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ABSTRACT: The Breakthrough Starshot Initiative aims to send a gram-
scale probe to our nearest extrasolar neighbors using a laser-accelerated
lightsail traveling at relativistic speeds. Thermal management is a key lightsail
design objective because of the intense laser powers required but has
generally been considered secondary to accelerative performance. Here, we
demonstrate nanophotonic photonic crystal slab reflectors composed of 2H-
phase molybdenum disulfide and crystalline silicon nitride, highlight the
inverse relationship between the thermal band extinction coefficient and the
lightsail’s maximum temperature, and examine the trade-off between
minimizing acceleration distance and setting realistic sail thermal limits,
ultimately realizing a thermally endurable acceleration minimum distance of
23.3 Gm. We additionally demonstrate multiscale photonic structures featuring thermal-wavelength-scale Mie resonant geometries
and characterize their broadband Mie resonance-driven emissivity enhancement and acceleration distance reduction. More broadly,
our results highlight new possibilities for simultaneously controlling optical and thermal response over broad wavelength ranges in
ultralight nanophotonic structures.

KEYWORDS: Starshot, Lightsail, Photon Momentum, Infrared, Nanophotonics, Mie Resonance, Photonic Crystal Reflector, 2D Materials,
Silicon Nitride, Molybdenum Disulfide

Interstellar travel is a fundamental scientific and engineering
challenge currently beyond the capability of advanced

nuclear pulse1 and fusion power-based2−4 engines. An
alternative approach proposed by the Breakthrough Starshot
Initiative is to use a laser-propelled lightsail carrying a gram-
scale probe at relativistic speeds to visit Earth’s nearest
candidate habitable exoplanet, Proxima Centauri B5−7 within
20 years. Lightsails are ultralightweight, highly reflective
surfaces propelled via photon momentum transfer8 and are
central to this remarkable potential capability. Lightsail-driven
vehicles have been extensively studied for solar,9−12

astrophysical,13,14 and laser15−18 sources. In the final case,
relativistic lightsail design and material selection faces an
extreme set of demands due to the target velocity requiring the
use of gigawatt-scale light irradiances on the sail. The high laser
irradiances in turn impose strong material, mechanical, and
optical constraints for functional sail design.19 Accelerative
performance necessitates high broadband reflectivity to
accelerate the sail and payload to its target velocity as quickly
as possible, and to account for red-shifting due to the
relativistic velocities involved. In addition, sail mass should
be minimized, and sail shape20 or patterning21 should result in
stable beam riding even when faced with nonideal beam shapes
or alignments.22 Sail survivability motivates the need for
sufficient mechanical robustness to survive both extreme

acceleration-induced forces and its interaction with the
interstellar medium.23−25 Finally, ensuring sail survivability
requires vanishingly small absorptivities over the red-shifted
laser band to prevent excessive heating, as well as sufficient
emissivity to radiatively dissipate heat generated by any
residual laser band absorptivity. Solutions to these criteria
have only recently come within reach through advances in
nanofabrication,26−28 radiative cooling,29,30 and nanophoton-
ics.31−34

Pioneering work on relativistic lightsails19 has included
passive beam-riding stability21,35,36 and maximizing reflectivity
on a per-mass basis37,38 in sails composed primarily of Si,
SiO2,

21,35,37,38 and Si3N4.
38,39 In these works, the sail’s

temperature has largely been a secondary consideration rather
than a primary target to be minimized. Here, we propose a
method to select sail designs by co-optimizing both their
thermal performance and reflectivity, and explore for the first
time the use of MoS2 as a highly reflective material for
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photonic lightsails. Furthermore, we demonstrate a multiscale
photonic structure that simultaneously optimizes for accel-
eration distance and enhances thermal emissivity to reduce sail
temperatures.
Our lightsail design is based on a multilayer 2D photonic

