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A notable phenomenon in topological semimetals is the violation of Kohler's rule, which dictates that the 

magnetoresistance MR obeys a scaling behavior of MR = f(H/p0), where MR = [p(H)-p0]/p0 and H is the 

magnetic field, with p{H) and p0 being the resistivity at H and zero field, respectively. Here we report a 

violation originating from thermally-induced change in the carrier density. We find that the 

magnetoresistance of the Weyl semimetal, TaP, follows an extended Kohler's rule MR = f[H/(njp0)], with 

y?T describing the temperature dependence of the carrier density. We show that nT is associated with the 

Fermi level and the dispersion relation of the semimetal, providing a new way to reveal information on 

the electronic bandstructure. We offer a fundamental understanding of the violation and validity of 

Kohler's rule in terms of different temperature-responses of nT. We apply our extended Kohler's rule to 

BaFe2(Asi-.xPx)2 to settle a long-standing debate on the scaling behavior of the normal-state 

magnetoresistance of a superconductor, namely, MR ~ tan26^, where 6» is the Hall angle. We further 

validate the extended Kohler's rule and demonstrate its generality in a semiconductor, InSb, where the 

temperature-dependent carrier density can be reliably determined both theoretically and experimentally.
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I. Introduction

The magnetic-field-induced resistance change is conventionally termed as magnetoresistance (MR)1. In 

1938, Max Kohler2 developed a rule to account for the magnetoresistances in metals. Kohler's rule states 

that the magnetoresistance MR should be a function of the ratio H/po of the magnetic field H to the zero- 

field resistivity po. That is, the field dependence of the magnetoresistances should exhibit a scaling 

behavior of MR = f(H/po), where MR = [p(H)-po]/po with p(H) and po being the resistivity at H and zero field 

at a fixed temperature, respectively. Kohler's rule of the magnetoresistances has been observed in 

materials3-15 beyond metals and recently has been extensively used to understand novel 

magnetoresistance behavior such as the 'turn-on' temperature behavior of the magnetoresistance in 

topological materials5-15. Violations of Kohler's rule have been often reported16-40 and used as evidence for 

phase transitions16,17 or for emergent new physics18-22. Here we explore Kohler's rule of 

magnetoresistances in Weyl semimetals, where both its validity5,6,8 and violation23-25,27,28 have been 

reported, with the aim to uncover the role played by the inevitable thermally induced change in the 

density of carriers on the scaling behavior. We find that the magnetoresistance of the Weyl semimetal, 

tantalum phosphide (TaP), follows an extended Kohler's rule MR = f[H/(nTpo)], where nT describes the 

relative change induced by thermal excitation in the carrier density, with nT = 1 denoting the original 

Kohler's rule. We outline an innovative approach to obtain nT without knowing the values of the carrier 

density, providing a new way to probe the temperature dependence of carrier density. We show that nT 

is associated with the Fermi level and the dispersion relation, thereby revealing information on the 

electronic bandstructure. We offer a fundamental description of the violation and validity of Kohler's rule 

in terms of different temperature responses of nT. In particular, Kohler's rule is expected to be violated in 

materials with low carrier density where a noticeable density change due to thermal excitation occurs, 

while Kohler's rule should hold in materials where the carrier density is high enough such that its 

thermally-induced change is experimentally indiscernible. Furthermore, by investigating the scaling
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behavior of the normal-state magnetoresistance in superconducting BaFe2(As1-xPx)2 crystals, we

demonstrate that our extended Kohler's rule can account for the scaling MR ~ tan2Oh where q is the Hall 

angle, which was first observed in cuprate superconductors YBa2Cu3O7-s and La2SrxCuO4 [18] and has led 

to a long-standing debate in describing the normal-state magnetoresistance of a superconductor19-21,33-41. 

We also demonstrate the generality of our extended Kohler's rule in an undoped narrow-gap 

semiconductor, indium antimonide (InSb). At high temperatures, InSb is a compensated two-band system 

with high-mobility electrons and low-mobility holes, enabling us to determine the carrier density via Hall 

measurements and use its temperature dependence to test the validity of the nT term in our extended 

Kohler's rule.

II. MATERIALS AND METHODS

Data reported here were obtained from two TaP crystals (sample TP1 and sample TP2), two BaFe2(As1- 

xPx)2 crystals with x = 0.25 (sample PL) and x = 0.5 (sample PH), and one undoped InSb crystal (sample IS). 

