

1 **GenX in Water: Interactions and Self-Assembly**

2
3 Samhitha Kancharla,¹ Aditya Choudhary,² Ryan T. Davis,² Dengpan Dong,² Dmitry Bedrov,^{2*}
4 Marina Tsianou,^{1*} Paschalis Alexandridis^{1*}

5
6 1 Department of Chemical and Biological Engineering, University at Buffalo, The State University
7 of New York (SUNY), Buffalo, NY 14260-4200, U.S.A.

8 2 Department of Materials Science and Engineering, University of Utah, 122 South Central
9 Campus Drive, Room 304, Salt Lake City, UT 84112, U.S.A.

10
11 **ABSTRACT**

12 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoate, a.k.a. “GenX”, is a surfactant introduced
13 as a safer alternative to replace perfluorooctanoate (PFOA) in the manufacturing of fluorinated
14 polymers, however, GenX is shown to cause adverse health effects similar to, or even worse than,
15 those of the legacy PFOA. With an overarching goal to understand the behavior of GenX molecules
16 in aqueous media, we report here on GenX micelle formation and structure in aqueous solutions,
17 on the basis of results obtained from a combination of experimental techniques such as surface
18 tension, fluorescence, viscosity, and small-angle neutron scattering (SANS), and molecular
19 dynamics (MD) simulations. To our best knowledge, this is the first report on GenX micelles. The
20 critical micelle concentration (CMC) of GenX ammonium salt in water is 175 mM. GenX forms
21 small micelles with association number 6 – 8 and 10 Å radius. GenX molecules prefer to align
22 along the micelle surface, and the ether oxygen of GenX has very little interaction with and
23 exposure to water. Information on the surfactant and interfacial properties of GenX is crucial, since
24 such properties are manifestations of interactions between GenX molecules and between GenX
25 and water molecules and, in turn, the amphiphilic character of GenX dictates its fate and transport
26 in the aqueous environment, its interactions with various biomolecules, and its binding to
27 adsorbent materials.

28 *Keywords:* PFAS, fluorocarbon, surfactant, micelle, adsorption, remediation

29
30 * Corresponding authors: Paschalis Alexandridis <palexand@buffalo.edu>, Marina Tsianou
31 <mtsianou@buffalo.edu>, Dmitry Bedrov <d.bedrov@utah.edu>

1 **INTRODUCTION**

2 Per- and polyfluoro alkyl substances (PFAS), also called “Forever Chemicals”, are a class of
3 synthetic compounds composed of a carbon chain that is fully or partially fluorinated and can be
4 linear or branched. PFAS comprise fluorinated polymers, surfactants, ethers, esters, alcohols and
5 thiols (Buck *et al.*, 2012; Glüge *et al.*, 2020). A major PFAS subgroup are surfactants that consist
6 of a fluorinated hydrophobic tail and a hydrophilic headgroup. The high electronegativity, low
7 polarizability and small size of fluorine give rise to strong C–F bond, weak –CF₂– intermolecular
8 forces, and strong hydrophobic interactions which, in turn, result in PFAS surfactants exhibiting
9 outstanding properties, including incompatibility with both water and hydrocarbons, high wetting
10 ability, and high chemical and thermal stability (Kissa, 2001; Krafft and Riess, 2015). These
11 properties render PFAS surfactants useful in many applications, including nonstick cookware, food
12 packaging paper, stain repellent and waterproof clothing, paints, cosmetics, and firefighting foams
13 (Buck *et al.*, 2012).

14

15 Their widespread use in industrial processes and consumer products has resulted in the release of
16 PFAS into the environment (Alves *et al.*, 2020; Brase *et al.*, 2021; Buck *et al.*, 2011; Prevedouros
17 *et al.*, 2006; Xiao, 2017). PFAS are found in waters around the world (Guelfo and Adamson, 2018;
18 Pan *et al.*, 2018). PFAS concentrations several times higher than the lifetime health advisory (70
19 ng/L for perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS)) recommended by the
20 U.S. Environmental Protection Agency (EPA) (EPA, 2016) have been detected in drinking water
21 in numerous regions, especially near industrial sites that produce or use PFAS, and near many
22 civilian and military airports that use PFAS-containing aqueous film forming foam (AFFF)
23 (Barzen-Hanson *et al.*, 2017; Dauchy *et al.*, 2017; Sun *et al.*, 2016). The main pathways of human
24 exposure to PFAS are the intake of contaminated water and food, and the migration of PFAS from
25 food packaging (pizza boxes, popcorn bags) or cookware (Domingo and Nadal, 2019; Sunderland
26 *et al.*, 2019). PFAS are distributed predominantly to the liver, blood, and kidney, leading to adverse
27 human health effects such as thyroid dysfunction, immune response suppression, kidney disease,
28 altered cholesterol levels or metabolic diseases, reproductive toxicity, neurodevelopmental
29 problems, and various cancers (Brase *et al.*, 2021; Fenton *et al.*, 2021; Sunderland *et al.*, 2019).
30 Consequently, “legacy” PFAS like PFOA, PFOS, and their related compounds have been banned
31 in many countries, including the U.S., and have been included in the International Stockholm

1 Convention's list of globally restricted Persistent Organic Pollutants (POP) to eliminate their use.
2 In the U.S., EPA is prohibiting companies from manufacturing, processing, or importing products
3 containing certain long-chain PFAS, without prior EPA review and approval (ITRC, 2020).

4

5 In response to these restrictions, manufacturers are introducing short chain PFAS and other
6 fluorinated alternatives for commercial applications (Danish-EPA, 2015; Mohamed *et al.*, 2019;
7 Wang *et al.*, 2013). These "emerging" PFAS are categorized into two groups: (i) shorter-chain
8 homologues of long-chain perfluoroalkyl acids and their precursors, e.g., perfluorobutanesulfonic
9 acid, perfluorohexanoic acid, and (ii) functionalized perfluoropolyethers, in particular
10 perfluoroether carboxylic and sulfonic acids (PFECA and PFESA) with acidic functional group
11 attached to a per- or polyfluoroether chain instead of a perfluoroalkyl chain, e.g., GenX from
12 DuPont/Chemours, and ADONA from 3M/Dyneon (Wang *et al.*, 2013).

13

14 The tradename "GenX" denotes the PFAS compound ammonium 2,3,3,3-tetrafluoro-2-
15 (heptafluoropropoxy) propanoate (FRD-902) which is the conjugate base ammonium salt of
16 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoic acid (FRD-903), introduced by DuPont in
17 2009 as a safer replacement of PFOA in the manufacturing of fluoropolymers such as Teflon
18 (Beekman *et al.*, 2016; DuPont, 2010). GenX has received significant attention recently owing to
19 it being detected in the environment (Brandsma *et al.*, 2018; Gebbink *et al.*, 2017; Heydebreck *et*
20 *al.*, 2015; Hopkins *et al.*, 2018; Sun *et al.*, 2016), and thus raising concern over possible adverse
21 health effects. GenX causes health effects similar to those from legacy PFOA and PFOS (Beekman
22 *et al.*, 2016; Gomis *et al.*, 2018), which include changes in cholesterol levels, reproductive
23 problems, cancer, liver and kidney damage (Beekman *et al.*, 2016; Blake *et al.*, 2020; Brase *et al.*,
24 2021; Chappell *et al.*, 2020; Conley *et al.*, 2021; Coperchini *et al.*, 2020; Shea, 2018; Sun *et al.*,
25 2019; Wen *et al.*, 2020). EPA's toxicity assessment for GenX just concluded that there is
26 suggestive evidence of carcinogenic potential of oral exposure to GenX in humans, and GenX is
27 more toxic than the PFOA surfactant it was intended to replace (EPA, 2021). EPA set a safe daily
28 dose of GenX as 3 ng/kg of body weight, and plans to develop drinking water health advisories for
29 GenX in spring 2022 (EPA, 2021).

30

1 The studies published so far on GenX address analytical techniques (Mullin *et al.*, 2019; Munoz
2 *et al.*, 2019), distribution in rivers and drinking water near fluoropolymer manufacturing plants
3 (Brandsma *et al.*, 2018; Gebbink *et al.*, 2017; Hopkins *et al.*, 2018; Sun *et al.*, 2016), in global
4 surface waters (Heydebreck *et al.*, 2015; Pan *et al.*, 2018) and in human serum and urine (Kato *et*
5 *al.*, 2018). Also, toxicology studies (Beekman *et al.*, 2016; Brase *et al.*, 2021; Caverly Rae *et al.*,
6 2015; Conley *et al.*, 2021; Shea, 2018; Sun *et al.*, 2019), mechanisms of toxicity (Chappell *et al.*,
7 2020; Wen *et al.*, 2020); development of an oral reference dose (Thompson *et al.*, 2019), binding
8 affinity for proteins (Allendorf *et al.*, 2019; Cheng and Ng, 2018), toxicity and bioconcentration
9 in aquatic organisms (Hoke *et al.*, 2016), toxicity comparison to long-chain PFAS (Blake *et al.*,
10 2020; Gomis *et al.*, 2018), absorption, distribution, metabolism and elimination profiles in
11 mammals (Gannon *et al.*, 2016), effects on cell-viability, proliferation, DNA-damage (Coperchini
12 *et al.*, 2020). Also, adsorption on activated carbons (AC) (Sun *et al.*, 2016; Wang *et al.*, 2019a),
13 anion-exchange resins (Dixit *et al.*, 2020; Wang *et al.*, 2019a; Wang *et al.*, 2019b), functionalized
14 hydrogels (Ateia *et al.*, 2019; Huang *et al.*, 2018), covalent organic frameworks (Ji *et al.*, 2018),
15 and cyclodextrins (CDs) (Weiss-Errico and O’Shea, 2019), and chemical degradation (Bao *et al.*,
16 2018; Bentel *et al.*, 2020). The adsorption of GenX is inferred to involve anion exchange,
17 electrostatic and hydrophobic interactions, however, no direct evidence has been reported (Wang
18 *et al.*, 2019a). Competitive adsorption experiments on AC and anion-exchange resins (IRA67 and
19 IRA400) showed that the adsorbed GenX can be replaced by the relatively more hydrophobic
20 PFOA (Wang *et al.*, 2019a; Wang *et al.*, 2019b), which was ascribed to “the ether bond in the
21 GenX molecule may cause the instability of the negatively charged head adsorbed on adsorbent
22 surface, leading to the replacement of the adsorbed GenX by PFOA” (Wang *et al.*, 2019b). The
23 charge density of perfluorinated ether acids (PFEAS) reportedly governs their removal via ion
24 exchange (Dixit *et al.*, 2020). The efficiency of an ion exchange resin (Purolite® A860) to remove
25 from water GenX, perfluoromethoxy butanoic acid (PFMOBA, $\text{CF}_3\text{O}(\text{CF}_2)_3\text{COOH}$), and
26 perfluoromethoxy propanoic acid (PFMOPrA, $\text{CF}_3\text{OCF}(\text{COOH})\text{CF}_3$) followed the order of their
27 respective charge densities GenX < PFMOBA < PFMOPrA. Among the investigated short-chain
28 PFAS, GenX has the lowest charge density (13.8 meq/g C) (Dixit *et al.*, 2020).

29
30 The physicochemical properties of GenX have attracted rather limited attention. The available
31 literature reports the standard enthalpy of formation, sublimation vapor pressure, and the

1 adsorption of GenX at the air–water and solid–water interfaces (where the solids tested are natural
2 quartz sand, Eustis soil, Vinton soil, and Qingdao soil; GenX concentration range: 3×10^{-5} – 30
3 mM) (Gomis *et al.*, 2015; Lukyanova and Papina, 2013; Wang and Niven, 2021; Yan *et al.*, 2020;
4 Zhang *et al.*, 2020). GenX is a surfactant, however, its surfactant properties, such as self-assembly
5 into micelles, remain unknown. Information on these is crucial, since such properties are
6 manifestations of molecular interactions between GenX molecules and between GenX and water
7 molecules and, in turn, the amphiphilic character of GenX dictates its fate and transport in the
8 aqueous environment, its interactions with various biomolecules, and its binding to adsorbent
9 materials (Lin *et al.*, 2002).

10

11 With an overarching goal to understand the behavior of GenX molecules in aqueous media, we
12 report here the GenX critical micelle concentration (CMC) and micelle structure and interactions
13 in aqueous solutions, on the basis of results obtained from experimental techniques such as surface
14 tension, fluorescence, viscosity, and small-angle neutron scattering (SANS), and from molecular
15 dynamics (MD) simulations. To our best knowledge, this is the first report on GenX micelles.

