
 

 

INTRODUCTION 
Characterizing the mechanical properties of soft tissues and 

biomaterials is of intense interest as changes in mechanical properties 
in these materials can be a sign of disease and abnormalities. Many 
biological materials are anisotropic due to the alignment of the fibers in 
their internal structure which increases the difficulty in characterization 
(1, 2). 

Characterization of anisotropic mechanical properties in soft 
materials is challenging due to the difficulties that exist in the nature of 
biological material, applying and measuring the mechanical loads, and 
the need to combine the data from multiple experimental protocols (3). 
Indentation is widely used to determine the local mechanical properties 
of soft materials due to the ability to test samples in their native state 
without harvesting (4, 5). However, a single indentation experiment 
with a symmetric (conical or spherical) probe is not sufficient to 
estimate the anisotropic mechanical properties; the force-displacement 
data need to be combined with other experimental and computational 
techniques such as tracking 3D deformations and inverse finite element 
model fitting (3, 4, 5).  

Here, we develop a machine learning (ML)-based framework to 
predict the local anisotropic mechanical properties of anisotropic soft 
materials using two orthogonal indentation protocols with a novel 
anisotropic indenter. We demonstrate the applicability of the proposed 
framework using the experimental data for chicken breast and develop 
a normalization process and workflow which makes the approach 
applicable for a wide range of anisotropic materials from micro to macro 
scale. 
 
METHODS 

Frozen chicken breasts were defrosted in air until they were able 
to be sliced into reproducible-sized slabs. The samples were cut to an 
average width and length of 25-40 mm and thickness of ~10 mm. 
Typical samples are shown in (Fig. 1a). Indentation experiments were 

performed with an anisotropic indenter made from a curved metal wire 
of major radius 3.5 mm and minor radius 0.5 mm at 0.1 mm/s to a 
maximum depth of 2 mm using an Instron EP1000 with 1N load cell 
(±1mN) (Fig. 1b). The maximum load was set between 0.15 N-0.3 N. 
The direction of fibers was determined visually for each sample. At each 
site, indentations were performed for two directions: 0-degree (the long 
axis of the indenter aligned with the fiber direction) and 90-degree. The 
indentation sites were chosen away from the sample edges to avoid the 
edge effects.  

Finite element (FE) modeling (Abaqus) was used to generate a 
labeled dataset using the indentation simulation for different material 
property sets. The size of the sample is 40 by 30 mm with a thickness 
of 10 mm. Mesh convergence and optimization was performed. The 
elements were modeled as transversely isotropic material with values in 
Table 1. The whole process was automated. 

We then extracted features for our ML model using the resultant 
normalized pair of force-displacement curves for each data point. For 
this purpose, each pair of curves was transformed to a feature vector 
which is constructed as follows: the range of the indentation for each 
pair of curves was split to a certain number of knots (the number of 
knots is a hyper-parameter that can be tuned to improve the performance 
of the model). The indentation value, the force corresponding to 0-
degree alignment, and the force corresponding to 90-degree alignment 
were then extracted at each knot. These values were finally 
concatenated for all knots to construct the feature vector. To train the 
ML model, 80 percent of the dataset was used, and the remaining 20 
percent was used for testing the model after shuffling. Linear regression, 
random forests, and fully connected neural networks were used to 
develop the ML models per aspect ratio, R. A max depth of 40 was used 
to build the random forests model. For the fully connected neural 
network model, we used 3 layers in which the first, second, and third 
layers had 20, 10, and 20 nodes respectively. Our activation function 
was ReLU. 
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RESULTS  
A total of 37 sets of orthogonal indentations were completed on 17 

different chicken samples. The average of the results for each 
indentation angle was then measured, and the results are shown in (Fig. 
1c).  The results of indentation experiments as well as FE simulation 
with two different property sets are shown in Fig. 1d (black: E1 = 20, E2 
= 10, G12 = G23 = 10; blue: E1 = 30, E2 = 5, G12 = 15, G23 = 2.5; ν = 0.47 
for both and moduli in kPa) showing an obvious difference for the 
predicted force-displacement curves in 0-deg and 90-deg for anisotropic 
elastic constants in agreement with the experimental results. 
 

