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Graded mesh inserts that spatially enhance the thermal conductivity of phase change materials (PCM)
are optimized to minimize the time averaged thermal resistance between the heat source and the melt-
front, to improve heat dissipation rates for electronics. Conventionally, the low thermal conductivities
of PCM are enhanced by incorporating spatially-homogeneous porous fillers with high thermal conduc-
tivities. We investigate the relative advantages of porous fillers that spatially distribute enhancements
to thermal conductivity. An arbitrary polynomial form of the spatial variation is optimized based on a
numerical solution to the heat diffusion equation, to enhance heat dissipation rates in one-dimensional
spherical and cylindrical coordinates. The most desirable spatial distributions are non-linear, have higher
thermal conductivity near to the hot-spot, and a positive second derivative with respect to the radial
coordinate (i.e. concave-up). We demonstrate enhancements of heat dissipation rates for constant tem-
perature hot-spots, or reductions in temperature for constant power hot-spots, by factors of 900% and
300% in spherical and cylindrical coordinates, relative to those achieved by uniform fillers of equivalent
average volume fractions. Recent advances in additive manufacturing make metal meshes with spatially

graded volume fraction realizable.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Improved computational performance of electronic devices,
such as laptop computers and cellular telephones, demands more
power while their size continues to shrink [3-6]. The result is
increased volumetric heat generation rates, which challenge con-
ventional thermal management strategies [3,4,7]. Active (e.g., fan-
blown air, thermoelectric coolers) and passive (e.g., heat sinks,
heat pipes) cooling techniques have been widely investigated
[4,8-10].

Passive thermal management consumes less power and is more
reliable than active thermal management with fans and pumps [3].
Therefore, for small devices such as cellular telephones and tablets,
passive thermal management is more desirable. Nevertheless, pas-
sive thermal management has limitations. For instance, gravity-
driven heat pipes operate best when the device is in specific con-
figurations, and passive heat sinks rely on natural convection with
low heat transfer coefficients.

Phase change materials (PCM) that operate passively and ab-
sorb transient spikes in the heat load by the latent heat of the
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phase change process are attractive alternatives to heat pipes and
heat sinks. The transient temperature rise is affected by the com-
position of the PCM, the configuration of the thermal management
systems, and the size and heat load of the hot-spots [3,7,11]. PCM,
such as octadecane and eicosane, are commonly selected due to
their phase change temperatures (30 °C to 40 °C), which maintain
a comfortable device temperature for the users [3,7]. Nevertheless,
due to the low thermal conductivity of such PCM, the thermal re-
sistance of getting heat from the hot-spot to the melt-front is a
major limitation to the heat dissipation rate. As a result heat from
hot-spots may diffuse through unintended pathways instead of di-
rectly into PCM. To mitigate this effect, heat sinks have been em-
bedded into PCM to minimize thermal resistance [11,12]. The draw-
back is that these embedded parts displace the latent heat benefit
of PCM and add substantial weight to smaller devices.

An alternative approach to increase heat dissipation rates of
PCM is through the addition of low volume fraction, high ther-
mal conductivity, porous materials. The effective thermal conduc-
tivity of PCM can be enhanced by incorporating either dispersed
fillers [13-18] or high thermal conductivity porous structures (e.g.,
metal foams or meshes) [18-22]. Because both fillers and porous
structures are spatially homogeneous, the thermal conductivity of
the PCM is uniformly-enhanced (UE).
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Nomenclature

% average volume fraction

Ak thermal conductivity difference (W m’ K-1)

Ar To —1j (M)

AT temperature difference (K)

G adjustable coefficient of ith degree in Eq. (3)

Gp fluid specific heat (J kg=! K1)

g the acceleration of gravity (m s2)

k thermal conductivity (W m~! K-1)

L length (m)

n the degree of the polynomial in Eq. (3)

q constant heat source power (W)

r r position in spherical coordinates (m)

Rmax ratio of radii, ro/r;

Rmin Rmin = Rmax — 1

T inner radius of the spherical system (m)

'm melting front radial position in spherical coordi-
nates (m)

To outer radius of the spherical system (m)

Ra Rayleigh number

Ste Stefan number

T temperature (K)

t time (s)

T, temperature at the inner sphere (K)

To temperature at the outer sphere (K)

v volume fraction

Greek Symbols

a thermal diffusivity (m? s—1)

B fluid thermal expansion coefficient (K1)

Ak dimensionless thermal conductivity difference
Ap dimensionless radial position step

AT dimensionless time step

K dimensionless thermal conductivity

A volumetric latent heat of fusion (] m—3)

A latent heat of fusion (J kg=1)

w fluid viscosity (Pa s)

AO dimensionless temperature difference

€ enhancement ratio of SE to UE PCM composites

P dimensionless radial position in cylindrical coordi-
nates

Of fluid density (kg m—3)