16

17

1 **MATERIALS AND METHODS**

2 ***Materials***

3 Ammonium 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propionate (GenX ammonium salt)
4 ($C_6H_4F_{11}NO_3$, CAS number: 62037-80-3, MW = 347.08 g/mol, 97% purity), also known as
5 ammonium perfluoro(2-methyl-3-oxahexanoate) or ammonium 2-(heptafluoropropoxy)
6 tetrafluoro- propionate, was obtained from SynQuest Laboratories (Alachua, FL, USA) and used
7 as received. Undecafluoro-2-methyl-3-oxahexanoic acid (GenX acid) ($C_6HF_{11}O_3$, CAS number:
8 13252-13-6, MW = 330.05 g/mol, 97% purity), also known as perfluoro(2-methyl-3-oxahexanoic)
9 acid or 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid, was obtained from SynQuest
10 Laboratories (Alachua, FL, USA) and used as received. Deuterium oxide (D , 99.9%), (D_2O , MW
11 = 20.03 g/mol, 99.5% purity), also known as deuterated water, was obtained from Cambridge
12 Isotope Laboratories, Inc. (Tewksbury, MA, USA) and used as received. Samples studied by
13 SANS were prepared using D_2O . Samples for surface tension, pyrene fluorescence, and viscosity
14 experiments were prepared using Milli-Q purified water (0.055 μ S/cm). All samples were allowed
15 sufficient time to equilibrate following the mixing of ingredients. The GenX ammonium salt
16 concentrations selected for the SANS experiments (500 and 800 mM) are well above the CMC so
17 that GenX micelles are well-defined. These may be high concentrations for GenX present in the
18 environment, but they are relevant to the capture of GenX via adsorption or membranes, where the
19 local concentration can be even higher. Furthermore, the assembly of GenX into micelles is
20 expected (Bodratti *et al.*, 2017) to occur at much lower concentrations in the vicinity of surfaces
21 such as adsorbent materials, mineral particles, or natural organic matter.

22

23 ***Methods***

24 *Surface tension*: The surface tension of aqueous surfactant solutions was measured at 21 °C by the
25 Wilhelmy plate method using a Kruss model K100 tensiometer. When the surface tension is plotted
26 as a function of surfactant concentration, the surfactant concentration where the surface tension
27 approaches a plateau like region is considered as CMC. The slope of the surface tension vs
28 logarithm of surfactant concentration plot ($dy/dlogC$) determined close to the CMC can be used
29 to estimate surface properties like the maximum surface excess concentration Γ_{max} and the
30 minimum area occupied by a surfactant molecule (A_{min}) at air/liquid interface (Ito *et al.*, 1996; Jin
31 *et al.*, 2005; Prosser and Franses, 2001):

$$1 \quad \Gamma_{max} = -\frac{1}{2.303nRT} \left(\frac{d\gamma}{d\log C} \right)_{T,P} \quad (1)$$

$$2 \quad A_{min} = \frac{1}{N\Gamma_{max}} \quad (2)$$

3 where γ is the surface tension, R is the universal gas constant (8.314 J mol⁻¹ K⁻¹), T is absolute
4 temperature, C is surfactant concentration in mM, and N is the Avogadro number (Ito *et al.*, 1996;
5 Jin *et al.*, 2005). The constant n is taken as 2 for surfactants in which the surfactant ion and
6 counterion are monovalent (Jin, *et al.*, 2005).

7
8 The tendency of surfactants to self-assemble into structures of specific shape (e.g., sphere,
9 cylinder) can be informed by the critical packing parameter (CPP) which is defined as:

$$10 \quad CPP = \frac{V_0}{A_{min} l_c} \quad (3)$$

11 where V_0 is the volume and l_c is the extended length of the surfactant hydrophobic chain (Kronberg
12 *et al.*, 2014; Nagarajan, 2002).

13
14 *Micropolarity*: Pyrene fluorescence was used to study the micropolarity of aqueous surfactant
15 solutions. 2 μ L of 1 mM pyrene (Fluka, Buchs, Switzerland) in ethanol was added to 3 g sample
16 solutions. The resulting overall pyrene and ethanol concentrations were about 0.7 μ M and 6.7 x
17 10⁻⁴ vol %, respectively. Pyrene fluorescence spectra of GenX aqueous solutions were recorded at
18 22 °C using a Hitachi F-2500 (Stoughton, MA, USA) fluorescence spectrophotometer for 350 –
19 450 nm emission wavelength. The excitation wavelength of pyrene was $\lambda = 335$ nm. The pyrene
20 monomer emission spectrum exhibits a vibronic fine structure, and the ratio of the intensities of
21 first and third vibronic peaks (I_1/I_3) strongly depends on the polarity of its microenvironment
22 (Nivaggioli *et al.*, 1995; Xing *et al.*, 2013; Yang and Alexandridis, 2000). Pyrene is hydrophobic
23 and it tends to move from the aqueous phase to a hydrophobic environment above the CMC, which
24 is reflected in a decrease in I_1/I_3 values. The concentration value obtained from the intersection of
25 straight lines fitted to the first plateau region of the I_1/I_3 vs. surfactant concentration curve and to
26 the linear part of I_1/I_3 decrease region (near the inflection point) provided CMC values that are
27 consistent with those obtained from surface tension (Kancharla *et al.*, 2019).

28
29 *Viscosity*: The viscosity of aqueous surfactant solutions was measured using Cannon-Fenske
30 capillary viscometer of size 50 (Cannon Instrument Co, State College, PA). The kinematic

1 viscosity (η) is calculated by multiplying the efflux time with the viscometer calibration constant
2 (provided by the manufacturer). The ratio of the kinematic viscosity of the solution (η) and the
3 kinematic viscosity of pure solvent (η_o) gives the relative viscosity ($\eta_r = \eta/\eta_o$) of the solution.
4 η_r can be expressed in terms of the volume fraction of micelles (ϕ) (Kancharla *et al.*, 2019;
5 Nagarajan, 1982; Zoeller and Blankschtein, 1998):

6
$$\eta_r = 1 + v\phi + k_1(v\phi)^2 + O(\phi)^3 \quad (4)$$

7 where v is a shape factor representing the micelle shape and k_1 a coefficient corresponding to pair-
8 wise hydrodynamic interactions between micelles (Zoeller and Blankschtein, 1998). The term
9 $k_1(v\phi)^2$ accounts for hydrodynamic interactions, and the term $O(\phi)^3$ arises due to direct micelle-
10 to-micelle interactions and can be neglected for dilute solutions (Nagarajan, 1982; Zoeller and
11 Blankschtein, 1998). The volume fraction of micelles which includes the water of hydration
12 associated with micelles is given by $\phi = V_s^{hyd}(c_s - c_1)$, where V_s^{hyd} is the hydrated volume of a
13 surfactant molecule, c_s total surfactant concentration, and c_1 concentration of unassociated
14 surfactant (taken to be the CMC) (Zoeller and Blankschtein, 1998). For spherical micelles, the
15 shape factor v is considered to be 2.5 (Nagarajan, 1982; Zoeller and Blankschtein, 1998). We used
16 this value since the GenX micelles are approximately spherical.

17
18 *Small-angle neutron scattering (SANS):* SANS has been widely used to determine the size and
19 structure of surfactant micelles (Berr and Jones, 1989; Burkitt *et al.*, 1987; Fajalia and Tsianou,
20 2014; Iijima *et al.*, 1998; Kancharla *et al.*, 2022). SANS measurements of aqueous GenX
21 ammonium salt solutions were performed on the NG-7 30 m SANS instruments at the Center for
22 Neutron Research (NCNR), National Institute of Standards and Technology (NIST), Gaithersburg,
23 MD. Neutrons with 6 Å wavelength were focused on samples kept in quartz cells of 2 mm
24 thickness. Sample-to-detector distances (SDD) of 2, 6.5 or 10 m were used for each sample in
25 order to cover the wave vector (q) range $0.01 \text{ \AA}^{-1} < q < 0.35 \text{ \AA}^{-1}$. The measurement time was in the
26 range 180 – 7200 seconds. Procedures for the treatment of raw SANS intensity data are described
27 elsewhere (Dong *et al.*, 2021; Kancharla *et al.*, 2021a).

28
29 SANS data from GenX micelles in D₂O have been fitted with the monodisperse core-shell ellipsoid
30 form factor and the Hayter – Penfold structure factor with rescaled mean spherical approximation
31 (RMSA) (Fajalia and Tsianou, 2014). The ellipsoid shape is consistent with the findings from MD

1 reported in this study, and encountered in typical PFAS surfactants (Dong *et al.*, 2021; Kancharla
2 *et al.*, 2021a; Kancharla *et al.*, 2021b). The overall scattering intensity $I(q)$ is given by:

3
$$I_{\text{micelle}}(q) = A \cdot \phi \cdot P(q) \cdot S(q) + B_{\text{inc}} \quad (5)$$

4 $P(q)$ is the form factor representing the shape and structure of a micelle, while $S(q)$ is the structure
5 factor representing the intermicelle interactions in the solution. ϕ is the volume fraction of the
6 micelles which in turn depends on the overall surfactant concentration. The parameters A and B_{inc}
7 account for additional contributions due to the absolute scaling and incoherent noise, respectively.
8 The form factor and structure factor models employed here are presented in detail in SI. The major
9 fitting parameters to describe scattering from GenX micelles in D_2O are the surfactant association
10 number (N_{agg}), micelle volume fraction (ϕ), and charge on a micelle (Z).
11

12 The micelle core minor radius (b) was taken to be the extended length of $\text{CF}_3(\text{CF}_2)_2\text{OCF}$: $l_{f,c} = 8.0$
13 Å (calculated from atom-atom distances in GenX molecule provided by MD). The volume of the
14 micelle core V_{core} (in \AA^3) was calculated given the surfactant association number N_{agg} using:

15
$$V_{\text{core}} = N_{\text{agg}}(V_{t,\text{GenX}} + N_{\text{H,O}}V_{\text{D}_2\text{O}}) \quad (6)$$

16 where $V_{t,\text{GenX}} = 200.66 \text{ \AA}^3$ is the volume of a $\text{CF}_3(\text{CF}_2)_2\text{OCF}$ chain, $N_{\text{H,O}}$ is the number of water
17 molecules hydrating the $\text{CF}_3(\text{CF}_2)_2\text{OCF}$ chain in the micelle core, and $V_{\text{D}_2\text{O}}$ is the volume of a D_2O
18 molecule (Kancharla, *et al.*, 2019).
19

20 The volume of the micelle shell, considering its contents: hydrophilic headgroups of the surfactant,
21 CF_3 branch, counterions, and associated water molecules, can be written as:

22
$$V_{\text{shell}} = N_{\text{agg}}(V_{\text{COO}^-} + V_{\text{CF}_3} + (1 - \alpha)V_{\text{NH}_4^+} + N_{\text{H}}V_{\text{D}_2\text{O}}) \quad (7)$$

23 where V_{COO^-} is the volume of the GenX hydrophilic headgroup, V_{CF_3} volume of the CF_3 group,
24 $V_{\text{NH}_4^+}$ volume of the counterion NH_4^+ , and N_{H} hydration number, i.e., number of water molecules
25 associated per surfactant molecule. $\alpha = Z / N_{\text{agg}}$ is the fractional charge on a micelle.
26

27 The scattering length density of the micelle core is calculated by equation (8)

28
$$\rho_{\text{core}} = \frac{N_{\text{agg}}(b_{\text{CF}_3(\text{CF}_2)_2\text{OCF}} + N_{\text{H,O}}b_{\text{D}_2\text{O}})}{V_{\text{core}}} \quad (8)$$

29 where b_i is the coherent scattering length of molecule i . b_i values are reported in Table S1.
30

1 The scattering length density of the micelle shell is calculated using equation (9), which includes
2 the individual contributions to the scattering from surfactant headgroups, CF₃ groups, counterions,
3 and associated water molecules:

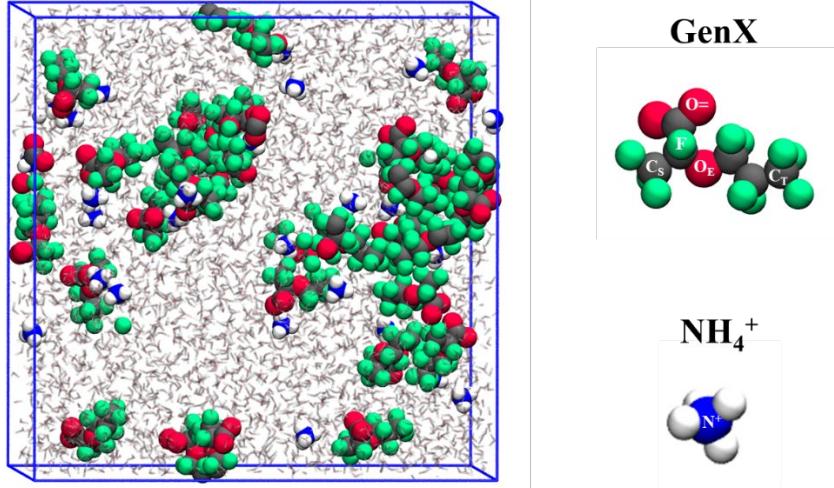
4

$$\rho_{shell} = \frac{N_{agg} \left[b_{COO^-} + b_{CF_3} + (1-\alpha)b_{NH_4^+} + N_H b_{D_2O} \right]}{v_{shell}} \quad (9)$$

5

6 The scattering length density of the solvent $\rho_{solvent}$ was calculated using the scattering lengths and
7 concentrations of surfactant and heavy water. The concentration of the GenX ammonium salt
8 present in the bulk solution was considered as its CMC (obtained from pyrene fluorescence). The
9 dielectric constant of water was obtained from literature (Malmberg, 1958).

