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SABRE Enhancement with Oscillating Pulse Sequences

Xiaoqing Li,*? Jacob R. Lindale®, Shannon L. Erikssonan ¢ and Warren S. Warren *2b:d
Received 00th January 20xx, SABRE (Signal Amplification by Reversible Exchange) methods provide a simple, fast, and cost-effective method to
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hyperpolarize a wide variety of molecules in solution, and have been demonstrated with protons and, more recently,
DOI: 10.1039/x0xx00000x with heteronuclei (X-SABRE). Here, we present several oscillating pulse sequences that use magnetic fields far away

from the resonance condition of continuous excitation and can commonly triple the polarization. An analysis with
average Hamiltonian theory indicates that the oscillating pulse, in effect, adjusts the J-couplings between hydrides
and target nuclei and that a much weaker coupling produces maximum polarization. This theoretical treatment,
combined with simulations and experiment, show substantial magnetization improvements relative to traditional X-
SABRE methods. It also shows that, in contrast to most pulse sequence applications, waveforms with reduced time
symmetry in the toggling frame make magnetization generation more robust to experimental imperfections.

Introduction More recently, a variety of methods have evolved which use
reversible interactions of parahydrogen and a target molecule
with an iridium catalyst, starting with the method known as
Signal Amplification By Reversible Exchange (SABRE).>® Both
parahydrogen and target substrate rapidly and reversibly
exchange with sites on the catalyst metal centre. In a low
magnetic field (*6mT), J-couplings between the hydrides and
protons on the bound species transfer spin order between
them, and this makes it possible to spontaneously create excess
magnetization on the target protons. In recent years, a variety
of extended SABRE methods (X-SABRE)%!® have relaxed the
experimental restrictions. For example, SABRE-SHEATH
(Scheme 1) (Signal Amplification by Reversible Exchange in

Low sensitivity is an intrinsic limitation of nuclear magnetic
resonance, because the energy difference caused by Zeeman
splitting is normally much smaller than thermal energy, and the
resultant equilibrium fractional magnetization is low (P ~ 10°>-
10%). Hyperpolarization methods derive spin order from other
sources and can create significantly higher magnetization.
Three major methods have evolved over the last several
decades: dissolution dynamic nuclear polarization (d-DNP),*
which derives nuclear spin order from unpaired electrons, and
spin exchange optical pumping (SEOP),> which derives it
indirectly from circularly pumped optical transitions and
hydrogenative para-hydrogen-induced polarization (PHIP),3*
which derives spin order from para-hydrogen, the singlet

isomer of the H2 molecule. Active research continues on all of
these methods, in large part because they have obvious TT 5
limitations. SEOP is restricted to a few noble gases, d-DNP needs H—H =) N=C_CH3
high-cost  hyperpolarization  hardware and a long IMes Cl
hyperpolarization time (often an hour or so for 3C and *°N), and Py
PHIP requires a proper precursor molecule and catalyst. //;, @ I L +1L
Xx=x y-y
Py <
=

o Department of Physics, Duke University Durham, NC 27708 (USA). E-mail: ‘

xiaogqing.li@duke.edu Tl — lT
b-Department of Chemistry, Duke University Durham, NC 27708 (USA).
< School of Medicine, Duke University Durham, NC 27708 (USA).
d-Department of Biomedical Engineering, and Radiology, Duke University, Durham,
NC (27708) (USA). E-mail: warren.warren@duke.edu Scheme 1. Schematic representation of generation of hyperpolarized **N
t Footnotes relating to the title and/or authors should appear here. labelled acetonitrile. IMes, Py and MeCN represent [1,3-bis(2,4,6-

Electronic Supplementary Information (ESI) available: [details of any supplementary trimethyphenyl)-imidazoyl], pyridine ligands, and acetonitrile, respectively.
information available should be included here]. See DOI: 10.1039/x0xx00000x

Please do not adjust margins




Please do not adjust margins

ARTICLE

SHield Enables Alignment Transfer to Heteronuclei) has
permitted direct targeting of heteronuclei (**N, *3C, *°F, and 3!P)
9 1721 with much longer T; values than H. In this case, the
optimal magnetic field is about 0.6uT,%? so the experiments are
generally done in a magnetic shield. Other X-SABRE methods
have been adapted to transfer spin order from parahydrogen
directly in a high field magnet.1>16

