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SABRE Enhancement with Oscillating Pulse Sequences  
Xiaoqing Li,*a Jacob R. Lindale b, Shannon L. Erikssonan c and Warren S. Warren * a, b, d  

SABRE (Signal Amplification by Reversible Exchange) methods provide a simple, fast, and cost-effective method to 
hyperpolarize a wide variety of molecules in solution, and have been demonstrated with protons and, more recently, 
with heteronuclei (X-SABRE). Here, we present several oscillating pulse sequences that use magnetic fields far away 
from the resonance condition of continuous excitation and can commonly triple the polarization. An analysis with 
average Hamiltonian theory indicates that the oscillating pulse, in effect, adjusts the J-couplings between hydrides 
and target nuclei and that a much weaker coupling produces maximum polarization. This theoretical treatment, 
combined with simulations and experiment, show substantial magnetization improvements relative to traditional X-
SABRE methods. It also shows that, in contrast to most pulse sequence applications, waveforms with reduced time 
symmetry in the toggling frame make magnetization generation more robust to experimental imperfections.

 

Introduction 
Low sensitivity is an intrinsic limitation of nuclear magnetic 
resonance, because the energy difference caused by Zeeman 
splitting is normally much smaller than thermal energy, and the 
resultant equilibrium fractional magnetization is low (P ~ 10-5-
10-6). Hyperpolarization methods derive spin order from other 
sources and can create significantly higher magnetization. 
Three major methods have evolved over the last several 
decades: dissolution dynamic nuclear polarization (d-DNP),1 
which derives nuclear spin order from unpaired electrons, and 
spin exchange optical pumping (SEOP),2 which derives it 
indirectly from circularly pumped optical transitions and 
hydrogenative para-hydrogen-induced polarization (PHIP),3,4 
which derives spin order from para-hydrogen, the singlet 
isomer of the H2 molecule. Active research continues on all of 
these methods, in large part because they have obvious 
limitations. SEOP is restricted to a few noble gases, d-DNP needs 
high-cost hyperpolarization hardware and a long 
hyperpolarization time (often an hour or so for 13C and 15N), and 
PHIP requires a proper precursor molecule and catalyst. 

 

 

 

 

 

More recently, a variety of methods have evolved which use 
reversible interactions of parahydrogen and a target molecule 
with an iridium catalyst, starting with the method known as 
Signal Amplification By Reversible Exchange (SABRE).5-8 Both 
parahydrogen and target substrate rapidly and reversibly 
exchange with sites on the catalyst metal centre. In a low 
magnetic field (~6mT), J-couplings between the hydrides and 
protons on the bound species transfer spin order between 
them, and this makes it possible to spontaneously create excess 
magnetization on the target protons. In recent years, a variety 
of extended SABRE methods (X-SABRE)9-16 have relaxed the 
experimental restrictions. For example, SABRE-SHEATH 
(Scheme 1) (Signal Amplification by Reversible Exchange in 
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Scheme 1. Schematic representation of generation of hyperpolarized 15N
labelled acetonitrile. IMes, Py and MeCN represent [1,3-bis(2,4,6-
trimethyphenyl)-imidazoyl], pyridine ligands, and acetonitrile, respectively. 
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SHield Enables Alignment Transfer to Heteronuclei) has 
permitted direct targeting of heteronuclei (15N, 13C, 19F, and 31P) 

9, 17-21 with much longer T1 values than 1H. In this case, the 
optimal magnetic field is about 0.6μT,22 so the experiments are 
generally done in a magnetic shield. Other X-SABRE methods 
have been adapted to transfer spin order from parahydrogen 
directly in a high field magnet.12-16 

SABRE and X-SABRE are simpler, faster, and less expensive than 
commercially available hyperpolarization methods, and more 
general than PHIP. However, the amount of polarization 
produced at any one time is generally lower than with d-DNP or 
SEOP, although there is no fundamental reason why this must 
be true. We have recently shown23 that a big part of the reason 
is that the novel field regime for SABRE and X-SABRE (where 
even heteronuclear couplings can be readily interconverted 
between the strong and weak coupling limits), combined with 
the very complex exchange dynamics, imply that the method is 
theoretically underexplored; there are clearly better (but 
nonintuitive) approaches to creating polarization than a simple 
continuous field. Specifically, reference [23] shows that an 
alternating two-field pulse sequence (both fields high, but with 
a small average) can produce very large SABRE enhancements.  
In fact, two papers on similar field manipulations were 
submitted shortly after that work. 24, 25  