Psp.m dimensionless melting front position in spherical
coordinates

Osp dimensionless radial position in spherical coordi-
nates

T dimensionless time

6 dimensionless temperature

Subscripts

ch characteristic

[ conduction

cv conservation of volume fraction

int integration

m melting front

max maximum

Mesh metal mesh

min minimum

PCM phase change material

r 1-D cylindrical coordinates

S surface

SE spatial enhancement

sp 1-D spherical coordinates

UE uniform enhancement

Recent advancements in additive manufacturing (AM) provide
a feasible way to fabricate complex metal architectures, such
as graded lattices and meshes. By inserting graded meshes into
PCM, the metal volume fraction can be spatially-varied, and thus
the thermal conductivity becomes spatially-enhanced (SE) [23-26].
Such meshes make it possible to concentrate the enhancement
near to the heat source, thus minimizing the thermal resistance
for heat to reach the melt front [26]. For equivalent average vol-
ume fractions of mesh, a linear spatial variation can improve the
heat dissipation rates by 12% in planar and 140% in cylindrical con-
figurations [26]. Spatially-enhanced diffusivities with other math-
ematical forms, such as power law functions, have been studied
for mathematically similar sedimentary mass transport applica-
tions [26-33], but not thermal management.

While prior studies focused on linear and cylindrical geome-
tries, none have considered spatially-heterogeneous thermal con-
ductivity on moving boundary problems in spherical geometries.
To improve upon state of the art PCM based thermal management
designs, we herein utilize a generalized polynomial function to de-
termine the optimal radial thermal conductivity distributions in
spherical and cylindrical PCM/mesh systems.

2. Methodology
2.1. The Stefan problem in spherical coordinates

A Stefan problem, defined by a phase change process with a
moving melt-front, can be solved using the quasi-steady state ap-
proximation when the Stefan number Ste < 0.1 [26,31]. A small
Stefan number indicates that the sensible heat is small compared
to the latent heat and a steady state temperature distribution accu-
rately describes the liquid region [31]. Melting in porous media is
a complex process and thus there are additional limitations to our
analysis [34-37]. Initially, the heat transfer mechanism is governed
by conduction alone but it eventually transitions to a mixed regime
of conduction and natural convection driven by buoyancy of the
heated liquid nearest to the source. Our analysis considers the con-
duction only regime where the transition to natural convection is
specified by a characteristic timescale [35] that has been esti-
mated by Krishnan et al. [37]. For spherical systems [35,38] with a
specified hot-spot size, we have identified the maximum outer ra-
dius of the PCM for several hot-spot temperatures (in Appendix A).
For example, a hot-spot with 100 pm radius elevated by 10 K will
be conduction dominated for the entire melt process when the sur-
rounding PCM sphere has a radius smaller than 5 mm. Our analy-
sis also assumes local thermal equilibrium between the solid mesh
and the PCM. Local thermal equilibrium can be sought for a given
ratio of mesh and PCM thermal conductivities by varying and char-
acteristic lengthscales of the mesh struts and unit cell volumes
[39-42].

Hot-spots drive radial temperature gradients in the surrounding
media, and thus the radial direction is considered in the spheri-
cal heat diffusion equation [43] (a parallel derivation for cylindrical
coordinates can be found in Appendix E). The heat diffusion equa-
tion under the quasi-steady state approximation with temperature
independent properties in a one dimensional spherical system is

;;[ﬂk(r)ai()rr’t)} =0, (1)

where r is the radial coordinate, k(r) is the spatially-varied thermal
conductivity of a PCM/mesh composite, T(r, t) is the temperature
of the composite, and t is time. Schematics of PCM/Mesh compos-
ites with spatially-enhanced thermal conductivity k(r) are shown
in Fig. 1. The hot-spot at a temperature T (r, t) = Ts is surrounded
by a spherical PCM/Mesh shell with inner and outer radii r; and r,.
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Fig. 1. Schematic of a hemi-spherical PCM/Mesh composite for thermal management. For the hot-spot to be seen clearly, the mesh structure is only shown in the cross-
section view. (a) An infrared image of a mobile phone micro processor (i.e., chip fRef. [1]) shows a localized hot-spot (e.g., hot-spots in Si microprocessors can be hundreds
of microns in size [2]). (b) The heat generated at the hot-spot is absorbed by the phase change process in the PCM/Mesh composite. (c) The cross-sectional view of the
hemi-spherical PCM/Mesh composite depicts a spatial variation in volume fraction of metal mesh, which results in spatially-enhanced thermal conductivity k(r).

The time dependent position of the melt-front relative to the hot-
spot (or heat source) is ry(t), and the temperature at this position
is the melting temperature T (ry (t), t) = Tn.

Typical heat sources can be approximated with either constant
heat flux, or constant temperature boundary conditions at r =r;.
Spatial enhancement of thermal conductivity can similarly improve
performance in both cases. For the constant temperature boundary
condition spatial enhancement of thermal conductivity increases
the heat transfer rate, while for the constant heat flux bound-
ary condition spatial enhancements of thermal conductivity reduce
the temporally averaged temperature of the heat source (see the
detailed derivation in Appendix F). Parallel heat spreading in the
chip will influence the hot spot size and temperature but has not
been considered here. The following analysis focuses on the con-
stant temperature condition but enhancement factors referring to
increased heat transfer rate, can be interpreted as reduced temper-
ature in the condition of constant heat flux.