Preparation of samples. (1) TaP: Centimeter-sized single crystals of TaP were grown using the vapor 

transport method in two steps. In the first step, 3 grams of Ta (Beantown Chemical, 99.95%) and P 

(Beantown Chemical, 99.999%) powders were weighed, mixed, and ground in a glovebox. The mixed 

powders were sealed in an evacuated quartz tube which was subsequently heated to 700°C and sintered 

for 20 hours for a pre-reaction. In the second step, the obtained TaP powder along with 0.4 grams of I2 

(Sigma Aldrich, >99.8%) were sealed in a new evacuated quartz tube, and was subsequently placed in a 

two-zone furnace with zone temperatures of 900°C and 950°C, respectively. The crystal growth time was 

14 days. Due to the very high electrical conductivity of TaP, it is difficult to carry out high-precision 

electrical measurements on the as-grown crystals. To increase the electrical resistance of the samples, we 

polished the crystals down to a thin slab along the c-axis (thickness of tens of micrometers). Electrical 

leads were gold wires glued to the crystals using silver epoxy H20E. (2) BaFe2(As1_xP%)2: crystals of 

BaFe2(As1-xPx)2 with doping levels of x = 0.25 and x = 0.50 were grown using the self-flux method42. High-
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purity flakes of Ba (99.99%, Aldrich) and powders of FeAs and FeP (homemade from Fe, As, and P, 99.99%,

Aldrich) were thoroughly mixed and placed in an Al203 crucible, which was then sealed in an evacuated 

quartz tube under vacuum and placed in a Lindberg box furnace. Crystals of plate shapes with lateral

dimensions up to 2 mm and thicknesses up to 200 pm were obtained by heating up to 1180 °C and then

cooling down to 900 °C at a rate 2 °C/min. Electrical leads of gold wires with a diameter of 50 pm were 

attached to the crystals using silver epoxy H20E. (3) InSb: a crystal of 5 mm x 5 mm x 0.5 mm was 

purchased from the MTI corporation. It was cut into pieces with desired lateral dimensions. Gold pads of 

~100 nm thick were deposited on locations pre-defined using photolithography. Electrical leads were 

fabricated by attaching 50 pm diameter gold wires to the pads with silver epoxy H20E.

Resistance measurements. We conducted resistance measurements to obtain both Rxx[H) and Rxy(H) 

curves at various fixed temperatures, enabling the calculation of the resistivities pxx{H) = Rxxwd/I and pxy(H) 

= Rxyd, where w, d, and / are the width, thickness of the sample and the separation between the voltage 

contacts, respectively. The magnetic field is applied along the c-axis of the crystals. The magnetoresistance 

is defined as MR = [p>o<{H) - po)]/po, where pxx{H) and po are the resistivities at a fixed temperature with 

and without the presence of a magnetic field, respectively. In some cases, we obtained pxx(T) curves from 

the measured pxx(H) curves at fixed temperatures to avoid nonequilibrium temperature effects. Data for 

TaP and InSb were obtained using the conventional four-probe DC electrical transport measurement 

technique while those for BaFe2(Asi,xPx)2 were obtained using a low-frequency lock-in method.

III. RESULTS AND DISCUSSION

lll.l. Extended Kohler's rule of magnetoresistance in Weyl semimetal TaP

TaP is a transition-metal monophosphide considered as the first realization of a Weyl semimetal43"46. 

Figure la presents the typical magneto-transport behavior of the longitudinal resistivity, pxx(H), of a TaP 

crystal (sample TP1). Since the temperature dependence of pxx(T) has often exhibited interesting
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magnetoresistance phenomena such as the 'turn-on' temperature behavior5,7,8 and topological insulating 

states28-30, we also present pxx(T) curves in Fig.1b.

Both pxx(H) and pxx(T) in Fig.1 are consistent with those reported recently in other materials with 

extremely large magnetoresistance5-16,22-32. The magnetoresistance MR can be as high as 105 % at 2 K and 

9 T (Fig.2a), and follows the typical power-law MR ~ Hm behavior with m » 1.6 (dashed line in Fig.2c)27. In 

the absence of a magnetic field, the resistivity decreases monotonically with temperature, as expected 

for a semimetal. When an external magnetic field is applied, the resistivity increases and a remarkable 

'turn-on' behavior appears in the pxx(T) curves: the temperature behavior of the resistivity changes from 

metal-like at high temperatures to insulating-like at low temperatures at magnetic fields H = 0.2 T, 0.5 T 

and 1.0 T and become insulating-like over the entire temperature range at higher magnetic fields.

The key results of this work on TaP are displayed in Fig.2, which presents the violation of Kohler's 

rule and highlights our extended Kohler's rule. For clarity, we present in Fig.2a partial MR(H) curves 

derived from the pxx(H) data in Fig.la while all pxx(T) curves in Fig.lb were used to obtain the MR(T) curves 

in Fig.2d. The respective scaling of MR(H) and MR(T) is presented in Fig.2b and 2e. Clearly, Kohler's rule 

MR = f(H/po) is not followed in TaP since the MR curves do not collapse onto a single curve when plotted 

against H/po. However, all curves in Fig.2b are nearly in parallel with each other, suggesting that a single 

temperature-dependent multiplier to MR (y-axis) or to H/po (x-axis) could cause them to overlap or 

collapse onto the same curve. Here we tackle the latter case and uncover the underlying physics.