crystal slab-based geometry that features a molybdenum
disulfide (MoS2) reflective core layer surrounded on both
sides by silicon nitride (Si3N4) emissive layers. Figure 1a
illustrates the general optical considerations of lightsail design,
while Figure 1b−d shows the geometric parameters we
investigated in our periodic concept sails. While previous
work has discussed the possible use of MoS2 for laser-driven
lightsails,19 its use in photonic sail designs is still unexplored.
Other materials such as diamond and silicon have been
suggested but pose challenges due to high vacuum phase
instability,40 thermal41 or stress42 based band narrowing
effects, or surface states,43−45 all of which could cause
absorption.
We chose to investigate designs employing MoS2 for four

key reasons. The first is its high refractive index in the Doppler-
shifted laser band, ranging from n = 3.66−3.73, making it a
desirable reflective material. Second, its high bandgap energy
gives headroom for thermal bandgap narrowing effects that can
increase the film's absorptivity.46,47 Third, monolayer grown
MoS2 samples demonstrate zero absorption in the laser
bandwidth within ellipsometric measurement limits.48 Finally,
large area monolayer samples have been fabricated successfully,
a significant step toward future lightsail-scale films.49−51 Si3N4
has also been recently investigated for lightsails38,39,52 and
remains a promising candidate due to its mature fabricability,
low density, and high decomposition temperatures.53,54 Recent

work has demonstrated LPCVD-grown material absorption
coefficients of order 10−4 cm−1, a value currently limited by the
presence of microvoids and hydrogen impurities.55 Further-
more, Si3N4 has intrinsic emissivity characteristics in the 5−14
μm wavelength range56 that match well with the sail’s nominal
operating temperature of 500−1000 K.
We employed a trilayer composite sandwich structure that

provides high reflectivity in a lightweight and thermally robust
package due to the core MoS2 layer’s superior ratio of
refractive index to mass and the sail’s large emissive area for
cooling from the two Si3N4 face layers. In addition to the mass
reduction benefits, our design provides reflective enhancement
through coupling to broadband guided modes, building on
conventional photonic crystal slab theory.32 While we used this
as the basis of our design, the extreme performance required of
the lightsail necessitates departures from typical photonic
crystal reflectors. Previous nanoscale photonic crystal reflectors
in the literature have not been designed specifically for the
severe mass constraints, large laser bandwidth, and optimized
thermal emissivity that are required for the intended lightsail
mission. Finally, our design is fully connected and requires no
additional substrate to function as a standalone sail, offering an
important structural advantage. However, a large corrugated
support backbone may be necessary in practice to help the sail
withstand extreme accelerative forces.57 This structure would
provide macroscale sail curvature to increase stability and
mechanical robustness20 while additionally limiting crack
propagation in our proposed designs due to patterned hole-
induced stress concentrations.
To benchmark sail designs, we assumed typical design

parameters for Breakthrough Starshot: a uniform I = 10 GW
m2

Figure 1. Photonic sail design. (a) Schematic diagram demonstrating relevant optical considerations for an accelerating lightsail. (b) Section of sail
with hole diameter to period ratio of 90%. (c) Front and side view of single design period. (d) Enlarged view of multilayer structure. Yellow regions
represent Si3N4 while green regions represent MoS2.
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laser irradiance on the sail, a laser output wavelength of λ = 1.2
μm, a 10 m2 sail area, and a 1 g chip payload mass unless
otherwise stated. The acceleration distance figure of merit, as
defined by Jin et al.38 is

∫ρ ρ β
λ β

β= +D
c

I
h

R2
( )

( )
( ( ))

d
3

payload sail 0

0.2

(1)

where β = β

β β− −
h( )

(1 ) 12 2
, I is the laser irradiance in W

m2 , ρ is

areal density in kg
m2 , β is the unitless relative velocity (the ratio

of the sail velocity to the speed of light), and R(λ(β)) is the
spectral reflectance over the Doppler-shifted laser band. It is
worth noting that a constant irradiance term with respect to β
implies the use of laser power throttling to ensure the incident
power on the sail remains constant throughout its acceleration.
A detailed explanation of this can be found in the Supporting
Information of Campbell et al.20

