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a b s t r a c t 

Graded mesh inserts that spatially enhance the thermal conductivity of phase change materials (PCM) 

are optimized to minimize the time averaged thermal resistance between the heat source and the melt- 

front, to improve heat dissipation rates for electronics. Conventionally, the low thermal conductivities 

of PCM are enhanced by incorporating spatially-homogeneous porous fillers with high thermal conduc- 

tivities. We investigate the relative advantages of porous fillers that spatially distribute enhancements 

to thermal conductivity. An arbitrary polynomial form of the spatial variation is optimized based on a 

numerical solution to the heat diffusion equation, to enhance heat dissipation rates in one-dimensional 

spherical and cylindrical coordinates. The most desirable spatial distributions are non-linear, have higher 

thermal conductivity near to the hot-spot, and a positive second derivative with respect to the radial 

coordinate (i.e. concave-up). We demonstrate enhancements of heat dissipation rates for constant tem- 

perature hot-spots, or reductions in temperature for constant power hot-spots, by factors of 900% and 

300% in spherical and cylindrical coordinates, relative to those achieved by uniform fillers of equivalent 

average volume fractions. Recent advances in additive manufacturing make metal meshes with spatially 

graded volume fraction realizable. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

Improved computational performance of electronic devices,

uch as laptop computers and cellular telephones, demands more

ower while their size continues to shrink [3–6] . The result is

ncreased volumetric heat generation rates, which challenge con-

entional thermal management strategies [3,4,7] . Active (e.g., fan-

lown air, thermoelectric coolers) and passive (e.g., heat sinks,

eat pipes) cooling techniques have been widely investigated

4,8–10] . 

Passive thermal management consumes less power and is more

eliable than active thermal management with fans and pumps [3] .

herefore, for small devices such as cellular telephones and tablets,

assive thermal management is more desirable. Nevertheless, pas-

ive thermal management has limitations. For instance, gravity-

riven heat pipes operate best when the device is in specific con-

gurations, and passive heat sinks rely on natural convection with

ow heat transfer coefficients. 

Phase change materials (PCM) that operate passively and ab-

orb transient spikes in the heat load by the latent heat of the
∗ Corresponding author. 
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hase change process are attractive alternatives to heat pipes and

eat sinks. The transient temperature rise is affected by the com-

osition of the PCM, the configuration of the thermal management

ystems, and the size and heat load of the hot-spots [3,7,11] . PCM,

uch as octadecane and eicosane, are commonly selected due to

heir phase change temperatures (30 ◦C to 40 ◦C), which maintain

 comfortable device temperature for the users [3,7] . Nevertheless,

ue to the low thermal conductivity of such PCM, the thermal re-

istance of getting heat from the hot-spot to the melt-front is a

ajor limitation to the heat dissipation rate. As a result heat from

ot-spots may diffuse through unintended pathways instead of di-

ectly into PCM. To mitigate this effect, heat sinks have been em-

edded into PCM to minimize thermal resistance [11,12] . The draw-

ack is that these embedded parts displace the latent heat benefit

f PCM and add substantial weight to smaller devices. 

An alternative approach to increase heat dissipation rates of

CM is through the addition of low volume fraction, high ther-

al conductivity, porous materials. The effective thermal conduc-

ivity of PCM can be enhanced by incorporating either dispersed

llers [13–18] or high thermal conductivity porous structures (e.g.,

etal foams or meshes) [18–22] . Because both fillers and porous

tructures are spatially homogeneous, the thermal conductivity of

he PCM is uniformly-enhanced (UE). 

https://doi.org/10.1016/j.ijheatmasstransfer.2019.119153
http://www.ScienceDirect.com
http://www.elsevier.com/locate/hmt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheatmasstransfer.2019.119153&domain=pdf
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Nomenclature 

v̄ average volume fraction 

�k thermal conductivity difference (W m 

−1 
K 

−1 ) 

�r r o − r i (m) 

�T temperature difference (K) 

C i adjustable coefficient of i th degree in Eq. (3) 

C p fluid specific heat (J kg −1 K 

−1 ) 

g the acceleration of gravity (m s −2 ) 

k thermal conductivity (W m 

−1 K 

−1 ) 

L length (m) 

n the degree of the polynomial in Eq. (3) 

q constant heat source power (W) 

r r position in spherical coordinates (m) 

R max ratio of radii, r o / r i 
R min R min = R max − 1 

r i inner radius of the spherical system (m) 

r m 

melting front radial position in spherical coordi- 

nates (m) 

r o outer radius of the spherical system (m) 

Ra Rayleigh number 

Ste Stefan number 

T temperature (K) 

t time (s) 

T i temperature at the inner sphere (K) 

T o temperature at the outer sphere (K) 

v volume fraction 

Greek Symbols 

α thermal diffusivity (m 

2 s −1 ) 

β fluid thermal expansion coefficient (K 

−1 ) 

�κ dimensionless thermal conductivity difference 

�ρ dimensionless radial position step 

�τ dimensionless time step 

κ dimensionless thermal conductivity 

λ volumetric latent heat of fusion (J m 

−3 ) 

λ
′ 

latent heat of fusion (J kg −1 ) 

μ fluid viscosity (Pa s) 

�θ dimensionless temperature difference 

ε enhancement ratio of SE to UE PCM composites 

ρ dimensionless radial position in cylindrical coordi- 

nates 

ρf fluid density (kg m 

−3 ) 