For the convenience of the forthcoming discussions we designate 1/n- as the temperature dependent 

multiplier to H/po (x-axis) in the MR ~ H/po curves in Fig.2b. In practice, we scale all the MR curves to the 

T = 300 K curve [i.e., n- = 1 for MR(300K) ~ (1/nT)(H/po)] by varying n- for each curve. As shown in Fig.2c, 

all curves in Fig.2b indeed collapse onto the T = 300 K curve when the data are scaled as MR ~ H/(n-po). 

The n- values for the MR ~ H/po curves at various temperatures are presented in Fig.3. It decreases 

monotonically from n- = 1 at T = 300 K to n- = 0.45 at T = 2 K. As presented in Fig.2f, we also accounted for
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the violation of Kohler's rule in Fig.2e for the MR(T) curves by using the same n- values as those used in 

Fig.2c. We found nearly identical behavior for the second TaP crystal (sample TP2), as demonstrated by 

the plots of MR ~ H/(n-po) in Fig.S1, with n- presented in Fig.3. That is, the magnetoresistance of TaP 

follows an extended Kohler's rule with a thermal factor n-,

MR = f[H/(n-po)] (1)

In the analysis above we purposely used n- in the denominator to couple with po in Eq.1, aiming to 

reveal the possible role of the carrier density in the violation of Kohler's rule. In a theoretical consideration 

on the violation of Kohler's rule in the normal-state resistivity of cuprate superconductors, Luo et.al.41 

introduced a MR scaling form (it was called a modified Kohler's rule), MR = f(Ht), where z is the relaxation 

time of the carriers, since H and rare coupled together as Htfor MRs in the derived equations41. Using po 

= m*/(ne2t), Hr can be expressed as Hr = (m*/e2)H/(npo), indicating that a scaling behavior of MR = 

f[H/(npo)] is expected if m* is temperature independent. However, there is no reliable way to obtain the 

values of n in a semimetal from transport measurements, as demonstrated in Fig.S2 for nH/n in a 

compensated system with n = n = n, where n is the density obtained from Hall effect measurements, 

and in Fig.S3 for electron and hole density derived from a two-band model analysis in TaP. Furthermore, 

m* can change with temperature47. More importantly, materials such as multi-band semimetals where 

violation of Kohler's rule are reported, go beyond the (isotropic) single-band consideration in MR = f(Ht). 

We reveal in the discussion below that H and the mobility u = ez/m* (i > 1) are interconnected as Hu in 

the MR expression. Also, it is the temperature-induced change in the carrier density is responsible for the 

violation of Kohler's rule. Hence, our extended Kohler's rule expression in Eq.1 provides a unique way to 

reveal the temperature dependence of the carrier density.

In the normal state of a cuprate superconductor the temperature-induced change in the carrier 

density can be attributed to the existence of a pseudogap or Mott - Wannier excitons of weakly bound 

electrons and holes41. Differing from the linear temperature dependence of the carrier density used to
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explain the violation of Kohler's rule in cuprate superconductors41, the nT obtained in our samples can be 

approximately described by nT ~ T2 (Fig.S4), which can be attributed to the thermally-induced change in 

the carrier density, as elaborated below.

As revealed by bandstructure calculations and angle-resolved photoemission spectroscopy (ARPES) 

experiments43"46, TaP has a total of 12 pairs of Weyl nodes. Four of them, denoted as Wl, are enclosed by 

electronlike Fermi surface with energies below the Fermi level. The other eight pairs, denoted as W2, are 

enclosed by holelike Fermi surface and with energies above the Fermi level. The bandstructure is 

illustrated in Fig.3, with the relative locations of Wl and W2 with respect to the Fermi level, EF. Considering 

the temperature dependent Fermi-Dirac distribution, the total density of the conduction electrons at a 

given 7 can be straightforwardly obtained using:

%= + (2)

where / = 1 and 2 correspond to Weyl nodes Wl and W2 with respective energies of Et = Ei and E2. gi = 

g^(s) and g2 (£) are the density of states (DoS) for the conduction bands of Wl and W2, respectively. 

Since equal number of holes are created, Eq.2 can also be used to calculate the thermally-induced change 

in the hole density. In TaP, the density of electron and holes are close to each other (Fig.SBc). We focus 

only on electron density in the following discussions.

The energies £i and £2 of the Weyl nodes Wl and W2 in TaP have been determined by bandstructure 

calculations44 and by ARPES measurements45. The theoretical DoS roughly follows g ~ £ at £ up to ~0.3 eV 

and becomes nearly constant at higher energies44,47. As an estimate we use gt = gi0(s — E{) for £ < 0.3 

eV and gt = gi0(0.3 — Et) for higher energies. In Fig.SSa we present the calculated m and n2 and their 

sum n using the theoretical values of (-53.1 meV, 19.6 meV) for the energies (£i, £2) (relative to the Fermi 

level) of the Weyl nodes Wl and W2 and the electrons and hole densities of neo = 4.898xl024 m"3 and riho 

= 5.317xl024 m 3 at 7 = 0 K [44]. As indicated by the dashed curve in Fig.3, the total electron density, n, 

normalized to the value at 7 = 300 K, describes the experimental nT very well. The small deviation can be
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understood with sample-dependent (£1, £2), as demonstrated by the dotted curve obtained using the

experimental values45 of (-40 meV, 24 meV) and the solid curve calculated with (-46.2 meV, 19.6 meV), 

i.e., a slight increase in the theoretical Ei value towards the experimental one while keeping the value of 

£2 unchanged.

