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ABSTRACT: Predicting protein binding is a core problem of computational
biophysics. That this objective can be partly achieved with some amount of success
using docking algorithms based on rigid protein models is remarkable, although
going further requires allowing for protein flexibility. However, accurately
capturing the conformational changes upon binding remains an enduring challenge
for docking algorithms. Here, we adapt our Upside folding model, where side
chains are represented as multi-position beads, to explore how flexibility may
impact predictions of protein−protein complexes. Specifically, the Upside model is
used to investigate where backbone flexibility helps, which types of interactions are
important, and what is the impact of coarse graining. These efforts also shed light
on the relative challenges posed by folding and docking. After training the Upside
energy function for docking, the model is competitive with the established all-atom
methods. However, allowing for backbone flexibility during docking is generally detrimental, as the presence of comparatively minor
(3−5 Å) deviations relative to the docked structure has a large negative effect on performance. While this issue appears to be
inherent to current forcefield-guided flexible docking methods, systems involving the co-folding of flexible loops such as antibody−
antigen complexes represent an interesting exception. In this case, binding is improved when backbone flexibility is allowed using the
Upside model.

■ INTRODUCTION
Because of the central role protein−protein interactions play in
many biological processes ranging from cell signaling pathways
to antigen recognition, the characterization and prediction of
these interactions remain an important challenge for computa-
tional biophysics. In this paper, we focus on the conforma-
tional aspect of protein−protein interactions, including tools
and limitations for flexibly docking proteins and the scoring of
docked poses.
Over the past 30 years, the two general approaches to

protein docking have been template-based, which tends to be
the most successful if homologous complexes can be identified,
and free docking, often using fast Fourier transform grid
representations or basis function expansions to accelerate the
generation of docking poses.1,2 The top “human” performer in
the joint round 46 critical assessment of predicted interactions
(CAPRI) and the 13th critical assessment of protein structure
prediction (CASP) experiment for protein docking used a
hybrid pipeline based on the quality of templates but noted
that manual intervention using prior knowledge of interface
residues during modeling and scoring plays an important part
in their success.3,4 The incorporation of evolutionary
information also contributed to the recent improved perform-
ance in CAPRI.5,6

In a comparison of free docking algorithms, the ones that
incorporated protein flexibility were the best performers on the
Docking Benchmark Version 5 (BM5).7 Two methods for

including protein flexibility are normal mode deformations
(e.g., SwarmDock) and molecular dynamics (MD) refinement
(e.g., HADDOCK).7−9 The HADDOCK approach also made
use of bioinformatic predictions of interface residues and
antibody loops to guide docking.7

Two recent forcefield-guided (pseudo-)dynamic protein
docking methods also warrant mention. At one end of the
scale of molecular details and computational resources is the
all-atom explicit solvent replica-exchange MD approach of Pan
et al. run on the Anton supercomputer.10 At the other end is
the CABS CG model, consisting of Cα, Cβ, united side chain
atom placed at the side chain center of mass, and the peptide
bond center, with a knowledge-based statistical potential that
drives replica-exchange Monte Carlo pseudo-dynamics.11,12

AlphaFold 213 and RoseTTAFold14 are recent neural
network AI approaches that combine evolutionary and
structural features for protein structure prediction, with
abilities to predict complexes. AlphaFold 2 achieved leading
performance by a wide margin in the latest CASP14
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experiment, while RoseTTAFold was developed afterward and
comes in second place in a postevaluation of CASP14 targets.
The authors of RoseTTAFold report some surprising success
in predicting the structure of complexes despite its training on
single protein chains, with backbone flexibility in the docking
intrinsically built into the method due to its construction for
protein folding.
The scientific community is exploring protein complex

structure prediction with modified AlphaFold 2 protocols upon
its open source release with great success. One study using
extended multiple sequence alignments obtained an accuracy
of up to ∼60% according to certain metrics in a test where
traditional docking methods achieved only 22% accuracy.15

Another study by the AlphaFold team with an AlphaFold
model trained on multimers achieved 67% accuracy in
predicting at least acceptable-quality heteromeric interfaces.16

As a result of these advances, traditional docking approaches,
including template-based and free docking with statistical or
physical potentials, may soon become obsolete for the sole
purpose of structure prediction. However, the molecular
determinants responsible for a specific physical outcome are
not easily extracted from deep neural networks.17 Furthermore,
RoseTTAFold and AlphaFold 2 rely heavily on coevolutionary
information, which obscures a clear interpretation in terms of
physical interactions. Therefore, physics-based methods to
docking are still important to understand the physical
principles behind protein−protein interactions, such as the
balance of energies required to make accurate structure
prediction. It is particularly important to improve MD
approaches for studying the thermodynamics and kinetics of
protein association and the associated conformational changes.
The CAPRI experiment18 has encouraged the development

of docking algorithms through a blind prediction challenge
open to the scientific community, with 47 rounds held since its
inception. Reflections on recent rounds by CAPRI organizers
and participants have highlighted the continued difficulty of
accounting for conformational changes during docking.3,5,18,19

Round 46 was run jointly between the CAPRI and the CASP
experiment and emphasized that considerable challenges
remain. In this CASP-CAPRI round, only sequence informa-
tion was provided, whereas in regular CAPRI rounds the
unbound structures of the subunits were available. The hard
targets that were poorly predicted did not have high quality
templates for homology modeling and so predictors often had
only subunits with a large root-mean-squared deviation
(RMSD) to their native bound states in their docking pipeline.
It is thus attractive to consider leveraging a method with
protein folding capability to capture the flexibility required to
obtain the bound conformations in such situations.
Here, we also examine the recent information-driven

antibody−antigen (Ab−Ag) docking study by the HADDOCK
developers.20 They compared four different docking algorithms
on Ab−Ag complexes from the BM57 with different levels of
information about the antibody hypervariable loops, also
known as complementarity-determining regions (CDRs), and
epitope to bias the search. Their own algorithm, HADDOCK,
performs the best in part due to the information being
incorporated as a restraining potential during the search as
opposed to a simple filtering mechanism as used in the other
algorithms and due to their flexible refinement procedure.
However, they have mixed performance for predicting the
conformation of loop H3, the most variable antibody loop.

We recently developed the coarse-grained (CG) Upside
model for protein folding simulations and now consider its
suitability for docking prediction.21,22 Upside is a physics-based
MD algorithm that can fold proteins 103 to 104-fold faster than
all-atom methods with comparable accuracy. Upside’s speed
arises from explicitly accounting only for the backbone N, Cα,
and C atoms during the dynamics portion, while during force
calculation it infers the position of amide hydrogens, carbonyl
oxygens, and Cβ atoms and places the multiposition united
atom beads to represent the side chains. Their optimal
positions are obtained via a global free energy calculation of
the possible rotameric combinations and is calculated between
each dynamics step. This calculation helps avoid side chain
friction and kinetic locking, which results in a smoother energy
surface as compared to all-atom representations that can be
slowed by these effects.21

Upside can be slotted into a multitude of docking pipelines
to make use of the extra information, as mentioned earlier in
the context of other docking approaches, and below we discuss
the case of information driven Ab−Ag docking. However, the
primary goal of this paper is to assess the Upside model’s
suitability for predicting protein−protein interactions taking
advantage of its backbone folding capability and rapid side
chain sampling. To transition from folding, we extend Upside
to protein docking by training new binding-specific energy
terms with a maximum likelihood approach using the BM5 set
of non-redundant complexes.7

Our updated model is compared to other docking
algorithms using a subset of the benchmark set according to
the widely used CAPRI experiment criteria.18 We identify the
penalty for coarse graining side chains and examine the impact
of flexibility, including for other forcefield-guided dynamics
methods. We then assess flexibility and the performance
enhancements of extra information in the case of antibody
docking, following the reasonable assumption that Upside may
perform relatively well for this class of complexes due to the
inclusion of backbone dynamics enabling co-folding of the
flexible CDR loops during binding. Finally, we conclude with a
broader discussion of the different challenges faced by protein
docking versus protein folding, and the merit of MD
approaches in light of the recent performance of neural
network methods.