Optimizing the period and hole diameter of the patterned
holes allows for high transmission and reflection bands of
varying spectral bandwidth.32 Figure 2a,b demonstrates the
dependence of acceleration distance on key design parameters
in our sail design space. Our optimal acceleration distance
merited design has a period of 1.16 μm, a hole period to
diameter ratio of 90%, 5 nm thick emissive Si3N4 layers, and a
90 nm thick MoS2 reflective core, placing it in a regime of very

low thickness values relative to the lattice constant, <0.1a.
Thinning of the high-index core maintains access to broadband
Fabry−Perot-like reflection modes at normal incidence with
the added effect of minimizing the overall sail mass. This
demonstrates the broad range of possible acceleration distance
values that our design space encompasses.
The precise payload chip mass, though likely to be roughly 1

g, has not yet been determined for the actual craft, such that
understanding the effect of mass on our optimal design is
critical. Note that payload mass can be converted to the areal
density value shown in eq 1 according to ρpayload = mpayload/Asail.
Figure 2b plots the laser band reflection spectra of the lowest
acceleration distance design for three payload masses,
demonstrating that as the payload mass decreases, reducing
the sail’s mass is rewarded more than improving its reflectance
spectrum. This means that sail mass becomes a stronger
consideration when the payload mass is small. A further
analysis showing the minimum acceleration distance versus
payload mass can be found in the Supporting Information,
which is corroborated by results in Jin et al.38

The Si3N4 layers we have introduced are necessary to
enhance thermal emissivity; however, these can also have the
effect of shifting the peak of the sail reflection spectra to lower
wavelengths compared to single-layer MoS2-only designs, as
shown in Figure 2c. The shift results in a ∼6% increase in the
acceleration distance figure of merit due to the monotonically

Figure 2. Reflective properties of multilayer photonic sail structures. (a) Color maps of minimum acceleration distance designs for a 1 g payload as
a function of the most sensitive geometric parameters. Each color map represents a two parameter slice of the five parameter design space
composed of the period/lattice constant, the hole diameter-to-period ratio, and the thicknesses of each of the three layers. Tile colormap shows the
acceleration distance for the design specified by the parameter values on the axis, shown for top and bottom Si3N4 layer thicknesses of 5 nm, the
optimal values to minimize acceleration distance. Outlined tiles marked with the red “ × ” show the parameter values of the lowest acceleration
distance design in our simulation space. (b) Dependence of lowest acceleration distance sail reflection spectra on payload mass over the Doppler-
shifted laser wavelength range. The optimal sails corresponding to payload masses of 0.1, 1, or 10 g have unladen masses of 1.17, 1.3, or 2.27 g
respectively. Thus, as the given payload mass decreases, sail mass reduction is a greater factor in decreasing acceleration distance than reflectivity
spectra enhancement. (c) Demonstration of spectral reflectance perturbation due to the addition of lower index, high emissivity Si3N4 layers. The
red-shifted reflectance spectra resulting from the multilayer design results in an increased acceleration distance in order to enable necessary thermal
benefits. Insets provide schematic diagrams of sail designs corresponding to plot colors.
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increasing nature of h(β) in eq 1. This highlights that having
high reflectivity at longer Doppler-shifted laser band wave-
lengths is more beneficial then at shorter wavelengths given a
constant irradiance on the sail. We note that since the designs
shown in Figure 2c have identical masses of ∼1.3 g, this effect
is attributable to the change in the refractive index profile
alone.
Our simulated sail design set resulted in an optimal reflective

design with an acceleration distance of 10.6 Gm when carrying
a 1 g payload, comparable in performance to current leading
designs.38 Importantly, our methodology takes into account all
mass required for acceleration and cooling and our design does
not require a connecting support structure. If necessary, adding
a 1 g mechanical backbone would provide additional structural
stability and increase the acceleration distance to 15.2 Gm.
Furthermore, the geometry of this design is not computation-
ally optimized, and optimization could yield still lower
acceleration distances. While the current design is competitive
with the best shown previously,38 we will show that adding
realistic thermal considerations increases acceleration distances
by 120%.
Lightsails can easily disintegrate during acceleration, making