With constant temperature boundary conditions of T(rj,t) =
T; and T(rm(t),t) =Ty, the temperature of the composite for
1 < 1 < rm(t) can be determined. The temperature in the solid
PCM beyond ry(t) (for a melt process) is assumed to be at Ty, so
no additional sensible heat is required [26,31].

The energy balance at the melt-front is

aT(r, t) _ Adrm(t)

—kN—5; rmtm(©) dt

(2)

For small mesh volume fractions the latent heat of fusion A is as-
sumed to be independent of r [26].

Our analysis of the spatially enhanced PCM is nondimension-
alized to the uniformly-enhanced PCM. Upon nondimensionalizing
the coordinate psp = (r —r;)/(ro —1j), the dimensionless thermal
conductivity is defined as x (osp) = k(psp)/kyg and formulated as
a polynomial

K (psp) = Cupsp™ + Cn—lpsp"q +...+Cpp+G
i=n
= ZCI'IOSPI, (3)
i=0

where C; are the adjustable coefficients of the ith degree terms
that will be optimized, and n is the degree of the polynomial.
Although mathematical forms of dimensionless thermal diffusiv-
ity or thermal conductivity, such as power law and linear func-

tions, were previously introduced [26-28,30,33], this polynomial
form adds degrees of freedom to generate more complex spatial-
variations of thermal conductivity.

2.2. Nondimensionalized solution for a spatially-enhanced thermal
conductivity in 1-D spherical coordinates

We nondimensionalize Eq. (1) by substitution of psp, «(psp),
the ratio of bounding radii Rmax = o/r;, and dimensionless tem-
perature 0 (psp, Tsp) = [T(psp, Top) — Tm]/(TS — Tm). The dimension-
less time tsp = t/tspmax is defined based upon the time required
to melt all of the PCM in the case of uniformly-enhanced thermal
conductivity tspmax = A2 (2R3, — 3RZ . + 1)/[6kyg(Ts — Tim)] (see
Appendix B for the derivation of tspmax). The resulting nondimen-
sional radial heat diffusion equation is,

1 0
(1 + pspRiin)? 90sp

20 ,
[(1 + pSPRmin)ZK (psp)(,Osstp):I =0,

0 psp
(4)
where Ry, = Rmax — 1.

The energy balance from Eq. (2) is nondimensionalized using
the same parameters
00 (0sp, Tsp)

8 ’OSP Psp=Psp.m (Tsp)

— 6ngnin dpSP-m (TSP) (5)
2R§nax - 3Rgnax + 1 drSP '

—K (Psp)

where pspm(Tsp) is the dimensionless melt-front position in spher-
ical coordinates. As Rmax ~ 1, the term in parentheses of Eq. (5) ap-
proaches 2 and is the same as Eq. (6) from Ref. [26] for 1-D Carte-
sian coordinates, indicating that a thin spherical shell (r, — r; < 17)
behaves like a planar solid.

An analytical solution to Eq. (4), after substitution of x(psp)
from Eq. (3), does not exist. Thus, pspm is numerically solved from
Egs. (4) and (5). Hereby the numerical model is solved using a 1-D,
finite volume scheme, and an explicit (or forward) Euler method.
The numerical details are in Appendix C. The maximum of pgspm is
1, and Tspmax = Tsp(Pspm = 1). Because the same volume of PCM is
melted, Tspmax < 1 signifies that the SE thermal conductivity dis-
tribution dissipates heat faster than the UE thermal conductivity
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Table 1

Properties and parameters used to determine x(psp).

PCM/Mesh kpc(W/m-K) Kntesh(W/m-K) Diesh kye(W/m-K) K min K max
Octadecane/Al mesh  0.15 [44] 237 [43] 0.02 4.89 0.03 9.72
distribution. The reciprocal of Tspmax is defined as the heat dissi- Table 2
pation rate enhancement ratio of SE to UE PCM composites, Coefficients C; for the parabolic k(ps,) profiles shown in Fig. 2.
1 Rmax Concave Co G Cy
€sp = Tspmax (6) 1.00001  down 148178 0.0 —1.44532
' 1.00001  up 2.9271 57813  2.8907
In the case of the constant power hot-spot, the same €5, would 101 down 242745 0.0 -2.39100
represent a reduced time averaged hot-spot temperature for SE rel- 101 up 94821  -18.8914  9.4457
ative to UE meshes.
2.3. Parameterization of thermal conductivity in a polynomial form 10 \ TR =1.00001. concave-down
_ OF max ‘ 4
To constrain the form of «(psp) constraints that equate the av- g — St " Ny 020202 s R ax=1-00001, concave-up
erage volume fraction of metal mesh in UE and SE cases are now = 7t \ ——R___ =101, concave-down ]
. . .. () \ max
applied. The local volume fraction and thermal conductivity are = 6l " R =01 EonEaED ]
related by an effective medium model. Because the metal mesh n = N max g
and PCM are bi-continuous phases, the Parallel Model is appropri- % 0 S AN '
ate [26,45], and k(psp) = kpem + AK Vytesh (0sp) Where kpcy is the £ o 4 ™ 1
thermal conductivity of the PCM, Ak = kpesh — kpcm 1S the thermal Re) 8 3t.. ~ .
conductivity difference, kyesn, is the thermal conductivity of the 8 C af = \
metal mesh, and vy, is the volume fraction of the metal mesh. Qe
The dimensionless thermal conductivity (x (psp) = k(psp)/kuyg) is g 1M TSRS
defined as o 0 ' ! !
0 0.2 0.4 0.6 0.8 1