This paper more systematically explores the use of periodic field 
perturbations (Fig. 1), with the goal of creating enhanced 
magnetization with low sensitivity to experimental imperfections 
such as field inhomogeneity. It exploits a major advantage of 
operating in the low field regime: the ability to change the main 
magnetic field at will, much faster than any couplings, using very 
simple hardware. In particular, we obtain general insight from 
average Hamiltonian theory26, 27 and then do highly accurate 
calculations using an exact dissipative master equation treatment.28 
In all cases, optimal pulse sequences look nonintuitive and do not 

match continuous excitation, either in their peak or average field 
strength. Fig. 2 shows one example; in this system, experimentally 
and in simulations the maximal magnetization (~5%) is generated 
with a continuous ~0.6μT field, but far larger magnetization (~18%) 
is produced by a correctly timed square wave offset from a zero 
average field by about one-fifth that value (~0.13μT). We will also 
show that, in contrast to most pulse sequence applications, 
waveforms with reduced time symmetry in the toggling frame (such 
as the last two sequences in Fig. 1) make magnetization generation 
more robust to experimental imperfections. 

Theoretical Perspective on Oscillating Pulses 
Each pulse sequence in Fig. 
and an oscillating pulse with alternating positive-negative 
amplitude (10- ree 
parameters--the offset field B0, the oscillating field B(t), and the 
pulse period T. We describe these sequences using average 
Hamiltonian theory,26,27 which relies on the principle that under 
suitable conditions, the evolution of a spin system driven by a 
time-dependent external field can be described by the average 
effect of the field over one cycle of its oscillation. For the sake 
of comprehensiveness, we analyse both AA’B 3-spin system and 
AA’BB’ 4-spin system (shown in SI section 3). The full 
Hamiltonian of the three-spin AA’B system is expressed in 
equation (1) ( ) = + ( ) + ++ 2 + 2                                                                (1)
here in natural units ( = 1). The spin operator of the target 
nuclei is labelled as , and the two hydride spins are  and . 
We can rearrange this Hamiltonian as: ( ) = + ( ) + + + (+ ( )) + 2 + 2                                         (2)

Fig. 2 (a) Schematic representation of the pulse and the spin system used in 
simulation. The coupling strength between the two hydrides is = 8 . It
is often a good approximation to assume that the ligand is only coupled to 
one of the two hydrides, and the strength is = 25 . (b) Final 15N
polarization level simulated with the unbalanced square wave. The offset field 
B0 is varied from -0.5μT to 0.5μT, and the pulse period T is scanned in the 
range of 0 to 4.4ms, while the pulse amplitude B is fixed at 10μT. Simulation 
parameters: 100% parahydrogen, = 24 , = 8 , [ ]: [ ] = 1: 10. A pulse with B0=±0.13μT and T=4ms yields the 
maximum ~18% polarization, which is much larger than the continuous wave 
counterpart ~5%.

Fig. 1 Pulse sequences for enhanced SABRE/X-SABRE excitation. (a) square 
pulse, (b) sine wave pulse, (c) chirped pulse, and (d) ramp pulse. The dashed 
grey line refers to zero magnetic field, and the black line is an offset field, B0. 
As shown in this paper, all of these sequences are capable of producing signal 
enhancements (relative to a constant field) but the lower symmetry 
sequences (c) and (d) have practical advantages. 
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in which ∆𝜔𝜔0 = 𝐵𝐵0(𝛾𝛾𝐻𝐻 − 𝛾𝛾𝐿𝐿) and ∆𝜔𝜔(𝑡𝑡) = 𝐵𝐵(𝑡𝑡)(𝛾𝛾𝐻𝐻 − 𝛾𝛾𝐿𝐿) are 

the Larmor frequency difference between hydrides and the 
target nuclei caused by the offset field and the oscillating pulse 
respectively. The first term in equation (2) which is directly 
proportional to the z component of the total spin angular 
momentum can be ignored since it commutes with the rest of 
the Hamiltonian, giving a simplified Hamiltonian of the form 