The above discussion indicates that the relative position of the Fermi level to the bottom of the 

conduction band and the top of the valence band, i.e., the density of electrons and holes at T = 0 K affects 

the temperature dependence of nT. As presented in Fig.S5b, the temperature-induced change in nT mostly 

comes from the electron band. In Fig.S6a we present nT versus T curves calculated using different values 

of £f in the electron band. It is clear that the sensitivity of nT to T depends strongly on the Fermi level. In 

our TaP samples with £f » 50 meV to the bottom of the conduction band, nT nearly doubles when the 

temperature is increased from T = 2 K to 300 K. However, it becomes challenging to experimentally resolve 

the change in nT in the same temperature range when the Fermi level is increased to 200 meV. In this 

case, nT » 1 and Kohler's rule should hold within experimental errors. Thus, the Fermi energy, i.e., electron 

density at T = 0 K, plays a key role in Kohler's rule. It directly explains why Kohler's rule is violated in type- 

I Weyl semimetals while it is upheld in their type-II counterparts since the latter typically have much higher 

electron densities5,6,8. The validity of Kohler's rule in conventional metals is also not a surprise. They have 

much higher Fermi energies of a few eVs and electron densities of 1028~29 m-3 [48], which is 3~4 orders of 

magnitude higher than that of TaP, making thermally induced changes in the carrier density irrelevant. In 

Fig.S6b we show that the functional form of the DoS g(e) can further contribute to the nT versus T 

relationship. When the exponent a in g(s) ~ e changes from a = 1 for TaP to a = 1/2 for typical metals, 

nT becomes less sensitive to the change of T at the same Fermi level. This explains why violation of Kohler's 

rule is observed more often in topological semimetals than in their trivial counterparts.

111.2. Extended Kohler's rule versus other alternative scaling forms of the magnetoresistance
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In addition to topological materials, violations of Kohler's rule were often reported in cuprates and 

iron-based superconductors as well as other topologically trivial materials and various alternative MR 

scaling forms have been introduced18-20,33-41. Among them, the most common one is

MR = gHtan20H (3)

where q = arctan(pxy/pxx) is the Hall angle. This MR scaling behavior was first reported in cuprate 

superconductors, with gH = 1.7 and gH = 1.5-1.7 for underdoped and optimally doped YBa2Cu3O?_s, 

respectively, and gH = 13.6 for La2SrxCuO4 [18]. It has numerous explanations18-21,37-41 including the spin- 

charge separation scenario of the Luttinger liquid21, current vertex corrections and spin density wave20. 

Below we show that the scaling Eq.3 is a natural outcome of our extended Kohler's rule Eq.1 in a 

compensated two-band material when the carrier mobility is very low, with gH being an indicator of the 

ratio of the hole and electron mobility. We also obtain similar scaling forms to Eq.1 and Eq.3 for a low- 

mobility single-band system with an anisotropic Fermi surface as well as non-compensated two-band and 

multi-band systems.

For a compensated two-band system where n = n = n, the second term in the denominator of Eq.S1 

is zero, leading to MR = ppH2. Hence MR can be re-written as MR = a/e2[H/(npo)]2 where 

a = (ph/^e)/(1+Ph/^e)2, po = [ne(p,h+Pe)]-1 and ne, nh, pe and ph are the densities and mobilities of electron 

and holes, respectively. Thus, our extended Kohler's rule presented in Eq.1 is valid if a is temperature 

independent. Likewise, the second term in the numerator of Eq.S2 also becomes zero, yielding a linear 

Hall resistivity pxy = H(ph/pe-1)/[en(ph/pe+1)]. Then, MR = ppH2 can be alternately expressed as

MR = gH(Pxy/po)2 (4)

with gH = (ph/pe)/(1-ph/pe)2 (5)

At very low mobilities, MR® 0 and pxx » po, resulting in Eq.3 and Eq.4 to be equivalent. That is, in a 

compensated two-band system with very low mobilities, our extended Kohler's rule in Eq.1 will lead to 

the scaling behavior of Eq.3.
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The same conclusion can be reached for a nearly compensated two-band system, if the mobilities 

and/or the magnetic fields are low, such that the second term in the denominator of both Eq.S1 and Eq.S2 

as well as the second term in the numerator of Eq.S2 become negligible. As revealed in TaP below, a is 

indeed temperature insensitive (Fig.5b). Thus, our extended Kohler's rule Eq.1 can be expressed as Eq.3 

for a compensated system as well as for a nearly compensated system with very low mobilities and/or at 

very low fields if the mobilities are high.