■ METHODS
Data Sets for Training and Testing. The BM5 provided

230 nonredundant binary complexes, of which 175 from the
previous version were used for training and the 55 new
complexes were used for testing.7 The benchmark set spans a
diverse set of enzyme containing Ab−Ag and other types of
complexes. The set also contains both bound and unbound
forms of the subunits at high sequence identity; the unbound
forms are required to compare against other docking
algorithms according to the CAPRI methodology. FRODOCK
v3,2 a rigid body docking algorithm based on spherical
harmonics, was used to generate 1000 decoys per complex
based on the bound conformation of the subunits. FRODOCK
has various energy terms that can be used for decoy generation
and ranking. Here, we used the defaults for the van der Waals,
electrostatics, and SOAP all-atom statistical potential23 but
omitted the desolvation term for efficiency because it would
require expensive computation of electrostatic potential maps.
In addition, Ab−Ag complexes were considered to evaluate

the impact of backbone flexibility, focusing on the flexible
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antibody hypervariable CDR loops that impart specificity.
Ambrosetti et al. recently tested four docking algorithms for
Ab−Ag docking using various levels of external information
about the CDR loops and epitope to bias the results.20 Their
evaluation set was the 16 new Ab−Ag complexes added to the
BM5, and so as to enable comparison we also used these
complexes. Although these complexes are already included in
the general “diverse” set, we docked them anew for two cases
of extra information to take advantage of prior knowledge of
the CDR loops and how a rough estimate of the epitope can be
sourced from the experiment and other predictive tools.
Whereas Ambrosetti et al. used the exact Ab loop residues and
defined their coarse epitope by those residues within 9 Å of the
loops in the native bound structures, for simplicity we defined
the loops as residues involved in native interface contacts (Cα
distances < 10 Å) plus a zone of up to three residues on either
side and same for the coarse epitope. While our definitions and
use of the loop and epitope information are different from
Ambrosetti et al., we think they are sufficiently similar to allow
for a meaningful comparison between the two methods.
For the modeling using only Ab loop information, decoys

were again generated with FRODOCK, except beginning with
up to 20,000 decoys and filtering down to 1000 around the
interface by requiring a minimal number of loop contacts. For
the Ab loop information plus coarse epitope information case,
200,000 decoys were first filtered down with the frodockcon-
straints program in the FRODOCK suite to keep the two
furthest residues of the loops within 55 Å of the two furthest
residues on the coarse epitope. These decoys were further
filtered down to 1000 or less by selecting only those that had
contacts between at least one-third of the residues of the loops
and epitope.
New Energy Terms for Docking. Side chain−side chain

(SC−SC) interactions and burial (desolvation) provide
important contributions to protein−protein interactions and
for this reason deserve special attention. Upside’s basic
potential represents side chains by a single, directional bead
that may be in up to six different states (positions and
orientations) to mimic the diversity in the side chain
rotamers.21 The interaction between beads is given by a
pairwise potential composed of radial and angular terms using
cubic splines that offer flexibility in the form of the potential.
This 2-body SC−SC interaction potential is used to determine
the SC state probabilities, and in conjunction with intrinsic (1-
body) individual χ1 rotamer probabilities, give rise to side
chain free energies. These free energies are solved in a self-
consistent iterative procedure during each MD step using
belief propagation (method of inference on graphical models).
Side chain−backbone hydrogen bonding and side chain−
backbone main atom interactions are combined with the 1-
body rotamer probabilities during the free energy solution. The
forces obtained from these free energies are then back
propagated onto the backbone atoms.
In the present treatment, additional corrective terms to the

basic Upside potential were introduced. An interprotein SC−
SC term, Vinter_rot, copying the functional form of the original
SC−SC term was added but it acts only between SC beads on
different proteins. This was done such that the additional term
would not affect the internal folding behavior of either
proteins. The SC−BB components are excluded in this new
term for simplicity. The cutoff was extended from the 7 Å of
the base rotameric term to 10.5 Å to better account for

possible long-range interactions of electrostatic residues that
are more prevalent at protein interfaces.24

Upside also has a many-body environment term to capture
the effects of burial and desolvation. With this term, the
number of side chain beads are counted within a hemisphere
above the Cβ, weighted by their residue types. This count is
then coupled to a residue-specific energy composed of cubic
splines. A new interprotein environment term, Vinter_env, is
added, again copying most of the functional form of the
original implementation. However, this new interfacial term
requires at least one bead from the opposite protein within the
hemisphere for its activation.
The new potential is then given by V = Vorig +

Vinter_rot(r,θ1,θ2) + Vinter_env(N;w), where r is the distance
between beads, θ1,θ2 are the angles between the bead
orientation vectors and the displacement vector between the
beads, and N is the bead count weighted the residue type
weights w. We use the Upside folding forcefield v1.5 for our
Vorig, which was developed with more diverse training
ensembles and longer training cycles for better results than
the first Upside version.25

Training of the Potential. To train and optimize the
potential for protein docking, we initially used our original
contrastive divergence machine learning methodology that we
previously developed for protein folding studies.22 This
approach was based on populations (free energies) and
minimizing the difference between the approximate distribu-
tion of states generated by Upside and the “true” distribution of
crystal structures found through experiments. However, it
proved challenging to achieve the thermodynamic sampling
required for this method to correct for a myriad possible
misbound poses.
Therefore, we used a simpler objective of minimizing the

native poses’ potential energies compared to the decoy poses
and therefore maximize their Boltzmann probability. In this
new strategy, we consider the average potential energy after
short simulations for a set of i, ..., N protein complexes starting
in k, ..., m poses
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Taking the gradient of this expression with respect to the
parameters α yields
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where the derivatives are averaged over j frames, s is a
temperature scale factor for numerical stability (s = 100 in
practice), and c > 5 is a condition to exclude well-performing
complexes. Such complexes were excluded from contributing
to the parameter update if their native pose was in the top five
of all poses because the information content of this pair largely
had been extracted. The parameters are then updated for the
subsequent training cycle according to

r
F

t t
t

1α α
α

= − ∂
∂+

where t denotes the current cycle. In practice, the training set is
divided into five minibatches that are cycled, and each training
cycle involves 500 Upside time units ≈5−50 ns of simulation to
relax the poses of each complex up to 1000 residues. The frame
output interval is 2 Upside time units. For larger complexes, the
simulation time is scaled down by the number of residues

according to ( )t t t t/
nsim sim int

1
25 int

1000
3/2

res
′ = × for performance

reasons.
Cubic spline parameters for the new protein−protein terms

are initialized to low values, α < 1. We trained on the top 100
decoys of the bound subunit forms ranked according to Upside
energy from an initial relaxation run. We did not find much
benefit in conducting multiple training rounds, where decoys
were reordered according to their new energies and a new top
100 selected for training.
Testing and Evaluation Using the Optimized Poten-

tial. We ran with the two cases of restraints applied to the
backbones, a semirigid case and a fully flexible case. In the
semirigid case, Cα atoms were kept within ∼3 Å of their initial
positions with spherical flat-bottom quadratic potentials. The
flexible case involves no restraints. Run duration was relatively
short, 1000 Upside time units for nres ≤ 1000 and scaled down
for larger complexes. The first half of each trajectory was
discarded as equilibration, and centroid structures and their
respective potential energies were selected as representatives
for CAPRI criteria evaluation and ranking.
We also checked whether there is a performance benefit with

full side chains. The side chains of the Upside structures from
the semirigid restraint case are rebuilt using the SCWRL4
algorithm, which minimizes the energy from an atomic

interaction model in conjunction with observed backbone-
dependent rotamer frequencies to find the most likely rotamer
states.26 With the full side chains rebuilt, the poses are rescored
with SOAP-PP,23 an atomistic statistical potential used in the
consensus scoring method of a former top CAPRI experiment
group’s docking server6 and as a component in the scoring
model of FRODOCK v3.2