ℋ� (𝑡𝑡) = (∆𝜔𝜔0 + ∆𝜔𝜔(𝑡𝑡))𝐿𝐿�𝑧𝑧 + 2𝜋𝜋𝐽𝐽𝐻𝐻𝐻𝐻�𝐼𝐼1 ∙ 𝐼𝐼2� + 2𝜋𝜋𝐽𝐽𝐻𝐻𝐻𝐻�𝐼𝐼1 ∙ 𝐿𝐿�⃑ �             (3) 

We use the only time-dependent term ∆𝜔𝜔𝐿𝐿�𝑧𝑧 to create a 

toggling frame 𝑈𝑈(𝑡𝑡) = exp (−𝑖𝑖𝐿𝐿�𝑧𝑧 ∫ ∆𝜔𝜔(𝑡𝑡′)𝑡𝑡
0 𝑑𝑑𝑑𝑑′). The 

corresponding Hamiltonian in this toggling frame is equation 
(4). 

ℋ� = 𝑈𝑈 �∆𝜔𝜔0𝐿𝐿�𝑧𝑧 + 2𝜋𝜋𝐽𝐽𝐻𝐻𝐻𝐻�𝐼𝐼1 ∙ 𝐼𝐼2� + 2𝜋𝜋𝐽𝐽𝐻𝐻𝐻𝐻�𝐼𝐼1 ∙ 𝐿𝐿�⃑ ��𝑈𝑈†       

= ∆𝜔𝜔0𝐿𝐿�𝑧𝑧 + 2𝜋𝜋𝐽𝐽𝐻𝐻𝐻𝐻�𝐼𝐼1 ∙ 𝐼𝐼2�
+ 2𝜋𝜋𝐽𝐽𝐻𝐻𝐻𝐻�𝐼𝐼1𝑧𝑧𝐿𝐿�𝑧𝑧 + 𝑀𝑀(𝑡𝑡)�𝐼𝐼1𝑥𝑥𝐿𝐿�𝑥𝑥 + 𝐼𝐼1𝑦𝑦𝐿𝐿�𝑦𝑦� + 𝑁𝑁(𝑡𝑡)�𝐼𝐼1𝑥𝑥𝐿𝐿�𝑦𝑦 − 𝐼𝐼1𝑦𝑦𝐿𝐿�𝑥𝑥��      (4) 

in which 𝑀𝑀(𝑡𝑡) = cos (∫ ∆𝜔𝜔(𝑡𝑡′)𝑡𝑡
0 𝑑𝑑𝑑𝑑′), and 𝑁𝑁(𝑡𝑡) =

sin(∫ ∆𝜔𝜔(𝑡𝑡′)𝑡𝑡
0 𝑑𝑑𝑑𝑑′). This toggling frame Hamiltonian has unveiled 

the physical picture of the pulse sequence. The role of the offset 
is to provide a small external magnetic field to the spins. The 
oscillating pulse then alters the form of the spin-spin interaction 
between the target nuclei and hydrides. The original flip-flop 
term, 𝐼𝐼1𝑥𝑥𝐿𝐿�𝑥𝑥 + 𝐼𝐼1𝑦𝑦𝐿𝐿�𝑦𝑦, and the new interaction form, 𝐼𝐼1𝑦𝑦𝐿𝐿�𝑥𝑥 −
𝐼𝐼1𝑥𝑥𝐿𝐿�𝑦𝑦, are tuned by the factors 𝑀𝑀(𝑡𝑡) and 𝑁𝑁(𝑡𝑡), respectively. 
These two terms connect the same states as the normal non-
secular term, but with a 𝜋𝜋/2 phase shift of the off-diagonal 
operators, which will be clearer with the matrix form of the 
Hamiltonian shown later. When 𝑇𝑇 → 0, the oscillating pulse 
vanishes, and the system is recovered to continuous wave (CW) 
SABRE-SHEATH with 𝑀𝑀 = 1 and 𝑁𝑁 = 0. 

For the square pulse (shown in Figure 1(a)) the zero-order 
average Hamiltonian is shown in equation (5). 

