic approaches
to cyber security, vol 11830. Springer, New York, pp 29-53. https://doi.org/10.1007/978-3-030-30719-
6_3

Tavafoghi H, Ouyang Y, Teneketzis D (March 2022) A unified approach to dynamic decision problems
with asymmetric information: non-strategic agents. IEEE Trans Autom Control. https://doi.org/10.1109/
tac.2021.3060835, to appear

Teneketzis D (2006) On the structure of optimal real-time encoders and decoders in noisy communication.
IEEE Trans Inf Theory 52(9):4017-4035. https://doi.org/10.1109/tit.2006.880067

Teneketzis D, Ho YC (1987) The decentralized Wald problem. Inf Comput 73(1):23—-44. https://doi.org/
10.1016/0890-5401(87)90038- 1

Teneketzis D, Varaiya P (1984) The decentralized quickest detection problem. IEEE Trans Autom Control
29(7):641-644. https://doi.org/10.1109/tac.1984.1103601

Birkhauser


https://doi.org/10.2307/1911700
https://doi.org/10.2307/1911701
https://doi.org/10.1006/jeth.2000.2785
https://youtu.be/UNtLnKJzrhs
https://youtu.be/UNtLnKJzrhs
https://doi.org/10.1109/cdc.2012.6426857
https://doi.org/10.1109/cdc.2012.6426857
https://doi.org/10.1109/tit.2011.2161915
https://doi.org/10.1109/tit.2011.2161915
https://doi.org/10.1109/tit.2011.2158478
https://doi.org/10.1109/tac.2019.2912536
https://doi.org/10.1109/tac.2010.2089381
https://doi.org/10.1109/tac.2013.2283743
https://doi.org/10.1109/tac.2013.2239000
https://doi.org/10.1109/tac.2013.2239000
https://doi.org/10.1109/cdc.2015.7403139
https://doi.org/10.1109/cdc.2015.7403139
https://doi.org/10.1109/tac.2016.2544936
https://doi.org/10.1287/moor.1060.0199
https://doi.org/10.1287/moor.1110.0518
https://doi.org/10.1109/tcns.2016.2598427
https://doi.org/10.1016/j.ifacol.2017.08.067
https://doi.org/10.1109/cdc.2016.7799348
https://doi.org/10.1007/978-3-030-30719-6_3
https://doi.org/10.1007/978-3-030-30719-6_3
https://doi.org/10.1109/tac.2021.3060835
https://doi.org/10.1109/tac.2021.3060835
https://doi.org/10.1109/tit.2006.880067
https://doi.org/10.1016/0890-5401(87)90038-1
https://doi.org/10.1016/0890-5401(87)90038-1
https://doi.org/10.1109/tac.1984.1103601

Dynamic Games and Applications

57.

58.
59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Tenney RR, Sandell NR (1981) Detection with distributed sensors. IEEE Trans Aerosp Electron Syst
AES 17(4):501-510. https://doi.org/10.1109/taes.1981.309178

Tsitsiklis JN (1993) Decentralized detection. Adv Stat Signal Process 297-344

Varaiya P, Walrand J (1983) Causal coding and control for Markov chains. Syst Control Lett 3(4):189-192.
https://doi.org/10.1016/0167-6911(83)90012-9

Vasal D, Sinha A, Anastasopoulos A (2019) A systematic process for evaluating structured per-
fect Bayesian equilibria in dynamic games with asymmetric information. IEEE Trans Autom Control
64(1):81-96. https://doi.org/10.1109/tac.2018.2809863

Veeravalli VV (2001) Decentralized quickest change detection. IEEE Trans Inf Theory 47(4):1657-1665.
https://doi.org/10.1109/18.923755

Veeravalli VV, Basar T, Poor HV (1993) Decentralized sequential detection with a fusion center perform-
ing the sequential test. IEEE Trans Inf Theory 39(2):433-442. https://doi.org/10.1109/18.212274
Veeravalli VV, Basar T, Poor HV (1994) Decentralized sequential detection with sensors performing
sequential tests. Math Control Signals Syst 7(4):292-305. https://doi.org/10.1007/bf01211521