kpem + Ak Vpesh (0sp)
kue '

(7)

K (psp) =

The average mesh volume fraction of the SE distribution, Ve =
[fr" 47172 Vptesn (Psp) dr]/[4n(r(3, —13)/3], is equated to the vol-

T
ume fraction of the UE distribution vy.
With this constrained vyesy(0sp) the coefficients C; that define

k(psp) from Eq. (3) are related as

1=n
Y CaiG=1. (8)
=0

where C,; (see the detailed derivation in Appendix D) take the
form

o (Rmax—l)z+
R i+3 i+2 i+1

2(Rmax — 1) 1 ]B(Rmax—l) ©)

Rr3nax -1

The coefficients C; are also constrained such that vy (osp) > 0,
because a volume fraction cannot be negative. When vyesp, (0sp) =
0 the dimensionless thermal conductivity at that position is
K (psp) = kpenv/kug. As an upper limit vyes(0sp) < 0.2 are consid-
ered, for which the latent heat of the PCM/Mesh composite is typ-
ically reduced by less than 10% relative to the pure PCM [26].

3. Results and discussion
3.1. Parametric evaluation of the polynomial k(psp) distribution

For planar and cylindrical geometries a linear thermal conduc-
tivity distribution, peaked at the heat source, enhances dissipation
rates by reducing the time averaged thermal resistance between
the heat source and the melt-front [26]. The effects of concavity
and maxima/minima position are now considered for the spheri-
cal geometry with the more versatile polynomial distribution pro-
posed in Eq. (3) (Table 2).

In Fig. 2, four representative combinations of k(psp) are shown
with a polynomial of degree n=2 in Eq. (3) using properties and

Dimensionless distance from hot spot (o)
sp

Fig. 2. The combinations of spatial variation of «(psp) of degree n =2 in Eq. (3) are
constrained by the conservation of volume fraction and limitations on the mini-
mum/maximum of x(psp) (i€, Kmin and Kmax) listed in Table 1. The concave-up
k(psp) provides a higher thermal conductivity near the hot-spot.

parameters listed in Table 1. Near to the heat source (psp =~ 0)
the value of k(psp) with Rmax = 101 is higher than «(psp) with
Rmax = 1.00001, because the high vpes,(0) is compensated by low
Vmesh(psp) Of spherical shells at more distant radii.

For the same Rmax, Eq. (3) can generate parabolic «(psp) with
both concave-up and concave-down shapes as shown in Fig. 2. The
concave-up shapes have minima at psp, =1, while the concave-
down shapes have maxima at psp =0. To maximize « near the
heat source its minimum is chosen to be at psp =1. For in-
stance, with Rpax = 1.00001 as shown in Fig. 2, the concave-up
case (k(psp) ~ 3) is 100% higher than the concave-down case
(k(psp) =~ 15) at psp = 0. The difference is even more extreme
with Rmax = 101 where the concave-up case (k(psp) ~ 9.5) is 280%
higher than the concave-down case (k(psp) ~ 2.5) at psp = 0.

How does enhancing k(psp) near the heat source change the
heat dissipation rate for these polynomial distributions? Fig. 3
shows the dimensionless distance of the melt-front from the hot-
spot, as a function of time for Rmax = 101. Concave-up «(psp) re-
sults in Tspmax = 0.12, which is more than eight times faster than
UE (esp = 8.2). By comparison, concave down results in Tspmax =
0.41, which is just less than two and a half times faster than UE
(esp = 2.4). This result confirms that higher enhancement at the
heat source psp =0 expedites the melting process and thus en-
hances the heat dissipation rates of PCM in spherical systems as
was shown previously in Cartesian and cylindrical systems from
Ref. [26]. In the case of the constant heat flux boundary condition
the same €5, would represent a reduced temporally averaged hot-
spot temperature.
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Fig. 3. The higher spatially-enhanced thermal conductivity near to the hot-spot
(i.e., the intercept of k(psp)) With Rmax = 101 expedites the melting front ending
at 7, = 0.12, and, in other words, increases the heat dissipation rate relative to UE
by more than eight times.