ℋ� (0) =
1
𝑇𝑇  � ℋ� (𝑡𝑡)𝑑𝑑𝑑𝑑

𝑇𝑇

0
    

= ∆𝜔𝜔0𝐿𝐿�𝑧𝑧 + 2𝜋𝜋𝐽𝐽𝐻𝐻𝐻𝐻�𝐼𝐼1 ∙ 𝐼𝐼2�
+ 2𝜋𝜋𝐽𝐽𝐻𝐻𝐿𝐿�𝐼𝐼1𝑧𝑧𝐿𝐿�𝑧𝑧 + 𝑀𝑀0�𝐼𝐼1𝑥𝑥𝐿𝐿�𝑥𝑥 + 𝐼𝐼1𝑦𝑦𝐿𝐿�𝑦𝑦�

+ 𝑁𝑁0�𝐼𝐼1𝑥𝑥𝐿𝐿�𝑦𝑦 − 𝐼𝐼1𝑦𝑦𝐿𝐿�𝑥𝑥��              (5) 

where 𝑀𝑀0 = sin (𝜃𝜃)
𝜃𝜃

, 𝑁𝑁0 = 1−cos(𝜃𝜃)
𝜃𝜃

, and 𝜃𝜃 = ∆𝜔𝜔𝜔𝜔/2 representing 

the rotation angle in half a period is a function of pulse 
amplitude and pulse period. When 𝜃𝜃 is an integer multiple of 
2𝜋𝜋, both 𝑀𝑀0 and 𝑁𝑁0 go to zero, which means the coupling 
between hydrides and the target nuclei disappear at this 
situation, and no spin order transfer could take place. 
 
A matrix expression of this zero-order Hamiltonian is powerful 
for providing physical insight. The basis used to express the 
matrix of the AA’B system is a singlet-triplet basis for the AA’ 

pair and the Zeeman basis for the B spin. Equation (6) gives the 
two 3×3 subspaces of the zero-order Hamiltonian, which 
indicate that 𝑀𝑀0 ± 𝑖𝑖𝑁𝑁0 alter the interaction between the spin 
up states 𝛼𝛼𝐿𝐿 and spin down states 𝛽𝛽𝐿𝐿 of the target nuclei, and that 

the interaction strength only depends on its magnitude, �𝑀𝑀0
2 + 𝑁𝑁02. 
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(6) 

While it would be possible to explicitly calculate higher order 
terms (S1 section 1) direct numerical evaluation of the full 
effective Hamiltonian gives a better comparison to test the 
validity. Each cycle of the square-pulse can be broken down into 
two constant fields, 𝐵𝐵0 + 𝐵𝐵 and 𝐵𝐵0 − 𝐵𝐵, in time sequence. 
Labeling the corresponding time-independent Hamiltonians as 
ℋ+ and ℋ−, the propagator of this spin system is expressed as 
𝑈𝑈 = exp(−𝑖𝑖ℋ−𝑇𝑇/2) exp(−𝑖𝑖ℋ+𝑇𝑇/2) = exp (−𝑖𝑖ℋ�𝑇𝑇). 
Extracting the average Hamiltonian by an expression such as 
ℋ� = 𝑖𝑖 log(𝑈𝑈) /𝑇𝑇 can be done numerically by diagonalizing 𝑈𝑈 to 
a matrix 𝑒𝑒𝑖𝑖Λ, then taking the log of each eigenvalue (which will 
always have magnitude 1), 𝑈𝑈 = 𝑉𝑉𝑒𝑒𝑖𝑖Λ𝑉𝑉†; log𝑈𝑈 = 𝑉𝑉(𝑖𝑖Λ)𝑉𝑉†, but 
this leads to a well-known ambiguity as the phase is only 
determined modulo 2𝜋𝜋. This ambiguity is avoided by 
multiplying 𝐽𝐽𝐻𝐻𝐻𝐻 and 𝐽𝐽𝐻𝐻𝐻𝐻  by a scale factor 𝛼𝛼, calculating ℋ�  in the 
limit of very small 𝛼𝛼, and correcting for 2𝜋𝜋 phase jumps as 𝛼𝛼 is 
increased to 1. This approach shows that the zero-order 
expansion is already a good approximation of the average 
Hamiltonian (Figure 3) so that higher order approximation can 

be neglected. 𝑀𝑀0, 𝑁𝑁0 and �𝑀𝑀0
2 +𝑁𝑁02 (solid curves) calculated 

with the zero-order average Hamiltonian are in great 
agreement with their numerical counterparts (dashed curves). 