Underdoped YBa2Cu3O7-s [49,50] are indeed two-band materials. On the other hand, the optimal- 

doped YBa2Cu3O7-s (with Tc = 90 K) which also shows the scaling behavior akin to Eq.3 is believed to be 

single-band system with an anisotropic Fermi surface41. As detailed in the supplement, a single band 

material would have no magnetoresistance if all carriers moving in the same direction have the same 

mobility. It exhibits magnetoresistance probably due to (1) the mobility distribution of carriers from 

different energy levels near the Fermi surface1 and (2) the existence of impurities. In the first case, we can 

obtain MR » a/[H/(npo)]2 (Eq.S10) with a/ = 2%/e-[1 + (pL/pH)2]/[1 + pL/pH]2 (Eq.S11) at low 

carrier mobilities such that p^H2 « 1, where pH and pL represent the highest and lowest mobility of px 

along the x-direction and k is the ratio (py/px) of the carrier mobilities px and py along the x and y 

directions. In the meantime, we can also obtain MR » yHtan29Hwith yH = (9/8k)[1 + (pL/ pH)2] [1 — 

(pL/pH)2]2/[1 — (pL/pH)3]2 (Eq.S12). In the latter case, an optimal-doped YBa2Cu3O7-s crystal can be 

considered as a two-band or multiband system, with a dominating intrinsic anisotropic band together with 

one or more impurity bands. At low carrier mobilities, we have MR = [H/(nTp0)]2 (Eq.S15) with nT = 

e[Zi(niPiW/2/\Zi(niM3)]1/2 (Eq.S16), and MR « y*H*(pxy/p0)2 (Eq.S17) with y*H* =

'Li(niP3)'Li(niPi) /[Zi(ni^2)]2 , Po = 1/Y.i(enipi), ni and pi being the carrier density and mobility of 

the ith band. These results not only explain the observed scaling behavior of Eq.3 in optimal-doped 

YBa2Cu3O7-s but also indicate that our extended Kohler's rule Eq.1 should be valid whenever the scaling of 

Eq.3 is observed.
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TaP is a nearly compensated two-band system with high mobilities, as manifested by the large MRs

(Fig.2a) and non-linear pxy curves (Fig.S7). Thus, the scaling behavior in Eq.3 is expected to fail when the 

MRs become significantly large, as confirmed by the plot in Fig.4a, which shows that Eq.3 is roughly valid 

for MR < 10% and yields a value of gH = 9 at T = 300 K. On the other hand, Eq.4 is an approximate expression 

of Eq.1 at low magnetic fields and should be valid over a wider field range by avoiding the influence of 

pxx(H) in Eq.3. As plotted in Fig.4b, MR ~ (pxy/po)2 indeed allows us to more reliably derive the gH values 

(Fig.5a). The corresponding ph/pe changes from 1.39 at T = 300 K to 1.24 at T = 2 K (Fig.5b), leading to a 

nearly temperature-independent a with a very small change (< 0.35%) from T = 300 K to T = 2 K (Fig.5b).

In both Kohler's theory2 and the derivations by Luo et al.41, Ht appears as a product that is 

inseparable in the expression for MR = f(Ht) and hence has been proposed as a modified Kohler's 

rule33,36,41. The magnetoresistances in the normal state of La2-xSrxCuO4 and KxFe2-ySe2 single crystals were 

indeed found to follow the scaling behavior of MR = f(Hr) if t ~ T-1 [33] and t ~ T-2 [36] are respectively 

assumed. However, t is not a parameter that can be conveniently obtained from resistivity 

measurements. As discussed in section III.1, MR = f(Ht) does not consider the possible role of the carrier's 

effective mass and t should be replaced with p which can have more than one value, as demonstrated 

in Eq.S10 and Eq.S11 as well as Eq.S15 and Eq.S16. Thus, its applications are limited, particularly for single 

band systems with temperature independent effective mass. It will usually fail in two-band and multi­

band systems. For example, by assuming single relaxation time t for all carriers we can re-write Eq.S15 as 

MR = f(HTTz) with tt = X i(ni/mi)]1/2/ X i(ni/mi)]1/2 . Clearly, tt will not be a constant when 

nt and mt are temperature dependent. That is, Eq.1 extends the Kohler's rule to two-band and multi-band 

systems, as experimentally confirmed by the MR scaling behavior in TaP. These derivations further 

indicate that nT represents the temperature dependence of the carrier density in an anisotropic single­

band system (nT ~ n, see Eq.S10) as well as in two-band and multi-band systems (nT ~ fn(T), see 

Eq.S16) if the densities/mobilities from different bands have the same or similar temperature
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dependence, i.e., nt » nofn(T) and ^ » pi.f^(T). In other cases, the thermal factor nT in Eq.1 contains 

contributions from the temperature dependences of the carrier densities and mobilities of all bands.