ρsp,m 

dimensionless melting front position in spherical 

coordinates 

ρsp dimensionless radial position in spherical coordi- 

nates 

τ dimensionless time 

θ dimensionless temperature 

Subscripts 

ch characteristic 

c conduction 

cv conservation of volume fraction 

int integration 

m melting front 

max maximum 

Mesh metal mesh 

min minimum 

PCM phase change material 

r 1-D cylindrical coordinates 

s surface 

SE spatial enhancement 

sp 1-D spherical coordinates 

UE uniform enhancement 

b  
Recent advancements in additive manufacturing (AM) provide

 feasible way to fabricate complex metal architectures, such

s graded lattices and meshes. By inserting graded meshes into

CM, the metal volume fraction can be spatially-varied, and thus

he thermal conductivity becomes spatially-enhanced (SE) [23–26] .

uch meshes make it possible to concentrate the enhancement

ear to the heat source, thus minimizing the thermal resistance

or heat to reach the melt front [26] . For equivalent average vol-

me fractions of mesh, a linear spatial variation can improve the

eat dissipation rates by 12% in planar and 140% in cylindrical con-

gurations [26] . Spatially-enhanced diffusivities with other math-

matical forms, such as power law functions, have been studied

or mathematically similar sedimentary mass transport applica-

ions [26–33] , but not thermal management. 

While prior studies focused on linear and cylindrical geome-

ries, none have considered spatially-heterogeneous thermal con-

uctivity on moving boundary problems in spherical geometries.

o improve upon state of the art PCM based thermal management

esigns, we herein utilize a generalized polynomial function to de-

ermine the optimal radial thermal conductivity distributions in

pherical and cylindrical PCM/mesh systems. 

. Methodology 

.1. The Stefan problem in spherical coordinates 

A Stefan problem, defined by a phase change process with a

oving melt-front, can be solved using the quasi-steady state ap-

roximation when the Stefan number Ste < 0.1 [26,31] . A small

tefan number indicates that the sensible heat is small compared

o the latent heat and a steady state temperature distribution accu-

ately describes the liquid region [31] . Melting in porous media is

 complex process and thus there are additional limitations to our

nalysis [34–37] . Initially, the heat transfer mechanism is governed

y conduction alone but it eventually transitions to a mixed regime

f conduction and natural convection driven by buoyancy of the

eated liquid nearest to the source. Our analysis considers the con-

uction only regime where the transition to natural convection is

pecified by a characteristic timescale [35] that has been esti-

ated by Krishnan et al. [37] . For spherical systems [35,38] with a

pecified hot-spot size, we have identified the maximum outer ra-

ius of the PCM for several hot-spot temperatures (in Appendix A ).

or example, a hot-spot with 100 μm radius elevated by 10 K will

e conduction dominated for the entire melt process when the sur-

ounding PCM sphere has a radius smaller than 5 mm. Our analy-

is also assumes local thermal equilibrium between the solid mesh

nd the PCM. Local thermal equilibrium can be sought for a given

atio of mesh and PCM thermal conductivities by varying and char-

cteristic lengthscales of the mesh struts and unit cell volumes

39–42] . 

Hot-spots drive radial temperature gradients in the surrounding

edia, and thus the radial direction is considered in the spheri-

al heat diffusion equation [43] (a parallel derivation for cylindrical

oordinates can be found in Appendix E ). The heat diffusion equa-

ion under the quasi-steady state approximation with temperature

ndependent properties in a one dimensional spherical system is 

1 

r 2 
∂ 

∂r 

[
r 2 k ( r ) 

∂T ( r, t ) 

∂r 

]
= 0 , (1)

here r is the radial coordinate, k ( r ) is the spatially-varied thermal

onductivity of a PCM/mesh composite, T ( r, t ) is the temperature

f the composite, and t is time. Schematics of PCM/Mesh compos-

tes with spatially-enhanced thermal conductivity k ( r ) are shown

n Fig. 1 . The hot-spot at a temperature T (r i , t) = T s is surrounded

y a spherical PCM/Mesh shell with inner and outer radii r and r o .
i 
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Fig. 1. Schematic of a hemi-spherical PCM/Mesh composite for thermal management. For the hot-spot to be seen clearly, the mesh structure is only shown in the cross- 

section view. (a) An infrared image of a mobile phone micro processor (i.e., chip † Ref. [1] ) shows a localized hot-spot (e.g., hot-spots in Si microprocessors can be hundreds 

of microns in size [2] ). (b) The heat generated at the hot-spot is absorbed by the phase change process in the PCM/Mesh composite. (c) The cross-sectional view of the 

hemi-spherical PCM/Mesh composite depicts a spatial variation in volume fraction of metal mesh, which results in spatially-enhanced thermal conductivity k ( r ). 

T  

s  

i

 

h  

S  

p  

c  

t  

a  

t  

d  

c  

b  

s  

i  

a

 

T  

r  

P  

n

−

F  

s

 

a  

t  

c  

a

κ

w  

t  

A  

i  

t  

f  

v

2

c

 

t  

p  

l  

t  

c  

A  

s

w

 

t

−

w  

i  

p  

s  

b

 

f  

E  

fi  

T  

1  

m  

t  
he time dependent position of the melt-front relative to the hot-

pot (or heat source) is r m 

( t ), and the temperature at this position

s the melting temperature T (r m 

(t ) , t ) = T m 

. 

Typical heat sources can be approximated with either constant

eat flux, or constant temperature boundary conditions at r = r i .

patial enhancement of thermal conductivity can similarly improve

erformance in both cases. For the constant temperature boundary

ondition spatial enhancement of thermal conductivity increases

he heat transfer rate, while for the constant heat flux bound-

ry condition spatial enhancements of thermal conductivity reduce

he temporally averaged temperature of the heat source (see the

etailed derivation in Appendix F ). Parallel heat spreading in the

hip will influence the hot spot size and temperature but has not

een considered here. The following analysis focuses on the con-

tant temperature condition but enhancement factors referring to

ncreased heat transfer rate, can be interpreted as reduced temper-

ture in the condition of constant heat flux. 