The coupling magnitude �𝑀𝑀0
2 +𝑁𝑁02 vanishes at 𝜃𝜃 = 2𝑛𝑛𝑛𝑛, which 

agrees with the analytical expressions of 𝑀𝑀0 and 𝑁𝑁0. �𝑀𝑀0
2 +𝑁𝑁02 

attenuates as 𝜃𝜃 increases, in that it cannot fully recover to the 

previous maximum. The value of �𝑀𝑀0
2 +𝑁𝑁02 is in the range of 0 

to 1, which is obvious from the formula of 𝑀𝑀(𝑡𝑡) and 𝑁𝑁(𝑡𝑡) 
because they are conjugate trigonometric functions. In other 
words, the coupling between hydrides and the target nuclei can 
only be attenuated instead of being increased. 

Unexpectedly, a diminished coupling strength yields much 
higher polarization. Figure 3(b) and (c) gives the relationship 
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between the final polarization level and the value of +  
with the offset field  fixed at . . The polarization is 
numerically simulated with the DMEx method,28 and the 
dependence on  indicates that when the interaction strength 
reduces to +  ~ .  (shown with a horizontal green 
bar in Fig. 3(b)), polarization is maximized. This unbalanced 
square wave indeed yields a large increase in signal. However, 
the optimal interaction strength +  ~ .  is very 
close to zero, and the polarization oscillations in Fig. 3 imply the 
large signals are not robust to imperfections of the pulse 
sequence such as inhomogeneity. This issue could be avoided if +   reduces gradually and does not periodically go to 
zero. To find a pulse sequence with this behaviour of +  , more complex wave forms must be considered. 

Figure 4(a) shows that , , and +  of a sine wave 

have similar behaviours as they do for a square pulse.  and 
 in the zero-order average Hamiltonian are = { ( )} and =  { ()} , and they periodically vanish at the same time. For 

all these sequences, the toggling frame is symmetric about the 
centre of each repeating interval (for example, the negative part 
of the square wave retraces back along the same trajectory 
followed in the positive part). In addition, both the square and 
sine wave have a symmetric trajectory with respect to the 
centre of each half cycle (depicted here as green and orange). 
This additional symmetry intuitively would be expected to 
produce cleaner pumping dynamics. However, it turns out that 

this symmetry causes  and  to commonly go to zero 
simultaneously for the same value of the cycle length—a 
problem which is avoided by waveforms with lower symmetry 
(Fig. 1(c-d) and Fig. 4(b-c)). 

Fig. 3 (a) Curves of M and N as a function of / . The solid lines (underlying 
bright red and bright blue curves) are the zero-order theoretical 
approximation of M and N, namely, M0 and N0, and the dashed lines (light red 
and blue) are the exact values of M and N calculated with numerical method. 
(b) shows how the value of  +  varies with / . Likewise, the solid 
curve (underlying black) and the dashed line (grey) correspond to the 
theoretical approximation and the numerical result, respectively. The 
horizontal green bar indicates the optimal value of + . (c) Numerically 
simulated 15N polarization of a 3-spin system with the pulse amplitude being 

-
mark the maximum signals and their corresponding value of + . 

 