SABRE and X-SABRE are simpler, faster, and less expensive than
commercially available hyperpolarization methods, and more
general than PHIP. However, the amount of polarization
produced at any one time is generally lower than with d-DNP or
SEOP, although there is no fundamental reason why this must
be true. We have recently shown?3 that a big part of the reason
is that the novel field regime for SABRE and X-SABRE (where
even heteronuclear couplings can be readily interconverted
between the strong and weak coupling limits), combined with
the very complex exchange dynamics, imply that the method is
theoretically underexplored; there are clearly better (but
nonintuitive) approaches to creating polarization than a simple
continuous field. Specifically, reference [23] shows that an
alternating two-field pulse sequence (both fields high, but with
a small average) can produce very large SABRE enhancements.
In fact, two papers on similar field manipulations were
submitted shortly after that work. 242>

This paper more systematically explores the use of periodic field
perturbations (Fig. 1), with the goal of creating enhanced
magnetization with low sensitivity to experimental imperfections
such as field inhomogeneity. It exploits a major advantage of
operating in the low field regime: the ability to change the main
magnetic field at will, much faster than any couplings, using very
simple hardware. In particular, we obtain general insight from
average Hamiltonian theory?® 27 and then do highly accurate
calculations using an exact dissipative master equation treatment.?®
In all cases, optimal pulse sequences look nonintuitive and do not

Fig. 1 Pulse sequences for enhanced SABRE/X-SABRE excitation. (a) square
pulse, (b) sine wave pulse, (c) chirped pulse, and (d) ramp pulse. The dashed
grey line refers to zero magnetic field, and the black line is an offset field, Bo.
As shown in this paper, all of these sequences are capable of producing signal
enhancements (relative to a constant field) but the lower symmetry
sequences (c) and (d) have practical advantages.
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Fig. 2 (a) Schematic representation of the pulse and the spin system used in
simulation. The coupling strength between the two hydrides is J,;; = —8H. It

is often a good approximation to assume that the ligand is only coupled to
one of the two hydrides, and the strength is J,;;, = —25Hz. (b) Final 15N
polarization level simulated with the unbalanced square wave. The offset field
Bo is varied from -0.5uT to 0.5uT, and the pulse period T is scanned in the
range of 0 to 4.4ms, while the pulse amplitude B is fixed at 10uT. Simulation
parameters: 100% parahydrogen, k, = 24s71, ky =8s71,
[catalyst]: [ligand] = 1:10. A pulse with Bo=+0.13uT and T=4ms yields the
maximum ~18% polarization, which is much larger than the continuous wave
counterpart ~5%.

match continuous excitation, either in their peak or average field
strength. Fig. 2 shows one example; in this system, experimentally
and in simulations the maximal magnetization (~5%) is generated
with a continuous ~0.6uT field, but far larger magnetization (~18%)
is produced by a correctly timed square wave offset from a zero
average field by about one-fifth that value (~0.13uT). We will also
show that, in contrast to most pulse sequence applications,
waveforms with reduced time symmetry in the toggling frame (such
as the last two sequences in Fig. 1) make magnetization generation
more robust to experimental imperfections.

Theoretical Perspective on Oscillating Pulses

Each pulse sequence in Fig. 1 consists of a low offset field (<1uT)
and an oscillating pulse with alternating positive-negative
amplitude (10-100uT). Every pulse is specified by three
parameters--the offset field Bo, the oscillating field B(t), and the
pulse period T. We describe these sequences using average
Hamiltonian theory,?%?7 which relies on the principle that under
suitable conditions, the evolution of a spin system driven by a
time-dependent external field can be described by the average
effect of the field over one cycle of its oscillation. For the sake
of comprehensiveness, we analyse both AA’B 3-spin system and
in Sl section 3). The full
Hamiltonian of the three-spin AA’B system is expressed in
equation (1)

AA’BB’ 4-spin system (shown

ﬁprime(t) = _(BO + B(t))(yH(ilz + iZZ) + yLzz)
+2n)yy (I, - ) + 21y, (I - L) D

here in natural units (A = 1). The spin operator of the target

nuclei is labelled as L, and the two hydride spins are fl and fz.
We can rearrange this Hamiltonian as:

