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Abstract: We put forward a new optical system, which is composed of an existing axicon
doublet and a newly proposed amplitude filter. The axicon doublet consists of a positive axicon
and a negative axicon with high and low refractive indices, respectively. The Bessel beam
generated by the axicon doublet propagates as far as more than 200 meters, owing to a small
refractive index difference between the double axicons. The newly proposed amplitude filter
is used to flatten the axial intensity distribution. Numerical results calculated by the complete
Rayleigh-Sommerfeld method demonstrate that the generated Bessel beam propagates stably
within a very long axial range. The proposed optical system is expected to have practical
applications in tracking far-distance moving targets.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The Bessel beam, as a kind of nondiffraction beams, possesses propagating invariance [1] as well
as self-healing [2] and self-accelerating [3] properties along the propagation direction. Therefore,
it has broad applications in precise laser machining [4,5], atom trapping and particle manipulation
[6,7], optical imaging [8] and microscopy [9–11], optical bullets [12], quantum information [13],
volume hologram recording [14], optical communications [15], nonlinear optics [16] and so on.
Many previous research works were focused on its generation [17,18] and propagation [19,20].
There typically include the following techniques for generating a Bessel beam: ring-slit method
[21], computer generated hologram [22,23], volume holographic method [24], axicon [25,26],
spherical-aberration lens [27], resonant cavity [28], and meta-surfaces [17,29].

Among all the above generation methods, the axicon is the most commonly used way due to
its simple structure and high conversion efficiency. However, the Bessel beam generated by a
single positive axicon can only propagate a few centimeters [30], because the transmitted conical
waves have a relatively large conical angle due to fabrication limitation. Wu et al. proposed
an axicon doublet, which was composed of a positive axicon and a negative axicon with the
same base angles but different materials [31]. Numerical simulations in Ref. [31] reported
that the generated Bessel beam could propagate tens of meters. Koronkevich et al. fabricated
a diffractive optical element, which transformed a point light source into an axial focused line
with propagation distance more than 100 meters [32]. Axial intensities of the above generated
Bessel beam are linearly increased with prominent oscillations [22,30–33]. Until now, there is
rare research on the generation of uniform Bessel beams, which hampers its applications to stable
imaging and detection. Therefore, we propose a new amplitude filter for flattening the axial
intensity distribution. On this basis, we put forward a new optical system, which is composed
of the axicon doublet and the newly proposed amplitude filter. It is expected that the generated
Bessel beam should propagate stably within a long axial range.
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This paper is organized as follows. In Section 2, we describe the design principle and structure
of the proposed new optical system, including the axicon doublet and the amplitude filter.
Formulas for calculating the Bessel beam intensities and evaluating stable performance indices
of the Bessel beam are written in detail. In Section 3, we simulate the diffracted Bessel beam
intensities by the complete Rayleigh-Sommerfeld method. Numerical results are physically
explained. A brief conclusion is drawn in Section 4 together with some discussions.

2. Design principles of the axicon doublet and the amplitude filter together with
calculating formulas of the generated Bessel beam

2.1. Design of the axicon doublet

For the traditional case of a single positive axicon, as shown in Fig. 1(a), the incident plane wave
is refracted by the axicon to form a conical wave. According to Snell’s law, the conical angle θ1
is given by

θ1 = sin−1[n1 sin(α)/n0] − α , (1)

where α is the base angle of the axicon; n1 and n0 are the refractive indices of the axicon and
the surrounding region, respectively, as shown in Fig. 1(a). Coherent superposition of the
conical waves produces a Bessel beam in the transmitted region behind the axicon. The longest
propagating distance can be approximately obtained by [1,21,34]

zs
max = R/tan(θ1) , (2)

where R is the radius of the axicon, as shown in Fig. 1(a).
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Fig. 1. Schematic diagrams of (a) a single positive axicon and (b) an axicon doublet.

We can conclude from Eq. (2) that the longest propagation distance relies on the axicon
radius R and the conical angle θ1. We make a typical approximation. If n1 = 1.5, n0 = 1.0,
R = 5 cm, and α = 25◦, we can obtain from Eq. (2) that zs

max = 19.56 cm. However, if the
positive axicon is applied to far distance focusing, the base angle α should be very small. For
instance, if zs

max ≥ 100 m, from Eqs. (1) and (2), we can get α ≤ 0.05◦, which is much less than
the experimental fabrication error.