Fig. 4 Depiction of how M0 (red curve), N0 (blue curve) and +  (black
dotted curve) vary as a function of the rotation angle in half a period for a sine 
wave (a), a chirped square wave (b) and a sawtooth wave (c). We maintain 
the offset field at 0.13 . As in Figure 3, frequent zero-crossings impose a
serious constraint for the sine wave case on the usable fields, particularly if
inhomogeneity is present, but not for the other cases. 
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To understand this effect, note that for an arbitrary oscillating 
pulse shape,  and   are given by  = ( ) = ( )= ( ) = ( )                              (7)
which are integrals of the cosine and sine function of the
instantaneous angle ( ) , or in other words, integrals 
of the projections of a rotating unit vector on the x-axis and y-
axis, respectively, in a rectangular coordinate system (Fig. 5). 
The trajectory of the unit vector in the first quarter of a period 
is plotted as the green area; in the second quarter the vector 
keeps moving clockwise but with inversely changing speed. 
Then the vector retraces its steps and completes a full period.  
Note that in both Fig. 3(a) and Fig. 4(a), zero crossings of  
occur with positive lobe areas of (2 + 1)  and zero crossings 
of   occur at areas of 2 . These are simple symmetry effects, 
made clear by plotting the instantaneous values of ( ) and ( ) in the unit plane (Fig. 5). In general, the trajectory is 
symmetric about its midway point /2, which fixes the ratio / = tan ( /2). For odd multiples of  = 0, and for 
even multiples = 0. Other than for those values of , the 
zero crossings of  and  depend on the details of the 
waveform.  However, because the ratio between  and  is 
fixed, zeroes at any  value must coincide, giving zero efficiency 
for generating polarization. Thus, any waveform which has this 
symmetry (or can be given this symmetry by a time shift and a 

prepulse, such as an unbalanced square wave with different 
amplitudes but the same area in the positive and negative 
lobes), the enforced simultaneity of  and  zero crossings 
creates a highly structured pumping profile. In contrast, the 
lower symmetry in Fig. 4(b)-(c) avoids simultaneous zeroes. 
Fig. 1(c) and 4(b) show a chirped pulse with evenly growing 
wavelength in each period, , + , ... + , and ( + ) = . The chirped pulse we use here has == 0.2 . +  of this pulse is close to the optimal 
value 0.066 when the pulse amplitude B is larger than  40 , 
accordingly the resulting experimental robustness to the pulse 
amplitude is indeed improved. We finally try an asymmetric 
pulse shape, a ramp pulse (Figure 1(d)), which turns out to be 
robust to both the pulse period and the field strength. The 
analytical solution of a ramp pulse is similar to equation (5), 
except that  and  are replaced by =cos/ , and = sin/ . Unlike 

the square pulse and sine wave whose effective  coupling 
can be fully averaged out when M and N become zero at the 
same time. The ramp wave successfully avoids zero points. 
Because the coupling strength +  gradually approaches 
zero as the pulse period or pulse amplitude increase (namely ( , ) increases), in a wide period and amplitude domain it 
always stays close to the optimal value 0.066, indicated in 
Figure 4(c). 

For continuous wave excitation in SABRE/X-SABRE, we recently 
pointed out23 that the level anticrossing12, 29-32 condition does 
not even give qualitatively correct predictions except for very 
small  couplings and very slow exchange. For example, in the 
case of the AA’B system shown in Fig. 2(a) with = 8 , 
and = 25  in a continuous low magnetic field, the LAC 
occurs at ±0.04  which is far from the experimental optimum ±0.6 . The failure of the level anticrossing condition here is 
mainly because it oversimplifies a 3 × 3  (or larger) subspace to 
a 2 × 2 space and usually cannot accurately account for the 
dynamics of the original system.  Interestingly, though, the LAC 
condition becomes more relevant for oscillating pulse SABRE/X-
SABRE, because the oscillating pulses reduce the off-diagonal 
elements in equation (6) but not the diagonal ones, thus 
improving the separation from unwanted states. 
Fig. 6 depicts how the energy levels of the first subspace in 
equation (6) vary with the offset field. The subfigure 6(a) relates 

Fig. 5  For many common waveforms (such as a sine or square wave) the time-
dependent rotation between (xx+yy) and (xy-yx) terms is antisymmetric 
about the midpoint, and each lobe is symmetric.  In this case, the relative 
values of the average coefficients of these two terms (M0 and N0 respectively) 
is constrained by symmetry to be along an axis with half the rotation angle of 
each lobe.  Except for the special cases = , this means that zeroes in M0

and N0 must coincide, creating values which generate no polarization. 

 

Fig. 6 Eigenvalues as a function of the offset field. (a) corresponds to the 
case of = 0, while (b) refers to the case of optimal interaction =25Hz and +  ~ 0.066. 
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to = 0, and no LACs occur because there is no interaction 
between the states. While Fig. 6(b) refers to the case of optimal 
interaction = 25Hz and +  ~ 0.066, in which the 
circled LAC is in great agreement with the optimal offset filed  ±0.13 . 