10


11 SANS data originating from GenX micelles in D₂O have also been fitted with other form factor
12 models, including the monodisperse sphere form factor, monodisperse or polydisperse core-shell
13 sphere form factor, and the Hayter – Penfold structure factor with RMSA. The expressions
14 describing these form factor models and micelle structure/composition, SANS fits and important
15 parameters are presented in the SI document. Here we discuss results from what we consider to be
16 the better representation of micelles among all those we tested.

17

18 *Molecular dynamics (MD) simulations:* MD simulations were preformed using an in-house
19 simulation package that utilizes a non-polarizable version of the Atomistic Polarizable Potentials
20 for Liquids, Electrolytes and Polymers (APPLE&P) force field (Bedrov *et al.*, 2019; Borodin,
21 2009). The parameters for the APPLE&P force field were derived based on fitting an extensive
22 database of ab initio calculations of binding and conformational energies for a variety of small
23 molecule clusters and representative oligomers, as well as systematic empirical adjustments to
24 reproduce a variety of experimentally measured thermodynamic, dynamics, and structural
25 characteristics in various systems. A periodic cubic simulation cell contained 32 GenX and
26 ammonium pairs dissolved in 4032 water molecules (Figure 1), which corresponds to a surfactant
27 concentration of about 440 mM (which is well above the experimentally determined CMC of
28 GenX in water). In the initial configuration, all molecules were distributed homogeneously in a
29 large simulation cell of size 800 Å in each direction, which was subsequently shrunk over 30 ps to

1 achieve a reasonable density. Then the system was equilibrated in the NPT ensemble for 20 ns,
2 followed by production runs of up to 100 ns.

3

4

5 Figure 1. A typical snapshot of the equilibrated system containing GenX and ammonium ions, and water
6 as a solvent. (Carbon-grey; Oxygen-red; Fluorine-green; Nitrogen-blue; Hydrogen-white)

7

8 During the simulation, a temperature of 300 K was maintained by employing the Nosé–Hoover
9 thermostat (Hoover, 1985) (coupling frequency 0.01 fs^{-1}) and barostat (coupling frequency 0.0005 fs^{-1}). A cut-off distance of 15.0 Å was set for computing van der Waals interactions and
11 electrostatic interactions in the real space. The Ewald summation method was utilized for the
12 calculation of the reciprocal space contribution to electrostatic interactions. All bonds were
13 constrained using the SHAKE algorithm (Palmer, 1993). A multiple time-step integration scheme
14 (Martyna *et al.*, 1996) was used with the small step (0.5 fs) for calculating bonds and bends, a
15 medium step (1.5 fs) for calculating torsions and short range non-bonded interactions, and a large
16 step (3 fs) for calculating long-range non-bonded interactions and the reciprocal part of Ewald
17 summation. This protocol and force field have been successfully used in our previous simulations
18 of perfluorinated surfactants in aqueous solutions, and have shown good consistency with
19 experimental data characterizing their self-assembly and micellar structure (Dong *et al.*, 2021;
20 Kanchala *et al.*, 2021a).

21

22

1 **RESULTS AND DISCUSSION**

2 The association behavior of GenX in aqueous solution is revealed here from combined
3 experimental measurements and atomistic MD simulations. The critical micelle concentration
4 (CMC), surface area per GenX headgroup, and micelle hydration are determined from analysis of
5 surface tension, pyrene fluorescence spectroscopy and viscosity data. Structural information such
6 as the GenX micelle shape, size, and composition is obtained from complementary analysis of MD
7 and SANS data. MD simulations provided additional molecular-level insights into the GenX self-
8 assembly and intermolecular interactions. There is no information available in the literature on
9 GenX surfactant properties, such as self-assembly into micelles or micelle structure.

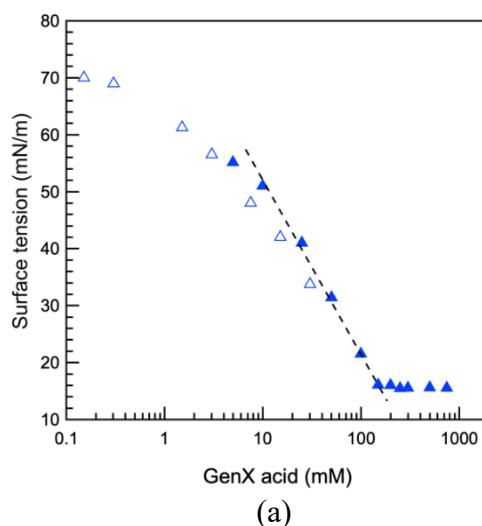
10

11 ***Premicellar Region and Onset of Micelle Formation***

12 Surface tension data of GenX acid or GenX ammonium salt in aqueous solution are plotted in
13 Figure 2 as a function of surfactant concentration. For GenX acid aqueous solution, the slope
14 ($d\gamma/d\log C$) determined close to the CMC is -30.12 mN/m , Γ_{\max} calculated from Equation (1) is
15 $2.67 \times 10^{-10} \text{ mol cm}^{-2}$, and A_{\min} is 62.1 \AA^2 . For GenX ammonium salt aqueous solution, ($d\gamma/d\log C$)
16 = -23.01 mN/m , $\Gamma_{\max} = 2.04 \times 10^{-10} \text{ mol cm}^{-2}$, and $A_{\min} = 81.3 \text{ \AA}^2$. Interfacial tension parameters
17 are important in the atmospheric transport of PFAS, and in PFAS retention and transport in natural
18 porous media (Brusseau, 2019); also in PFAS treatment and remediation processes (Lee *et al.*,
19 2017; Meng, *et al.*, 2014).

20

21 It is appropriate to compare the properties of GenX to properties of PFAS surfactants that have (i)
22 the same number of carbons with GenX, sodium perfluorohexanoate (NaPFHx , $\text{C}_5\text{F}_{11}\text{COONa}$),
23 and (ii) the same counterion, ammonium perfluorooctanoate (APFO, $\text{C}_7\text{F}_{15}\text{COONH}_4$) (Kancharla
24 *et al.*, 2019). The surface area per headgroup of the GenX acid is close to that of NaPFHx ($A_{\min} =$
25 63.4 \AA^2) (Kancharla *et al.*, 2021b) and APFO (64.0 \AA^2) (Kancharla *et al.*, 2019), whereas the
26 surface area per headgroup of the GenX ammonium salt is 30% greater than that of NaPFHx and
27 APFO.


28

29 CPP values are calculated for GenX acid and GenX ammonium salt considering the volume of
30 surfactant hydrophobic chain (V_0) equal to the volume of a $\text{CF}_3(\text{CF}_2)_2\text{OCF}$ chain = 200.7 \AA^3
31 (leaving out the CF_3 side-group of GenX molecule, as intimated by MD results presented below),

1 and the extended length of a $\text{CF}_3(\text{CF}_2)_2\text{OCF}$ chain $l_c = 8.0 \text{ \AA}$ (obtained by MD), are 0.40 and 0.31,
2 respectively. The CPP value 0.31 suggests spherical micelles (CPP<0.33) for GenX ammonium
3 salt. CPP = 0.40 suggests that GenX acid forms cylindrical micelles (0.33<CPP<0.5).

4
5 The CMC value obtained from surface tension for GenX acid and GenX ammonium salt in aqueous
6 solution is $150 \pm 10 \text{ mM}$ and $150 \pm 50 \text{ mM}$, respectively. The surface tension of GenX acid
7 remained constant above the CMC, however, for GenX ammonium salt, a dip and subsequent
8 slight increase in the surface tension is observed. The concentration of GenX ammonium salt at
9 the dip where the surface tension is lowest is considered to be the CMC. The origin of the increase
10 in the surface tension above the CMC has not been established here, but it does not affect the
11 analysis of the surface tension data to obtain Γ_{\max} and A_{\min} .

12

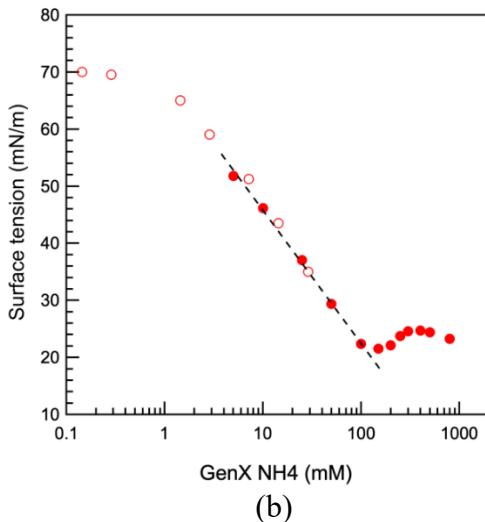


Figure 2. Surface tension of (a) GenX acid (20.5 °C) and (b) GenX ammonium salt (23.5 °C) aqueous solutions, plotted as a function of surfactant concentration. The surface tension data at low surfactant concentrations (open symbols) were taken from reference (Yan *et al.*, 2020). Linear fits have been applied to the data points where the surface tension decreases prior to reaching the CMC.

1 Pyrene fluorescence is used to also obtain CMC and, further, assess the polarity of the GenX
 2 micelle microenvironment. The I_1/I_3 ratio of GenX acid or GenX ammonium salt aqueous solutions
 3 decreased above the CMC due to the partition of pyrene from the polar aqueous solution to the
 4 GenX micellar environment (Figure 3). Similar behavior has been previously observed with pyrene
 5 for other fluorinated surfactants including PFOA (Dong *et al.*, 2021; Kalyanasundaram, 1988;
 6 Muto *et al.*, 1987), which was ascribed to the pyrene molecules residing in the outer palisade layer
 7 of the surfactant micelles due to the immiscibility between pyrene and the fluorocarbon core (Xing
 8 *et al.*, 2013). The CMC of GenX acid and GenX ammonium salt in aqueous solution obtained from
 9 pyrene fluorescence are 140 ± 5 mM and 175 ± 5 mM, respectively. Above CMC, the I_1/I_3 ratio of
 10 GenX ammonium salt aqueous solutions at a particular concentration is lower than the I_1/I_3 ratio
 11 of NaPFHx solutions (Figure S1). This indicates that GenX micelles offer a more hydrophobic
 12 environment for pyrene, presumably allowing more contact between pyrene and fluorocarbon
 13 chains. The CMC reported in the literature for the 6-carbon fluorinated surfactants perfluorohexane
 14 sulfonic acid (PFHxS, $C_6F_{13}SO_3H$) is 12 mM, perfluorohexanoic acid (PFHxA, $C_5F_{11}COOH$) is
 15 82 mM, and sodium perfluorohexanoate (NaPFHx, $C_5F_{11}COONa$) is 200 mM (Alves *et al.*, 2020;
 16 Kancharla *et al.*, 2021b). The CMC of GenX ammonium salt is close to the CMC of NaPFHx. The
 17 low CMC of PFHxS compared to PFHxA is due to the presence of 6 carbon atoms in fluorocarbon
 18 chain of PFHxS (more hydrophobic), while PFHxA has 5 carbon atoms. The CMC of GenX acid

1 is greater than the CMC of PFHxA, whereas the CMC of GenX ammonium salt is slightly lower
2 than the NaPFHx CMC. GenX acid and PFHxA have the same headgroup and counterion.
3 Therefore, the difference in the CMC of GenX acid and PFHxA is due to the difference between
4 the perfluoroalkyl chain in PFHxA and the perfluoroether chain in GenX acid. When the
5 counterion is changed, the CMC trend became the opposite. The contribution of micellization of
6 the GenX fluorocarbon chain is assessed next.