With constant temperature boundary conditions of T ( r i , t ) =
 s and T ( r m 

(t ) , t ) = T m 

, the temperature of the composite for

 i < r < r m 

( t ) can be determined. The temperature in the solid

CM beyond r m 

( t ) (for a melt process) is assumed to be at T m 

, so

o additional sensible heat is required [26,31] . 

The energy balance at the melt-front is 

k ( r ) 
∂T ( r, t ) 

∂r 

∣∣∣
r= r m (t) 

= λ
dr m 

(t) 

dt 
. (2) 

or small mesh volume fractions the latent heat of fusion λ is as-

umed to be independent of r [26] . 

Our analysis of the spatially enhanced PCM is nondimension-

lized to the uniformly-enhanced PCM. Upon nondimensionalizing

he coordinate ρsp = ( r − r i ) / ( r o − r i ) , the dimensionless thermal

onductivity is defined as κ(ρsp ) = k (ρsp ) /k UE and formulated as

 polynomial 

(ρsp ) = C n ρsp 
n + C n −1 ρsp 

n −1 + . . . + C 1 ρsp + C 0 

= 

i = n ∑ 

i =0 

C i ρsp 
i , (3) 

here C i are the adjustable coefficients of the i th degree terms

hat will be optimized, and n is the degree of the polynomial.

lthough mathematical forms of dimensionless thermal diffusiv-

ty or thermal conductivity, such as power law and linear func-
ions, were previously introduced [26–28,30,33] , this polynomial

orm adds degrees of freedom to generate more complex spatial-

ariations of thermal conductivity. 

.2. Nondimensionalized solution for a spatially-enhanced thermal 

onductivity in 1-D spherical coordinates 

We nondimensionalize Eq. (1) by substitution of ρsp , κ( ρsp ),

he ratio of bounding radii R max = r o /r i , and dimensionless tem-

erature θ (ρsp , τsp ) = 

[
T 
(
ρsp , τsp 

)
− T m 

]
/ ( T s − T m 

) . The dimension-

ess time τsp = t/t sp,max is defined based upon the time required

o melt all of the PCM in the case of uniformly-enhanced thermal

onductivity t sp,max = λr i 
2 (2 R 3 max − 3 R 2 max + 1) / [6 k UE (T s − T m 

)] (see

ppendix B for the derivation of t sp,max ). The resulting nondimen-

ional radial heat diffusion equation is, 

1 

( 1 + ρsp R min ) 
2 

∂ 

∂ρsp 

[
( 1 + ρsp R min ) 

2 κ( ρsp ) 
∂θ ( ρsp , τsp ) 

∂ρsp 

]
= 0 , 

(4) 

here R min = R max − 1 . 

The energy balance from Eq. (2) is nondimensionalized using

he same parameters 

κ( ρsp ) 
∂θ ( ρsp , τsp ) 

∂ρsp 

∣∣∣
ρsp = ρsp,m (τsp ) 

= 

(
6 R 

2 
min 

2 R 

3 
max − 3 R 

2 
max + 1 

)
dρsp,m 

(τsp ) 

dτsp 
, (5) 

here ρsp,m 

( τ sp ) is the dimensionless melt-front position in spher-

cal coordinates. As R max ≈ 1, the term in parentheses of Eq. (5) ap-

roaches 2 and is the same as Eq. (6) from Ref. [26] for 1-D Carte-

ian coordinates, indicating that a thin spherical shell ( r o − r i � r i )

ehaves like a planar solid. 

An analytical solution to Eq. (4) , after substitution of κ( ρsp )

rom Eq. (3) , does not exist. Thus, ρsp,m 

is numerically solved from

qs. (4) and (5) . Hereby the numerical model is solved using a 1-D,

nite volume scheme, and an explicit (or forward) Euler method.

he numerical details are in Appendix C . The maximum of ρsp,m 

is

, and τsp,max = τsp (ρsp,m 

= 1) . Because the same volume of PCM is

elted, τ sp,max < 1 signifies that the SE thermal conductivity dis-

ribution dissipates heat faster than the UE thermal conductivity
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Table 1 

Properties and parameters used to determine κ( ρsp ). 

PCM/Mesh k PCM (W/m-K) k Mesh (W/m-K) v̄ Mesh k UE (W/m-K) κmin κmax 

Octadecane/Al mesh 0.15 [44] 237 [43] 0.02 4.89 0.03 9.72 
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Table 2 

Coefficients C i for the parabolic κ( ρsp ) profiles shown in Fig. 2 . 

R max Concave C 0 C 1 C 2 

1.00001 down 1.48178 0.0 −1.44532 

1.00001 up 2.9271 −5.7813 2.8907 

101 down 2.42745 0.0 −2.39100 

101 up 9.4821 −18.8914 9.4457 

Fig. 2. The combinations of spatial variation of κ( ρsp ) of degree n = 2 in Eq. (3) are 

constrained by the conservation of volume fraction and limitations on the mini- 

mum/maximum of κ( ρsp ) (i.e., κmin and κmax ) listed in Table 1 . The concave-up 

κ( ρsp ) provides a higher thermal conductivity near the hot-spot. 
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distribution. The reciprocal of τ sp,max is defined as the heat dissi-

pation rate enhancement ratio of SE to UE PCM composites, 

εsp = 

1 

τsp,max 
. (6)

In the case of the constant power hot-spot, the same εsp would

represent a reduced time averaged hot-spot temperature for SE rel-

ative to UE meshes. 