sail integrity just as critical as reflection-driven performance
metrics. While the sail must exhibit extremely low absorptivity,
this value is finite in practice and the sail’s temperature will
increase due to the high incident laser irradiance. Interaction
with the interstellar medium at relativistic speeds could also
cause heating.23 Additionally, the sail’s component materials
can become more absorptive as their temperature rises, raising
concerns about thermal runaway58 and increasing the
probability of sail thermal failure. Our approach seeks to
optimize sail design in terms of its acceleration characteristics
while ensuring sufficient radiative cooling characteristics to
maintain sail integrity. We adopt the ultrahigh vacuum (UHV)
sublimation temperature Tsublimation of the sail materials as a
thermal limit. Note that since the UHV sublimation temper-

ature is less than the 1 atm melting temperature selected as the
thermal limit in other recent lightsail studies,21,35 this
represents a conservative design decision. In our case, we
adopted = ∼T T 1000limit sublimation,MoS2

K, which is the lower
UHV sublimation point among the two materials used59,60 (see
Supporting Information).
To our knowledge, the temperature-dependent absorption

properties of MoS2 have only been investigated in the Doppler-
shifted laser band up to 500 K using ellipsometric methods.61

This initial data suggests that the absorptivity of MoS2 as a
function of temperature may actually decrease while its
refractive index stays relatively constant, even in the presence
of thermally activated band narrowing. Investigation at higher
temperatures with higher sensitivity will be necessary to fully
determine thermal runaway-based effects. We further note that
ellipsometric methods, which were used to generate the optical
constant data in our simulations, cannot reliably measure
absorptivities of less than 1% of the incoming source intensity.
This strongly highlights the need for sensitive measurements of
materials used for relativistic lightsails using techniques such as
photothermal deflection62 and photocurrent63 spectroscopy.
New growth methods such as chemical vapor transport and
self-flux growth64−66 offer the possibility of producing
electronically thick bulk film samples having optical quality
comparable to or better than the lowest values reported in the
optical constant data set used for simulation and analysis in
this work.48

We implicitly calculated the maximum temperature Tmax
reached by each sail in our space of over 3 × 105 designs using
the following equation

∫α
λ

λ
λ= ·

ϵ
−λP A

c
e

2
( )

1
d

a

b

c Tsail sail sail
1
5

sail
/2 max (2)

where Psail is the incident laser power on the sail, α is the laser
band spectrally averaged integrated absorptivity of the sail, Asail

Figure 3. Emissive properties of multilayer photonic sail structures for a 1 g payload. (a) Minimum acceleration distance as a function of
temperature for three imposed values of sail material extinction coefficient. The vertical black dotted line marks the defined ultrahigh vacuum
thermal limit. On the central curve (κ = 10−7) the blue point and accompanying line mark the acceleration distance and temperature of the TEAM
design. The TEAM design is that which obtains the TEAM distance, that is, that which has the shortest acceleration distance among those design
alternatives whose temperatures do not exceed the thermal limit. The red dotted line marks the minimum acceleration distance achievable in our
design space and demonstrates that the corresponding design has a peak temperature >5000 K for κ = 10−7, meaning the theoretical corresponding
red point (marking the intersection of the orange curve with the red dotted line) is not visible. The solid red curve corresponds to a simulated value
of κ = 10−8, which shows a solution below 5000 K, but it is still more than double the enforced thermal limit. Decreasing κ has the effect of
decreasing the TEAM distance from 23.3 to 11.4 Gm. (b) Comparison of the hemispherical emissivity spectra, that is, the direction-averaged
spectral emissivity, of the simple acceleration merited design corresponding to the theoretical off plot red point in (a) versus acceleration distance-
temperature comerited design corresponding to the blue point in (a). Calculated maximum temperatures of the designs are also provided. (c) Plot
showing thermally endurable acceleration minimum (TEAM) distance for six selected values of κ, connected to show trended behavior. Values of κ
greater than the plot domain have no solution within our simulated sail set, meaning layers of Si3N4 thicker than 110 nm are necessary to maintain
thermal integrity of the sail in flight.
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is the area of a single side of the sail, the factor of 2 accounts
for the emission by Si3N4 on both sides of the sail, a = 1.55
μm, b = 14.05 μm, c1 = 2πhc2, c2 = hc/kb, h is Planck’s constant,
c is the speed of light, kb is Boltzmann’s constant, and ϵsail is the
spectral sail emissivity (see Supporting Information).
Our initial designs leveraging conventional photonic crystal