 
Figure 1:  a) chicken breast samples post indentation. b) 

Experimental setup for indentation experiments. c) Average 
indentation results ± 1 SD with a shade of similar color for each 
direction. d) The results of FE simulation for two example 

material property sets, for 0- and 90- degree alignment (see text). 
After validation of the FE model using the Hertz contact theory for 

a spherical indentation into an isotropic material, 3568 pairs of 
orthogonal force-displacement (F-d) curves were simulated for each 
combination of the material properties presented in Table 1. The values 
of the material properties are taken from the literature as representative 
of a broad range of biological tissues (3, 5, 6). The F-d data were 
normalized to remove the scale dependency by dividing the 
displacement by the maximum indentation, 𝑑"#$ and the force values 
by 𝑑"#$

%/' √𝑟 according to the Hertz contact rule where r is the smaller 
radius of the indenter. 
 

Table 1:  Transversely anisotropic material properties and 
indenter geometry values for grid generation with 𝑬𝟏 > 𝑬𝟐 = 𝑬𝟑.  

parameter values 
𝐸1	(𝑘𝑃𝑎) [1, 5, 10, 30, 50, 70, 90, 100] 

𝐸' 	= 	𝐸%	(𝑘𝑃𝑎) [1, 5, 10, 30, 50, 70, 90, 100] 
𝜐1' = 	𝜐1% [0.3, 0.47] 

𝜐'% [0.3, 0.47] 
𝐺1' 	= 	𝐺1%	(𝑘𝑃𝑎) [0.1, 0.5, 1, 5, 10, 20, 30, 40] 

𝐺'% 𝐸'	 (2(1 + 𝜐'%))⁄  
R (large:small indenter radius ratio) [3.25, 5, 7, 10] 

The best overall performance achieved for the linear regression, 
random forests, and fully connected neural networks models are 0.63, 
0.76, and 0.9 respectively. The performance of the ML framework in 
predicting the elastic constants for the training and test set using the 
fully connected neural networks for R=3.25 is presented in Fig. 2. The 
neural networks model shows the highest	𝑅' among all the ML 
techniques with the lowest overfitting meaning that it achieved the best 
performance. Random forests tended to over-fit the training set and the 
linear regression model achieved a very poor performance due to the 
complex pattern that exists between the dependent features and the 
response (elastic constants). 

 
Figure 2:  Predictions on the training and test sets using neural 
networks. 𝑹𝟐= 0.94 for the training set and 𝑹𝟐= 0.9 for the test set. 
DISCUSSION  

For an anisotropic material, indentation with an anisotropic 
indenter along and perpendicular to the preferred mechanical axis (i.e., 
fiber direction) will result in different force-indentation behavior. Here, 
we proposed a novel ML-based methodology to predict the anisotropic 
mechanical properties of biological material using the difference 
between the force-displacement curves resulting from two asymmetric 
orthogonal indentations parallel and perpendicular to the fiber 
directions. The main application of the proposed framework is to 
determine anisotropic properties for biological materials for which 
performing multiple experiments such as biaxial testing and shear 
testing is not straightforward (e.g., living cells, in situ tissues). We built 
a computationally effective model that can determine the anisotropic 
mechanical parameters for a given material in just a few seconds on a 
standard desktop computer by using just one set of two indentation test 
results as input. This result is more significant if we compare it with the 
average time for running a single forward FE simulation for a pair of 
indentations (more than half an hour on a standard computer). Solving 
the inverse problem and finding the properties using the force-
displacement curves using the available techniques requires multiple 
simulations and an optimization protocol e.g., genetic algorithm taking 
many hours. The proposed framework has the potential to be a powerful 
tool for quickly determining the anisotropic properties of biological 
materials with application in disease diagnosis. 
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