For the Ab−Ag antibody set, we examined docking with
both fully flexible and semirigid loops. For the flexible case,
antibody residues involved in the native interface along with up
to five residues on either side were kept flexible, in essence
allowing the CDR loop residues to remain flexible, while the
rest of the Ab fold was restrained with flat-bottom potentials.
The semirigid case used the same restraints as the semirigid
case in the full diverse set (see above). Antigens were held
within ∼2 Å Cα-RMSD with harmonic restraints and able to
move as a rigid body up to 10 Å of their starting positions.
To mimic Ambrosetti et al.’s “Scheme 2”, whereby a

restraining potential between the CDR loops and a coarsely
defined epitope is used to bias the results, we apply Cβ sigmoid
contact potentials of −0.5kBT Upside energy units between all
combinations of antibody interface residues and epitope
residues. A note about Upside energy units is warranted: the
correspondence to physical temperature is not well established
for the new training, so we simply provide thermal energies in
units of “kBT”. Unlike the Ambiguous Information Restraints
used by the HADDOCK algorithm in Ambrosetti et al. that
offers a level of smoothness and uniformity, our approach is
simply pairwise additive.
Trajectories for each decoy pose are were clustered

according to interfacial root mean squared deviation
(IRMSD) for up to three clusters of frames within 1 Å
IRMSD of the minimum energy structure of each cluster. The
minimum energy structures of all clusters for all poses were
sorted according to their energies and the top 100 are selected
for further CAPRI Criteria evaluation.

■ RESULTS
Training and Testing of the Potential. Upside’s

forcefield parameters were originally trained for folding on a
set of single domain proteins.22 A preliminary analysis of
protein−protein docking performance with this energy
function yielded many misbound poses that were energetically
favored over the native pose. In this work, we first sought to
correct for these deficiencies by training new energy terms for
protein docking using the BM5 set of non-redundant
complexes.7 These new terms are similar in form to existing
ones but only apply at the interface. We next explored whether

Figure 1. Cumulative counts of native pose rank for the new forcefield trained for docking compared to original forcefield trained for folding. The
plots are read as the number of complexes in the given set that has the native pose at a certain rank or better. (a) Training set performance, 175
complexes total. (b) Test set performance, 55 complexes total.
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more drastic changes to the single side chain bead model were
required, that is, if we were limited by our coarse graining, and,
finally, explore the differences between protein folding and
docking that gave rise to our differing performance on
capturing the two tasks.
We followed a force field training protocol of maximizing the

probability of the native pose (see the Methods section). The
objective function decreased after training the new energy
terms, leveling off after 15 cycles (Figure S1). This training
procedure significantly improved our ability to distinguish the
native from the decoy poses (Figure 1). The cumulative counts
of finding the native pose at a higher rank (1 being the highest)

increased compared to the decoys for all complexes after
relaxing the poses with Upside simulations with spherical flat-
bottom restraints to keep each partner in its starting
conformation. For the training set (Figure 1a), the original
forcefield predicted the native pose ranking in the top 10 for
only about 8 of the 175 complexes (4.6%), whereas the force
field trained for docking did so for about 42 complexes (24%),
a substantial improvement (dashed lines in figure). The
improvement was smaller for the test set, 1.8 → 12.7% (Figure
1b). We later discuss the possible role of overfitting in the
section “Determining Features That Contribute to Perform-
ance”.

Figure 2. Changes in side chain (SC) interaction terms upon training for binding. (a) Radial part of pairwise SC−SC potentials. The “Docking FF”
plots are of the original potential along with the corrective contribution of the trained protein−protein potential. (b) Many body environmental
potential. The “original FF” and “docking FF” plots are of the separate contributions of the original and new docking terms.

Figure 3. CAPRI criteria evaluation. (a) Performance of four docking algorithms (adapted with permission from ref 7); note that the plots are
duplicated for comparison purposes with Upside results in (b,c). Their assessment was done on the same set of complexes as our test set. Notation:
“TX”, native pose found within the top X predictions. (b) Upside results using bound forms of the subunits. From left to right are FRODOCK:
ranking of FRODOCK poses according to the FRODOCK scores; Upside semirigid: results using Upside relaxed poses using spherical flat-bottom
restraints for the backbone (with added side chains) ranked according to the Upside energy function; SOAP-PP: results for representative semirigid
Upside structures scored according to the SOAP-PP atomic statistical potential; Upside flexible: results for complexes allowing for full backbone
movement. (c) Upside results using unbound forms of the subunits, with same types of subplots as in panel (b).
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The contributing factors to the improved scoring are hinted
at by the representative plots of the new residue specific
potentials (Figures 2, S2a). Pairwise charge−charge inter-
actions became more pronounced, particularly the repulsive
ones (e.g., Lys−Lys), with a signal extending beyond the
original 7 Å cutoff distance (Figure 2a). Surprisingly, some
hydrophobic interactions (e.g., Leu−Leu) are among the most
strengthened. Although the original training procedure utilized
ample information for hydrophobic side chain interactions
(e.g., hydrophobic cores), here at the interface, they play a
different role in the balance of energies because backbone
hydrogen bonding does not play as large a role in binding as it
does in folding.
The environmental term potentials (Figure 2b) are more

difficult to parse. This is due in part to our burial number (a
measure of desolvation) being determined by a summation of
the burial weights for the different residues located within the r
= 7 Å hemisphere of the buried residue. The burial weights of
the new potentials do not appear to have a strong correlation
with the size of the neighboring residues. However, the new
potential allows some charged residues to have some favorable
burial, as shown for Asp at high burial numbers shown in
Figure 2b, which supports the formation interfaces with
charged residues. Another complicating factor for interpreta-
tion of the environmental potential is that a compensation
occurs with the pairwise side chain potential.
Evaluation according to CAPRI Criteria. We inves-

tigated various protocols using different combinations of
subunit starting structures (either bound or unbound
conformations) and restraints (either backbone fixed or
free). These options were assessed with the full CAPRI
criteria where the quality level of a prediction is judged
according to three metrics: IRMSD, ligand root mean squared
deviation (LRMSD), fraction of native contacts ( fnat).

18,27

Given imperfections in our scoring, there may be other poses
acceptably close to native-like that score better than the native
pose. An evaluation with CAPRI criteria is more generous than
just noting the cumulative native ranks because decoys that are
native-like according to CARPI and score well are considered
successes.
Figure 3 shows CAPRI criteria performance of our newly

trained docking forcefield in comparison with other docking
algorithms featured in Vreven et al.7 Figure 3a is adapted from
ref 7 in order to compare the benefit of using the restrained
bound structure (“semirigid”) as compared to the unrestrained
situation (“flexible”). The vertical bars indicate how many
complexes have predicted native-like structures of a particular
quality at different threshold levels of ranking/scoring, with T1
being the top prediction and T100 meaning that they are
found in the top 100 complexes.
Figure 3b highlights the results from the Upside pipeline

starting from the bound forms of the subunits from the
Dockground testing set. From left to right, there are the native-
like poses from the initial FRODOCK rigid body docking
ranked using their FRODOCK scores compared to the other
decoys. Next are the rankings of representative structures from
Upside after a minor (<3 Å) relaxation of the FRODOCK
starting poses using semirigid backbone restraints. These
structures are first scored using the Upside energy function.
Side chains are then added with SCWRL426 (also required for
f nat calculation) and rescored with the all-atom statistical
potential SOAP-PP.23 This rescoring with complete atomistic
side chains examines Upside’s loss of accuracy due to the use of

a single (albeit multi-position) bead for each side chain.
Finally, there are the results for representative structures from
Upside simulations without backbone restraints.
When starting with the bound forms of the two partners

including the native side chain rotamers, the FRODOCK
results have a high success rate with a majority of the targets
having high quality native-like predictions (green bar). This
success is due in large part to the backbones and interfacial side
chains being fixed a priori in their bound conformations and
rotamers, and FRODOCK can find a well-matched,
interdigitated interface between the native positions of the
binding partners. Once processed into Upside, the atomistic
positions of the side chains are lost. This situation could occur
with low resolution structures, for which the side chains
positions are not as well determined as the backbone (e.g., in
nuclear magnetic resonance spectroscopy or cryo-electron
microscopy-based structure determination). Nevertheless, Up-
side still performs well on ranking native-like poses compared
to the other docking algorithms of Vreven et al.7 (Figures 2.3a)
when the Upside backbones are kept semirigid (note however,
that the predictions of the other algorithms use the unbound
forms of the subunits, while Upside is using the bound forms.
Therefore, this comparison is not completely valid; the proper
test is conducted below).
The SOAP-PP results are calculated using Upside’s

optimized structures, followed by full side chain addition by
SCRWL426 and then scored using the SOAP-PP energy
function. The results with full side chains are notably better
only for predicting the native-like pose as the lowest energy
structure (T1 performance: 5.4→ 12.7%). For being in the top
5+ lowest energy predictions, however, there is minimal
improvement. This suggests that for most situations, there is
only a very mild decrease in performance when using Upside’s
single side chain bead at the scoring stage once the backbone is
determined. However, the limitations of SCWRL4 and SOAP-
PP must be considered. The χ1+2 accuracy of SCWRL4 was
80% on a test set of proteins when compared to the crystal
positions of side chains with high electron density, and less for
higher χ angles (e.g. 47% χ3 accuracy for Arg).