7

8 The Gibbs free energy of micellization (ΔG_{mic}) is the net free-energy gain for transferring a free
9 surfactant molecule and its counterion from the bulk aqueous solution into a micelle. ΔG_{mic}
10 includes various contributions, the most important of which account for formation of the
11 hydrophobic micelle core, and electrostatic interactions in the micelle shell (Kancharla *et al.*,
12 2021b). For ionic surfactants, ΔG_{mic} is related to CMC according to $\Delta G_{\text{mic}} = (2 - \alpha)RT\ln X_{\text{CMC}}$,
13 where X_{CMC} is the surfactant mole fraction at the CMC, and α the degree of counterion dissociation
14 (Kancharla *et al.*, 2021b). For GenX ammonium salt, $\Delta G_{\text{mic}} = -18.0$ kJ/mol considering $\alpha = 0.72$
15 (obtained from SANS fits presented later). $\Delta G_{\text{mic}} = -17.9$ kJ/mol for NaPFHx, while the free energy
16 contribution due to the formation of the micelle hydrophobic core is -17.5 kJ/mol (Kancharla *et
17 al.*, 2021b). For APFO (CMC = 26.5 mM, $\alpha = 0.47$) (Kancharla *et al.*, 2019) the electrostatic free
18 energy is -8.1 kJ/mol (Kancharla *et al.*, 2021b). Since GenX ammonium salt and APFO have the
19 same counterion, we assumed the electrostatic free energy of GenX ammonium salt equal to that
20 of APFO, and calculated (following the procedure described in (Kancharla *et al.*, 2021b)) at -4.3
21 kJ/mol the free energy contributions related to the formation of the GenX ammonium salt micelle
22 hydrated shell and entropy lost by the counterions upon binding onto the micelle charged surface.
23 Subtracting this value from ΔG_{mic} of GenX ammonium salt gives -13.7 kJ/mol for the free energy
24 associated with the formation of the GenX micelle hydrophobic core. Whereas the ΔG_{mic} values
25 of GenX ammonium salt and NaPFHx are almost the same, the free energy associated with the
26 formation of the micelle hydrophobic core is 30% less negative for the ether-containing GenX
27 compared to NaPFHx with linear fluorocarbon chain.

28

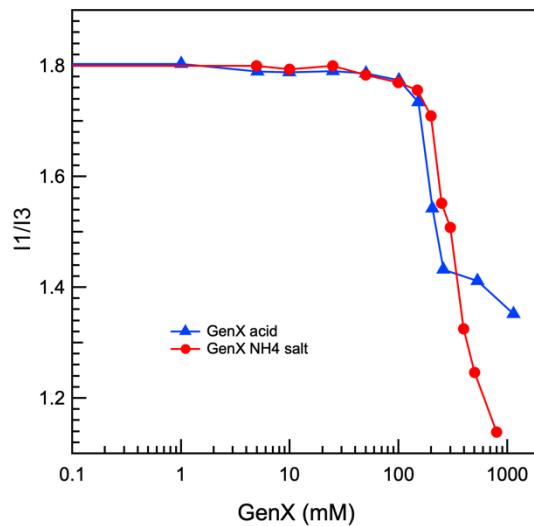


Figure 3. Pyrene fluorescence intensity I_1/I_3 ratio of GenX acid and GenX ammonium salt aqueous solutions (22 °C).

1

2

3 ***Micelle Structure***

4 In order to understand the structure of GenX micelles in water, we synthesize in this section
 5 discussion of results from atomistic MD simulations and SANS analysis. First we discuss the
 6 micelle shape and size, and then present information on molecular arrangements inside the micelle.

7

8 *MD simulations analysis.* A broad range of micelle association numbers (i.e., number of surfactant
 9 molecules in a micelle) has been observed in MD simulations. A GenX molecule is considered
 10 here to be a part of a micelle/cluster only when any of its atoms lie within a cutoff distance of 5.0
 11 Å from any atom of another GenX molecule belonging to the same micelle. We set up two systems
 12 with different initial distributions of GenX molecules. In one, the GenX molecules were randomly
 13 distributed through the system without forming clusters; in another, they were biased to belong in
 14 one large micelle. After 20 ns equilibration, both systems show similar micelle size distributions,
 15 with about 30-33% of GenX molecules present as unimers or dimers, and the remaining GenX
 16 molecules distributed between micelles of association number $N_{agg} = 3 - 25$. Unfortunately, the
 17 relatively small size of investigated system (i.e., 32 surfactant molecules) and the slow kinetics of
 18 micelle formation/breaking (particularly for larger micelles) do not lead to a converged micelle
 19 size distribution even from a 100 ns long trajectory. The micellar size distribution and kinetics of
 20 micelle formation and dissociation will be addressed in future work. Nevertheless, the population

1 of unimers shows steady fluctuation around 24% (see Supplemetary Information). Given the 440
2 mM surfactant concentration in MD simulations, the fraction of unimers observed in MD is in
3 good aggrement with the experimentally determined value of the GenX CMC (150 mM).

4

5 While we cannot conclude on equilibrium size distribution of micelles from MD simulation, we
6 have sufficient statistics to analyze the micellar structure and shape for different size micelles
7 observed in our simulations. First, we characterized the shape and dimensions of the formed
8 micelles by calculating the micellar gyration tensor using the following equation:

9
$$S_{xy}^2 = \frac{1}{M} \left\langle \sum_{i=1}^N m_i x_i y_i \right\rangle \quad (10)$$

10 where N is the number of atoms in a micelle, M total mass of the micelle, x_i, y_i coordinates of atom
11 i relative to the micelle center-of-mass, m_i corresponding mass of atom i , and $\langle \rangle$ denotes averaging
12 over the entire trajectory. Diagonalization of the gyration tensor matrix yields the principal
13 moments, i.e., S_{xx}, S_{yy}, S_{zz} that can be related to the radius of gyration (R_g) as: $R_g^2 = S_{xx}^2 + S_{yy}^2 +$
14 S_{zz}^2 . The calculated R_g^2 and the corresponding components of the gyration tensor are plotted in
15 Figure 4a as the function of micelle association number. As expected, the R_g^2 and the principal
16 moments monotonically increase with increasing micelle size. Furthermore, Figure 4b clearly
17 shows that the GenX micelles are not spherical, as one of the principal moments of gyration tensor
18 is substantially larger than the other two ($S_{zz}/S_{xx} > 2.1$ and $S_{zz}/S_{yy} > 1.6$), corresponding to a
19 prolate shape of the micelle. The ellipsoidal micellar shape observed in MD allowed us to select
20 the core-shell ellipsoid form factor for fitting SANS data (see discussion below).

21

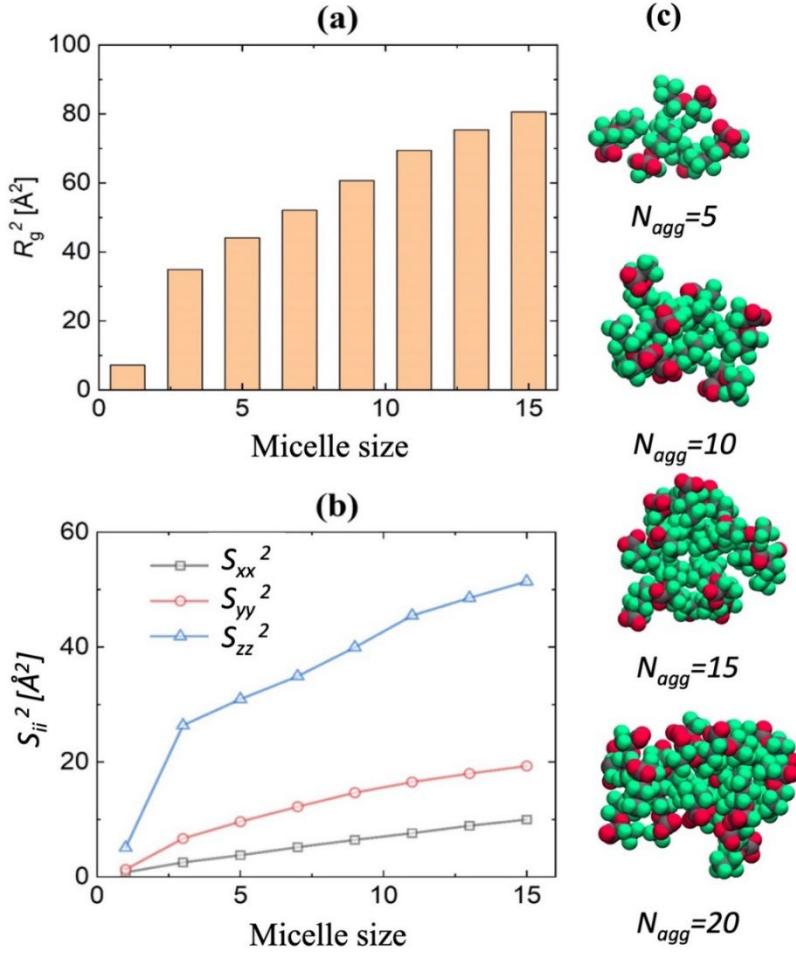


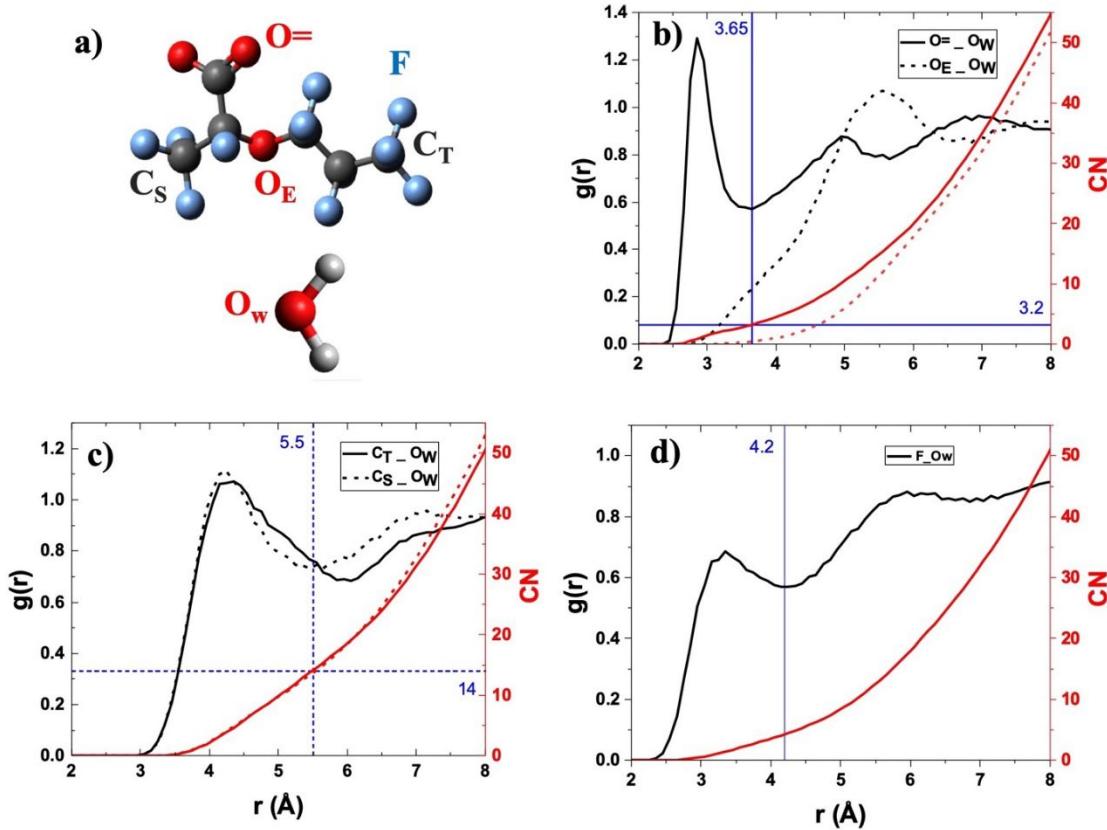
Figure 4. (a) Average R_g^2 of a GenX micelle as a function of micelle association number, (b) principal moments of the gyration tensor as a function of micelle association number, and (c) representative snapshots of several GenX micelles of different association numbers observed in MD simulations.