ﬁrearranged (t) = _(BO + B(t))YH(ilz + iZZ + Zz) + (Awo
+Aw(O)L, + 21y (L - L) + 21), (I, - L) )
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in which Awg = Bo(yYyg — V) and Aw(t) = B(t)(yy —v.) are
the Larmor frequency difference between hydrides and the
target nuclei caused by the offset field and the oscillating pulse
respectively. The first term in equation (2) which is directly
proportional to the z component of the total spin angular
momentum can be ignored since it commutes with the rest of
the Hamiltonian, giving a simplified Hamiltonian of the form

H(t) = (Awo + Aw ()L, + 21)yy (I - 1) + 2nJy, (I, - 1) 3)

We use the only time-dependent term Awiz to create a
toggling U(t) = exp(—iL, fot Aw(t')dt). The
corresponding Hamiltonian in this toggling frame is equation

(4).

frame

7 = U (8oL, + 21 (Iy - 1) + 2], (1 - 1) ) U

= Awoiz + ZHJHH(fl . 1;)

+2nfy {h L, + MO (Lo Ly + IyLy) + N@O (T Ly — I, L)} (4)
in which M(t) = COS(fOt Aw(t') dt), and N(t) =
sin(fot Aw(t") dt"). This toggling frame Hamiltonian has unveiled
the physical picture of the pulse sequence. The role of the offset
is to provide a small external magnetic field to the spins. The
oscillating pulse then alters the form of the spin-spin interaction
between the target nuclei and hydrides. The original flip-flop
term, ilxzx + flyzy,
ile,y, are tuned by the factors M(t) and N(t), respectively.
These two terms connect the same states as the normal non-

and the new interaction form, ilyzx -

secular term, but with a m/2 phase shift of the off-diagonal
operators, which will be clearer with the matrix form of the
Hamiltonian shown later. When T — 0, the oscillating pulse
vanishes, and the system is recovered to continuous wave (CW)
SABRE-SHEATH with M = 1 and N = 0.

For the square pulse (shown in Figure 1(a)) the zero-order
average Hamiltonian is shown in equation (5).

— 1 (T _
H© =—f H(t)dt
T Jo
= A(Jl)ozz + 27T]1-11-1(i1 iz)
+ Zn]HL{ilzZz + Mo(ilxzx + ilyzy)
+ No(f1xLy — 1)Ly} (5)

where M, = Sing(e), Ny = 1_“;5(9), and 8 = AwT /2 representing
the rotation angle in half a period is a function of pulse
amplitude and pulse period. When 6 is an integer multiple of
2m, both M, and N, go to zero, which means the coupling
between hydrides and the target nuclei disappear at this

situation, and no spin order transfer could take place.
A matrix expression of this zero-order Hamiltonian is powerful

for providing physical insight. The basis used to express the
matrix of the AA’B system is a singlet-triplet basis for the AA’

This journal is © The Royal Society of Chemistry 20xx

pair and the Zeeman basis for the B spin. Equation (6) gives the
two 3x3 subspaces of the zero-order Hamiltonian, which
indicate that M, + iN, alter the interaction between the spin
up states a; and spin down states f3; of the target nuclei, and that

the interaction strength only depends on its magnitude, w/Mg + NOZ.

Ti;ﬂL T:aL SZaL
+ J. —J, )—A J -rJ
7,5, 7y =J )= e, ”\/ﬂ (M, +iN,) f/_’“ (M, +iN,)
2 2 2
T:al 7:‘/]£L (Mo - iNo ) ”J”” - Awﬂ ”JHL ( )
2 2 2 6
_ Ao, -3nJ
S,O, a, %HL (Mo - l’]\/'“) ”;HL % ) o
TH al T:ﬂl S: ﬂl.
_ J —J )+A
THaL 7[( = 21”) & 7:‘/151- (Mn_[N(») IZEHL (Mv)_iNu)
- A —
Z‘I‘l‘ﬁ/ 7:‘/]§L (MY) + lNﬂ) ”JHH 2 wo ”;HL
nJ . -rJ =3rnJ, — Ao,
Szﬂ, \/g" (MO+IN0) ZHL H; .