III.3. Generality of the extended Kohler's rule

III.3.1. Extended Kohler's rule of normal-state magnetoresistance in superconductor BaFe2(As1-xPx)2

The discussions in the preceding section indicate that Eq. 1, our extended Kohler's rule applied to 

a semimetal also provides a sensible explanation for the alternative scaling rule presented in Eq.3, which 

has been used routinely to account for the normal-state magnetoresistances in several classes of 

superconductors19-21,33-41. Here, we experimentally confirm the applicability of Eq.1 on two 

superconducting BaFe2(As1-xPx)2 crystals with x = 0.25 and 0.5, respectively. Their corresponding 

superconducting transition temperatures are 31 K and 22 K, as revealed by the temperature dependence 

of the zero-field resistivity presented in Fig.S8.

In the over-doped crystal with x = 0.5, we found that the magnetoresistance obeys Kohler's rule 

(Fig.S9c) while the plot of MR versus tan26H does not collapse the data into a single curve (Fig.S9b). 

However, as indicated by the dashed magenta line, the MR versus tan2Oh curves obtained at different 

temperature are indeed linear. The parallel shift in the log-log plot indicates that the prefactor gH in Eq.3 

is temperature dependent (inset of Fig.S9b), similar to that found in TaP (Fig.5a). In the under-doped 

crystal with x = 0.25, we did observe both the violation of Kohler's rule (Fig.6b) and the validity of the 

scaling Eq.3 (Fig.6c). As indicated in Fig.6c and the gH values in its inset, MR versus tan20 curves at T> 50 

K overlap each other while those at T< 45 K show a slight parallel shift, with an increase of gH from ~7 at 

T = 45 K to ~9 at T = 32 K. In contrast, our extended Kohler's rule, Eq.1, works well over the entire 

temperature range as shown in Fig.6d. Similar to gH, the derived Ht (inset of Fig.6d) also shows a significant 

change in its temperature dependence at T » 50 K. At T > 50 K, the temperature dependence of Ht is 

roughly linear. Interestingly, it can also be described by Ht = n + aTe'A/keT (dashed line in the inset of Fig.6d 

with n = 0.7, a = 5.4x10-3, and A = 5.18 meV), analogous to the temperature dependence of the carrier
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density arising from carriers thermally excited over a pseudogap A in cuprates51,52. At T < 45 K, Ht changes

with temperature at a much higher rate. The temperature (~50 K) at which Ht changes its temperature 

sensitivity is coincident with that of a transition into an antiferromagnetic orthorhombic phase35 (inset of 

Fig.S8 and discussion in its caption). While further investigations are needed to account for the 

temperature behavior of Ht at temperatures above and below ~50 K, the results in Fig.6 demonstrate that 

our extended Kohler's rule will work when the scaling following Eq.3 is obeyed. This provides experimental 

support for the conclusion in section III.2 that Eq.1 can be expressed as Eq.3 when the mobilities of the 

carriers are low, which can be inferred from the negligible MRs in BaFe2(As1-xPx)2 (Fig.6, up to 2% at H = 9 

T). Furthermore, the above discussions show that Ht can be an indicator of a temperature induced phase 

transition, if it exhibits a sudden change in the temperature sensitivity.

III.3.2. Extended Kohler's rule of magnetoresistance in semiconductor InSb

Following the discussions in section III.1 and III.2, it can be challenging to account for the 

temperature behavior of Ht derived from our extended Kohler's rule of Eq.1 in semimetals and in the 

normal state of a superconductor. In the former case, one needs to know detailed information of the 

semimetal's electronic bandstructure that can be sample dependent44,45. In the normal state of a 

superconductor, Ht can be governed by more than one mechanism besides the electronic bandstructure, 

such as a pseudogap. In order to unambiguously validate the extended Kohler's rule of Eq.1, we applied 

the scaling to the magnetoresistance of an undoped semiconductor. Kohler's rule is presumed to be 

violated due to the expected exponential temperature dependence of the intrinsic carrier density n- ~ 

T3/2e"Eg/2keT with Eg being the band gap48, providing an exemplar system to showcase our extended Kohler's 

rule Eq.1. Its compensated nature also simplifies the analysis using Eq.S1 and EqS2 of the conventional 

two-band model, as discussed in section III.2. We chose InSb, which is a narrow-gap semiconductor53 with 

resistivities conveniently measurable at around room temperature54. Its temperature dependent band
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gap Eg is available in the literature53, enabling comparisons of the temperature dependence of Ht with that

of the calculated n- and/or of the reported band gap with that derived from Ht. Its large MR54 (up to ~103% 

at T > 250 K) implies high carrier mobility, extending the range of the carrier mobility and enabling the 

validation of Eq.4, from which scaling Eq.3 is deduced at low carrier mobility. More importantly, we found 

a very large (> 102) ratio (^e/^h) of the electron (p«) and hole (p,h) mobility in InSb, where the carrier density 

n- is practically same as that (Hh) obtained from Hall measurements (Fig.S2 and caption). This allows a 

further verification of Ht using the experimentally determined carrier density.