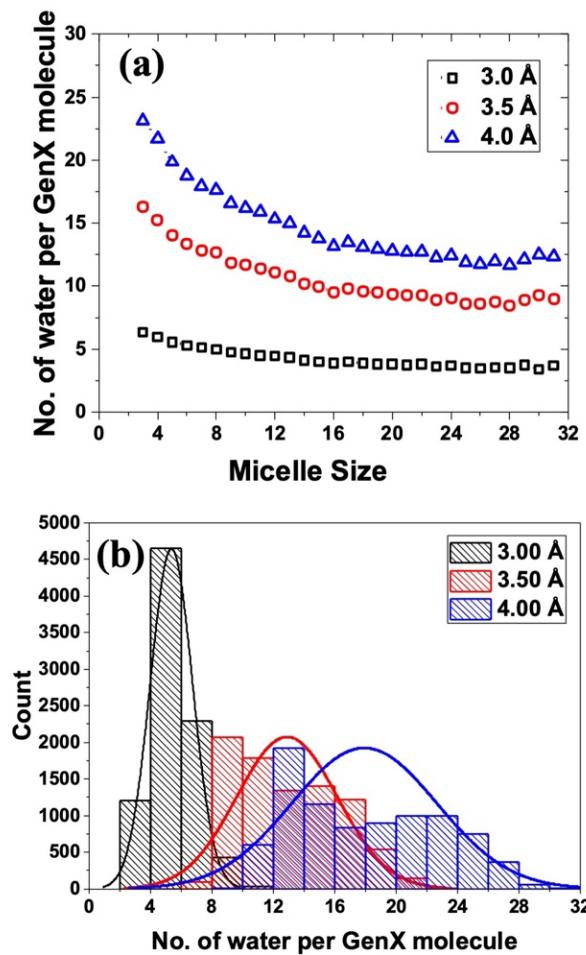
To understand the structure of individual micelles, we have examined the interaction with water of different parts of the GenX molecule, and their distribution inside the micelle. Figure 5 shows several radial distribution functions ($g(r)$) which reflect the probability of finding a specific atom (e.g., oxygen of water molecule) at a certain distance r from the selected atom (e.g., oxygen of GenX), and the corresponding coordination numbers (CN) for the selected atom types identified in Figure 5a: O_w is water oxygen atom, $O=$ oxygen atom of GenX headgroup, O_E ether oxygen atom of GenX fluorinated tail, C_T CF_3 carbon at the end of the fluorinated tail, and C_S CF_3 carbon on the side group connected to the GenX headgroup. The first coordination shell is typically defined by the first minimum in $g(r)$ (e.g., $r = 3.65 \text{ \AA}$ for O GenX – O water correlation shown in

1 Figure 5b), and the number of different atoms in that shell (i.e., CN) provides a good description
2 of the local environment. As expected, a sharp peak for O= - Ow pair and CN=3.2 for the first
3 coordination shell (defined as a sphere with $r = 3.65 \text{ \AA}$) in Figure 5b confirms a strong interaction
4 of water molecules with the GenX anionic headgroup. On the other hand, the ether oxygen has very
5 little interaction with water (note the absense of a strong peak at short distances and CN=0.1 within
6 the first coordination shell $r = 3.65 \text{ \AA}$), indicating that it is sterically hindered from water by
7 fluorinated groups and the headgroup. Figure 5c shows that the $g(r)$ and CN of Ow around the CF_3
8 carbon atoms of fluoroalkyl tail (C_T) and the side group (C_S) are very similar in behavior for both
9 carbons in the first coordination shell within $r < 5.5 \text{ \AA}$, indicating that both groups have similar
10 hydration structure and exposure to water. Within a sphere of 5.5 \AA , these groups have on average
11 14 water molecules. The snapshots in Figure 4c, as well as F-O_w correlations shown in Figure 5d,
12 indicate that a significant number of F atoms of GenX molecules are interacting with water
13 molecules. On average, within a 4.2 \AA sphere each F atom interacts with about 5 water molecules
14 despite the fact that the majority of GenX molecules are in micelles.

15

1


2
3

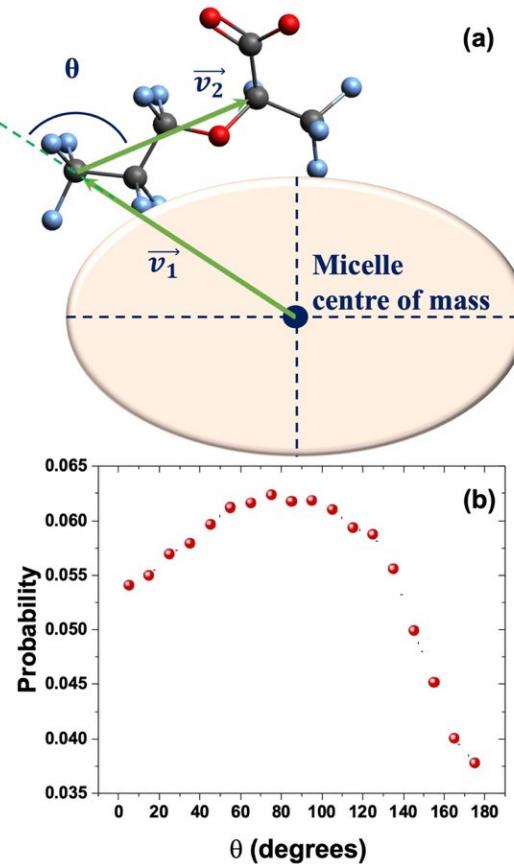

Figure 5. (a) Definition of atom types considered for radial distribution functions $g(r)$ and coordination number CN, (b) comparison of O=O_W and O_E-O_W $g(r)$ and CN, (c) comparison of C_T-O_W and C_S-O_W $g(r)$ and CN, and (d) F-O_W $g(r)$ and CN obtained from MD simulations. Vertical lines indicate the distance defining the first coordination shell for each pair correlation, while horizontal lines show a corresponding CN in the first coordination shell.

9

It is interesting to examine the extent of hydration of GenX molecules. This information is important for the environmental applications of GenX, and also useful in the fitting of SANS data. Using MD simulation trajectories, we have calculated how many water molecules are in contact with each GenX micelle. To consider a water molecule to be in contact with a micelle, the O_W should be within R_c distance from any GenX atom in the micelle. We have considered three values of $R_c = 3.0, 3.5$ and 4.0 \AA , which fall between the values defining the boundaries of O and F atoms first coordination shells. Figure 6a shows the dependence of the number of water molecules hydrating the GenX micelle as a function of micelle association number, normalized by the number of GenX molecules in the micelle (i.e., per one GenX molecule). Figure 6b shows distributions of

1 these hydration numbers for each R_c and averaged for all micelle sizes. Note that in these
 2 calculations, if a water molecule was in contact with two different GenX molecules or atoms, then
 3 it was counted only once. As expected, for smaller size micelles, the number of hydrating waters
 4 per GenX molecule is higher but, as the size of the micelle increases, the average hydration number
 5 also increases. For the tighter definition of hydrating water ($R_c = 3.0 \text{ \AA}$) the number of hydrating
 6 water molecules saturates around 4 whereas, for the looser definition of interfacial water ($R_c = 4.0 \text{ \AA}$), it is around 12 waters per GenX molecule. These values of hydration can be considered as the
 7 lower and upper bounds for the average water hydration number.
 8

9


10

11 Figure 6. (a) Average number of water molecules in the first coordination shell of the micelle (defined using
 12 three cutoff radii: $R_c = 3.0, 3.5$ and 4.0 \AA from any GenX atom) plotted as function of the micelle association
 13 number. (b) Distribution of hydrating waters per GenX molecule for three different cut off radii.

14

1 Another interesting structural feature to examine is how GenX molecules are oriented in the
 2 micelle. We have investigated the molecular orientation of each GenX molecule in micelles of
 3 different sizes by computing the angle (θ) between two vectors \vec{v}_1 and \vec{v}_2 , where \vec{v}_1 is a vector
 4 between the center-of-mass of the micelle and the C_T group of the GenX molecule belonging to
 5 the micelle, while \vec{v}_2 is a vector from C_T to the carbon of the headgroup (Figure 7a). $\theta = 0^\circ$ indicates
 6 that the GenX molecule tail is oriented toward the micelle center and the headgroup is radially
 7 outwards. $\theta = 90^\circ$ corresponds to GenX molecules oriented tangentially to the surface of the
 8 micelle, while the 180° angle denotes that the GenX headgroup points inside the micelle core. The
 9 probability distribution of finding GenX molecule with θ orientation (normalized by $\sin(\theta)$) to
 10 reflect the different phase space available for realization of each angle value) is shown in Fig. 7b.
 11 A broad peak around 90° indicates that GenX molecules prefer to align along the micelle surface.

12

13

14 Figure 7. (a) Schematic representation of the method employed to compute the relative molecular
 15 orientation. The angle θ is between vector \vec{v}_1 , which is from the center-of-mass of micelle to C_T , and the
 16 vector \vec{v}_2 , which is from C_T to the carbon at the junction of headgroup and side-group. (b) Normalized
 17 distribution of computed molecular orientation (θ).

1
2 *Viscosity.* The hydration of GenX micelles can be experimentally assessed from viscosity
3 measurements. Figure 8 shows the relative viscosity of aqueous solutions of GenX ammonium
4 salt, plotted as a function of the micellized surfactant concentration (C-CMC) which accounts for
5 the contribution to viscosity of only the micelles. A linear equation (Equation (4)) neglecting the
6 $k_1(\nu\phi)^2$ and $O(\phi)^3$ terms) was fitted to the viscosity measurement data set in Figure 8 and, from
7 the x-coefficient value obtained, the hydrated volume of a GenX molecule V_s^{hyd} is calculated to
8 569.7 \AA^3 . After subtracting from this value the “dry” molecular volume of GenX (332.1 \AA^3), the
9 volume of the water hydrating a GenX molecule is estimated to 237.6 \AA^3 which corresponds to ~ 8
10 water molecules. This number falls right in the middle between the upper and lower bounds of
11 hydration numbers obtained from MD simulations, as discussed above in the context of Figure 6.
12 The hydration number of NaPFHx or ammonium perfluorooctanoate (PFOA) reported in the
13 literature is ~ 11 water molecules, 40% higher than the GenX hydration number (Kancharla *et al.*,
14 2019; Kancharla *et al.*, 2021b).

15

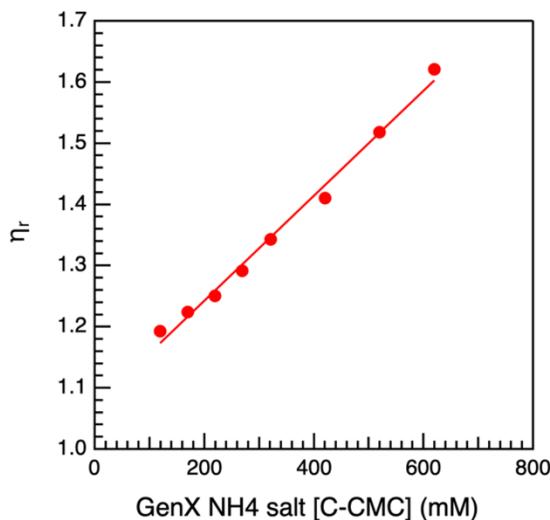


Figure 8. Relative viscosity of GenX ammonium salt aqueous solutions (21°C) plotted as a function of micellized surfactant concentration. The line through the viscosity data points is fit to equation (4).

16
17 *SANS analysis.* When fitting SANS intensity data for GenX micelles in D_2O , we considered the
18 micelle core to consist of $\text{CF}_3(\text{CF}_2)_2\text{OCF}$ chains and 0, 1, or 2 water molecules hydrating a
19 $\text{CF}_3(\text{CF}_2)_2\text{OCF}$ chain (to account for GenX hydrophobic chain contact with water), and the shell
20 to consist of carboxylate headgroups, CF_3 branch, counterions, and associated water molecules.

1 We assigned the CF_3 branch in the micelle shell following information from MD. Further, we fixed
 2 the total number of water molecules hydrating a GenX molecule in the micelle ($N_{\text{H}} + N_{\text{H}_2\text{O}}$). Two
 3 cases have been considered, (i) $N_{\text{H}} + N_{\text{H}_2\text{O}} = 8$, based on the GenX hydration number obtained from
 4 viscosity, and (ii) $N_{\text{H}} + N_{\text{H}_2\text{O}} = 12$, based on upper bound of the GenX hydration number obtained
 5 from MD results. For instance, case (i) if $N_{\text{H}_2\text{O}} = 0$, $N_{\text{H}} = 8$; $N_{\text{H}_2\text{O}} = 1$, $N_{\text{H}} = 7$; $N_{\text{H}_2\text{O}} = 2$, $N_{\text{H}} = 6$,
 6 and case (ii) if $N_{\text{H}_2\text{O}} = 0$, $N_{\text{H}} = 12$; $N_{\text{H}_2\text{O}} = 1$, $N_{\text{H}} = 11$; $N_{\text{H}_2\text{O}} = 2$, $N_{\text{H}} = 10$.

7

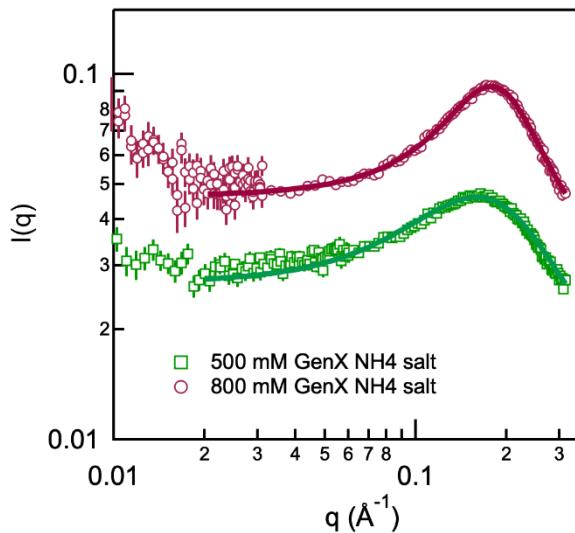


Figure 9. SANS intensity profiles of GenX ammonium salt in D_2O corrected for solvent (D_2O) scattering. Markers represent the experiment data and solid lines represent the fits using monodisperse core-shell ellipsoid model form factor with Hayter RMSA structure factor described in the text, considering 8 water molecules hydrating each GenX molecule in the micelle.