2.3. Parameterization of thermal conductivity in a polynomial form 

To constrain the form of κ( ρsp ) constraints that equate the av-

erage volume fraction of metal mesh in UE and SE cases are now

applied. The local volume fraction and thermal conductivity are

related by an effective medium model. Because the metal mesh

and PCM are bi-continuous phases, the Parallel Model is appropri-

ate [26,45] , and k 
(
ρsp 

)
= k PCM 

+ �k v Mesh (ρsp ) where k PCM 

is the

thermal conductivity of the PCM, �k = k Mesh − k PCM 

is the thermal

conductivity difference, k Mesh is the thermal conductivity of the

metal mesh, and v Mesh is the volume fraction of the metal mesh.

The dimensionless thermal conductivity ( κ(ρsp ) = k (ρsp ) /k UE ) is

defined as 

κ(ρsp ) = 

k PCM 

+ �k v Mesh (ρsp ) 

k UE 

, (7)

The average mesh volume fraction of the SE distribution, v̄ Mesh =[ ∫ r o 
r i 

4 π r 2 v Mesh (ρsp ) dr 

] 
/ [4 π(r 3 o − r 3 

i 
) / 3] , is equated to the vol-

ume fraction of the UE distribution v UE . 

With this constrained v Mesh ( ρsp ) the coefficients C i that define

κ( ρsp ) from Eq. (3) are related as 

i = n ∑ 

i =0 

C cv ,i C i = 1 , (8)

where C cv, i (see the detailed derivation in Appendix D ) take the

form 

 cv ,i = 

[
( R max − 1 ) 

2 

i + 3 

+ 

2 ( R max − 1 ) 

i + 2 

+ 

1 

i + 1 

]
3 ( R max − 1 ) 

R 

3 
max − 1 

. (9)

The coefficients C i are also constrained such that v Mesh ( ρsp ) > 0,

because a volume fraction cannot be negative. When v Mesh (ρsp ) =
0 the dimensionless thermal conductivity at that position is

κ(ρsp ) = k PCM 

/k UE . As an upper limit v Mesh ( ρsp ) < 0.2 are consid-

ered, for which the latent heat of the PCM/Mesh composite is typ-

ically reduced by less than 10% relative to the pure PCM [26] . 

3. Results and discussion 

3.1. Parametric evaluation of the polynomial κ( ρsp ) distribution 

For planar and cylindrical geometries a linear thermal conduc-

tivity distribution, peaked at the heat source, enhances dissipation

rates by reducing the time averaged thermal resistance between

the heat source and the melt-front [26] . The effects of concavity

and maxima/minima position are now considered for the spheri-

cal geometry with the more versatile polynomial distribution pro-

posed in Eq. (3) ( Table 2 ). 

In Fig. 2 , four representative combinations of κ( ρsp ) are shown

with a polynomial of degree n = 2 in Eq. (3) using properties and
arameters listed in Table 1 . Near to the heat source ( ρsp ≈ 0)

he value of κ( ρsp ) with R max = 101 is higher than κ( ρsp ) with

 max = 1 . 0 0 0 01 , because the high v Mesh (0) is compensated by low

 Mesh ( ρsp ) of spherical shells at more distant radii. 

For the same R max , Eq. (3) can generate parabolic κ( ρsp ) with

oth concave-up and concave-down shapes as shown in Fig. 2 . The

oncave-up shapes have minima at ρsp = 1 , while the concave-

own shapes have maxima at ρsp = 0 . To maximize κ near the

eat source its minimum is chosen to be at ρsp = 1 . For in-

tance, with R max = 1 . 0 0 0 01 as shown in Fig. 2 , the concave-up

ase ( κ( ρsp ) ≈ 3) is 100% higher than the concave-down case

 κ( ρsp ) ≈ 1.5) at ρsp = 0 . The difference is even more extreme

ith R max = 101 where the concave-up case ( κ( ρsp ) ≈ 9.5) is 280%

igher than the concave-down case ( κ( ρsp ) ≈ 2.5) at ρsp = 0 . 

How does enhancing κ( ρsp ) near the heat source change the

eat dissipation rate for these polynomial distributions? Fig. 3

hows the dimensionless distance of the melt-front from the hot-

pot, as a function of time for R max = 101 . Concave-up κ( ρsp ) re-

ults in τsp,max = 0 . 12 , which is more than eight times faster than

E ( εsp = 8 . 2 ). By comparison, concave down results in τsp,max =
 . 41 , which is just less than two and a half times faster than UE

 εsp = 2 . 4 ). This result confirms that higher enhancement at the

eat source ρsp = 0 expedites the melting process and thus en-

ances the heat dissipation rates of PCM in spherical systems as

as shown previously in Cartesian and cylindrical systems from

ef. [26] . In the case of the constant heat flux boundary condition

he same εsp would represent a reduced temporally averaged hot-

pot temperature. 
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Fig. 3. The higher spatially-enhanced thermal conductivity near to the hot-spot 

(i.e., the intercept of κ( ρsp )) with R max = 101 expedites the melting front ending 

at τsp = 0 . 12 , and, in other words, increases the heat dissipation rate relative to UE 

by more than eight times. 
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Fig. 4. The enhancement ratio using Eq. (10) indicates that complex concave-up 

κ( ρsp ) with degree higher than 1 (i.e., n > 1) enhance heat dissipation rates by a 

factor of nearly 8. 