We present typical pXx(H) curves of InSb around room temperature in Fig.7a. We focused on data 

obtained at T > 240 K to avoid interference of quantum magnetoresistance that can occur at lower 

temperatures54 and the contribution to the magnetoresistance by the residual impurity in the nominally 

undoped crystal (Fig.S10 and caption). As expected for a semiconductor, pp increases with decreasing 

temperature (also Fig.S10a). Figure 7c shows that Kohler's rule is violated in InSb. In fact, the curves in the 

Kohler's rule plot are separated from each other even further, compared to those prior to the scaling 

(Fig.7b). This is in contrast to those shown in Fig.2a&2b and in Fig.6a&b for a semimetal (TaP) and for a 

superconductor [BaFe2(As2-xPh] in the normal state, because their zero-field resistivity p has opposite 

temperature dependence to that of the semiconducting InSb. On the other hand, our extended Kohler's 

rule, Eq.1, can collapse all the data into a single curve (Fig.7d). The temperature dependence of the 

derived Ht can be well described theoretically (Fig.S11b), unveiling band gaps comparable to those 

determined from other methods in the literature (inset of Fig.S11b). It is nearly indistinguishable to that 

of the experimental Hall carrier density Hh obtained from the pp(H) curves (Fig.S11a) as well as carrier 

density n- (Fig.S12c) obtained by simultaneous fittings of pXx(H) and pp(H) curves using the two-band 

model (Fig.S12a). These results evidently prove the validity of our extended Kohler's rule Eq.1 in 

semiconducting InSb, further demonstrating its generality. As presented in Fig.7e, a plot of MR versus
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tan20H can also collapse all data into one common curve, which becomes however nonlinear with 

increasing magnetic field. This indicates that MR is not proportional to tan2Oh, i.e., the scaling provided by 

Eq.3 is not valid. The reason is that Eq.3 is deducible from Eq.4 only when the carrier mobility is very low 

so that the magnetoresistance MR is negligible, i.e., pXx(H) » p. On the other hand, Fig.7f shows that the 

general form Eq.4 does work well in InSb over the entire field range, confirming that in a compensated 

two-band system, Eq.4, i.e., MR = gH(pVpo)2, can be derived from the extended Kohler's rule Eq.1, 

regardless of the value of the carrier mobility.

IV. CONCUDING REMARKS

Since it was proposed more than 80 years ago for orbital magnetoresistances in non-magnetic metals, 

Kohler's rule has been widely used to account for the magnetoresistance behavior in materials beyond 

simple metals, including cuprate and iron-based superconductors as well as in topological materials. On 

one hand, it offers a phenomenological understanding of novel magnetoresistance phenomena such as 

the 'turn-on' temperature behavior of the magnetoresistance in topological materials. On the other hand, 

its violations have been often reported, and attributed to temperature-induced phase transitions or other 

unconventional mechanisms. Stimulated by the widely reported violations of Kohler's rule in the newly 

discovered topological semimetals, we tackled the ubiquitous thermal induced changes in the carrier 

density. We used a low carrier density, type-I Weyl semimetal, TaP, to establish an extended Kohler's rule 

(Eq.1), which takes into account the role played by the temperature dependence of the carrier density. 

We demonstrated how the extended Kohler's rule naturally reduces to the original Kohler's rule in 

materials such as metals whose carrier density is so high that the temperature induced change in it is 

experimentally indistinguishable. We applied our extended Kohler's rule to account for other alternative 

scaling forms of magnetoresistance, particularly the widely debated scaling behavior of MR ~ tan20 

(Eq.3) discovered in cuprates and often applied to other superconductors. We showed that Eq.3 can be 

deduced from our extended Kohler's rule Eq.1 when the carrier mobility is very low. We also conducted
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measurements on the normal-state magnetoresistance in superconductor BaFe2(Asi-xPx)2 to demonstrate

that Eq.l is valid when the scaling Eq.3 is observed. We further demonstrated the validation and generality 

of the extended Kohler's rule by investigating the magnetoresistance in a narrow-gap semiconductor, 

InSb, whose carrier density is expected to change strongly with temperature and can be determined both 

theoretically and experimentally.