8

9 Figure 9 shows the SANS absolute intensity profiles of GenX ammonium salt in D_2O at 22 °C and
 10 the corresponding fits using the monodisperse core-shell ellipsoid form factor with Hayter rescaled
 11 MSA structure factor considering 8 water molecules hydrating each GenX molecule in the micelle.
 12 The correlation peak reflects repulsive interactions between the micelles. The intermicelle distance
 13 d can be estimated from the q value at the peak maximum $d = 2\pi/q_{\text{max}}$. Table 1 summarizes
 14 important parameters obtained by fitting GenX SANS data.

15

16 Table 1. Parameters obtained by fitting SANS intensity data of GenX ammonium salt in D_2O , corrected for
 17 solvent (D_2O) scattering, using the monodisperse core-shell ellipsoid form factor and the Hayter rescaled
 18 MSA structure factor, and considering the number of water molecules hydrating each GenX molecule in
 19 the micelle 8 (obtained from viscosity measurements). $N_{\text{H}_2\text{O}}$ number of water molecules hydrating an
 20 oxygen atom in the core, N_{agg} association number (number of surfactant molecules per micelle); α fractional

1 charge or charge per surfactant molecule in a micelle; b micelle core minor radius; ε ratio of micelle core
 2 major to minor radius; δ shell thickness; R_{eq} equivalent spherical micelle radius; $V_{\text{h,c}}$ volume percentage of
 3 water in the micelle core; φ volume fraction of the micelles; d inter-micelle distance; and I_{peak} intensity at
 4 the correlation peak maximum. χ_R^2 is a statistical parameter that quantifies the differences between the
 5 calculated and experimental SANS data sets.

GenX (mM)	$N_{\text{H}_2\text{O}}$	N_{agg}	α	b (\AA)	ε	δ (\AA)	R_{eq} (\AA)	$V_{\text{h,c}}$ (%)	Φ	d (\AA)	I_{peak}	χ_R^2
500	0	5.9 (± 0.1)	0.72 (± 0.03)	8.0	0.55 (± 0.006)	2.7	9.35 (± 0.02)	0	0.0519 (± 0.002)	39.3	0.046	2.20
500	1	5.9 (± 0.1)	0.75 (± 0.03)	8.0	0.64 (± 0.006)	2.4	9.34 (± 0.02)	13	0.0519 (± 0.001)	39.3	0.046	1.85
500	2	5.9 (± 0.1)	0.78 (± 0.03)	8.0	0.72 (± 0.006)	2.1	9.33 (± 0.02)	23	0.0522 (± 0.001)	39.3	0.046	1.53
800	0	8.3 (± 0.1)	0.93 (± 0.03)	8.0	0.78 (± 0.005)	3.1	10.45 (± 0.02)	0	0.0883 (± 0.001)	34.9	0.093	0.99
800	1	8.3 (± 0.1)	0.96 (± 0.03)	8.0	0.89 (± 0.005)	2.7	10.44 (± 0.02)	13	0.0909 (± 0.001)	34.9	0.093	0.95
800	2	8.3 (± 0.1)	0.99 (± 0.03)	8.0	1.01 (± 0.005)	2.4	10.45 (± 0.02)	23	0.0939 (± 0.001)	34.9	0.093	1.17

6
 7 The average association number of GenX ammonium salt micelles in aqueous solution obtained
 8 from SANS is 5.9 at 500 mM GenX and 8.3 at 800 mM GenX, a 40% increase upon surfactant
 9 concentration increase from 500 to 800 mM. The GenX micelle size (R_{eq}) increased by 12%, the
 10 fractional charge on a micelle (α) (degree of counterion dissociation) increased by 28%, and the
 11 intermicelle distance decreased by 11% with the increase in GenX concentration from 500 to 800
 12 mM. Our SANS results show that the ratio of the micelle core major to minor radius (ε) is smaller
 13 than 1, which means that the micelle core major radius is smaller than the extended length of
 14 surfactant (set to equal the micelle core minor radius). This is in good agreement with the tendency
 15 of GenX molecules to tilt along the micelle surface, established by MD (Figure 7). The average
 16 area per surfactant headgroup at the core-shell interface obtained from SANS parameters for the
 17 case of dry core ($N_{\text{H}_2\text{O}} = 0$) is 96.3 \AA^2 for 500 mM GenX and 82.9 \AA^2 for 800 mM GenX. These
 18 values are in excellent agreement with the A_{min} value obtained from the surface tension data.

19
 20 SANS parameters obtained using the monodisperse core-shell ellipsoid form factor with Hayter
 21 rescaled MSA structure factor considering 12 water molecules (the upper bound hydration value

1 obtained from MD) hydrating each GenX molecule in the micelle are presented in SI (refer to
2 Table S5) together with the corresponding fits. A comparison of GenX micelle parameters
3 obtained considering 8 or 12 water molecules of hydration shows that the micelle association
4 number, fractional charge, and axial ratio do not change, only the shell thickness (where water
5 resides) increases by 20 – 30 %. Considering water in the micelle core ($V_{h,c} = 13\%$ or 23%) resulted
6 in no big difference in the micelle parameters.

7
8 We have also fitted SANS intensity data of GenX micelles using the monodisperse and
9 polydisperse core-shell sphere form factor and Hayter rescaled MSA structure factor (results are
10 presented in SI). The results obtained show that there is no difference in the GenX micelle
11 association number, fractional charge, and size, whether we consider monodisperse core-shell
12 sphere form factor or monodisperse core-shell ellipsoid form factor. Applying polydispersity to
13 the radius of the micelle core, using the Schulz distribution, gave $PD = 0.066$ for 500 mM GenX
14 and $PD = 0.007$ for 800 mM GenX, and there is no difference in the micelle parameters obtained
15 when compared to monodisperse core-shell sphere fits. $PD = \sigma/R_A$ is the ratio of the standard
16 deviation of the core radius size distribution (σ) and the average micelle core radius (R_A) obtained
17 from the fit. The low value of the polydispersity indicates that the system was essentially
18 monodisperse. Small clusters contribute very little to the scattering intensity (refer to Figure S9).

19
20 Comparing the structure (obtained from SANS) of GenX micelles to that of NaPFHx micelles,
21 both surfactants have 6 carbon atoms, however, NaPFHx forms larger micelles with $N_{agg} = 14.7$,
22 $\epsilon = 1.41$ and $R_{eq} = 13 \text{ \AA}$ (Kancharla *et al.*, 2021b). This could be ascribed to the chemical structure
23 of GenX. GenX has a CF_3 branch, whereas NaPFHx has a linear $\text{CF}_3(\text{CF}_2)_4$ chain. Comparing 6
24 carbon fluorinated surfactant micelles to 8 carbon fluorinated surfactant micelles, APFO forms
25 ellipsoidal micelles with $N_{agg} = 30$, $\epsilon = 1.73$, and $R_{eq} = 17.6 \text{ \AA}$ (Dong *et al.*, 2021; Kancharla *et al.*,
26 2021a). APFO micelles have association number 5 times that of GenX micelles and 2 times that
27 of NaPFHx micelles. The size of APFO micelles is 88% greater than that of GenX micelles, and
28 35% greater than NaPFHx micelles. For sodium perfluoroalkyl carboxylates, upon an increase in
29 the hydrophobic part of the surfactant by $2 - \text{CF}_2 -$ groups, the micelle association number increases
30 by 70% and the size increases by 30% (Kancharla *et al.*, 2021b).

31

1 The SANS results of GenX forming small micelles with association number in the range 6 – 8 are
2 in a very good agreement with the findings from MD. The ratio of micelle core major to minor
3 radius (ϵ) < 1 indicates elongated micelles which agrees with the MD results. MD simulations have
4 shown that, for association number = 7, radius of gyration (R_g) = 7.2 Å (Figure 6a), which is not
5 far from the GenX micelle size (R_{eq}) obtained from SANS fits.

6

7 In the micelle composition that we considered while fitting the SANS data, the CF_3 side group of
8 GenX is assigned to the micelle shell and is exposed to water, which is consistent with the MD
9 results. MD simulations have shown that GenX molecules prefer to align along the micelle surface,
10 and the CF_3 carbon atoms of the GenX tail are exposed to water. The SANS models that we used
11 do not explicitly account for these. Having said this, the different models and micelle composition
12 scenarios considered while fitting SANS data, including monodisperse sphere, monodisperse or
13 polydisperse core-shell sphere with and without water in the micelle core, and monodisperse core-
14 shell ellipsoid with and without water in the micelle core, all resulted in the same micelle
15 parameters, lending confidence that these parameters describe well the GenX micelles.

16

17 We note that the surfactants properties reported here are for GenX in plain water. The presence in
18 natural water of electrolytes or organic matter will modulate the surfactant association. For
19 example, added NaCl decreased the CMC and increased the micelle size of PFOA, as we have
20 recently shown (Kancharla et al., 2021b). We expect a similar trend in the case of GenX.

21

22

1 **CONCLUSIONS**

2 Emerging PFAS surfactants such as GenX have been introduced as less harmful alternatives to
3 legacy PFAS (PFOA, PFOS) which are banned because they cause serious health issues. However,
4 GenX is now present in waters and is generating concern as it has been found to adversely affect
5 health. GenX is a surface-active molecule for which we know very little about its surfactant
6 properties. The present study aims to fill this gap in knowledge.

7

8 Consistent and quantitative information on the formation and structure of GenX micelles emerges
9 from analysis of experiments and MD simulations. Due to its short fluorocarbon chain, GenX has
10 relatively high CMC (175 mM) and forms small micelles: association number of 6 – 8 and radius
11 10 Å. GenX molecules participating in micelles are hydrated by an average eight water molecules;
12 the GenX anionic headgroup interacts strongly with water, whereas the ether oxygen is sterically
13 hindered from water. The branched fluoroether chain of GenX is found 30% less hydrophobic than
14 a linear fluorocarbon chain with the same number of carbon atoms. Having a linear $\text{CF}_3(\text{CF}_2)_4$
15 chain, NaPFHx forms larger micelles with association number = 15 and radius = 13 Å.

16

17 Self-assembly into micelles is a key feature of surfactants in aqueous solution. Analysis of CMC
18 reveals specific contributions of hydrophobic tail and hydrophilic headgroup, while the micelle
19 structure and composition provide information on how surfactants interact with themselves and
20 with solvent (water) and other molecules present in solution. In a way, the micelles “amplify”
21 subtle interactions that are always present, even if difficult to discern. Furthermore, the capability
22 established in this study to predict from first principles micelle formation and structure confirms
23 that such multiple and often competing interactions have been properly accounted for. This
24 knowledge can be deployed to probe computationally other PFAS pollutants for which
25 experimental results are lacking. A “simple” system as that examined here provides easier access
26 to the fundamentals, and this helps the understanding of more complex systems encountered in
27 environmental applications. Micelles are also relevant to environment and health in that PFAS
28 surfactants, while typically found in very low bulk solution concentrations, they tend to
29 concentrate a lot (partition) in the vicinity of surfaces in the context of separations (AC, ion
30 exchange resins) and in the context of biointerfaces (proteins, lipid membranes).

31

1 This is the very first study of GenX micelles; further, this is the first MD study of surfactants with
2 ether oxygen along the chain. The high-resolution structure and interactions knowledge presented
3 here informs the GenX fate and transport in the aqueous environment, its interactions with various
4 natural substances (e.g., minerals, humic acid) and biomolecules, and its binding to adsorbent
5 materials. In a very recent study, photo-reductive destruction of GenX was significantly promoted
6 when GenX was in the form of mixed micelles with hydroxyphenylacetic acids (hydrated electron
7 precursors) and cetyl trimethyl ammonium bromide (Chen *et al.*, 2021).

8

9 **Acknowledgements**

10 This research was funded by the U.S. National Science Foundation (NSF), grant numbers CBET-
11 1930959 and CBET-1930935. We acknowledge the support of the National Institute of Standards
12 and Technology (NIST), U.S. Department of Commerce, in providing the neutron research
13 facilities used in this work. Access to the CHRNS 30m Small-angle neutron scattering instrument
14 was provided by the Center for High Resolution Neutron Scattering (CHRNS), a partnership
15 between NIST and NSF under Agreement No. DMR-1508249. We thank Dr. Yimin Mao at NIST
16 for valuable assistance with the SANS data acquisition. We thank Honeywell Buffalo Research
17 Labs (Greg Smith and Roy Robinson) for providing access to a surface tension instrument.

18

19

1 **REFERENCES**

2

3 Allendorf, F., Berger, U., Goss, K.-U., Ulrich, N., 2019. Partition coefficients of four perfluoroalkyl
4 acid alternatives between bovine serum albumin (BSA) and water in comparison to ten classical
5 perfluoroalkyl acids. *Environmental Science-Processes & Impacts.* 21, 1852-1863.