While it would be possible to explicitly calculate higher order
terms (S1 section 1) direct numerical evaluation of the full
effective Hamiltonian gives a better comparison to test the
validity. Each cycle of the square-pulse can be broken down into
two constant fields, B, + B and B, — B, in time sequence.
Labeling the corresponding time-independent Hamiltonians as
H, and H_, the propagator of this spin system is expressed as
U = exp(—iH_T/2) exp(—iH,T/2) = exp(—iHT).
Extracting the average Hamiltonian by an expression such as
H = ilog(U) /T can be done numerically by diagonalizing U to
a matrix e, then taking the log of each eigenvalue (which will
always have magnitude 1), U = Ve!AVt; logU = V(iA)VT, but
this leads to a well-known ambiguity as the phase is only
determined modulo 2m. This ambiguity is avoided by
multiplying /i and Jy;, by a scale factor a, calculating H in the
limit of very small a, and correcting for 2 phase jumps as « is
increased to 1. This approach shows that the zero-order
expansion is already a good approximation of the average
Hamiltonian (Figure 3) so that higher order approximation can
be neglected. My, Ny and /M2 + NZ (solid curves) calculated
with the zero-order average Hamiltonian are in great
agreement with their numerical counterparts (dashed curves).
The coupling magnitude y/ MZ + N¢ vanishes at & = 2nm, which
agrees with the analytical expressions of My and Ny. M2 + N2
attenuates as 6 increases, in that it cannot fully recover to the
previous maximum. The value of \/MZ + N¢ is in the range of 0
to 1, which is obvious from the formula of M(t) and N(t)
because they are conjugate trigonometric functions. In other
words, the coupling between hydrides and the target nuclei can
only be attenuated instead of being increased.

Unexpectedly, a diminished coupling strength yields much
higher polarization. Figure 3(b) and (c) gives the relationship

J. Name., 2013, 00, 1-3 | 3
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Fig. 3 (a) Curves of M and N as a function of 8/m. The solid lines (underlying
bright red and bright blue curves) are the zero-order theoretical
approximation of M and N, namely, Mo and No, and the dashed lines (light red
and blue) are the exact values of M and N calculated with numerical method.
(b) shows how the value of VM? + N? varies with 6 /7. Likewise, the solid
curve (underlying black) and the dashed line (grey) correspond to the
theoretical approximation and the numerical result, respectively. The
horizontal green bar indicates the optimal value of VM? + NZ2. (c) Numerically
simulated *N polarization of a 3-spin system with the pulse amplitude being
fixed at 10uT and the offset being maintained at -0.13uT. The green arrows
mark the maximum signals and their corresponding value of VM? + N2.

between the final polarization level and the value of M3 + N3
with the offset field By fixed at —0.13uT. The polarization is
numerically simulated with the DMEx method,?® and the
dependence indicates that when the interaction strength
reducesto |[M3 + N2 ~ 0.066 (shown with a horizontal green
bar in Fig. 3(b)), polarization is maximized. This unbalanced
square wave indeed yields a large i in signal. However,
M2 + N% ~ 0.066 is very
close to zero, and the polarization oscillations in Fig. 3 imply the

the optimal interaction strength

large signals are not robust to imperfections of the pulse
S uch as inhomogeneity. This issue could be avoided if
M% + N(z, reduces gradually and does not periodically go to
ind a pulse sequence with this behaviour of
M3 + N2% , more complex wave forms must be considered.

Figure 4(a) shows that My, N, and fM‘Z, + N(z, of a sine wave
have similar behaviours as they do for a square pulse. My and
Ny in the average Hamiltonian are Mgy =
AwT

1T AwT 2mt 1T .
?fo cos{% a- cos%)}dt and Ng= ;fo sin{,~(1—

HH

zero-order

cos %)}dt, and they periodically vanish at the same time. For

all these sequences, the toggling frame is symmetric about the
centre of each repeating interval (for example, the negative part
of the square wave retraces back along the same trajectory
followed in the positive part). In addition, both the square and
sine wave have a symmetric trajectory with respect to the
centre of each half cycle (depicted here as green and orange).
This additional symmetry intuitively would be expected to
produce cleaner pumping dynamics. However, it turns out that
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Fig. 4 Depiction of how Mo (red curve), No (blue curve) and \/MZ + NZ (black
dotted curve) vary as a function of the rotation angle in half a period for a sine
wave (a), a chirped square wave (b) and a sawtooth wave (c). We maintain
the offset field at —0.13uT. As in Figure 3, frequent zero-crossings impose a
serious constraint for the sine wave case on the usable fields, particularly if
inhomogeneity is present, but not for the other cases.