26 Furthermore,
in SOAP-PP’s original paper, it only had 40% success in
placing native-like predictions in the top 10 on a prior version
of the BM5 when the subunit backbones and side chains were
in their exact native positions (i.e., it had the best possible
starting structures to score).23 Thus, there is still room to
benefit from a more accurate model for the side chains.
Another major finding is the drop in quality and ranking of

native-like structures that occurs when the proteins are allowed
to be fully flexible during the Upside simulations. The subunits
drift away from their native bound forms, indicating that there
is insufficient accuracy in the folding component of the Upside
forcefield which cannot be compensated for by the new
interprotein energy terms. We characterize this issue further in
subsequent sections and investigate to what extent it may be
general for all forcefield-guided dynamics methods.
Although there is movement away from the native state

when starting from the bound forms, at this point we were
anticipating that there would be movement towards the native
state when starting with the unbound forms, which is the more
relevant scenario that we discuss next.
The FRODOCK unbound subunit results are much worse

compared to the bound form results since the tight fit at the
native interface is lost due to backbone and side chain
conformational differences (Figure 3c). FRODOCK still
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performs better than the other docking algorithms, possibly
since it incorporates SOAP-PP in its scoring and may have
other advancements since it is a newer algorithm.
Upside’s decrease in performance due to coarse-graining of

the side chains would be acceptable if it improved on the
FRODOCK results of the unbound forms by compensating
with its ability to sample backbone conformations and side
chain rotamers to find a more native-like pose. However,
Upside and its conformational sampling exhibit poorer
performance, even under semirigid restraints (backbones
held in unbound conformation), with both fewer native-like
poses ranked highly and more lower quality structures. SOAP-
PP is able to improve performance for some of the T1-T5
predictions for the semirigid Upside structures rebuilt with full
side chains. Although there is still some backbone deviation,
we expect the semirigid case to emphasize the role of the side
chains and new interprotein energy terms. The results indicate
that Upside’s ability to repack the CG side chain beads did not
yield an overall scoring advantage over FRODOCK. However,
Upside with semirigid restraints achieves comparable perform-
ance to many of the docking methods in ref 7, which we view
as a partial success considering Upside’s disadvantage due to
coarse-graining of the side chains.
Most importantly, our predicted structures have larger

deviations from the native bound state when Upside is allowed
full backbone flexibility, that is, even the starting poses with the
subunits in their unbound conformations are overall more
native-like as compared to those generated when Upside is
allowed to optimize the backbone. In the section “Energetic
Costs of Retaining Native-Like Subunits”, we will return to this
issue and characterize the energetic compensation required to
shift the subunits from their unbound to bound backbone
conformations in order to establish the magnitude of forcefield
improvements needed.
The best performing methods examined by Vreven et al.7 are

SwarmDock and HADDOCK. SwarmDock performs the best
in terms of the percentage of acceptable quality native-like
structures or better ranked in the top 10, whereas HADDOCK
has the most high-quality native-like structures. SwarmDock’s
success likely is partly due to its approach to backbone
flexibility via normal mode deformation, allowing it to better
address the more difficult targets that have a greater change
between bound and unbound forms of the subunits.
SwarmDock was the only successful method for the sole
“easy” target, having a ΔIRMSD < 1 Å between bound and
unbound forms. The authors hypothesize that this is due to
SwarmDock being able to widen the narrow opening of the
receptor binding site. In SwarmDock, the normal mode
coefficients are updated in the search procedure in the
direction of minimum energy, but the energy evaluations
include only the interaction energy between the two binding
partners and not their internal normal mode energy.8 In effect,
the range of allowed protein flexibility is somewhat artificial, as
it is highly constrained by the selection of the normal modes
with lowest frequency. With this strategy, SwarmDock is not
penalized by backbone strain during search and scoring,
whereas the backbone energy is an integral part of the physical
forcefield that guides the dynamical motions in fully flexible
models such as Upside. With such physical models, structural
deformations are governed by the intramolecular potential
energy and occurs spontaneously during the sampling, and
their influence is implicitly included in scoring poses.

With HADDOCK, Vreven et al.7 utilized bioinformatics
predictions of the interfaces and knowledge of antibody CDR
loops to bias the docking results to make use of HADDOCK’s
“ambiguous information restraints”. HADDOCK’s high-quality
native-like structures may be a result of this extra information,
in combination with HADDOCK’s all-atom explicit solvent
flexible refinement and an all-atom energy function. In the
antibody section of this paper, we also test Upside’s
performance with additional information to enable a more
valid comparison to HADDOCK.
The latest studies for SwarmDock and HADDOCK

reassessed their performance for a subset of the docking
benchmark set with enhancements to their procedures (cross-
docking diversification of the starting conformations for
SwarmDock, use of higher levels of informational restraints
for HADDOCK). These new studies show that there is still
room for improvement in flexible docking for both normal
mode and MD methods.20,28

Backbone Flexibility. To quantify the impact of backbone
flexibility on docking predictions and separate it from any
deficiencies in our search process, we ran a series of the best
case simulations starting from the native pose (Figure 4). All
complexes were run for the same time as the CAPRI evaluation
runs and each point is the average of three runs calculated
using the centroid structure taken from the second half of

Figure 4. Impact of Upside backbone flexibility’s on IRMSD. Left:
subunit RMSD to their native bound forms. Right: RMSD of the
interfaces for each individual subunit. These subunit RMSDs are the
Euclidean norm of both subunits (see text). The y-axis is the IRMSD
of the complex. Top row: no restraints applied. Middle row: harmonic
restraints applied to one of the subunits to keep its backbone within
∼1 Å of the native bound state (data from both subunits are shown).
Bottom row: restraints separately applied to both subunits. The points
are colored according to change in accessible surface area, ΔASA.
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trajectories. The left and right columns present two different
measures of backbone flexibility, either the total subunit
RMSD to the native bound state (left) or the RMSD of the
individual subunit interface (right). The plotted subunit
RMSD is the Euclidean norm of both subunit’s RMSDs

x( RMSD RMSD )2 1
2

2
2= + . There is a stronger correlation

between subunit conformations and the IRMSD of the
complex when considering the RMSDs at each individual
subunit interface compared to whole subunit RMSDs, as
expected.
When no backbone restraints are applied to the subunits

(Figure 4, top row), we see that the subunit RMSDs mostly lie
between 2 and 5 Å as are the IRMSD values. Conformations
that are 2−5 Å RMSD from native conformation are generally
considered a success for protein folding prediction, so Upside’s
ability to maintain that RMSD for the subunit conformations
could be considered laudable for a de novo coarse grained
model. However, a substantial number of subunit RMSDs are
above 5 Å. For those complexes, medium quality docking
results are unachievable, as the requirements are IRMSD < 2 Å
or LRMSD < 5 Å (given fnat < 0.5). The net effect of
inaccuracies for both subunits largely explains why allowing
backbone flexibility often is detrimental.
The simulations are improved to 1.5−4 Å subunit RMSDs

and IRMSD after applying harmonic restraints to either
subunit to keep its RMSD to ∼1 Å of the original bound
conformation (middle row). Furthermore, when both subunits
are restrained, the IRMSD remains largely below 3 Å. This
positive performance for the doubly restrained situation
emphasizes Upside’s ability to accurately hold the native pose
using the new interprotein terms (if given the native subunit
conformations). For the complexes, where both subunits are
restrained yet have a large IRMSD, there are significant rigid
body-like translocations of the subunits from the native bound
pose. For these examples, our interprotein interaction terms
are inadequate. The high IRMSD points correspond to low

ΔASA complexes and we further examine the impact of
interfacial area in a later section.
Another depiction of the effect of subunit backbone

restraints is provided by 2D heat maps (Figure S3). Here,
the densities are shifted to more native-like values of IRMSD
and fnat for most cases with subunit backbone restraints. It is
again reassuring that for most complexes the interprotein
interactions are strong enough to maintain a low IRMSD.