Our extended Kohler's rule Eq.l offers a fundamental understanding of the violation and validity of 

Kohler's rule in terms of different temperature-response of the thermal factor nT, with nT= 1 denoting the 

original Kohler's rule. The results for TaP and InSb evidently show that nT represents the temperature 

dependence of the carrier density, providing an alternative way to reveal information on the electronic 

bandstructure, e.g., Fermi level (in TaP) and band gap (in InSb). On the other hand, our extended Kohler's 

rule is inconclusive in understanding the temperature dependence of nTin BaFe2(Asi,xPx)2 which is a multi­

band system and where other mechanisms such as the pseudogap may also contribute to the thermally 

induced change in the carrier density. In general, we expect nTto reflect the temperature dependence of 

the carrier density in (1) single band (or one dominant band) systems and (2) in two-band and multi-band 

materials whose carrier density and mobility in all bands have the same or similar temperature 

dependence, as demonstrated by the experimental results in the two-band systems TaP and InSb as well 

as the derived formulae of the compensated two-band systems and also noncompensated two-band and 

multi-band materials. The temperature behavior of the thermal factor nT depends on that of both carrier 

density and mobility, if a system with two or more bands has different temperature dependences for the 

carrier density and mobility in each band. In this case, detailed information on the carrier densities and 

mobilities of all bands are required to calculate nT, making the comparison of theory and experiments 

more challenging. Further work on more materials is needed to ultimately determine the limitations of 

our extended Kohler's rule. We note that other mechanisms can also cause violations of Kohler's rule. This
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work demonstrates that thermal effects on the carrier density and mobility may need to be considered

before new mechanisms are proposed.
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Figure captions

Fig.1. Magnetoresistance of TaP. (a) Magnetic field dependence p»<(H) measured at temperatures of T = 

2 K, and from 5 K to 150 K in intervals of 5 K and from 160 K to 300 K in intervals of 10 K (from red to 

purple). (b), Temperature dependence p»<(T) constructed from pxx(H) in (a) at magnetic fields of H = 0 T, 

0.1 T, 0.2 T, 0.5 T and from 1 T to 9 T in intervals of 1 T (from purple to red). The data were taken from 

sample TP1.

Fig.2. Extended Kohler's rule of the magnetoresistance in TaP (sample TP1). (a) and (d), Magnetic field and 

temperature dependences of the MR derived from data in Fig.1a and 1b, respectively. For clarity, Fig.2a 

presents only partial MR(H) curves derived from the pxx(H) data in Fig.1a. (b) and (e), Kohler's rule plots 

of the data in (a) and (d), respectively. (c) and (f), Extended Kohler's rule plots of the MR curves in (a) and 

(d), respectively. The legends for Fig.2a-2c are on the top right while legends for Fig.2d-2f are on the 

bottom right.

Fig.3. Temperature dependence of n for samples TP1 (red circles) and TP2 (green circles) derived from 

the extended Kohler's rule Eq.1. The dashed, solid and dotted curves are calculated electron densities 

from Eq.2 with energies (£1, £2) (relative to the Fermi level) of the Weyl nodes W1 and W2 of (-53.1 meV, 

19.6 meV), (-46.2 meV, 19.6 meV), and (-40 meV, 24 meV), respectively. To show the temperature 

dependence rather than their absolute values, all the calculated curves are normalized to the values at T 

= 300 K. Schematics of the electronic bandstructures are presented on the top of the panel.

Fig.4. Alternative scalings for the magnetoresistance in TaP (sample TP1) with Eq.3 (a) and Eq.4 (b). The 

values of pxx, po and MRs were taken from the same dataset as those used for the extended Kohler's rule 

in Fig.2a-2c and the corresponding pxy taken from Fig.S7a. The solid pink line in (a) and (b) respectively 

represent MR = gHtan20H and MR = gH(pxy/po)2 with gH = 9. The same colored open symbols are used in both 

panels.
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Fig.5. Parameters derived from scaling magnetoresistances in Fig.4b using Eq.4. (a) Temperature 

dependence of gH, obtained at low magnetic fields from the plot of MR ~ (pVpo)2. (b) The ratio pVp.e of 

the mobilities and the prefactor a in MR = an/e2[H/(npo)]2 at various temperatures, where ph/^e is 

calculated from Eq.5 using the gH values in (a) and a is obtained using a = (pb/^e)/(1+Ph/^e)2.

Fig.6. Scaling behavior of the magnetoresistance of a BaFe2(Asi-xPx)2 crystal with x = 0.25 (sample PL). (a) 

MR(H) curves at various temperatures. (b) Scaling according to the Kohler's rule. The red line represents 

MR ~ (H/po)2. (c) Scaling according to Eq.3. The dashed straight blue line is MR = gHtan26H with gH = 3, 

demonstrating the validity of Eq.3. The value of gH for each temperature is presented in the inset. (d) 

Scaling according to the extended Kohler's rule Eq.1. The red line represents MR ~ [H/(n-po)]2. The inset 

shows the derived n-, where the dotted purple line describes a possible pseudogap temperature behavior 

of n- = no + aTe'D/kaT with no = 0.7, a = 5.4x10-3, and A = 5.18 meV (or A/kB = 60 K). The same colored open 

symbols are used in all panels.

Fig.7. Scaling behavior of the magnetoresistance in an InSb crystal (sample IS). (a) pxx(H) curves at various 

temperatures. (b) MR(H) curves at various temperatures. (c) Kohler's rule plot. (d) Scaling according to 

the extended Kohler's rule Eq.1. (e) and (f) Scaling according to Eq.3 and Eq.4, respectively. The same 

colored open symbols are used in all panels.
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