30

this symmetry causes My and Ny to commonly go to zero
simultaneously for the same value of the cycle length—a
problem which is avoided by waveforms with lower symmetry
(Fig. 1(c-d) and Fig. 4(b-c)).

This journal is © The Royal Society of Chemistry 20xx
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To understand this effect, note that for an arbitrary oscillating
pulse shape, My and N, are given by

My =2 [T M@ dt = 2 ] cos (I} Aw(t)dt") dt
Ny = %fOT N(t) dt = %foT sin (fot Aw(t’)dt’) de

which are integrals of the cosine and sine function of the

@)

instantaneous angle f; Aw(t")dt’, or in other words, integrals
of the projections of a rotating unit vector on the x-axis and y-
axis, respectively, in a rectangular coordinate system (Fig. 5).
The trajectory of the unit vector in the first quarter of a period
is plotted as the green area; in the second quarter the vector
keeps moving clockwise but with inversely changing speed.
Then the vector retraces its steps and completes a full period.
Note that in both Fig. 3(a) and Fig. 4(a), zero crossings of M,
occur with positive lobe areas of (2n + 1)7 and zero crossings
of Ny occur at areas of 2nm. These are simple symmetry effects,
made clear by plotting the instantaneous values of M(t) and
N(t) in the unit plane (Fig. 5). In general, the trajectory is
symmetric about its midway point 8/2, which fixes the ratio
No/M, = tan(6/2). For odd multiples of m My = 0, and for
even multiples Ny = 0. Other than for those values of 8, the
zero crossings of My and N, depend on the details of the
waveform. However, because the ratio between M, and N, is
fixed, zeroes at any 6 value must coincide, giving zero efficiency
for generating polarization. Thus, any waveform which has this
symmetry (or can be given this symmetry by a time shift and a

M) (L L, + IyLy)

Fig. 5 For many common waveforms (such as a sine or square wave) the time-
dependent rotation between (xx+yy) and (xy-yx) terms is antisymmetric
about the midpoint, and each lobe is symmetric. In this case, the relative
values of the average coefficients of these two terms (Mo and No respectively)
is constrained by symmetry to be along an axis with half the rotation angle of
each lobe. Except for the special cases 8 = nm, this means that zeroes in Mo
and No must coincide, creating values which generate no polarization.

ARTICLE

prepulse, such as an unbalanced square wave with different
amplitudes but the same area in the positive and negative
lobes), the enforced simultaneity of My and N, zero crossings
creates a highly structured pumping profile. In contrast, the
lower symmetry in Fig. 4(b)-(c) avoids simultaneous zeroes.

Fig. 1(c) and 4(b) show a chirped pulse with evenly growing
wavelength in each period, 7y, 7o + A7, ... 7o + mA7, and
Yito(to +jAT) =T. The chirped pulse we use here has 7 =

AT = 0.2ms. /M + N¢ of this pulse is close to the optimal
value 0.066 when the pulse amplitude B is larger than 40uT,
accordingly the resulting experimental robustness to the pulse
amplitude is indeed improved. We finally try an asymmetric
pulse shape, a ramp pulse (Figure 1(d)), which turns out to be
robust to both the pulse period and the field strength. The
analytical solution of a ramp pulse is similar to equation (5),

except that My, and N, are replaced by M,=
2 ~/AwT/2 2 2 AoT/2 ., .
\/mfo cosx“dx, and Ny = Jmfo sinx“dx. Unlike

the square pulse and sine wave whose effective Jy; coupling
can be fully averaged out when M and N become zero at the
same time. The ramp wave successfully avoids zero points.