Energetic Costs of Retaining Native-like Subunits.
The previous section examined the increase in individual
subunit RMSDs when the proteins are in the complexes. We
now focus on the role of backbone flexibility on individual,
isolated subunits to examine the magnitude of free energy
required to shift the backbones into their native bound
conformations, which are a necessity for obtaining good
docking predictions. We again ran the subunits for the same
base duration as the CAPRI evaluation runs, starting from their
native bound conformations. Figure 5a shows representative
plots of the potentials of mean force (PMFs) generated from
Gaussian kernel density estimates of the RMSDs to the bound
native state taken from the second half of the trajectories. The
two lines in each plot are for each partner run separately and
plotted from the lowest to the highest observed RMSDs. For
subunits with RMSD ≥ 2 Å, we observe free energies of up to
∼4kBT at their lower RMSD bounds (e.g., 1QFW in Figure
5a). Conformations with a lower RMSD would have an even
higher free energy cost, indicating that a substantial improve-
ment of the folding portion of an Upside’s energy function
would be needed to consistently obtain structures with a
RMSD smaller than 2 Å.
We next examined the relationship between the individual

RMSDs of the separated subunits and the IRMSDs of the
unrestrained simulations of the complexes, as shown in Figure
4. The results in Figure 5b show a classification of those
simulated complexes, with yellow dots corresponding to
complexes with one or both subunits are non-native-like
while red dots corresponding to complexes where both

Figure 5. Energy needed to adopt the native subunit conformation. (a) PMFs from RMSD distributions referenced to the native bound state to
visualize the energy required to adopt bound native-like conformations. (b) Classification plot of IRMSDs from unrestrained simulations starting
from the native complex using the following threshold criterion on the RMSD distributions of the PMFs: complexes are considered to have native-
like subunits when 50% of both the individual subunit RMSD distributions are below 3 Å (red dots), otherwise they are considered non-native
subunits (yellow dots). The x-axis spread is artificial jitter to aid in the distinguishing of the points.
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partners remain native-like. Complexes are considered native-
like when both the partners have 50% of their RMSD
distribution below 3 Å when individually simulated. Native-like
subunits tend to have native-like IRMSDs, but there is large
overlap between the classes. The existence of low IRMSD, but
non-native-like subunits indicate that regions of the proteins
away from the binding interface experience the bulk of the
conformational difference. Conversely, a high IRMSD with
native-like subunits is a situation where the binding partners
experience rigid-body displacement, indicating a deficiency in
the interprotein terms of our energy function for those
complexes.
Backbone Flexibility and Other MD Methods. To

determine the generality of Upside’s decrease in performance
when backbone movement is allowed, we examined two other
recent forcefield-guided methods, the CABS coarse grain
model11,12,29 and a computationally heavy all-atom explicit
solvent approach.10 Both approaches let the dynamics guide
the association of the protein partners, unlike the search
process used in the Upside docking pipeline to start with up to
1000 pre-docked poses. The docking problem can be broken
into three parts, the generation of many possibly bound poses
followed by their refinement and scoring. In this work, we
focus on the last two steps for Upside as they are sufficient to
address whether our model is capable of identifying the true
native pose and to what degree does backbone flexibility help
in this identification.
The CABS CG model is similar to Upside but has slightly

lower level detail, for example, it includes angular dependance
of SC−SC interactions but single side chain states.11,12,29

Hence, it offers an independent insight into the potential
benefits of backbone flexibility for docking. The CABS model
uses replica exchange with Monte Carlo moves that capture
transitions on physical timescales, which they call pseudo-
dynamics. In the CABS docking study, 62 complexes are free
docked, which as mentioned earlier means that the binding
partners begin separated at different initial positions for each
replica and associate over the course of the simulation. The
partners begin in their unbound native conformations and they
applied restraints individually to each partner, with strengths
such that the receptor fluctuates only around 1 Å and the
ligand between 2 and 12 Å.29 This setup is overall much more
flexible than the Upside unbound subunit semirigid case for the
CAPRI evaluations, and the Upside case utilizes FRODOCK
pre-docked starting states.
Figure 6 shows a comparison of the Upside unbound subunit

semirigid results and the CABS results taken from Table 1 of
Kurcinski et al. for the 43 complexes common to both test sets.

The results are mixed when considering the lowest IRMSD
observed from all poses (Figure 6a), with CABS performing
better for some complexes and the Upside semirigid situation
better for others. However, Upside semirigid is overall better
than CABS for the lowest IRMSD in the top 10 ranked poses
(Figure 6b), indicated by points below the diagonal. Thus, in
the context of scoring native-like poses highly, backbone
flexibility is a detriment to the CABS CG model as well when
compared to the Upside semirigid results. “Simple” rigid-body
docking, for example, using FRODOCK would have been
better, considering that FRODOCK was used for the starting
states of Upside for these targets and Upside tends to do worse
than FRODOCK as shown previously. This test should have
been ideally conducted as a “CABS semirigid” versus “CABS
flexible” setup to remove influence from differences in force
fields, but we think that Upside as a CG model is a suitable
stand-in for the semirigid scenario. We also recognize that the
CABS study had a focus on whether low IRMSD states could
be sampled at all even if they were not among the top 10
predictions, and the authors acknowledge that scoring
improvements for their model are required. However, our
comparison highlights how much backbone flexibility can be a
detriment when sampling and scoring are coupled.
To see whether the downside of allowing for backbone

flexibility is limited to CG models and their inherent
inaccuracies, we examined the MD approach of Pan et al.10

These all-atom explicit solvent simulations use computing
power of Anton 2 with enhanced sampling termed “tempered
binding”. They observed reversible binding to the native state
for five out of six of the complexes (the sixth irreversibly bound
into a native-like pose). The native state was the most
populated for each, with the IRMSDs of the most stable poses
for all six complexes being below 1.3 Å. Upside does not have
the same complexes as their set but none of the top 10 poses
for any complex were at that level of accuracy.
However, a few issues are worth noting. The chosen

complexes in this study bind in a very rigid manner, with an
IRMSD smaller than 2 Å between the unbound and bound
forms of the subunits. Second, the simulations from each
individual subunit are started in their bound conformation. In
addition, most notably, they apply backbone torsional
restraints centered at the bound native structures for both
subunits for four complexes, while the remaining two
complexes have such restraints applied to one subunit. As we
have seen from the Upside results, even slight backbone
deviations can be very detrimental to the accuracy of the
simulation and adding some restraints can substantially
improve performance. Pan et al. note that the restraints help
prevent conformational degradation at the (hundreds of)
microsecond timescales they need to simulate in order to
observe reversible association. This observation is consistent
with our results. While an in-depth assessment of the effects of
torsional restraints was not provided, the association rates of
barnase−barstar with and without restraints was also examined
with conventional MD. Interestingly, the predicted association
rate was about five times slower without restraints than with
restraints compared to experiment. In the end, they also
conclude that detailed forcefields will have difficulty modeling
systems for which the unbound subunit conformations differ
significantly from the bound states when torsional corrections
cannot be relied upon.10

Determining Features That Contribute to Perform-
ance. We conducted an analysis of which factors contribute to