Results and Discussion 
In this section, we verify the analytical results above with both 
simulations and experiments. All Simulations are done with the 
DMEx method28 which is a recently developed numerical 
modelling approach for exchanging systems and has shown 
robust agreement with experimental results. All oscillating 
pulse SABRE-SHEATH experiments were performed by bubbling 
43% parahydrogen through a methanol-d4 solution under 7 
bars of pressure at room temperature. The SABRE sample used 
here was prepared by adding 15N-acetonitrile (50mM), natural- 
abundance 14N-pyridine (25mM), and the catalyst precursor 

solvent. The catalyst was first activated by bubbling hydrogen 

gas through the SABRE sample for 30-60min to generate SABRE 
complex [IrH2(15N-Py)2(IMes)]+(15N-py = 15N-pyridine). The 
whole sample was then bubbled for 60s inside a solenoid coil 

-metal magnetic shield in which the polarization 
transfer occurs. We connect the solenoid coil to a function 
generator to create different oscillating fields inside the coil. 
Finally, the sample was manually transferred (1-2s) to a 1 Tesla 
15N Magritek NMR spectrometer for detection. 
 
We start with the square pulse sequence (Fig. 7(a)). The 3D plot 
Fig. 7(a1) shows how the final polarization varies with the pulse 
period and the offset field while the pulse amplitude is fixed at 10 . The optimal offset field here is around ~0.13  rather 
than ~0.6   in the CW SABRE-SHEATH case even though the 
oscillating pulse has nothing to do with the Zeeman terms of the 
spin system. Besides, at the points = 20.8 , and =25  which make   = 2 , no polarization is produced. All 
the analysis based on theory is in accordance with the 
experimental results. Figure 7(b) shows the polarization of a 
sine wave pulse as a function of both the pulse period and the 

= 10= 0.13= 22.7= 50 = 0.13= 3.5
= 0.13 = 50= 0.1= 50 = 20 =24 = 8 [ ]: [ ] = 1: 10 = 8 = 25
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offset field while the pulse amplitude is maintained at 50
varied either the pulse period (1 8 , =0.13 ) in Fig. 7(b2), or the offset field ( 1 0 , = 3.5 ) in Fig. 7(b3). In agreement with the theoretical 
predictions, the final polarization periodically reduces to zero at 
a frequency corresponding to , and the optimal pulse periods 
come close to zero polarization points. The optimal offset field 
is also shifted from ~0.6  to ~0.13 . The result of a chirped 
pulse is displayed in Figure 7(c). Provided the offset is 
maintained in the range from 0.18  to 0.08 , the 
polarization is robust to all pulse amplitudes larger than 40  
and stays within the range from 16.5% to 19%. The last 
oscillating pulse, ramp pulse, is shown in Fig. 7(d). By varying the 
pulse period and amplitude while fixing the offset field at 0.1 , the simulation result, Fig. 7(d1), clearly shows that in a 
fairly wide range of both the pulse period and the pulse 
amplitude the final polarization always stays close to the 
maximum, which has been confirmed by experiments, Fig. 7(d2) 
and 7(d3). By varying either the pulse period (1120 , = 50 , = 0.1 ) or the pulse amplitude 
(30 50 , = 20 , = 0.1 ), we always 
obtained almost maximum polarization. The signal 
enhancement of these oscillation pulse sequences is as high as 
300%. 

Robustness to Exchange Rate 
In this section, we use the DMEx simulation method28 to 
demonstrate that oscillating pulse SABRE-SHEATH is fairly 
robust to variations of exchange rate. We use the same square 
pulse in Fig. 2 and calculate the polarization, varying the 
exchange rate by a factor of 100. In the case of low substrate 
exchange rate (Fig. 8(a) and (b)), the optimal condition stays 
around = 0.11 , = 4.1 . Ultimately, as the exchange 