6 Alves, A.V., Tsianou, M., Alexandridis, P., 2020. Fluorinated Surfactant Adsorption on Mineral
7 Surfaces: Implications for PFAS Fate and Transport in the Environment. *Surfaces.* 3, 516-566.

8 Ateia, M., Arifuzzaman, M., Pellizzeri, S., Attia, M.F., Tharayil, N., Anker, J.N., Karanfil, T., 2019.
9 Cationic polymer for selective removal of GenX and short-chain PFAS from surface waters and
10 wastewaters at ng/L levels. *Water Research.* 163, 114874-114885.

11 Bao, Y., Deng, S., Jiang, X., Qu, Y., He, Y., Liu, L., Chai, Q., Mumtaz, M., Huang, J., Cagnetta, G.,
12 Yu, G., 2018. Degradation of PFOA Substitute - GenX (HFPO-DA ammonium salt) : Oxidation
13 with UV/Persulfate or Reduction with UV/Sulfite? *Environmental Science & Technology.* 52,
14 11728.

15 Barzen-Hanson, K.A., Roberts, S.C., Choyke, S., Oetjen, K., McAlees, A., Riddell, N., McCrindle,
16 R., Ferguson, P.L., Higgins, C.P., Field, J.A., 2017. Discovery of 40 Classes of Per- and
17 Polyfluoroalkyl Substances in Historical Aqueous Film-Forming Foams (AFFFs) and AFFF-
18 Impacted Groundwater. *Environmental Science & Technology.* 51, 2047-2057.

19 Bedrov, D., Piquemal, J.-P., Borodin, O., MacKerell, A.D., Roux, B., Schröder, C., 2019. Molecular
20 Dynamics Simulations of Ionic Liquids and Electrolytes Using Polarizable Force Fields. *Chemical
21 Reviews.* 119, 7940-7995.

22 Beekman, M., Zweers, P., Muller, A., DeVries, W., Janssen, P., Zeilmaker, M., 2016. Evaluation of
23 substances used in the GenX technology by Chemours, Dordrecht. in, Rijksinstituut voor
24 Volksgezondheid en Milieu (RIVM) Letter report, Vol. 0174, pp. 1-92.

25 Bentel, M.J., Yu, Y., Xu, L., Kwon, H., Li, Z., Wong, B.M., Men, Y., Liu, J., 2020. Degradation of
26 Perfluoroalkyl Ether Carboxylic Acids with Hydrated Electrons: Structure-Reactivity
27 Relationships and Environmental Implications. *Environmental Science & Technology.* 54, 2489-
28 2499.

29 Berr, S.S., Jones, R.R.M., 1989. Small-angle neutron scattering from aqueous solutions of
30 sodium perfluorooctanoate above the critical micelle concentration. *Journal of Physical
31 Chemistry.* 93, 2555-2558.

32 Blake, B.E., Cope, H.A., Hall, S.M., Keys, R.D., Mahler, B.W., McCord, J., Scott, B., Stapleton,
33 H.M., Strynar, M.J., Elmore, S.A., Fenton, S.E., 2020. Evaluation of Maternal, Embryo, and
34 Placental Effects in CD-1 Mice following Gestational Exposure to Perfluorooctanoic Acid (PFOA)
35 or Hexafluoropropylene Oxide Dimer Acid (HFPO-DA or GenX). *Environmental Health
36 Perspectives.* 128, 27006.

37 Bodratti, A.M., Sarkar, B., Alexandridis, P., 2017. Adsorption of poly(ethylene oxide)-containing
38 amphiphilic polymers on solid-liquid interfaces: Fundamentals and applications. *Advances in
39 Colloid and Interface Science.* 244, 132-163.

40 Borodin, O., 2009. Polarizable Force Field Development and Molecular Dynamics Simulations of
41 Ionic Liquids. *Journal of Physical Chemistry B.* 113, 11463-11478.

1 Brandsma, S.H., Koekkoek, J.C., van Velzen, M.J.M., de Boer, J., 2018. The PFOA substitute GenX
2 detected in the environment near a fluoropolymer manufacturing plant in the Netherlands.
3 Chemosphere. 220, 493.

4 Brase, R.A., Mullin, E.J., Spink, D.C., 2021. Legacy and emerging per- and polyfluoroalkyl
5 substances: analytical techniques, environmental fate, and health effects. International Journal
6 of Molecular Sciences. 22, 995.

7 Brusseau, M.L., 2019. The influence of molecular structure on the adsorption of PFAS to fluid-
8 fluid interfaces: Using QSPR to predict interfacial adsorption coefficients. Water Research. 152,
9 148-158.

10 Buck, R.C., Franklin, J., Berger, U., Conder, J.M., Cousins, I.T., de Voogt, P., Jensen, A.A., Kannan,
11 K., Mabury, S.A., van Leeuwen, S.P.J., 2011. Perfluoroalkyl and polyfluoroalkyl substances in the
12 environment: Terminology, classification, and origins. Integrated Environmental Assessment
13 and Management. 7, 513-541.

14 Buck, R.C., Murphy, P.M., Pabon, M., 2012. Chemistry, Properties, and Uses of Commercial
15 Fluorinated Surfactants, in: T.P. Knepper, F.T. Lange (Eds.) Polyfluorinated Chemicals and
16 Transformation Products. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1-24.

17 Burkitt, S.J., Ottewill, R.H., Hayter, J.B., Ingram, B.T., 1987. Small angle neutron scattering
18 studies on micellar systems part 1. Ammonium octanoate, ammonium decanoate and
19 ammonium perfluorooctanoate. Colloid & Polymer Science. 265, 619-627.

20 Caverly Rae, J.M., Craig, L., Slone, T.W., Frame, S.R., Buxton, L.W., Kennedy, G.L., 2015.
21 Evaluation of chronic toxicity and carcinogenicity of ammonium 2,3,3,3-tetrafluoro-2-
22 (heptafluoropropoxy)-propanoate in Sprague–Dawley rats. Toxicology Reports. 2, 939-949.

23 Chappell, G.A., Thompson, C.M., Wolf, J.C., Cullen, J.M., Klaunig, J.E., Haws, L.C., 2020.
24 Assessment of the Mode of Action Underlying the Effects of GenX in Mouse Liver and
25 Implications for Assessing Human Health Risks. Toxicologic Pathology. 48, 494-508.

26 Chen, Z., Teng, Y., Huang, L., Mi, N., Li, C., Ling, J., Gu, C., Jin, X., 2021. Rapid photo-reductive
27 destruction of hexafluoropropylene oxide trimer acid (HFPO-TA) by a stable self-assembled
28 micelle system of producing hydrated electrons. Chemical Engineering Journal. 420, 130436.

29 Cheng, W., Ng, C.A., 2018. Predicting Relative Protein Affinity of Novel Per- and Polyfluoroalkyl
30 Substances (PFASs) by An Efficient Molecular Dynamics Approach. Environmental Science &
31 Technology. 52, 7972-7980.

32 Conley, J.M., Lambright, C.S., Evans, N., McCord, J., Strynar, M.J., Hill, D., Medlock-Kakaley, E.,
33 Wilson, V.S., Gray, L.E., 2021. Hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX) alters
34 maternal and fetal glucose and lipid metabolism and produces neonatal mortality, low
35 birthweight, and hepatomegaly in the Sprague-Dawley rat. Environment International. 146,
36 106204.

37 Coperchini, F., Croce, L., Denegri, M., Pignatti, P., Agozzino, M., Netti, G.S., Imbriani, M.,
38 Rotondi, M., Chiovato, L., 2020. Adverse effects of in vitro GenX exposure on rat thyroid cell
39 viability, DNA integrity and thyroid-related genes expression. Environmental Pollution. 264,
40 114778.

1 Danish-EPA, 2015. Short-chain Polyfluoroalkyl Substances (PFAS). <https://cswab.org/wp-content/uploads/2018/05/Short-chain-PFAS-literature-review-Danish-EPA-2015.pdf> [accessed October 2021].

4 Dauchy, X., Boiteux, V., Bach, C., Rosin, C., Munoz, J.-F., 2017. Per- and polyfluoroalkyl substances in firefighting foam concentrates and water samples collected near sites impacted by the use of these foams. *Chemosphere*. 183, 53-61.

7 Dixit, F., Barbeau, B., Mostafavi, S.G., Mohseni, M., 2020. Efficient removal of GenX (HFPO-DA) and other perfluorinated ether acids from drinking and recycled waters using anion exchange resins. *Journal of Hazardous Materials*. 384, 121261.

10 Domingo, J.L., Nadal, M., 2019. Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature. *Environ Res*. 177, 108648.

12 Dong, D., Kancharla, S., Hooper, J., Tsianou, M., Bedrov, D., Alexandridis, P., 2021. Controlling the self-assembly of perfluorinated surfactants in aqueous environments. *Physical Chemistry Chemical Physics*. 23, 10029-10039.

15 DuPont, 2010. DuPont™ GenX Processing Aid for Making Fluoropolymer Resins. https://bladenonline.com/wp-content/uploads/2017/06/Chemours_GenX_Brochure_Final_07July2010.pdf [accessed October 2021].

19 EPA, 2016. Drinking Water Health Advisories for PFOA and PFOS. <https://www.epa.gov/ground-water-and-drinking-water/drinking-water-health-advisories-pfoa-and-pfos>.

21 EPA, 2021. Human Health Toxicity Assessments for GenX Chemicals. <https://www.epa.gov/chemical-research/human-health-toxicity-assessments-genx-chemicals> [accessed October 2021].

24 Fajalia, A.I., Tsianou, M., 2014. Charging and uncharging a neutral polymer in solution: A small-angle neutron scattering investigation. *Journal of Physical Chemistry B*. 118, 10725-10739.

26 Fenton, S.E., Ducatman, A., Boobis, A., DeWitt, J.C., Lau, C., Ng, C., Smith, J.S., Roberts, S.M., 2021. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. *Environmental Toxicology and Chemistry*. 40, 606-630.

30 Gannon, S.A., Fasano, W.J., Mawn, M.P., Nabb, D.L., Buck, R.C., Buxton, L.W., Jepson, G.W., Frame, S.R., 2016. Absorption, distribution, metabolism, excretion, and kinetics of 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoic acid ammonium salt following a single dose in rat, mouse, and cynomolgus monkey. *Toxicology*. 340, 1-9.

34 Gebbink, W.A., van Asseldonk, L., van Leeuwen, S.P.J., 2017. Presence of emerging per- and polyfluoroalkyl substances (PFASs) in river and drinking water near a fluorochemical production plant in the Netherlands. *Environmental Science and Technology*. 51, 11057-11065.

37 Glüge, J., Scheringer, M., Cousins, I.T., DeWitt, J.C., Goldenman, G., Herzke, D., Lohmann, R., Ng, C.A., Trier, X., Wang, Z., 2020. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). *Environmental Science: Processes & Impacts*. 22, 2345-2373.

1 Gomis, M.I., Vestergren, R., Borg, D., Cousins, I.T., 2018. Comparing the toxic potency *in vivo* of
2 long-chain perfluoroalkyl acids and fluorinated alternatives. *Environment International*. 113, 1-
3 9.

4 Gomis, M.I., Wang, Z., Scheringer, M., Cousins, I.T., 2015. A modeling assessment of the
5 physicochemical properties and environmental fate of emerging and novel per- and
6 polyfluoroalkyl substances. *Science of the Total Environment*. 505, 981-991.

7 Guelfo, J.L., Adamson, D.T., 2018. Evaluation of a national data set for insights into sources,
8 composition, and concentrations of per- and polyfluoroalkyl substances (PFASs) in U.S. drinking
9 water. *Environmental Pollution*. 236, 505-513.

10 Heydebreck, F., Tang, J., Xie, Z., Ebinghaus, R., 2015. Alternative and Legacy Perfluoroalkyl
11 Substances: Differences between European and Chinese River/Estuary Systems. *Environmental*
12 *Science & Technology*. 49, 8386-8395.

13 Hoke, R.A., Ferrell, B.D., Sloman, T.L., Buck, R.C., Buxton, L.W., 2016. Aquatic hazard,
14 bioaccumulation and screening risk assessment for ammonium 2,3,3,3-tetrafluoro-2-
15 (heptafluoropropoxy)-propanoate. *Chemosphere*. 149, 336-342.

16 Hoover, W.G., 1985. Canonical dynamics: Equilibrium phase-space distributions. *Physical*
17 *Review A*. 31, 1695-1697.

18 Hopkins, Z.R., Sun, M., DeWitt, J.C., Knappe, D.R.U., 2018. Recently detected drinking water
19 contaminants: GenX and other per- and polyfluoroalkyl ether acids. *Journal - American Water*
20 *Works Association*. 110, 13-28.

21 Huang, P.-J., Hwangbo, M., Chen, Z., Liu, Y., Kameoka, J., Chu, K.-H., 2018. Reusable
22 Functionalized Hydrogel Sorbents for Removing Long- and Short-Chain Perfluoroalkyl Acids
23 (PFAAs) and GenX from Aqueous Solution. *ACS Omega*. 3, 17447-17455.