Figure 6. Comparison of Upside with CABS docking for complexes
common to both studies. (a) Overall best IRMSD out of all poses. (b)
Best IRMSD among the top 10 ranked poses.
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Upside’s performance beginning with a feature reflecting
backbone flexibility, the conformational change at the interface
between bound and unbound forms of the subunits (Figure 7).
The difficulty categories are easy: IRMSD < 1.5 Å and fnon‑nat <
0.40; difficult: I-RMSD > 2.2 Å; medium: all others.7 The
performance labels for each complex (e.g., native-like in top 10,
poor performers) are taken from the previous CAPRI criteria
evaluation from the respective cases of starting conformation
and whether backbone flexibility was allowed during the Upside
simulations.
The bound semirigid case shown in Figure 7 again

represents a best-case scenario, since backbone conformational
search is not allowed, thereby focusing on the scoring
component of Upside’s energy function. In this situation, we
find that the performance is not very different between the
three difficulty classes. This finding is partly expected since we
trained on the bound complexes but also it also indicates that
Upside does not have a harder time learning the properties of
the interfaces for the different difficulty classes. In the bound
flexible situation, performance decreases across the board due
to issues with our forcefields, as previously discussed.
In the unbound and semirigid case, we have fewer native-like

(top) performers in large part because the subunit backbones
are being held in their unbound conformations. A contributing
factor to this lack of native-like poses comes from the rigid-
body docking stage of our pipeline where FRODOCK is
unable to find the general binding interface due to a loss of
lock and key fit of the surfaces. Moreover, even if the general
native binding interface is found, the unbound conformation
subunit backbone RMSD can be a detriment to the IRMSD
and CAPRI score. We also find that the performance correlates
with the difficulty class of the complexes as expected. When we
allow for backbone flexibility in the unbound flexible scenario,

we lose some performance on the easy complexes but gain for
the difficult complexes, implying that there exist some cases
where our energy function can drive the backbones in the
correct direction.
We next examine the effects of interface composition and

size under the bound semirigid scenario in order to focus on
the interactions rather than the conformation search. In Figure
8a, we compare performance based on the amount of pairwise
interactions between apolar, polar, and charged residues. The
values for each type of pair interaction are normalized
according to the maximum of the fraction at the interface
between the good and poor performers to make it easier to
compare the performance (i.e., the greatest value in each
subplot is 1.0).
There are significant differences between the distributions of

apolar−apolar and apolar−charged interactions for good and
poor performers at 95% confidence level according to the
Kolmogorov−Smirnov test. In Figure 8c, we see several
significant differences in the interface compositions between
the training set and the test set. Notably, apolar−charged
interactions tend to be more numerous for the test set and
hence, Upside had fewer examples of high apolar−charged
interfaces to learn from during training. This may explain why
apolar−charged interactions tend to be greater for the poor
performing complexes. This suggests that Upside’s docking
forcefield may be slightly improved in the future by reducing
the size of the test set from the current ∼24% of the entire set
to ∼10%, considering that we have relatively few training
examples for our number of parameters (albeit multiplied by
the number of decoy poses). The training set should be
divided further into k-fold cross-validation to find the best
stopping point of training to prevent overfitting. Greater
improvements may require substantially expanding the training

Figure 7. Upside’s performance with difficulty class of complexes. Each subplot corresponds to the subunit starting conformation and backbone
flexibility scenarios of the CAPRI evaluation in Figure 3. Easy: IRMSD < 1.5 Å and f non‑nat < 0.40, difficult: I-RMSD > 2.2 Å, and medium: all
others.7 The y-axes indicate the fraction of complexes in a difficulty class that are good (native-like poses scored in the top 10) or poor performing
with Upside.
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set, which we detail in the Discussion section. Irrespective of
whether these suggestions would produce significant improve-
ments, for comparison purposes, we chose the current size and
membership of the test set to correspond to that of Vreven et
al.7

Complexes with larger interfaces tend to perform better
(Figure 8b). This presumably is because larger interfaces use
more interactions in calculating the energy, and hence, benefit
from an averaging across the interface. In addition, the
interface size distribution may be broader with the native
interface being more likely to be larger and more favorable.
Vreven et al.7 were able to find a separating line of

performance of the docking algorithms that they tested based
on interface area combined with experimental binding energy
(Kd) of the complexes, whereas each individual feature
(interfacial area, Kd) was only weakly predictive of success. It
suggests that binding energy (Kd), which is easier to obtain
experimentally than the structure, could be used in a filter to
select complexes for which we can be more confident in our
predictions. The training and test sets have about the same
median interface size and lower bounds (Figure 8d), so
performance gains from a rearrangement in the train-test split
and k-fold cross-validation may not be as influenced by
interface size.

We next tested whether we could find a linear combination
of features that separate the performance classes. We combined
the pair interaction type features and the interface size feature
(Figure 8) for the entire set of complexes and performed linear
discriminant analysis (LDA) (Figure S4a). We used the labels
of good (native-like in top 10) and poor Upside performance as
the classes to separate in this analysis. LDA returns an output
one dimension less than the number of labels/classes.
However, this one-dimensional treatment does a poor job of
separating the performance classes. Therefore, we increased
the number of labels with information about whether the
complex belonged to the training or test set for a total of four
labels ([train, test] × [good, poor]), since earlier we noticed
that some differences in the distribution of features correspond
with differences in their distribution in the training and test
sets (Figure S4b). However, even this three-dimensional LDA
lacks a strong separating surface between the performance
classes. Considering that Upside’s energy function contains
non-linear terms (e.g., the environment energy) and details
such as distance and orientation between side chain beads,
classification may not be feasible with a linear method and with
the simple features that we have chosen. Additionally, because
the training procedure simultaneously optimizes thousands of
parameters for all the residue types, efforts aimed at

Figure 8. Upside’s performance and types of interactions and interface size. (a) Comparison of the fraction of the types of pairwise interactions
between good and poorly performing complexes. A: apolar, P: polar, and C: charged. The values for each type of pair interaction are normalized to
the difference between the good and poor performers. (b) Comparison of the interface size between the good and poor performers. (c)
Comparison of the fraction of different types of pairwise interactions between the training and test sets. (d) Comparison of the interface size
between the training and test sets. For panels a and c, the difference between the pairs of distributions is quantified using p values.
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pinpointing a small set of features controlling the performance
would be unlikely to succeed.
Information-Driven Antibody−Antigen Docking. In

some cases, additional sources of information about a complex
exist beyond the structure and sequence of the unbound forms.
For example, the use of experimental information for
challenging complexes is recognized by CAPRI organizers,
and they have provided small angle X-ray scattering and cross
linking/mass spectrometry data in the round 46 CAPRI-CASP
experiment for one such complex.3 For Ab−Ag docking, the
CDR loops can be identified based on the sequence of the
conserved protein framework around them, and one could use
hydrogen exchange or mutational scanning experiments to
glean information about the location of the epitope.30 It is
illustrative to examine the extent that limitations of docking
algorithms can be overcome by the incorporation of this extra
information.
We follow Ambrosetti et al.’s comparative study20 that

presents the performance of individual complexes as opposed
to the aggregate of all complexes, to obtain finer grained
insights on the impact of both flexibility and auxiliary
information on prediction accuracy. Results for the informa-
tion-driven Ab−Ag docking are presented in Figure 9
according to CAPRI criteria with the same ranking of native-
like structures as used in Figure 3. They found that their
HADDOCK algorithm, which involves torsional and explicit
solvent flexible refinement stages, does not perform well with
biasing information solely from the antibody HV loops (HV-
Surf), with several complexes lacking any native-like pose in
the top 100 ranks (Figure 9a). However, the biasing of
interactions between HV loops along with a coarse definition
of epitope residues produces substantial gains (Figure 9a,
column heading HVEpi 9).
Likewise, Upside lacks native-like predictions for many

complexes when just filtering for poses in contact with the Ab
loops (Figure 9b, HV filtered). However, as with HADDOCK,
Upside shows improvement when augmented with coarse

epitope information (HVcoarse Epi) for filtering to include
poses where both loops and epitope are in contact and biasing
the interactions between them during the Upside runs.
The inclusion of loop flexibility has mixed outcomes for