Fig. 5. The optimal enhancement ratio as a function of the ratio of radii in cylindri- 

cal (Cyl) and spherical (Sp) systems. The optimal enhancement ratio ( εsp,opt ) reaches 

9.4 for n = 2 and n = 3 in spherical systems with R max = 10 0 0 . For the cylindrical 

systems with similarly large R max , the enhancement ratio ( εr ,opt ) is 3.2 for n = 2 and 

3.7 for n = 3 . In both cylindrical and spherical systems, the enhancement to ther- 

mal transport for higher order polynomials is distinctively better than for n = 1 (i.e., 

spatially-linear κ( ρsp )). 

c  

κ  

b  

c  

e

.2. Optimizing the concave-up distribution 

Given the performance benefits of a concave-up κ( ρsp ),

q. (3) is now specified so that κ( ρsp ) is always concave-up, as

(ρsp ) = �κ( 1 − ρsp ) 
n + κmin , (10) 

here �κ is the dimensionless thermal conductivity difference

etween ρsp = 0 and ρsp = 1 . With this definition v Mesh is de-

ermined by equating Eqs. (7) and (10) . The result, v Mesh 

(
ρsp 

)
=

 

�κ
(
1 − ρsp 

)n + ( κmin − k PCM 

/k UE ) 

] 
k UE / �k, is substituted into

q. (D.1) to enforce volume fraction conservation. As a result, �κ
s 

κ = 

1 − κmin 

3(R max −1) 

R max 
3 −1 

[ 
(R max −1) 2 

n +3 
− 2(R max −1) R max 

n +2 
+ 

R max 
2 

n +1 

] . (11) 

or the uniformly-enhanced κ( ρsp ) where n = 0 and �κ = 1 −
min , we recover κ(ρsp ) = 1 from Eq. (10) . 

Concave-up shapes are preserved by Eq. (10) even with n > 2

ecause the second derivative of Eq. (10) is always positive for

 ≤ ρsp ≤ 1. For the same κmin in Eq. (10) , higher order n result

n larger �κ and thus higher intercepts of κ( ρsp ). Nevertheless,

he highest κ( ρsp ) for each n is herein constrained by maintaining

 Mesh ( ρsp ) < 0.2, as not to replace too much PCM with mesh, per

he discussion in Section 2.3 . 

There are significant gains by moving beyond simple linear dis-

ributions of thermal conductivity (i.e., n = 1 ). The enhancement

atio using Eq. (10) is shown in Fig. 4 and indicates that heat dis-

ipation rates are not further enhanced with n > 3 for R max =
01 . This conclusion results due to the constraints on κmin and

max , which limit the utility of higher degree polynomials and may

hange if these constraints are adjusted. 

.3. Effects by ratio of radii 

In Fig. 5 εsp versus R max is shown for spherical and cylindrical

oordinates with n = 1 , 2 , and 3. The analysis with the polynomial

( ρsp ) distribution for cylindrical systems is derived in Appendix E .

emarkably, in spherical systems the enhancement ratio with n =
 reaches 9.4 for R max = 10 0 0 . For cylindrical systems with simi-

ar R max , the enhancement ratio is 3.2 for n = 2 and 3.7 for n = 3 .

or n = 2 and 3, εsp exceed that of n = 1 for R max > 10, which
learly demonstrates the value of using polynomial distributions of

( ρsp ). These extreme enhancements of the heat dissipation rates

y factors of more than 900% and 300% in spherical and cylindri-

al coordinates will vastly benefit thermal management strategies,

nabling higher powers or lower weights in portables. 
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Fig. A.1. The maximum values of R max where heat conduction regime is valid are 

estimated using various r i temperature differences, T i − T o . 

Table A.1 

Properties and parameters used to deter- 

mine length scales in Fig. A.1 . 

r i (μm) 10 −1 – 10 4 

�T = T i − T o (K) 1 10 100 

k = k UE (W/m-K) 4.89 

ρ f (kg/m 

3 ) [46] 763 

β (K −1 ) [47] 0.000764 

μ (Pa-s) [46] 0.002466 

C p (J/kg-K) [48] 2140 

λ
′ 

(J/kg) [48] 210000 

Ste = C p �T /λ
′ 
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m  

e  
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s

A

 

n  

i  

T

k  
More extreme enhancements can be achieved in spherical co-

ordinates because in a homogeneous solid sphere the derivative

of thermal resistance, which represents the thermal resistance per

unit spherical shell thickness, is highest at r = r i (i.e., thermal re-

sistance accumulates most rapidly when the melt front is near

r = r i ). Mathematically, the derivatives of thermal resistance are

proportional to 1/ r 2 and 1/ r for spherical and cylindrical systems.

When r is near to r i , the thermal resistance accumulates more

rapidly for spherical than cylindrical geometries. 

4. Conclusion 

This study pioneers an arbitrary polynomial form of spatially-

varied thermal conductivity to enhance heat dissipation rates in

PCM for thermal management. Heat dissipation rates are enhanced

using a concave-up thermal conductivity distribution that is high-

est near to the heat source in both 1-D spherical and 1-D cylin-

drical systems. While the results are derived in terms of enhance-

ment to heat transfer rate for a constant temperature heat source,

an equally valid interpretation is a reduction in the temporally av-

eraged hot-spot temperature in the case of a constant heat flux

source. 

For spherical and cylindrical systems, the heat dissipation rates

are enhanced by a factor of more than 90 0% and 30 0% relative to

the uniformly enhanced case using spatially-parabolic thermal con-

ductivity distributions. 

For cylindrical systems, the enhancement ratio exceeds 300%.