To reduce the conical angle of the transmitted waves and enlarge the propagation distance, the
axicon doublet is used [31], as shown in Fig. 1(b). The axicon doublet consists of a positive
axicon and a negative axicon with the same base angles. The double axicons are perfectly
attached together and no space is left between the two conical surfaces. When a plane wave
normally impinges on the front surface of the axicon doublet, it will go straightly into the positive
axicon. On the conical surface of the positive axicon, the refractive wave will deviate from the
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original propagation direction owing to a refractive index difference between the double axicons.
By analogy with Eq. (1), the deviation angle δ is calculated as

δ = sin−1[n1 sin(α)/n2] − α , (3)

where n1 and n2 are the refractive indices of the positive axicon and the negative axicon,
respectively; α is the base angle of the positive axicon, as shown in Fig. 1(b). Then, the
propagating wave will go to the exit surface of the negative axicon and refract twice to the outside
space. The outgoing wave behind the axicon doublet has a conical angle θ2 of

θ2 = sin−1[n2 sin(δ)/n0], (4)

where n0 is the refractive index of the outside space, as seen in Fig. 1(b). If the base angle α is
small, Eqs. (3) and (4) can be simplified. Then the conical angle θ2 is approximated as

θ2 ≈
n1 − n2

n0
α . (5)

It is seen from Eq. (5) that a very tiny conical angle θ2 is obtained as long as the refractive
index difference between the double axicons is small enough. Consequently, the maximum
propagating distance of the Bessel beam and the radius of the axicon doublet are related by

zad
max = R/tan(θ2), (6a)

R = zad
max × tan(θ2), (6b)

where R is the radius of the axicon doublet. If θ2 is very small, the maximum propagation
distance zad

max in Eq. (6a) will be a considerably large value in the case of the axicon doublet.
We use the same parameters chosen above to make an estimation. When R = 5 cm, n1 = 1.5,
n2 = 1.499, n0 = 1.0, and α = 25◦, we can get zad

max = 107.22 m.
In Fig. 1(b), since the outgoing waves are conical waves with deviation angle θ2 from the

optical axis, the transmitted field in the z = 0 plane is

U1(ρ, z = 0) = A(ρ)exp[−jρ sin(θ2)], (7)

where A(ρ) represents the amplitude distribution; ρ is the radial coordinate in the z = 0 plane, as
shown in Fig. 1(b); j =

√
−1 is the complex unit. If the incident light is a plane wave with unit

amplitude and we ignore the reflection losses on all the three interfaces, then A(ρ) = 1 is valid.

2.2. Design of the amplitude filter

In this subsection, we propose and design a new amplitude filter to flatten the axial intensity
distribution of the generated Bessel beam. It can be divided into two steps, in which we suppress
the axial intensity increasing trend and oscillating effect successively.

To examine the reason for the axial intensity increasing trend, we draw a ray tracing picture
of the axicon doublet in Fig. 2(a), which is similar to the case of a single positive axicon.
In Fig. 2(a), the plane waves are incident upon the front surface of the axicon doublet, after
twice refraction, the transmitted waves have the same conical angles. Accordingly, the intensity
at a definite axial position z depends on the field superposition of all the source points on a
circumference with radius ρ = z × tan(θ2) in the z = 0 plane. By using limit principle, the
incident power within an infinitesimal annular region [ρ, ρ + dρ] is assumed to be concentrated
in an infinitesimal axial region [z, z + dz], as shown in Fig. 2(a). When the incident light is
a plane wave with unit amplitude, the incident power within an infinitesimal annular region
[ρ, ρ + dρ] is calculated as 2πρdρ, proportional to the annular region radius ρ. Therefore, the
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Fig. 2. Schematic diagrams of (a) the axicon doublet, and (b) the proposed new optical
system consisting of the axicon doublet and the amplitude filter.

axial intensity I(z) is proportional to the corresponding annular region radius ρ. Taking the
relation ρ = z × tan(θ2) into account, we now understand why the axial intensity I(z) is almost
linearly enlarged with the increase of the axial position z.

To suppress the increasing axial intensity into a stable one, a simple way is to impose an
amplitude filter in the z = 0 plane whose transmission coefficient is proportional to 1/√ρ. For
avoiding singularity at the origin point ρ = 0, we assume that the incident light is completely
blocked for ρ<R1. If we hope to generate a Bessel beam within the axial range [z1, z2], from Eq.
(6b) the amplitude filter must be transparent in the annular regime [R1, R2] with R1 = z1 × tan(θ2)
and R2 = z2 × tan(θ2). The transmission coefficient of the annular amplitude filter is given by

T1(ρ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, ρ<R1,√︁

R1/ρ, R1 ≤ ρ<R2,

0, R2 ≤ ρ ≤ R,

(8)

where ρ is the radial coordinate in the z = 0 plane and R is the radius of the axicon doublet,
as shown in Fig. 2(b); R1 and R2 satisfy 0<R1<R2 ≤ R. In contrast, for the case of the axicon
doublet without amplitude filter, the transmission coefficient is T0(ρ) = 1 for ρ ≤ R and T0(ρ) = 0
for ρ>R. It is noted that in Ref. [35] Davidson et al. used a similar formula like Eq. (8) to inhibit
the axial intensity increasing trend.