rate of the substrate goes up, the optimal condition shifts in the 
direction so that the optimal offset field increases and the pulse 
period decreases. Here we give an explanation with the 
quantum dynamics of SABRE. Fig. 9 shows the polarization of 
the target nuclei as a function of the quantum evolution time.  
Both chemical exchange and relaxation processes are 
neglected. The four curves in Figure 9 depicts the quantum 
dynamics using optimal parameters B0 and T for the four cases 
of Fig. 8, respectively. The red and blue curves clearly show that 
under the condition = 0.11  and = 4.1 , the 
polarization of the target nuclei could be raised up to 80%. 
However, when the chemical exchange processes are included, 
the quantum evolution is interrupted, which means the spin 
order transfer is interrupted. On one hand, if the lifetime of the 
SABRE complex is long, for example k = 1  or k = 10 , 
there is enough time that the target nuclei could be polarized 
before they dissociate from SABRE catalyst. On the other hand, 
during a short lifetime, say k = 50  or k = 100 , 
substantial spin order transfer cannot be completed.  A smaller 
but faster polarization transfer process works better (the green 
and black curves). As pulse period T decreases, the value of +   grows, and the coupling between the hydrides and 
the target nuclei increases accordingly, which causes the spin 
order transfer faster (shown in Fig. 9(b)). For a fixed pulse 
period T, there exists an optimal offset field which maximizes 
the polarization of the substrate. In conclusion, maximizing 
SABRE polarization is a trade-off between the speed of spin 
order transfer and the largest transfer degree. Usually, the 
exchange rate k  is in the range from 5  to 50 , and the 
corresponding optimal condition remains near = 0.11  
and = 4.1 , (see Fig. 8(b) and (c)). Even if the optimal 

Fig. 8 Different optimal polarization conditions caused by different exchange 
rates of substrate. (a) k = 1 , k = 1 , the optimal field is -0.11μT, 
and the optimal period is 4.12ms. (b) k = 1 , k = 10 , the optimal 
field is -0.11μT, and the optimal period is 4.08ms. (c) k = 1 , k =50 , the optimal field is -0.17μT, and the optimal period is 4.0ms. (d) k =1 , k = 100 , the optimal field is -0.37μT, and the optimal period is 
3.8ms. The four subplots have inconsistent color scales in order to show off 
more detail. 

Fig. 9 (a) Polarization generated by quantum evolution of the 3-spin system. 
red curve = 0.11 , = 4.12 ; blue curve = 0.11 , =4.08 ; green curve = 0.17 , = 4.0 ; black curve =0.31 , = 3.8 . (b) A zoomed-in version of the red box in figure (a). As 
the period goes down the spin order transfer process speeds up. 
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condition shifts, for example, Fig. 8(d), the polarization (1.4%) 
generated by an oscillating pulse with 𝐵𝐵0 = −0.11𝜇𝜇𝜇𝜇 and 𝑇𝑇 =
4.1𝑚𝑚𝑚𝑚 is still larger than the maximum signal (0.2%) produced 
by CW SABRE-SHEATH method. This robustness to exchange 
rate is also extended to AA’BB’ system and a positive JHH 
situation (SI section 5). 

Conclusions 
We have shown, in both experiments and simulations, that a 
variety of oscillating magnetic fields can significantly improve 
SABRE-SHEATH hyperpolarization, relative to a continuous field 
or even one pulsed to optimize polarization transfer.  In effect, 
the interactions between hydrides and target nuclei are 
adjustable by tuning the pulse amplitude, pulse period, and 
pulse shape. As described above, we improve the robustness to 
experimental imperfections by exploring different pulse shapes. 
Finally, it turns out that a pulse shape with reduced symmetry, 
such as a ramp wave, generates significant improvements in 
achievable polarization and is robust to experimental 
imperfection.  
 
In this work, the largest polarization yielded with 43% 
parahydrogen is ~5.3%; this would correspond to 22% 
polarization with 100% parahydrogen. In our simulations, the 
maximum polarization generated by SABRE-SHEATH method is 
as high as 80% (with 100% parahydrogen).  However, in reality, 
polarization is limited by the low accessibility of parahydrogen 
or slow refresh rate of the dissolved hydrogen in the SABRE 
solvent.  This gap between principle and reality indicates that 
SABRE retains room for improvement.  Still, our approach is 
technologically simple, capable of producing significant 
enhancements, and suggests there is still room for further pulse 
sequence exploration. 
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