Practically these polynomial distributions could be used to vastly

improve hot-spot thermal management with spatially enhanced

meshes of equal weight or to create equivalent heat dissipation us-

ing SE meshes of significantly reduced weight. 
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Appendix A. Length scale for a melting process dominated by 

heat conduction 

References [34–37] identified a time scale t c where heat con-

duction dominates, and here it is assumed that if t sp, max < t c , the

conduction regime will be valid. The time scale [37] , converted

from a dimensionless time τ c , takes the form 

 c = τc 

L 2 
ch , (A.1)

α

here L ch is the characteristic length scale of the geometry, and

is the thermal diffusivity of the mesh/PCM matrix. For a con-

entric spherical enclosure, L ch is the diameter of the inner sphere

2 r i ) [38] . The dimensionless time scale τ c in (A.1) dominated by

eat conduction [37] is defined as 

c = 

9 Ra −
1 
2 

Ste 
, (A.2)

here Ste is the Stefan number and Ra is the Rayleigh number de-

ned as 

a = 

gρf βL 3 
ch 

(T i − T o ) 

μα
, (A.3)

here g is the acceleration of gravity, ρf is the fluid density, T i 
s the temperature at the inner sphere, T o is the temperature at

he outer sphere, and β , μ, α are thermal expansion coefficient,

iscosity, and thermal diffusivity. 

By equating t c with t sp, max (see Eq. (B.3) in Appendix B ) we

an determine the maximum value of R max that maintains the con-

uction regime over the entire melting process for a given r i . The

aximum R max , is plotted as a function of r i , in Fig. A.1 for sev-

ral T i − T o . Smaller hot-spot sizes and lower temperature gradients

uppress natural convection and make the conduction-only analy-

is suitable to larger R max . 

ppendix B. Derivation of the maximum melting time ( t sp,max ) 

The time for the melt-front to reach r o in 1-D spherical coordi-

ates is t sp,max . The maximum melting time for uniform mesh ( k UE )

s determined when k UE is substituted for k ( r ) in Eqs. (1) and (2) .

he temperature distribution is substituted into Eq. (2) as 

 UE 

(
T s − T m 

1 /r i − 1 /r m 

(t) 

)
1 

r 2 

∣∣∣
r= r (t) 

= λ
dr m 

(t) 

dt 
, (B.1)
m 

https://doi.org/10.13039/100000001
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nd t sp,max is acquired by integration as 

 t sp,max 

0 

d t = 

∫ r o 

r i 

d r m 

(t) 

(
r m 

(t) 
2 

r i 
− r m 

(t) 

)[
λ

k UE ( T s − T m 

) 

]
. (B.2)

he maximum melting time takes the form 

 sp,max = 

λr 2 
i 

(
2 R 

3 
max − 3 R 

2 
max + 1 

)
6 k UE (T s − T m 

) 
(B.3) 

ppendix C. Derivation of the numerical solution in the 

imensionless form 

The normalized melt-front position ρsp,m 

is discretized as

sp,m ,i = (i − 1)�ρsp where �ρsp = 1 /N and the node index i

anges from 1 to N + 1 . In this study, N = 10 0 0 was validated in

omparison with the analytical solutions as shown in Fig. C.1 and

hus is the default setting for the following analysis. 

Since the discretized temporal melt-front is known to progress

rom ρsp,m ,i =1 = 0 to ρsp,m ,i = N+1 = 1 , the cumulative melting time

sp ,i = τsp ,i −1 + �τsp ,i is determined based on the associated time 

tep �τ sp, i from node i − 1 to node i . 

After the first analytical integration, Eq. (4) becomes 

( 1 + ρsp R min ) 
2 κ( ρsp ) 

∂θ ( ρsp , τsp ) 

∂ρsp 
= C int ,i , (C.1) 

here C int, i is the integration constant for node i . This integration

onstant is then acquired using numerical integration at each node

s 

 int ,i = 

∫ θ (ρsp = ρsp,m ,i ,τsp )=0 

θ (ρsp =0 ,τsp )=1 
dθ∫ ρsp,m ,i 

0 

dρsp 

( 1+ ρsp R min ) 
2 κ(ρsp ) 

= 

−1 ∫ ρsp,m ,i 

0 

dρsp 

( 1+ ρsp R min ) 
2 κ(ρsp ) 

. (C.2) 

The time step �τsp ,i = n is then acquired by substituting(
ρsp 

)
[ ∂θ

(
ρsp , τsp 

)
/ ∂ρsp ] = C int ,i / 

(
1 + ρsp R min 

)2 
from Eq. (C.1) into

he energy balance Eq. (5) and then discretizing to reach 

τsp ,i ≈
(

6 R 

2 
min 

2 R 

3 
max − 3 R 

2 
max + 1 

)(
1 + ρsp,m ,i R min 

)2 

−C int ,i 

�ρsp . (C.3) 

The cumulative melting time τ sp, i is acquired from explicit for-

ard time marching 

sp ,i = τsp ,i −1 + �τsp ,i , (C.4) 
ig. C1. Numerically calculated dimensionless melting distance for thin walled 

ylindrical and spherical geometries, agree with those using analytical solu- 

ions [26,33] . 

B

C

A

c

 

e

a

−

E  
here τsp ,i =1 = 0 represents the initial condition. The reciprocal of

sp ,i = N+1 is the enhancement ratio, εsp . 