3.2. Optimizing the concave-up distribution

Given the performance benefits of a concave-up «(psp),
Eq. (3) is now specified so that «(psp) is always concave-up, as

K(psp) = AK(l - psp)n + Kmin> (10)

where Ak is the dimensionless thermal conductivity difference
between psp =0 and psp = 1. With this definition vyg, is de-
termined by equating Eqs. (7) and (10). The result, Uyesn(0sp) =
[A/c (1 - ,Osp)n + (Kmin — kpCM/kUE)]kUE/Ak, is substituted into

Eq. (D.1) to enforce volume fraction conservation. As a result, Ax
is

1- Kmin

3(Rmax=1D [ Rmax=1D?2 _ 2(Rmax—DRmax + Rna
Rmax>—1 n+3 n+2 n+1

Ak = (11)

For the uniformly-enhanced «(psp) where n=0 and Ak =1-
Kmin,» We recover « (psp) = 1 from Eq. (10).

Concave-up shapes are preserved by Eq. (10) even with n > 2
because the second derivative of Eq. (10) is always positive for
0 < psp < 1. For the same «;, in Eq. (10), higher order n result
in larger Ak and thus higher intercepts of «(psp). Nevertheless,
the highest «(psp) for each n is herein constrained by maintaining
VMesh(Psp) < 0.2, as not to replace too much PCM with mesh, per
the discussion in Section 2.3.

There are significant gains by moving beyond simple linear dis-
tributions of thermal conductivity (i.e., n = 1). The enhancement
ratio using Eq. (10) is shown in Fig. 4 and indicates that heat dis-
sipation rates are not further enhanced with n > 3 for Rpax =
101. This conclusion results due to the constraints on k;, and
K max, Which limit the utility of higher degree polynomials and may
change if these constraints are adjusted.

3.3. Effects by ratio of radii

In Fig. 5 €sp versus Rmax is shown for spherical and cylindrical
coordinates with n =1, 2, and 3. The analysis with the polynomial
k(psp) distribution for cylindrical systems is derived in Appendix E.
Remarkably, in spherical systems the enhancement ratio with n =
3 reaches 9.4 for Rmax = 1000. For cylindrical systems with simi-
lar Rmax, the enhancement ratio is 3.2 for n =2 and 3.7 for n = 3.
For n=2 and 3, €5, exceed that of n=1 for Rmax > 10, which

10

2 i [ e M L N [ e LR L (R

R =101
max

©

Enhancement ratio (esp)

Ll s b e daaa s Ll s sy

L B B B L B L B L B R L A B O L A

O = N W h O OO N ©

T2 o LY N RGO 0 T T T AU 0 0 S A 0 68 e Y

012 3456 7 8 910
k(p__=0) at the heat source
sp

Fig. 4. The enhancement ratio using Eq. (10) indicates that complex concave-up
k(psp) with degree higher than 1 (i.e, n > 1) enhance heat dissipation rates by a
factor of nearly 8.

(Esp,opt)
N
o

—_

N WO N O

Optimal enhancment ratio

102 10°

10"
Ratio of radii (Ryax = 1,/1;)

Fig. 5. The optimal enhancement ratio as a function of the ratio of radii in cylindri-
cal (Cyl) and spherical (Sp) systems. The optimal enhancement ratio (€spopt) reaches
9.4 for n =2 and n =3 in spherical systems with Rn.x = 1000. For the cylindrical
systems with similarly large Rmax, the enhancement ratio (€op) is 3.2 for n = 2 and
3.7 for n = 3. In both cylindrical and spherical systems, the enhancement to ther-
mal transport for higher order polynomials is distinctively better than for n =1 (i.e,,
spatially-linear k(psp)).

clearly demonstrates the value of using polynomial distributions of
k(psp). These extreme enhancements of the heat dissipation rates
by factors of more than 900% and 300% in spherical and cylindri-
cal coordinates will vastly benefit thermal management strategies,
enabling higher powers or lower weights in portables.
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More extreme enhancements can be achieved in spherical co-
ordinates because in a homogeneous solid sphere the derivative
of thermal resistance, which represents the thermal resistance per
unit spherical shell thickness, is highest at r =r; (i.e., thermal re-
sistance accumulates most rapidly when the melt front is near
r =r;). Mathematically, the derivatives of thermal resistance are
proportional to 1/r2 and 1/r for spherical and cylindrical systems.
When r is near to r;, the thermal resistance accumulates more
rapidly for spherical than cylindrical geometries.

4. Conclusion

This study pioneers an arbitrary polynomial form of spatially-
varied thermal conductivity to enhance heat dissipation rates in
PCM for thermal management. Heat dissipation rates are enhanced
using a concave-up thermal conductivity distribution that is high-
est near to the heat source in both 1-D spherical and 1-D cylin-
drical systems. While the results are derived in terms of enhance-
ment to heat transfer rate for a constant temperature heat source,
an equally valid interpretation is a reduction in the temporally av-
eraged hot-spot temperature in the case of a constant heat flux
source.

For spherical and cylindrical systems, the heat dissipation rates
are enhanced by a factor of more than 900% and 300% relative to
the uniformly enhanced case using spatially-parabolic thermal con-
ductivity distributions.