Upside. First, a comparison of the HV Filtered runs between
the flexible and semi-rigid loop cases finds that some
complexes either worsen their ranking or quality of their
poses when backbone flexibility is allowed (e.g., 3G6D, 3HI6,
3LW5, 4FQI, and 4G6M) although others gain in ranking or
quality (e.g., 2VXT, 4DN4, 3HMX, and 3MXW). When
epitope information is used (e.g., HVcoarse Epi), flexibility
generally produces better predictions (e.g., 3G6D, 3V6Z,
3HI6, and 4G6J). Here, the contact biasing potentials
compensate for inaccuracies in the folding and protein−
protein energy terms. Ambrosetti et al. similarly observed that
biasing with higher levels of information was required to help
with packing the antibody H3 loops during their flexible
refinement stage. Improvement is required in the underlying
models and forcefields of both Upside and HADDOCK for
unaided flexible docking.
This analysis indicates that Upside and HADDOCK perform

similar but have different strengths, appreciating that their
filtering and biasing schemes are not identical. When epitope
information is used and loops are flexible, Upside does better
for some medium difficulty complexes (3V6Z, 3HI6, 3EO1).
This improvement demonstrates the benefit of Upside’s greater
backbone flexibility. However, HADDOCK produces high-
quality predictions for some of the more rigid complexes
(4G6M, 3MXW, 3EOA), whereas Upside is unable to produce
any high-quality structures as noted before with the general
data set in Figure 3.
As each CDR loop is known to favor certain clusters of

canonical conformations,31,32 we also compare our predicted
cluster assignments of the loops to those of the native antigen
bound structures. This analysis is based on the Upside
structures obtained from the loops flexible CAPRI evaluation
scenario of the preceding discussion. The PyIgClassify server31

Figure 9. Ab−Ag information-driven docking predictions. (a) CAPRI criteria docking performance of HADDOCK using different levels of
informational restraints (adapted with permission from ref 20). (b) Upside results with either flexible Ab loops or loops held semirigid. HV filtered
uses loop contact information to filter poses but with no biasing potential during Upside runs to best correspond to HADDOCK’s HVsurf
protocol. Upside’s HVcoarse Epi protocol uses both loop and coarsely defined epitope information to filter poses, and pairwise sigmoidal contact
potentials to bias interactions during Upside runs. Upside’s HVcoarse Epi roughly corresponds to HADDOCK’s HVEpi 9. Both HADDOCK
and Upside results use the unbound forms of the subunits as inputs for docking.
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was used to assign CDR loop structures to known clusters
according to the loop’s backbone dihedral angles. Considering
that the most structurally diverse CDR H3 loop poses a
challenge for most contemporary computational tools,33 we are
particularly motivated to assess how Upside’s predictions fare.
Cluster assignments were done for all 16 antibody

complexes, and with the four different scenarios for each
complex using either: (1) the known bound forms of the loops;
(2) the unbound forms of the loops, which were the starting
structures of the Upside relaxation simulations; (3) best scoring
native-like structure from Upside using only CDR loop
information to assist the docking; (4) best scoring native-like
structure from Upside using a bias between the loops and the
coarse epitope to assist the docking. Figure 10 summarizes

CDR loop prediction accuracy, where the bars count the
number of loops that have been assigned to a wrong, non-
native cluster. The 3G6D complex, where no bars are visible,
indicates that unbound and Upside structures for that complex
have the same cluster assignments as the native conformations
for all six CDRs. At the other end, the 3EO1 complex has three
or more CDRs that are not predicted to be in the native
cluster.
More importantly, the loops in the Upside simulations

largely remain in their original clusters irrespective of the
information level used to assist the docking. Buried portions
likely encounter steric hindrance and interactions that trap
them in their starting conformation. Literature suggests that
the CDR loops (particularly H3) span a spectrum of
flexibility,34,35 and even among our test set, examples exist of
complexes with loops that undergo conformational change
between unbound and bound states, so there is motivation to
improve the conformational sampling of the more flexible
regions. Figure S5 further illustrates this point with visual-
izations of the loop structures for the two complexes (3EO1,
3HI6) that have the largest discrepancy between our predicted
loop structure cluster assignments and the native assignments.

During the Upside simulations, the loops generally do not
change their backbone RMSD by more than ∼3 Å from the
starting structures. Although the internal loop conformations
are retained, the loops still undergo center-of-mass shifts and
tilts when referenced to the rest of the entire antibody (Figure
S6) and so the binding surface changes and explains we can
obtain better CAPRI predictions in the flexible loop under the
epitope bias scenario.
For comparison, Ambrosetti et al. investigated the RMSD of

H3 loop of their predicted models after flexible refinement
with alignment of the framework residues to the antigen bound
structure (i.e., overall shifts in position and orientation were
included in their RMSDs). The accuracy tended to get worse
by up to ∼1.5 Å for the easy complexes that already start with
low H3 RMSD in the unbound forms. They saw an
improvement by up to 1.25 Å in some of their predictions
for medium difficulty complexes when coarse epitope
information was used, but they also saw a degradation for
some others. Overall, HADDOCK has mixed performance
with CDR loop prediction.
We investigated whether Upside is capable of sampling

native-like H1 loop conformations by performing temperature
replica exchange MD (TREMD) simulations of 3EO1. In the
runs initiated from the unbound conformation in the absence
of antigen, we found that the H1 loop can sample lower RMSD
states compared to those previously found during the docking
(Figure 11). The previous docking simulations were done at a

relatively low and constant temperature. This suggests that to
sample the native conformation, we likely require enhanced
sampling procedures.
In conclusion, the docking algorithms, including Upside, do a

relatively poor job of predicting antibody binding with CDR
loop information only. Biasing interactions using a coarse
definition of the epitope greatly improves the results, with
Upside’s greater efficiency in flexible backbone sampling as
compared HADDOCK enabling better predictions of medium
difficulty complexes. While center-of-mass position and
orientation of the loops shift during this flexible sampling
relative to the framework residues and thus the binding surface
changes, the internal structures of the loops do not change
much over the course of Upside simulations in contact with
antigen. Enhanced sampling or a conformational selection
scheme (e.g., cross-docking different pre-sampled unbound
conformations) should improve the prediction of the internal
CDR loop structures.

■ DISCUSSION
Ideally, models representing proteins should capture all aspects
of their behavior. However, depending on the objectives and
computational resources, one often needs to make approx-
imations. Identifying which kinds of approximations perform

Figure 10. Number of incorrect CDR loop cluster assignments
compared to the native assignment by PyIgClassify. The blue bars
represent CDR loops in the unbound conformation, which are the
starting points for the Upside relaxation simulations. The orange and
green bars are for the best scoring native-like Upside prediction under
the two different protocols. The orange bars are for the loop-
information only case where the antigen was simply filtered to be in
contact with the CDR loops. The green bars are for the case with bias
between the loops and the coarsely defined epitope. The red triangles
red ▼ designate cases where structures are missing for the no bias
case because no native pose scored within the top 100 poses. The
near zero bars are visual aids to indicate data exists for those cases and
they have zero incorrect assignments.