As shown in Fig. C.1 , the dimensionless melt distances using

his numerical scheme for thin walls (i.e., R max = 1 . 0 0 0 01 ) agree

ith those determined using the analytical solution for the planar

ase [26,33] . This agreement validates the numerical scheme. 

ppendix D. Derivation of the coefficients C cv, i in Eq. (9) 

From Eq. (3) , the volume fraction of metal mesh

n κ( ρsp ) is v Mesh (ρsp ) = [ κ(ρsp ) k UE − k PCM 

] / �k, where

k = k Mesh − k PCM 

. By utilizing �r = r o − r i , r = r i + �r · ρsp 

nd d r = �r · d ρsp the conservation of metal volume fraction

¯
 Mesh = 

[ ∫ r o 
r i 

dr 4 π r 2 v Mesh (ρsp ) 
] 
/ [4 π(r 3 o − r 3 

i 
) / 3] = v UE takes the

orm 

¯
 Mesh = 

3 

∫ 1 
0 �rdρsp ( r i + �rρsp ) 

2 
[
κ(ρsp ) 

k UE 

�k 
− k PCM 

�k 

]
(r 3 o − r 3 

i 
) 

(D.1) 

or the uniformly enhanced case, κ(ρsp ) = 1 (i.e., v Mesh (ρsp ) =
 k UE − k PCM 

] / �k ), and Eq. (D.1) becomes 

3 

∫ 1 
0 �rdρsp ( r i + �rρsp ) 

2 
[

k UE 

�k 
− k PCM 

�k 

]
(r 3 o − r 3 

i 
) 

= 

k UE 

�k 
− k PCM 

�k 
. (D.2) 

Eq. (3) is substituted for κ( ρsp ) into Eq. (D.1) , and after rear-

angement 

k UE 

�k 
− k PCM 

�k 
= 

3(R max − 1) 

R 

3 
max − 1 

(
k UE 

�k 

)

×
{ 

i = n ∑ 

i =0 

[
(R max − 1) 2 

i + 3 

+ 

2(R max − 1) 

i + 2 

+ 

1 

i + 1 

]
C i 

} 

− k PCM 

�k 
. (D.3) 

ext k UE / �k and k PCM 

/ �k in Eq. (D.3) are eliminated to yield, 

 = 

3(R max − 1) 

R 

3 
max − 1 

×
{ 

i = n ∑ 

i =0 

[
(R max − 1) 2 

i + 3 

+ 

2(R max − 1) 

i + 2 

+ 

1 

i + 1 

]
C i 

} 

= 

i = n ∑ 

i =0 

C cv ,i C i .. (D.4) 

y comparison with Eq. (8) we find, 

 cv ,i = 

[
(R max − 1) 2 

i + 3 

+ 

2(R max − 1) 

i + 2 

+ 

1 

i + 1 

]
3(R max − 1) 

R 

3 
max − 1 

. (D.5) 

ppendix E. Equations and parameters in 1-D cylindrical 

oordinates 

In 1-D cylindrical coordinates, the heat diffusion equation and

nergy balance at the melt-front take the form 

1 

r 

∂ 

∂r 

[
r k ( r ) 

∂T ( r, t ) 

∂r 

]
= 0 , (E.1) 

nd 

k ( r ) 
∂T ( r, t ) 

∂r 

∣∣∣
r= r m (t) 

= λ
dr m 

(t) 

dt 
. (E.2) 

qs. (E.1) and (E.2) are nondimensionalized following Ref. [26] as

1 

(1 + ρR min ) 

∂ 

∂ρ

[
( 1 + ρR min ) κ( ρ) 

∂θ ( ρ, τr ) 

∂ρ

]
= 0 , (E.3) 
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Fig. F.1. For the constant heat source the dimensionless temperatures and enhance- 

ment ratios are compared using R max = 101 . (a) The dimensionless temperature θ

at τsp = 1 using concave-up κ(ρsp = 0) is lower than that of concave-down and 

κ = 1 . (b) The enhancement ratio ( ε = 8 . 7 ) to the average temperature rise for the 

concave-up κ( ρsp ) outperforms that ( ε = 2 . 5 ) of concave-down κ( ρsp ). 

 

f

q  

a

t  

w  

ρ
T  

E  

a

θ  

a

τ  
and 

−κ( ρ) 
∂θ ( ρ, τr ) 

∂ρ

∣∣∣
ρ= ρm (τr ) 

= 

( 

(R max − 1) 2 

R 2 max 

2 
ln (R max ) − R 2 max 

4 
+ 

1 
4 

) 

dρm 

(τr ) 

dτr 
. 

(E.4)

The enhancement ratio ( εr = 1 /τr , max , where the subscript

r represents 1-D cylindrical coordinates) is numerically deter-

mined using Eqs. (E.3) and (E.4) based on the procedures in

Appendix C and Eq. (6) . 

From Eq. (3) , the volume fraction of metal mesh in κ( ρ)

is v Mesh (ρ) = [ κ(ρ) k UE − k PCM 

] / �k, where �k = k Mesh − k PCM 

. By

utilizing �r = r o − r i , r = r i + �r · ρ and dr = �r · dρ, the con-

servation of metal volume fraction for a cylinder v̄ Mesh =[ ∫ r o 
r i 

dr 2 π r v Mesh (ρ) 
] 
/ [ π(r 2 o − r 2 

i 
)] = v UE takes the form 

v̄ Mesh = 

2 

∫ 1 
0 �rdρ( r i + �rρ) 

[
κ(ρ) k UE 

�k 
− k PCM 

�k 

]
(r 2 o − r 2 

i 
) 

. (E.5)

For the uniformly enhanced case, κ(ρ) = 1 (i.e., v Mesh (ρ) = [ k UE −
k PCM 

] / �k ), and Eq. (E.5) becomes 

2 

∫ 1 
0 �rdρ( r i + �rρ) 