Because the coupling strength /M2 + N2 gradually approaches
zero as the pulse period or pulse amplitude increase (namely
6(B,T) increases), in a wide period and amplitude domain it
always stays close to the optimal value 0.066, indicated in
Figure 4(c).

For continuous wave excitation in SABRE/X-SABRE, we recently
pointed out? that the level anticrossing®® 2°332 condition does
not even give qualitatively correct predictions except for very
small J; couplings and very slow exchange. For example, in the
case of the AA’B system shown in Fig. 2(a) with Jyy = —8Hz,
and Jy;, = —25Hz in a continuous low magnetic field, the LAC
occurs at £0.04uT which is far from the experimental optimum
+0.6uT. The failure of the level anticrossing condition here is
mainly because it oversimplifies a 3 X 3 (or larger) subspace to
a 2 X 2 space and usually cannot accurately account for the
dynamics of the original system. Interestingly, though, the LAC
condition becomes more relevant for oscillating pulse SABRE/X-
SABRE, because the oscillating pulses reduce the off-diagonal
elements in equation (6) but not the diagonal ones, thus
improving the separation from unwanted states.

Fig. 6 depicts how the energy levels of the first subspace in
equation (6) vary with the offset field. The subfigure 6(a) relates

() 50 (b)
[Tt

o
|She

[T 0

-50
-1 0.5

0 0.5 1 0.1 0 0.1 0.2
B, (nT) B, (1T)
Fig. 6 Eigenvalues as a function of the offset field. (a) corresponds to the
case of Jy, = 0, while (b) refers to the case of optimal interaction J,, =
—25Hz and \/MZ + N¢ ~ 0.066.
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to Jyr = 0, and no LACs occur because there is no interaction
between the states. While Fig. 6(b) refers to the case of optimal
interaction J,;, = —25Hz and \/ MZ + NZ ~ 0.066, in which the
circled LAC is in great agreement with the optimal offset filed
+0.13uT.

Results and Discussion

In this section, we verify the analytical results above with both
simulations and experiments. All Simulations are done with the
DMEx method?® which is a recently developed numerical
modelling approach for exchanging systems and has shown
robust agreement with experimental results. All oscillating
pulse SABRE-SHEATH experiments were performed by bubbling

Journal Name

gas through the SABRE sample for 30-60min to generate SABRE
complex [IrH>(**N-Py),(IMes)]*(**N-py = !°N-pyridine). The
whole sample was then bubbled for 60s inside a solenoid coil
within a p-metal magnetic shield in which the polarization
transfer occurs. We connect the solenoid coil to a function
generator to create different oscillating fields inside the coil.
Finally, the sample was manually transferred (1-2s) to a 1 Tesla
15N Magritek NMR spectrometer for detection.

We start with the square pulse sequence (Fig. 7(a)). The 3D plot
Fig. 7(al) shows how the final polarization varies with the pulse
period and the offset field while the pulse amplitude is fixed at
10uT. The optimal offset field here is around ~0.13uT rather
than ~0.6uT in the CW SABRE-SHEATH case even though the

oscillating pulse has nothing to do with the Zeeman terms of the
spin system. Besides, at the points T = 20.8ms, and T =
25 ms which make 6 = 2nm, no polarization is produced. All
the analysis based on theory is in accordance with the
experimental results. Figure 7(b) shows the polarization of a
sine wave pulse as a function of both the pulse period and the

43% parahydrogen through a methanol-d4 solution under 7
bars of pressure at room temperature. The SABRE sample used
here was prepared by adding >N-acetonitrile (50mM), natural-
abundance *N-pyridine (25mM), and the catalyst precursor
[IrCI(COD)(IMes)] (4.4 mM) into 500uL deuterated methanol
solvent. The catalyst was first activated by bubbling hydrogen