theory have desirable properties from an acceleration merit
standpoint, but their thermal band radiant exitance is highly
dependent on the intrinsic spectral emissivity of their
component materials. In the case of lightsails, a trade-off
exists between thermoregulation and acceleration distance. In
general, for a given sail diameter, increasing mass increases
acceleration distance, while increasing emissive material mass
enhances heat dissipation. However, greater material mass can
also result in greater laser absorption. We applied these
considerations by simulating our sail designs at three material
extinction coefficient values of κ = 10−8, 10−7, and 10−6 for
both Si3N4 and MoS2 over the laser band. These coarse choices
are due to the aforementioned lack of material extinction
coefficient data in the Doppler-shifted laser band. We then
used the resulting absorptivity values to show the relationship
between acceleration distance and operating temperature for a
given κ in Figure 3a. These results can also be stated in terms
of assumed total sail absorptivity (Supporting Information).
This result clearly illustrates the effect of extinction coefficient
on sail survivability. As extinction coefficient values are
increased for the constituent materials, acceleration distances
below a threshold value become thermally impossible to
achieve. The horizontal lines are iso-acceleration distance lines,
and their intersections with the curves mark extinction
coefficients for which sails with a given acceleration distance
value exist.
We now define a new and final composite figure of merit for

our sail design space, which we call the thermally endurable
acceleration minimum (TEAM) distance value. The TEAM
distance value for a design space is the minimum acceleration

distance among designs where Tsail,max < Tlimit. Likewise, the
TEAM sail design is the sail configuration that results in the
TEAM distance value. Minimizing the TEAM distance is
desirable, but we emphasize that this is not a sail metric per se;
rather, it is a summary value that can be easily reported to
compare design approaches and sail data sets, rather than
individual sails. Given laser parameters, payload mass, and sail
architectures with known acceleration distances, TEAM
distance depends on three quantities: the previously set
maximum allowable sail temperature determined by the UHV
sublimation limit (and therefore the high vacuum properties of
the materials system used for sail design), the laser band
absorption properties of the sail, and the thermal emissivity of
the sail. After both high vacuum thermodynamic and high
sensitivity absorption properties of candidate materials are fully
determined, this can act as a simple way to compare design
spaces without ambiguity.
Using our analysis framework for an imposed extinction

coefficient of κ = 10−7, we demonstrate a TEAM distance value
of 23.3 Gm, a 12.7 Gm accelerative penalty relative to the
original 10.6 Gm minimum distance, which prevents MoS2
sublimation by limiting the sail’s peak temperature to Tmax =
1000 K. Addition of a 1 g mechanical backbone results in a
larger TEAM value of 76.7 Gm. This design has a period of
1.08 μm, a hole diameter to period ratio of 0.1, a top Si3N4
emissive layer of 10 nm, a 50 nm thick high index MoS2 layer,
and a 5 nm bottom Si3N4 layer. Our TEAM-derived sail design
has a smaller hole radius and thicker Si3N4 layers relative to the
original 10.6 Gm design. Comparing the spectral hemispherical
emissivity values of the two designs (Figure 3b) reveals that
the thicker, larger emissive area design is necessary to radiate
away excess energy and survive. The TEAM design has an
approximately 8× higher peak emissivity value due to the
presence of more Si3N4 in the photonic crystal structure.
Figure 3c shows TEAM value as a function of κ in the laser
band. When κ increases, the TEAM distance increases, placing

Figure 4. (a) Mie resonant enhancement schematic diagram illustrating the proposed multiscale Mie resonator design. The green strips show the
possibility of scaffolds used to support the Mie resonator structure. (b) Spatial absorption profiles of Mie resonances in (c) corresponding to the
respectively labeled spectral peaks. (c) Hemispherical exitance of Mie resonant structure versus conventional photonic crystal structure, calculated
at a temperature of 1000 K, demonstrating a pathway for possible emissivity enhancement. (d) Demonstration of spectrally integrated
hemispherical exitance enhancement as a function of temperature.
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firm bounds on allowable material absorption given a target
acceleration distance.
Previously developed photonic lightsail designs are limited