For cylindrical systems, the enhancement ratio exceeds 300%.
Practically these polynomial distributions could be used to vastly
improve hot-spot thermal management with spatially enhanced
meshes of equal weight or to create equivalent heat dissipation us-
ing SE meshes of significantly reduced weight.
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Appendix A. Length scale for a melting process dominated by
heat conduction

References [34-37] identified a time scale t. where heat con-
duction dominates, and here it is assumed that if tsp max < tc, the
conduction regime will be valid. The time scale [37], converted
from a dimensionless time 7., takes the form

LZ
te = Tcﬂv

a (A1)

10° r :
—T-T =1K
| o
e T-T = 10K
1 O
x T-T = 100K
=
c
£
5 10%f i
=
>
©
=
10" . .
10° 102 10*

Hot-spot size r (m)

Fig. A.1. The maximum values of Rp,x where heat conduction regime is valid are
estimated using various r; temperature differences, T, — To.

Table Al
Properties and parameters used to deter-
mine length scales in Fig. A.1.

ri (um) 10! - 104

AT =T -T, (K) 1 10 100
k = kyg (W/m-K) 4.89

pr (kg/m3) [46] 763

B (K1) [47] 0.000764

1 (Pa-s) [46] 0.002466

Cp (J/kg-K) [48] 2140

A (J/kg) [48] 210000

Ste = G, AT/ 001 01 1

where Ly, is the characteristic length scale of the geometry, and
o is the thermal diffusivity of the mesh/PCM matrix. For a con-
centric spherical enclosure, L, is the diameter of the inner sphere
(2r;) [38]. The dimensionless time scale 7. in (A.1) dominated by
heat conduction [37] is defined as

_ 9Ra?
o= "5e
where Ste is the Stefan number and Ra is the Rayleigh number de-
fined as

Ra— goiPLE, (T — To)’

o

where g is the acceleration of gravity, pf is the fluid density, T,
is the temperature at the inner sphere, T, is the temperature at
the outer sphere, and B, u, o are thermal expansion coefficient,
viscosity, and thermal diffusivity.

By equating t. with tsp max (see Eq. (B.3) in Appendix B) we
can determine the maximum value of R« that maintains the con-
duction regime over the entire melting process for a given r;. The
maximum Rmax, is plotted as a function of r;, in Fig. A.1 for sev-
eral T, — T,. Smaller hot-spot sizes and lower temperature gradients
suppress natural convection and make the conduction-only analy-
sis suitable to larger Rmax.

(A2)

(A3)

Appendix B. Derivation of the maximum melting time (tspmax)

The time for the melt-front to reach r, in 1-D spherical coordi-
nates is tspmax. The maximum melting time for uniform mesh (kyg)
is determined when kyg is substituted for k(r) in Eqgs. (1) and (2).
The temperature distribution is substituted into Eq. (2) as

k( T — T )1 _, drm(®)
A\ 1n —1/m@) ) 12 dt

(B.1)

r=rm(t) B
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and tspmax is acquired by integration as

tsp,max To T, (t)z )\'
dt = / drm (t i —I'm(t ——[. (B.2
/o N m® ( Ti m(® kue (Ts — Tm) (8.2)
The maximum melting time takes the form
krz 2R3 . —3R2 . +1
tsp,max = ( T = ) (B.3)

6kye (Ts — Trn)

Appendix C. Derivation of the numerical solution in the
dimensionless form

The normalized melt-front position pspm is discretized as
Pspm,i = (I—1)Apsp where Apsp=1/N and the node index i
ranges from 1 to N+ 1. In this study, N = 1000 was validated in
comparison with the analytical solutions as shown in Fig. C.1 and
thus is the default setting for the following analysis.

Since the discretized temporal melt-front is known to progress
from pgpmiz1 =0 t0 Pspmi=n+1 = 1, the cumulative melting time
Top,i = Tsp,i—1 + ATgp; is determined based on the associated time
step AtTgp; from node i — 1 to node i.

After the first analytical integration, Eq. (4) becomes

90 (psp, Tsp)
3 0sp
where Gi; is the integration constant for node i. This integration

constant is then acquired using numerical integration at each node
as

(1 + pSpRmin)zK (psp) Cmt i (C-l)

0 (psp Psp,m.i> Tsp)=0
fg(ﬂspfo Top)=1 do

G =
int,i ~Osp.mi dpsp
O (T4pspRmin) K (Pp)
-1
= . C2
Psp,m,i dpsp ( )

0 (+pspRuin)’k (Pp)
The time step Atg,;, is then acquired by substituting

2 .
1 (Psp)[36 (sp, Tsp) /3 psp] = Cing,i/ (1 + PspRmin)~ from Eq. (C.1) into
the energy balance Eq. (5) and then discretizing to reach

2
GR?mn (l + psp,m.ianin)
Aty ~ 3 5 Apsp.
2Rmax 3Rmax + 1 _Cint,i

The cumulative melting time tp; is acquired from explicit for-
ward time marching