5
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Fig. 7 Experimental validation of theoretical predictions. (a) Square pulse (a1) Theoretical effects of a square pulse sequence with a fixed amplitude B = 10uT and
various pulse periods and offset fields. (a2) Comparison of theoretical calculations with experimental data holding B, = —0.13uT and varying T. (a3) Comparison of
theoretical calculations with experimental data holding T = 22.7ms and varying B,. (b) Sine wave (b1) Theoretical effects of a sine wave sequence with a fixed amplitude
B = 50uT and changing pulse periods and offset fields. (b2) Comparison of theoretical calculations with experimental data holding B, = —0.13uT and varying T. (b3)
Comparison of theoretical calculations with experimental data holding T = 3.5ms and varying B,. (c) Chirped pulse (c1) Theoretical effects of a chirped pulse with
evenly increasing pulse length from 0.2ms to 2ms in a step of 0.2ms. The offset and the pulse amplitude are both scanned. (c2) Comparison of theoretical calculations
with experimental data holding B, = —0.13uT and varying B. (c3) Comparison of theoretical calculations with experimental data holding B = 50uT and varying B, (d)
Ramp pulse (d1) Theoretical effects of a ramp pulse with a fixed offset field B, = —0.1uT. (d2) Comparison of theoretical calculations with experimental data holding
B = 50uT and varying T. (d3) Comparison of theoretical calculations with experimental data holding T = 20ms and varying B. The green dashed lines in each subfigure
(2) refer to the maximum polarization obtained with the CW SABRE-SHEATH method using the same sample. Simulation parameters: 100% parahydrogen, k; =
24571, ky = 8s71, [catalyst]: [ligand] = 1: 10, Juy = —8Hz, ], = —25Hz. The maximum polarization for a continuous field experiment (with 43% p-H2 as used
experimentally) is marked by the dashed green lines (~1.6%).
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offset field while the pulse amplitude is maintained at 50uT. We
varied either the pulse period (Ims<T <8ms, By =
—0.13uT) in Fig. 7(b2), or the offset field (—1uT < By < 0uT,
T = 3.5ms) in Fig. 7(b3). In agreement with the theoretical
predictions, the final polarization periodically reduces to zero at
afrequency corresponding to Aw, and the optimal pulse periods
come close to zero polarization points. The optimal offset field
is also shifted from ~0.6uT to ~0.13uT. The result of a chirped
pulse is displayed in Figure 7(c). Provided the offset is
maintained in the range from —0.18uT to —0.08uT, the
polarization is robust to all pulse amplitudes larger than 40uT
and stays within the range from 16.5% to 19%. The last
oscillating pulse, ramp pulse, is shown in Fig. 7(d). By varying the
pulse period and amplitude while fixing the offset field at
—0.1uT, the simulation result, Fig. 7(d1), clearly shows thatin a
fairly wide range of both the pulse period and the pulse
amplitude the final polarization always stays close to the
maximum, which has been confirmed by experiments, Fig. 7(d2)
and 7(d3). By varying either the pulse period (11ms < T <
20ms, B =50uT, B, = —0.1uT) or the pulse amplitude
(30uT < B <50uT, T =20ms, By=—0.1uT), we always
obtained almost maximum polarization. The signal
enhancement of these oscillation pulse sequences is as high as
300%.

Robustness to Exchange Rate

In this section, we use the DMEx simulation method?® to
demonstrate that oscillating pulse SABRE-SHEATH is fairly
robust to variations of exchange rate. We use the same square
pulse in Fig. 2 and calculate the polarization, varying the
exchange rate by a factor of 100. In the case of low substrate
exchange rate (Fig. 8(a) and (b)), the optimal condition stays
around By = —0.11uT, T = 4.1ms. Ultimately, as the exchange

@ 035 ©) O 02
ky = 1571 kg =157t
0.05 by =157 2 s by = 1057 0.15
= s S
2 2 0.1
= ol 01 =0t
0.05
-0.15 005 s
0 0
3 35 4 34 36 38 4 42 44
T (ms) T (ms)
(d) (1] 0.025
ky=1s71
005 -0.1 k;.”= 100s-1 0.02
004
=02 0.015
003 =
002 M -0.3 0.01
0.01 0.4 0.005
0 -0.5 0
1 2 3 4 1 2 3 4
T (ms) T (ms)