to single-scale photonic features and their associated thermal
characteristics. However, a multiscale segmented design
architecture could yield additional thermal benefits without
incurring a mass penalty. To explore this, we proposed and
investigated an emissivity-enhancing multiscale Mie resonant
structure with thermal wavelength-scale Mie resonators
patterned with laser-wavelength-scale photonic crystal features
(Figure 4a). These multiscale photonic structures yield a large
number of resonant peaks over desired peak thermal
wavelengths that collectively enhance the total hemispherical
emittance of the sail. This is reminiscient of nanophotonic light
trapping approaches to solar absorption, where numerous
peaks contribute to absorption enhancment.67,68 Our design is
composed of two 30 nm emissive Si3N4 layers surrounding a
90 nm MoS2 core. The patterned photonic crystal has a period
of 1.14 μm with a 90% hole diameter to period ratio. The
multiscale Mie structure is 8.55 μm by 8.55 μm with an overall
period of 10 μm. The Mie structure achieved a temperature-
constrained acceleration distance of 16.7 Gm compared to 24
Gm for a continuous non-Mie design with similar areal density.
Importantly, the Mie structure’s additional emissivity in the
critical 2−6 μm band lowers the sail’s peak temperature.
Remarkably, the Mie resonant design has a 7.4 Gm shorter
acceleration distance or a 43% decrease as compared to the
equivalent continuous design. Because the areal density of
Si3N4 between the compared designs is nearly the same, longer
wavelength thermally emissive features will be maintained
between the two designs, meaning the additional emissivity
features in the critical band from 2 to 6 μm are key to enabling
lower overall temperatures. The structure can be connected by
a series of thin scaffolds while maintaining the presence of
resonant modes. If further mechanical robustness is desired, a
mechanical backbone could be added.
The spatial profiles of four resonant modes supported by the

multiscale Mie-resonant structure are shown in Figure 4b,
corresponding to four modes in the 2−6 μm band shown in
Figure 4c. Figure 4c shows the hemispherical direction-
averaged spectral exitance in this band, determined by
weighting the hemispherically direction averaged emissivity
spectrum of the device with the spectrum of a 1000 K
blackbody. This wavelength band is critical for sail heat
management due to the blackbody peak position at temper-
atures from 500−1000 K, as determined by Wien’s law.
Increases to sail emissivity in the 2−6 μm band will more
strongly reduce overall sail temperatures in comparison to
emissivity increases at longer wavelengths. The enhancement
of in-band hemispherical exitance at a given temperature is
demonstrated in Figure 4d, showing that at the previously
suggested thermal limit of 1000 K, the islanded design has over
2.75× greater hemispherical exitance, with as much as 3.6× the
hemispherical exitance at 1500 K. This showcases the utility of
the multiscale Mie-resonant structures for thermal regulation
of ultralight photonic structures.
In conclusion, we have demonstrated holistically viable

multilayer 2D photonic reflector designs for laser-driven
lightsails that are able to accelerate to one-fifth the speed of
light over distances comparable to, and in some cases even
exceeding, designs reported previously. We emphasize that our
designs represent the entire sail structure and do not require
additional backing material for emissivity enhancement,

allowing for accurate modeling of payload-driven performance.
To analyze such relativistic lightsail designs, we further
proposed an analysis framework that accounts for both
acceleration distance and peak temperature. We then proposed
the thermally endurable acceleration minimum (TEAM)
distance value as a summary statistic to determine the
fastest-accelerating thermally stable sail design of a design
set. This value is easily reportable and will allow researchers to
compare their design sets, represented by a variety of materials
and nanoscale geometries. Finally, we introduced a multiscale
sail design employing thermal-wavelength-scale Mie-resonant
features to enhance the mid-infrared emissivity of lightsails
while preserving their underlying acceleration distance
characteristics. Although relativistic lightsails impose stringent
constraints, our multiscale photonic designs highlight intrigu-
ing optical capabilities that ultralight, nearly massless photonic
structures can enable over an ultrabroadband wavelength
range. This in turn heralds the possibility of new classes of
ultralight photonic structures that can perform as well as
conventional photonic structures for mass-constrained aero-
space, imaging, and information processing applications.
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