24 Iijima, H., Kato, T., Yoshida, H., Imai, M., 1998. Small-angle X-ray and neutron scattering from
25 dilute solutions of cesium perfluorooctanoate. Micellar growth along two dimensions. *Journal*
26 *of Physical Chemistry B*. 102, 990-995.

27 Ito, A., Sakai, H., Kondo, Y., Yoshino, N., Abe, M., 1996. Micellar Solution Properties of
28 Fluorocarbon-Hydrocarbon Hybrid Surfactants. *Langmuir*. 12, 5768-5772.

29 ITRC, 2020. Interstate Technology & Regulatory Council (ITRC). 2020. PFAS Technical and
30 Regulatory Guidance Document and Fact Sheets. <https://pfas-1.itrcweb.org/8-basis-of-regulations/> [accessed October 2021].

31 Ji, W., Xiao, L., Ling, Y., Ching, C., Matsumoto, M., Bisbey, R.P., Helbling, D.E., Dichtel, W.R.,
32 2018. Removal of GenX and Perfluorinated Alkyl Substances from Water by Amine-
33 Functionalized Covalent Organic Frameworks. *Journal of American Chemical Society*. 140,
34 12677-12681.

35 Jin, C., Yan, P., Wang, C., Xiao, J.-X., 2005. Effect of counterions on fluorinated surfactants 1.
36 Surface activity and micellization. *Acta Chimica Sinica*. 63, 279-282.

37 Kalyanasundaram, K., 1988. Pyrene fluorescence as a probe of fluorocarbon micelles and their
38 mixed micelles with hydrocarbon surfactants. *Langmuir*. 4, 942-945.

1 Kancharla, S., Bedrov, D., Tsianou, M., Alexandridis, P., 2022. Structure and composition of
2 mixed micelles formed by nonionic block copolymers and ionic surfactants in water determined
3 by small-angle neutron scattering with contrast variation. *Journal of Colloid and Interface
4 Science*. DOI: 10.1016/j.jcis.2021.1010.1176.

5 Kancharla, S., Canales, E., Alexandridis, P., 2019. Perfluorooctanoate in Aqueous Urea Solutions:
6 Micelle Formation, Structure, and Microenvironment. *International Journal of Molecular
7 Sciences*. 20, 5761.

8 Kancharla, S., Dong, D., Bedrov, D., Tsianou, M., Alexandridis, P., 2021a. Structure and
9 Interactions in Perfluorooctanoate Micellar Solutions Revealed by Small-Angle Neutron
10 Scattering and Molecular Dynamics Simulations Studies: Effect of Urea. *Langmuir*. 37, 5339-
11 5347.

12 Kancharla, S., Jahan, R., Bedrov, D., Tsianou, M., Alexandridis, P., 2021b. Role of chain length
13 and electrolyte on the micellization of anionic fluorinated surfactants in water. *Colloids and
14 Surfaces A: Physicochemical and Engineering Aspects*. 628, 127313.

15 Kato, K., Kalathil, A.A., Patel, A.M., Ye, X., Calafat, A.M., 2018. Per- and polyfluoroalkyl
16 substances and fluorinated alternatives in urine and serum by on-line solid phase extraction-
17 liquid chromatography-tandem mass spectrometry. *Chemosphere*. 209, 338-345.

18 Kiss, E., 2001. *Fluorinated Surfactants and Repellents*, 2nd Edition. Marcel Dekker,
19 Incorporated, New York.

20 Krafft, M.P., Riess, J.G., 2015. Selected physicochemical aspects of poly- and perfluoroalkylated
21 substances relevant to performance, environment and sustainability-part one. *Chemosphere*.
22 129, 4-19.

23 Kronberg, B., Holmberg, K., Lindman, B., 2014. *Surface Chemistry of Surfactants and Polymers*.
24 John Wiley & Sons, Incorporated, Somerset.

25 Lee, Y.-C., Wang, P.-Y., Lo, S.-L., Huang, C.P., 2017. Recovery of perfluorooctane sulfonate
26 (PFOS) and perfluorooctanoate (PFOA) from dilute water solution by foam flotation. *Separation
27 and Purification Technology*. 173, 280-285.

28 Lin, Y., Smith, T.W., Alexandridis, P., 2002. Adsorption of a Polymeric Siloxane Surfactant on
29 Carbon Black Particles Dispersed in Mixtures of Water with Polar Organic Solvents. *Journal of
30 Colloid and Interface Science*. 255, 1-9.

31 Lukyanova, V.A., Papina, T.S., 2013. Standard enthalpies of formation of perfluoro(2-methyl-3-
32 oxa)hexanoic and perfluoro(2,5-dimethyl-3,6-dioxa)nonanoic acids. *Russian Journal of Physical
33 Chemistry A*. 87, 340-341.

34 Malmberg, C.G., 1958. Dielectric constant of deuterium oxide. *Journal of Research of the
35 National Bureau of Standards*. 60, 609-612.

36 Martyna, G.J., Tuckerman, M.E., Tobias, D.J., Klein, M.L., 1996. Explicit reversible integrators for
37 extended systems dynamics. *Molecular Physics*. 87, 1117-1157.

38 Meng, P., Deng, S., Lu, X., Du, Z., Wang, B., Huang, J., Wang, Y., Yu, G., Xing, B., 2014. Role of Air
39 Bubbles Overlooked in the Adsorption of Perfluorooctanesulfonate on Hydrophobic
40 Carbonaceous Adsorbents. *Environmental Science & Technology*. 48, 13785-13792.

1 Mohamed, A., Amith, M., Nishanth, T., Tanju, K., 2019. The overlooked short- and ultrashort-
2 chain poly- and perfluorinated substances: A review. *Chemosphere*. 220, 866-882.

3 Mullin, L., Katz, D.R., Riddell, N., Plumb, R., Burgess, J.A., Yeung, L.W.Y., Jogsten, I.E., 2019.
4 Analysis of hexafluoropropylene oxide-dimer acid (HFPO-DA) by liquid chromatography-mass
5 spectrometry (LC-MS): Review of current approaches and environmental levels. *TrAC Trends in
6 Analytical Chemistry*. 118, 828-839.

7 Munoz, G., Liu, J., Vo Duy, S., Sauvé, S., 2019. Analysis of F-53B, Gen-X, ADONA, and emerging
8 fluoroalkylether substances in environmental and biomonitoring samples: A review. *Trends in
9 Environmental Analytical Chemistry*. 23, e00066.

10 Muto, Y., Esumi, K., Meguro, K., Zana, R., 1987. Aggregation behavior of mixed fluorocarbon
11 and hydrocarbon surfactants in aqueous solutions. *Journal of Colloid and Interface Science*.
12 120, 162-171.

13 Nagarajan, R., 1982. Are large micelles rigid or flexible? A reinterpretation of viscosity data for
14 micellar solutions. *Journal of Colloid and Interface Science*. 90, 477-486.

15 Nagarajan, R., 2002. Molecular packing parameter and surfactant self-assembly: The neglected
16 role of the surfactant tail. *Langmuir*. 18, 31-38.

17 Nivaggioli, T., Alexandridis, P., Hatton, T.A., Yekta, A., Winnik, M.A., 1995. Fluorescence Probe
18 Studies of Pluronic Copolymer Solutions as a Function of Temperature. *Langmuir*. 11, 730-737.

19 Palmer, B.J., 1993. Direct Application of Shake to the Velocity Verlet Algorithm. *Journal of
20 Computational Physics*. 104, 470-472.

21 Pan, Y., Zhang, H., Cui, Q., Sheng, N., Yeung, L.W.Y., Sun, Y., Guo, Y., Dai, J., 2018. Worldwide
22 Distribution of Novel Perfluoroether Carboxylic and Sulfonic Acids in Surface Water.
23 *Environmental Science & Technology*. 52, 7621-7629.

24 Prevedouros, K., Cousins, I.T., Buck, R.C., Korzeniowski, S.H., 2006. Sources, fate and transport
25 of perfluorocarboxylates. *Environmental Science and Technology*. 40, 32-44.

26 Prosser, A.J., Franses, E.I., 2001. Adsorption and surface tension of ionic surfactants at the air-
27 water interface: review and evaluation of equilibrium models. *Colloids and Surfaces A: Physicochemical and Engineering Aspects*. 178, 1-40.

29 Shea, D., 2018. Proposed Drinking Water Health Advisory Value for GenX: 2, 3, 3, 3-tetrafluoro-
30 2-(heptafluoropropoxy)-propanoic acid. <https://www.chemours.com/en-/media/files/corporate/shear-toxicology-analysis-2018-04.pdf> [accessed October 2021].

32 Sun, M., Arevalo, E., Strynar, M., Lindstrom, A., Richardson, M., Kearns, B., Pickett, A., Smith, C.,
33 Knappe, D.R.U., 2016. Legacy and Emerging Perfluoroalkyl Substances Are Important Drinking
34 Water Contaminants in the Cape Fear River Watershed of North Carolina. *Environmental
35 Science & Technology Letters*. 3, 415-419.

36 Sun, S., Guo, H., Wang, J., Dai, J., 2019. Hepatotoxicity of perfluorooctanoic acid and two
37 emerging alternatives based on a 3D spheroid model. *Environmental Pollution*. 246, 955-962.

38 Sunderland, E.M., Hu, X.C., Dassuncao, C., Tokranov, A.K., Wagner, C.C., Allen, J.G., 2019. A
39 review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and

1 present understanding of health effects. *Journal of Exposure Science & Environmental*
2 *Epidemiology*. 29, 131-147.

3 Thompson, C.M., Fitch, S.E., Ring, C., Rish, W., Cullen, J.M., Haws, L.C., 2019. Development of an
4 oral reference dose for the perfluorinated compound GenX. *Journal of Applied Toxicology*. 39,
5 1267-1282.

6 Wang, J., Niven, R.K., 2021. Unification of surface tension isotherms of PFOA or GenX salts in
7 electrolyte solutions by mean ionic activity. *Chemosphere*. 280, 130715.

8 Wang, R., Wang, W., Maimaiti, A., Shi, H., Wu, R., Li, Z., Qi, D., Yu, G., Deng, S., 2019a.
9 Adsorption behavior and mechanism of emerging perfluoro-2-propoxypropanoic acid (GenX) on
10 activated carbons and resins. *Chemical Engineering Journal*. 364, 132-138.

11 Wang, W., Mi, X., Zhou, Z., Zhou, S., Li, C., Hu, X., Qi, D., Deng, S., 2019b. Novel insights into the
12 competitive adsorption behavior and mechanism of per- and polyfluoroalkyl substances on the
13 anion-exchange resin. *Journal of Colloid and Interface Science*. 557, 655-663.

14 Wang, Z., Cousins, I.T., Scheringer, M., Hungerbühler, K., 2013. Fluorinated alternatives to long-
15 chain perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs) and their
16 potential precursors. *Environment International*. 60, 242-248.

17 Weiss-Errico, M.J., O'Shea, K.E., 2019. Enhanced host-guest complexation of short chain
18 perfluoroalkyl substances with positively charged β -cyclodextrin derivatives. *Journal of*
19 *Inclusion Phenomena and Macrocyclic Chemistry*. 95, 111-117.

20 Wen, Y., Mirji, N., Irudayaraj, J., 2020. Epigenetic toxicity of PFOA and GenX in HepG2 cells and
21 their role in lipid metabolism. *Toxicology in Vitro*. 65, 104797.

22 Xiao, F., 2017. Emerging poly- and perfluoroalkyl substances in the aquatic environment: A
23 review of current literature. *Water Research*. 124, 482-495.

24 Xing, H., Yan, P., Xiao, J.-X., 2013. Unusual location of the pyrene probe solubilized in the
25 micellar solutions of tetraalkylammonium perfluorooctanoates. *Soft Matter*. 9, 1164-1171.

26 Yan, N., Ji, Y., Zhang, B., Zheng, X., Brusseau, M.L., 2020. Transport of GenX in Saturated and
27 Unsaturated Porous Media. *Environmental Science & Technology*. 54, 11876-11885.

28 Yang, L., Alexandridis, P., 2000. Polyoxyalkylene Block Copolymers in Formamide-Water Mixed
29 Solvents: Micelle Formation and Structure Studied by Small-Angle Neutron Scattering.
30 *Langmuir*. 16, 4819-4829.

31 Zhang, M., Yamada, K., Bourguet, S., Guelfo, J., Suuberg, E.M., 2020. Vapor Pressure of Nine
32 Perfluoroalkyl Substances (PFASs) Determined Using the Knudsen Effusion Method. *Journal of*
33 *Chemical & Engineering Data*. 65, 2332-2342.

34 Zoeller, N., Blankschtein, D., 1998. Experimental determination of micelle shape and size in
35 aqueous solutions of dodecyl ethoxy sulfates. *Langmuir*. 14, 7155-7165.

36

37