Fig. 8 Different optimal polarization conditions caused by different exchange
rates of substrate. (a) ky = 1571, ki, = 1s7%, the optimal field is -0.11uT,
and the optimal period is 4.12ms. (b) ky = 1s7%, k;, = 10571, the optimal
field is -0.11uT, and the optimal period is 4.08ms. (c) ky = 1s7%, k;, =
50571, the optimal field is -0.17uT, and the optimal period is 4.0ms. (d) ky; =
1571, k, = 100571, the optimal field is -0.37uT, and the optimal period is
3.8ms. The four subplots have inconsistent color scales in order to show off
more detail.
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rate of the substrate goes up, the optimal condition shifts in the
direction so that the optimal offset field increases and the pulse
period decreases. Here we give an explanation with the
quantum dynamics of SABRE. Fig. 9 shows the polarization of
the target nuclei as a function of the quantum evolution time.
Both chemical exchange and relaxation processes are
neglected. The four curves in Figure 9 depicts the quantum
dynamics using optimal parameters Bg and T for the four cases
of Fig. 8, respectively. The red and blue curves clearly show that
under the condition By = —0.11uT and T = 4.1ms, the
polarization of the target nuclei could be raised up to 80%.
However, when the chemical exchange processes are included,
the quantum evolution is interrupted, which means the spin
order transfer is interrupted. On one hand, if the lifetime of the
SABRE complex is long, for example k;, = 1s~% or k;, = 10571,
there is enough time that the target nuclei could be polarized
before they dissociate from SABRE catalyst. On the other hand,
during a short lifetime, say k, =50s~! or k, =100s71,
substantial spin order transfer cannot be completed. A smaller
but faster polarization transfer process works better (the green
and black curves). As pulse period T decreases, the value of
VM?Z + N2 grows, and the coupling between the hydrides and
the target nuclei increases accordingly, which causes the spin
order transfer faster (shown in Fig. 9(b)). For a fixed pulse
period T, there exists an optimal offset field which maximizes
the polarization of the substrate. In conclusion, maximizing
SABRE polarization is a trade-off between the speed of spin
order transfer and the largest transfer degree. Usually, the
exchange rate kj, is in the range from 557! to 5051, and the
corresponding optimal condition remains near B, = —0.11uT
and T = 4.1ms, (see Fig. 8(b) and (c)). Even if the optimal

—_
=
—

0.6
0.4

Polarization

0 0.5 1 1.5
Evolution time (s)

(b

R
=
[

0.05

Polarization

0 0.05 0.1
Evolution time (s)

Fig. 9 (a) Polarization generated by quantum evolution of the 3-spin system.
red curve By = —0.11uT, T = 4.12ms; blue curve By, = —0.11uT, T =
4.08ms; green curve By =—0.17uT, T = 4.0ms; black curve B, =
—0.31uT, T = 3.8ms. (b) A zoomed-in version of the red box in figure (a). As
the period goes down the spin order transfer process speeds up.
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condition shifts, for example, Fig. 8(d), the polarization (1.4%)
generated by an oscillating pulse with By = —0.11uT and T =
4.1ms is still larger than the maximum signal (0.2%) produced
by CW SABRE-SHEATH method. This robustness to exchange
rate is also extended to AA’BB’ system and a positive JHH
situation (Sl section 5).

Conclusions

We have shown, in both experiments and simulations, that a
variety of oscillating magnetic fields can significantly improve
SABRE-SHEATH hyperpolarization, relative to a continuous field
or even one pulsed to optimize polarization transfer. In effect,
the interactions between hydrides and target nuclei are
adjustable by tuning the pulse amplitude, pulse period, and
pulse shape. As described above, we improve the robustness to
experimental imperfections by exploring different pulse shapes.
Finally, it turns out that a pulse shape with reduced symmetry,
such as a ramp wave, generates significant improvements in
achievable polarization and is robust to experimental
imperfection.

In this work, the largest polarization vyielded with 43%
parahydrogen is ~5.3%; this would correspond to 22%
polarization with 100% parahydrogen. In our simulations, the
maximum polarization generated by SABRE-SHEATH method is
as high as 80% (with 100% parahydrogen). However, in reality,
polarization is limited by the low accessibility of parahydrogen
or slow refresh rate of the dissolved hydrogen in the SABRE
solvent. This gap between principle and reality indicates that
SABRE retains room for improvement. Still, our approach is
technologically simple, capable of producing significant
enhancements, and suggests there is still room for further pulse
sequence exploration.
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