Figure 11. H1 CDR loop RMSD (in Å) from TREMD of 3EO1
antibody separated from antigen. The dashed line indicates the
RMSD (Å) from the best scoring docking model.
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well for a given problem can provide new insight. We explored
these issues using our fast MD algorithm, Upside, which makes
the approximations of representing each side chain by a
multiposition bead and a lack of explicit solvent yet performs
reasonably well for simulating protein folding and dynam-
ics.21,22 By adapting Upside to protein−protein docking, our
hope was that its backbone sampling capabilities would
improve the prediction of complexes that undergo conforma-
tional change upon binding. The reality turned out to be more
complicated.
We found that the addition of specific interprotein energy

terms considerably improved our ability to score structures.
Combinations of pairwise polar and charge side chain
interactions and the burial of hydrophilic side chains were
underrepresented in the original training set used for protein
folding. Therefore, it is not surprising that the original
forcefield designed for folding could be improved for
protein−protein docking.
Even with the single bead representation of the side chains,

Upside’s performance was comparable to traditional full side
chain methods when the subunit structures were restrained in
their unbound conformations. Only in a few cases where the
subunits did not change conformation by more than a few Å in
the Upside simulations did the addition of side chains with
SCWRL426 and rescoring with SOAP-PP23 produce a
significant benefit. The CABS CG method, which also lacks
explicit side chains, was also able to find some low IRMSD
predictions in the top 10 scored predictions,29 which when
considered with our results indicates that moderate success in
docking can be achieved without explicit side chains. However,
we should note that SCWRL4 and SOAP-PP do not give a
perfect reconstruction and scoring of side chains, and it is still
likely that explicit side chains are required for high accuracy
predictions.
Backbone Flexiblity. Surprisingly, inclusion of backbone

flexibility can act both as an advantage and a disadvantage for
docking. The accuracy of the approach generally decreased
when full backbone flexibility was allowed even starting from
the native pose and subunit conformations. This outcome is
often due to the lowest energy structure of the individual
subunits not being within 3 Å of their bound structures (“Both
Subunits Free” panels in Figure 4). The energy is a function of
both the folding and binding energy terms; the PMF-
determined energy needed to shift the subunit structures to
their bound conformations was frequently too large for the
binding terms alone to overcome (e.g., >4kBT). This steep
penalty for what would seem to be a relatively minor error
prevented Upside from being successful in flexible docking. To
improve our procedure would require better training and/or
more sophisticated forcefield terms that contribute to folding
as well as binding.
The decrease in performance with backbone flexibility is

likely endemic to most current docking methods. For example,
we found that rigid docking performs better than the large
conformational search of the CABS CG method.29 Even with
the extensive sampling enabled by Anton 2, the classical all-
atom MD simulations of Pan et al. benefitted from imposing
backbone constraints based on the bound conformation of the
subunits.10 In the case of antibody docking, biased simulations
using information on antibody CDR loops and epitopes could
overcome forcefield inaccuracies. With this extra information,
allowing for flexible docking with Upside produced better

results which were more competitive than HADDOCK’s for
medium difficulty complexes.20

For Ab−Ag docking, we noticed that the CDR loop
conformations did not change very much after complex
formation due to high energy barriers. This observation
suggests that conformational selection before the initial contact
plays a role, as opposed to induced fit. This is supported by the
presence of more native-like loops in the antibody-only
simulations. In this scenario, the natural fluctuations of the
unbound antibody access the native bound conformation of
the CDR loops, and this state binds the antigen. However,
attempting to improve the loop conformation after the initial
contact of the unbound forms of the antibody and antigen (as
done in the Upside docking pipeline) may not succeed because
of the aforementioned issue of steric hindrance experienced by
the loops. The literature is divided on the relative weight of
conformational selection and induced fit in antibody bind-
ing.36,37 Better antibody loop predictions will require either
fully flexible free docking that would allow more range of
motion for the CDR loops prior to contact between the
antibody and antigen or rigid-body cross-docking of antibodies
with different pre-sampled loop conformations followed by
refinement.

Recent Machine Learning Methods. RoseTTAFold and
AlphaFold 2-derived protocols and models have achieved great
strides in protein−protein docking.13,15,16 In particular,
AlphaFold-Multimer obtained 67% accuracy in predicting at
least acceptable quality heteromeric interfaces as the top 1
prediction,16 which is several times higher than any of the
traditional methods in this paper (≤15%). Traditional
methods have clearly been eclipsed for applications where
only docking performance is concerned. However, deep neural
network approaches with their many interconnected layers
suffer from issues of interpretability,17 and their reliance on
coevolutionary information detracts from a physical under-
standing of the balance of interactions required accurate
structure prediction.
Results from quantitative saturation scanning experiments

challenged views on conservative mutations and conservation
across species: there is a great deal more mutational plasticity
than previously believed that preserves the structure and
function.38 Physics-based approaches might be able to predict
such a diversity, whereas deep neural network methods that
rely on sequence alignments may implicitly incorporate other
biological constraints on a sequence space and not be
generalizable to engineered systems outside of the biological
context. Additionally, Alphafold-Multimer has difficulty pre-
dicting antibody complexes,16 and physics-based methods may
be more generalizable for this application as well.
Furthermore, our results that point to conformational

selection for antibody loops illustrates the utility of MD
tools to investigate mechanistic questions about protein
binding and folding, as opposed to the recent neural network
approaches. In AlphaFold 2 and RoseTTAFold, backbone
sterics, especially of the peptide bond, are not explicitly
represented in the primary stages of the models such that when
coupled to distance information of specific residue pairs, the
models are able to unnaturally search for the optimal positions
of residues over long distances while the backbone “clips” or
“ghosts” through itself.13,14 Therefore, these neural network
methods are unlikely to be able to differentiate between
induced fit and conformational selection binding mechanisms.
With MD simulations, backbone sterics and non-specific
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interactions hinder the search but provide an avenue to predict
thermodynamics, kinetics, and pathways.
Folding versus Binding. Because Upside was designed for

protein folding rather than docking, it is worth discussing the
distinct challenges faced by these two problems. With regard to
folding, proteins seemingly have a huge number of possible
conformations and yet many manage to fold within seconds.39

As Rose notes, there are strong organizational constraints
imposed by backbone sterics and hydrogen bonding.40,41 A
100-residue domain thus may have only ∼10 helices and
strands, which could be arranged in about 103 fundamental
folds. Larger proteins consist of such domains so that
conformational diversity may grow manageably with length.
To find the correct structure using folding simulations, the

energy terms must be balanced and considerable searching is
required. In practice, imperfections in force fields can readily
result in kinetic trapping. For example, Upside is able to fold
some proteins comprising less than 100 residues, in part due to
a careful consideration of backbone potential terms and
training against misfolded structures. However, the method is
not perfect because some misfolded states are stable and some
native states are not the global energy minimum. This issue
becomes much more problematic with longer sequences.
In contrast, the search problem is substantially simpler for

rigid-body protein docking. According to Janin’s model of
barnase−barstar binding, about 70,000 poses are needed to
find the native well if states are discretized every 14° with
respect to each of the angles about their center-to-center
vector.42 For larger complexes, the number of required poses
likely is proportional to the square of the surface area, and the
area grows as (molecular weight) 0.7.43 Hence, the number of
decoys grows manageably and it is possible to generate and
score the 105−106 poses needed to sample the docking space.
Nevertheless, when docking the unbound subunit structures

and presented with a docked set of 105−106 poses, the
traditional approaches only have a success rate of finding a
native-like pose in the top 10 predictions (i.e., 10 predictions
are needed for one to be native-like) for only ∼30% of the
complexes. Improvement likely necessitates generating docking
poses with subunits that have structures closer to their true
bound conformations. Relaxation of the complexes with Upside
results in 3−4 Å Cα RMSD for the subunits at best; this
accuracy can be considered good for folding prediction, but it
still produces only medium quality docking poses and the
overall docking accuracy is not much improved. Generating
high accuracy binding poses requires having subunit structures
that are very close to their bound structures and effectively, the
challenge of high accuracy binding prediction becomes a
challenge in high accuracy structure refinement.
In the case of Upside, increasing accuracy may entail joint

training of folding and interprotein energy terms. Another
major hindrance for binding compared to folding is that there
are many more structures to train on for folding. For example,
RoseTTAFold was trained on ∼23,000 non-redundant clusters
of protein chains.14 In the present study, we were constrained
to 175 complexes for training from the BM5,7 and some
overfitting to the training set is likely. A major contributor to
the limitation of this dataset is that both bound and unbound
structures of the complex’s constituents are required. To
overcome this issue and presumably improve our docking
performance, we could create a larger training data set of a few
thousand binding pairs taken from the AlphaFold Multimer
work16 using only the bound structures, while reserving the

complexes with both bound and unbound structures available
for testing. We can even leverage AlphaFold 2’s accuracy and
reporting of uncertainty in its predictions13 to generate
unbound structures to further expand the size of our data set.
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