Walrand J, Varaiya P (1983) Optimal causal coding-decoding problems. IEEE Trans Inf Theory 29(6):814—
820. https://doi.org/10.1109/tit.1983.1056760

Witsenhausen HS (1973) A standard form for sequential stochastic control. Math Syst Theory 7(1):5-11.
https://doi.org/10.1007/b£01824800

Witsenhausen HS (1979) On the structure of real-time source coders. Bell Syst Tech J 58(6):1437-1451.
https://doi.org/10.1002/j.1538-7305.1979.tb02263.x

Yoshikawa T (1978) Decomposition of dynamic team decision problems. IEEE Trans Autom Control
23(4):627-632. https://doi.org/10.1109/tac.1978.1101791

Zhang Y, An B (2020) Computing team-maxmin equilibria in zero-sum multiplayer extensive-form games.
In: Proceedings of the AAAI conference on artificial intelligence, vol 34, no. 02, pp 2318-2325. https://
doi.org/10.1609/aaai.v34i02.5610

Zheng J, Castafién DA (2013) Decomposition techniques for Markov zero-sum games with nested infor-
mation. In: 2013 52nd IEEE conference on decision and control. IEEE, pp 574-581. https://doi.org/10.
1109/¢dc.2013.6759943

Zhu Q, Basar T (2015) Game-theoretic methods for robustness, security, and resilience of cyberphysical
control systems: games-in-games principle for optimal cross-layer resilient control systems. IEEE Control
Syst Mag 35(1):46—65. https://doi.org/10.1109/mcs.2014.2364710

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Birkhauser


https://doi.org/10.1109/taes.1981.309178
https://doi.org/10.1016/0167-6911(83)90012-9
https://doi.org/10.1109/tac.2018.2809863
https://doi.org/10.1109/18.923755
https://doi.org/10.1109/18.212274
https://doi.org/10.1007/bf01211521
https://doi.org/10.1109/tit.1983.1056760
https://doi.org/10.1007/bf01824800
https://doi.org/10.1002/j.1538-7305.1979.tb02263.x
https://doi.org/10.1109/tac.1978.1101791
https://doi.org/10.1609/aaai.v34i02.5610
https://doi.org/10.1609/aaai.v34i02.5610
https://doi.org/10.1109/cdc.2013.6759943
https://doi.org/10.1109/cdc.2013.6759943
https://doi.org/10.1109/mcs.2014.2364710

	Dynamic Games Among Teams with Delayed Intra-Team Information Sharing
	Abstract
	1 Introduction
	1.1 Related Literature
	1.2 Contribution
	1.3 Organization

	1.4 Notation
	2 Problem Formulation
	2.1 System Model and Information Structure
	2.2 Strategies and Reward Functions
	2.3 Solution Concept

	3 Game Among Coordinators
	4 Compression of Private Information
	4.1 A Preliminary Result
	4.2 Sufficient Private Information and SPIB Strategy
	4.3 Payoff-equivalence of SPIB Strategies with General Behavioral Coordination Strategies


	5 Compression of Common Information and Sequential Decomposition
	5.1 Compressed Common Information and CIB Strategy
	5.2 Consistency and Closedness of CIB Strategies
	5.3 Interpretation and Discussion of Consistency and Closedness Property
	5.4 Coordinators' Nash Equilibrium in CIB Strategies and Sequential Decomposition
	5.5 Existence of CIB-CNE
	5.5.1 Signaling-Neutral Teams
	5.5.2 Signaling-Free Equilibria


	6 Additional Result
	7 Discussion
	7.1 Implementation of Behavioral Coordination Strategies
	7.2 Stage Game: IBNE Versus BNE
	7.3 Choice of Compressed Common Information

	8 Conclusion and Future Work
	A Two Examples
	A.1 A Motivating Example for Sect. 2
	A.2 An Illustrative Example for Sect. 3
	A.2.1 Proof of Claim in Example 2

	B Proof of Lemma 1
	C Proof of Lemma 3
	D Proof of Lemma 4
	E Proof of Lemma 5
	F Proof of Lemma 6
	G Proof of Lemma 7
	H Proof of Theorem 2
	I Proof of Proposition 1
	J Proof of Theorem 3

	K Proof of Theorem 4
	L Proof of Lemma 8
	References