(C3)

Tsp,i = Tsp,i—l + ATsp,iv (CA)

—_—

S O
o

o
H

| TP TR s [ ) L

o Planar analytical [25, 32], k=1
——Cylindrical thin wall, Rmax=1.00001

=1.00001

o
N

I e T T O O T O N VAr v Pl

— =Spherical thin wall, R
max

Dimensionless distance of
melting from hot spot (psp m)

(=)

0.2 0.4 0.6 0.8 1
Dimensionless time

Fig. C1. Numerically calculated dimensionless melting distance for thin walled
cylindrical and spherical geometries, agree with those using analytical solu-
tions [26,33].

where 7y, ;_; = 0 represents the initial condition. The reciprocal of
Tsp,i=N+1 1S the enhancement ratio, €sp.

As shown in Fig. C.1, the dimensionless melt distances using
this numerical scheme for thin walls (i.e., Rmax = 1.00001) agree
with those determined using the analytical solution for the planar
case [26,33]. This agreement validates the numerical scheme.

Appendix D. Derivation of the coefficients C; in Eq. (9)

From Eq. (3), the volume fraction of metal mesh
in k(psp) IS Vmesn(psp) = [k (osp)kue — kpeml/ Ak, where
Ak = kyjesh — kpem- By utilizing Ar=ro—r1, r=ri+Ar-psp
and dr= Ar-dps, the conservation of metal volume fraction
Uptesh = [f,:“ dr 4712 Vygesh (psp)]/[4n (r3 —13)/3] = vye takes the
form
3 fo Ard psp (1; + ATpsp) [K (Psp)@ - kz%]

G
For the uniformly enhanced case, k(psp) =1 (i.€., Vpesh(Psp) =
[kue — kpcm]/ Ak), and Eq. (D.1) becomes

3 [y Ardpsp (1 + Arpsp) [% - kﬂw] ke kpem

(r3—r3) T Ak Ak
Eq. (3) is substituted for «(psp) into Eq. (D.1), and after rear-
rangement

kue  keem _ 3(Rmax — 1) ( kue
Ak Ak T R, —1 \Ak

DMesh = (D-l )

(D.2)

i=n
(Rmax —1)? | 2(Rmax — 1) 1
X{IXO:[ i+3 " sz Tixi[d
kpcm
AR (D.3)
Next kyg/Ak and kpcy/Ak in Eq. (D.3) are eliminated to yield,
1 _ B(Rmax - 1)
B R?nax -1
i=n
(Rmax —1)* | 2(Rmax — 1) 1
X ilg[ it3 " irz  Tit1 G
i=n
=Y CuiG.. (D.4)
i=0
By comparison with Eq. (8) we find,
(Rmax —1)* | 2(Rmax — 1) 1 [3(Rmax—1)
P = — | D.
Covi [ i+3 7 i+2 i+1] Rix—1 (B:3)

Appendix E. Equations and parameters in 1-D cylindrical
coordinates

In 1-D cylindrical coordinates, the heat diffusion equation and
energy balance at the melt-front take the form

10 8T(r t)

; 3r[ k(r) ] 0, (E1)

and

ke )BT(r t) :A@. (E2)
r=rm(t) t

Eqgs. (E.1) and (E.2) are nondimensionalized following Ref. [26] as

(E.3)

ap

1 0

36 (p. u)} o,
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and

0 (p, T;
—K(p)—(g’p”

_ (Rmax — 1)? dpm ()
P=Pm (Tr) R'Zg“ In(Rmax) — Ré‘fx + % dz;

(E4)

The enhancement ratio (€; = 1/7rmax, Where the subscript
r represents 1-D cylindrical coordinates) is numerically deter-
mined using Eqgs. (E.3) and (E.4) based on the procedures in
Appendix C and Eq. (6).

From Eq. (3), the volume fraction of metal mesh in x(p)
is Unesn (0) = [k (p)kye — kpcm]/ Ak, where Ak = kyesn — kpcm- By
utilizing Ar=r,—r1, r=r;+Ar-p and dr= Ar-dp, the con-
servation of metal volume fraction for a cylinder Ve =

[fr:" dr 2mr U]v[esh(p)]/ [ (5 — )] = vyg takes the form
2 Jy Ardp(ri + Arp)[k () & — 5]
GRS |

For the uniformly enhanced case, k (p) =1 (i.e., Vpesn (0) = [kug —
kpem1/Ak), and Eq. (E.5) becomes

2o Ardp(ri+ Arp)[ B8 4] ke koew (E.6)
(3 =rf) |

(E.5)

DMesh =

Ak Ak

Eq. (3) is substituted for «(p) in Eq. (E.5), and the equation is
then rearranged as

koe  keem _ 2(Rmax — 1) ( kue
R —1 \Ak

Ak Ak T
i=n
(Rmax - 1) 1 . kPCM
x {g[ vz et 9" Ak BD
Next kyg/Ak and kpcy/ Ak in Eq. (E.7) are eliminated to yield,
2Rmax —1) o[ Romx—1) 1