[
k UE 

�k 
− k PCM 

�k 

]
(r 2 o − r 2 

i 
) 

= 

k UE 

�k 
− k PCM 

�k 
. (E.6)

Eq. (3) is substituted for κ( ρ) in Eq. (E.5) , and the equation is

then rearranged as 

k UE 

�k 
− k PCM 

�k 
= 

2(R max − 1) 

R 

2 
max − 1 

(
k UE 

�k 

)

×
{ 

i = n ∑ 

i =0 

[
(R max − 1) 

i + 2 

+ 

1 

i + 1 

]
C i 

} 

− k PCM 

�k 
. (E.7)

Next k UE / �k and k PCM 

/ �k in Eq. (E.7) are eliminated to yield, 

1 = 

2(R max − 1) 

R 

2 
max − 1 

×
{ 

i = n ∑ 

i =0 

[
(R max − 1) 

i + 2 

+ 

1 

i + 1 

]
C i 

} 

. (E.8)

By comparison with Eq. (8) , 

 cv ,i = 

[
(R max − 1) 

i + 2 

+ 

1 

i + 1 

]
2(R max − 1) 

R 

2 
max − 1 

. (E.9)

Eq. (E.9) is similar to the form in Eq. (D.5) for spherical systems. 

For concave-up distributions specified by Eq. (10) , �κ for 1-D

cylindrical coordinates is obtained using the conservation of metal

volume fraction v̄ Mesh = 

[ ∫ r o 
r i 

dr 2 π r v Mesh (ρ) 
] 
/ [ π(r 2 o − r 2 

i 
)] = v UE 

as 

�κ = 

1 − κmin 

2(R max −1) 

R max 
2 −1 

(
R max 

n +1 
− R min 

n +2 

) . (E.10)

Appendix F. Derivation of the solution to constant power heat 

source cases 

For the constant heat source with power q located at r = r i the

Fourier Law applied at the meltfront takes the form, 

q = 4 π r 2 
[
−k (r) 

∂T (r, t) 

∂r 

]∣∣∣
r= r m (t) 

. (F.1)

For the case of UE with k (r) = k UE , Eq. (F.1) can be rearranged

and integrated as 

T s (t) = T m 

+ 

q 

4 πk UE 

[ 
1 

r i 
− 1 

r m 

(t) 

] 
. (F.2)

Then, the temperature T s ( t ) at heat source ( r = r i ) in Eq. (F.2) in-

creases until the melt front reaches r o (i.e., r m (t) = r o ). 
To determine the melting time, the energy balance at the melt

ront is 

 = 4 π r 2 λ

[
dr m 

(t) 

dt 

]∣∣∣
r= r m (t) 

, (F.3)

nd the melting time is determined by integration to be 

 = 

4 πλ(r 3 m 

− r 3 
i 
) 

3 q 
, (F.4)

hich reaches a maximum t max when r m 

= r o . Using

sp = (r − r i ) / (r o − r i ) , ρsp,m 

= (r m 

− r i ) / (r o − r i ) , θ = [ T s (t) −
 m 

] / (T s,UE − T m 

) , and τsp = t/t max , the melting temperature in

q. (F.2) and melting time in Eq. (F.4) can be nondimensionalized

s 

= 

R max ρsp,m 

1 + R min ρsp,m 

, (F.5)

nd 

sp = 

( 1 + R min ρsp,m 

) 
3 − 1 

R 

3 − 1 

. (F.6)

max 
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For k = k (r) the case of SE with κ = k (r) /k UE , Eq. (F.1) can be

ondimensionalized as 

κ(ρsp ) 
∂θ

∂ρsp 
= 

1 [ 
1 

R max 
+ 2 ρsp 

R min 

R max 
+ ρ2 

sp 
R 2 

min 

R max 

] ∣∣∣
ρsp = ρsp,m 

. (F.7) 

Since there is no analytical solution for complex κ( ρsp ), the di-

ensionless temperature θ must be determined by numerical in-

egration as 

θ j ≈ − �ρsp 

κ
(
ρsp , j 

)[ 
1 

R max 
+ 2 ρsp , j 

R min 

R max 
+ ρ2 

sp , j 

R 2 
min 

R max 

] , (F.8) 

nd the cumulative temperature θ j is acquired from explicit for-

ard marching 

j = θ j−1 + �θ j , (F.9) 

sp , j = ρsp , j−1 + �ρsp , (F.10) 

here �ρsp = 1 /N, and ρsp , j=1 = 0 represent the initial condition

or j > = 1 . 

The dimensionless temperature θ is shown as a function of τ sp 

n Fig. F.1 (a). For all times, the concave up κ distribution mini-

izes θ . This result physically implies that PCM/mesh composites

f higher κ at ρsp = 0 are able to maintain the hot-spot at the low-

st temperature. 

For the constant heat source, the enhancement ratio is defined

s ε = θUE / θSE , which is the ratio of the average θ of UE to SE

eshes. Ratios greater than one indicate that SE meshes main-

ain lower average temperature rises than UE meshes. As shown

n Fig. F.1 (b), the enhancement ratio ( ε = 8 . 7 ) for the concave-up

( ρsp ) is higher than of concave κ( ρsp ) ( ε = 2 . 5 ). The enhance-

ent ratio of ε = 8 . 7 for constant hot-spot power is the same as

he ε for heat dissipation with constant temperature (red line). The

rofiles of the enhancement ratio for various κ at ρsp = 0 are iden-

ical to those of Fig. 4 , where the heat source is at a constant tem-

erature. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.ijheatmasstransfer.2019.

19153 
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