1l=——— —+ — |G . E.8
R -1 g itz Tiyi]|" (E8)

By comparison with Eq. (8),

e [ @Rua=1 1 J2Rnm—1)

R i+2 i+1| R, —1

Eq. (E.9) is similar to the form in Eq. (D.5) for spherical systems.
For concave-up distributions specified by Eq. (10), Ak for 1-D
cylindrical coordinates is obtained using the conservation of metal

(E.9)

volume fraction Dpeqn = [frri" dr 2mr vMesh(p)]/[yr(rg —12)] = vye
as
1- Kmin

2(Rmax—1) (Rmx _ Rmin) ’
Rmax>—1 \n+1 n+2

Ak = (E.10)

Appendix F. Derivation of the solution to constant power heat
source cases

For the constant heat source with power q located at r =r; the
Fourier Law applied at the meltfront takes the form,

oT(r,t)
q=4nr2|:—k(r) a7 i|

(E1)

r=rm(t) .

For the case of UE with k(r) = kyg. Eq. (F1) can be rearranged
and integrated as

q 1 1
Ts(t):Tm+m[E—rm(t)]. (F2)

Then, the temperature Ts(t) at heat source (r =r;) in Eq. (F2) in-
creases until the melt front reaches ro (i.e., Fyy(ry = o).

1.0

- ( 10:

g 8"

S
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i 4

@ b S—

go.ﬁ- i
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+— sp |
& 04 e

@
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90.2

I
2 0.0 (a)

[ 0 0.2 0.4 0.6 0.8 1.0
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= 8 " )
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o 4| \ L

Jf_U' 27 “':‘\*\\Q.\ ///

— 6' | . . 5 “v,:?;:- //,

‘;:’ 0.00.20.40.60.81.0.7

Q Psp ’,/

S 4

O e

c e

© l’/

< 2 g

L //

d (b)
0 . 4 6 8 10
K(psp = 0) at the heat source

Fig. F1. For the constant heat source the dimensionless temperatures and enhance-
ment ratios are compared using Ryax = 101. (a) The dimensionless temperature 6
at 7y =1 using concave-up « (psp = 0) is lower than that of concave-down and
k = 1. (b) The enhancement ratio (¢ = 8.7) to the average temperature rise for the
concave-up k(psp) outperforms that (e = 2.5) of concave-down «(psp).

To determine the melting time, the energy balance at the melt
front is

q=4nr’i drm(©) , (F3)
dt r=rm(t)
and the melting time is determined by integration to be
A A (3 - 1)

t = 717 F.4
3 (F4)

which reaches a maximum tphx when 1y =r1,. Using

psp=(T—1)/(To—17), pspm=(m—T17)/(To —T1}), 0 =|Ts(t) —

Tnl/(Tsue — Tm), and Tsp = t/tmax, the melting temperature in
Eq. (F2) and melting time in Eq. (F4) can be nondimensionalized
as

Rmax Osp,m
= =0 E5
1+ Rminpsp,m ( )
and
14 Rpni 3.1
Tsp — ( + mmpSP.m) . (FG)

R?nax -1
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For k = k(r) the case of SE with « = k(r)/kyg, Eq. (E1) can be
nondimensionalized as

K (pep) 2 k
(o) 20—
o0 [+ 2mofen + o

(E7)

Psp=Pspm

+2psp

Rmax

Since there is no analytical solution for complex «(psp), the di-
mensionless temperature & must be determined by numerical in-
tegration as

Apsp
) 1 ) R 2 R2. ’
€ (Psp1) [ s + 20 s + 03,

and the cumulative temperature 6; is acquired from explicit for-
ward marching

9j = 9]‘_] + A0;, (F9)
Psp.j = Psp.j—1 + ApPsp, (F10)

where Apsp = 1/N, and ps;, j_; = 0 represent the initial condition
for j >=1.

The dimensionless temperature 6 is shown as a function of T
in Fig. F1 (a). For all times, the concave up « distribution mini-
mizes 6. This result physically implies that PCM/mesh composites
of higher « at psp = 0 are able to maintain the hot-spot at the low-
est temperature.

For the constant heat source, the enhancement ratio is defined
as € = 0Oyg/Osg, which is the ratio of the average 6 of UE to SE
meshes. Ratios greater than one indicate that SE meshes main-
tain lower average temperature rises than UE meshes. As shown
in Fig. F1(b), the enhancement ratio (¢ = 8.7) for the concave-up
k(psp) is higher than of concave «(psp) (€ =2.5). The enhance-
ment ratio of € = 8.7 for constant hot-spot power is the same as
the € for heat dissipation with constant temperature (red line). The
profiles of the enhancement ratio for various k at psp = 0 are iden-
tical to those of Fig. 4, where the heat source is at a constant tem-
perature.

AB; ~ — (E8)

Supplementary material

Supplementary material associated with this article can be
found, in the online version, at 10.1016/j.ijheatmasstransfer.2019.
119153
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