In the second step, we need to suppress the axial intensity oscillations, which are originated
from field diffraction effect at the aperture edge where an abrupt cutoff of the incident field is
occurred. A common way to relieve the diffraction effect is introducing a gradually absorbing
layer near the aperture edge [20,26,34]. Axial intensity oscillations can also be suppressed with a
heart-shaped binary amplitude mask, in which the filling ratio of the transparent region is exactly
the same as the amplitude distribution of the gradually absorbing layer [36–39]. Motivated
by their works, here we apply a gradually varying amplitude mask to stifling axial intensity
oscillations of the Bessel beam generated by the axicon doublet. The transmission coefficient of
the gradually varying amplitude mask is written as

T2 (ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ρ<R1

sin2
[︂

π(ρ−R1)
2ε(R2−R1)

]︂
, R1 ≤ ρ<R1 + ε (R2 − R1) ,

1, R1 + ε (R2 − R1) ≤ ρ<R2 − ε (R2 − R1) ,

sin2
[︂

π(R2−ρ)
2ε(R2−R1)

]︂
, R2 − ε (R2 − R1) ≤ ρ<R2,

0, R2 ≤ ρ ≤ R,

(9)
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where ε (0<ε ≤ 0.5) is the smoothing parameter, which is defined as the ratio of width for the
annular region with gradually varying amplitude to that for the total transparent annular region.
A smaller smoothing parameter ε implies a rapider change of transmission coefficient T2(ρ)
inside the annular regions R1 ≤ ρ<R1 + ε(R2 − R1) and R2 − ε(R2 − R1) ≤ ρ<R2, leading to
stronger axial intensity oscillations. Specially, when the smoothing parameter ε approaches 0,
the transmission coefficient T2(ρ) varies suddenly from 0 to 1 on the circumferences with radii
of R1 and R2. Nevertheless, a larger smoothing parameter shortens the maximum propagation
distance of the diffracted Bessel beam.

Through synthesizing the two transmission coefficient functions in Eqs. (8) and (9), we can
expect a flat axial intensity of the generated Bessel beam. Hence, we propose such a smoothing
amplitude filter whose transmission coefficient is

T (ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ρ<R1,√︁
R1/ρ × sin2

[︂
π(ρ−R1)

2ε(R2−R1)

]︂
, R1 ≤ ρ<R1 + ε (R2 − R1) ,√︁

R1/ρ, R1 + ε (R2 − R1) ≤ ρ<R2 − ε (R2 − R1) ,√︁
R1/ρ × sin2

[︂
π(R2−ρ)

2ε(R2−R1)

]︂
, R2 − ε (R2 − R1) ≤ ρ<R2,

0, R2 ≤ ρ ≤ R.

(10)

2.3. Formulas for calculating the Bessel beam intensity and evaluating the stable
propagation performance indices

Once the axicon doublet and the smoothing amplitude filter are designed, the diffracted field
U2(x, y, z) of the generated Bessel beam is calculated by the complete Rayleigh-Sommerfeld
method as [40]

U2(x, y, z) =
kz
j2π

∫∫
T(x0, y0)U1(x0, y0, z = 0)

exp(jkr)
r2

(︃
1 −

1
jkr

)︃
dx0dy0, (11)

where j =
√
−1 is the complex unit; k = 2π/λ and λ are the wave vector and incident wavelength

in vacuum, respectively; z is the longitudinal coordinate; T(x0, y0) is the transmission coefficient
in the z = 0 plane, which can be calculated from Eq. (10) with ρ =

√︂
x2

0 + y2
0; x0 and y0

respectively represent the transverse coordinates along the x-axis and the y-axis in the z = 0 plane;
U1(x0, y0, z = 0) is the incident field in the z = 0 plane, whose formula is given by Eq. (7) with

ρ =
√︂

x2
0 + y2

0; r =
√︂
(x − x0)

2 + (y − y0)
2 + z2 represents the distance between the source point

(x0, y0, z = 0) and an arbitrary observation point (x, y, z). The diffracted Bessel beam intensity is
I2(x, y, z) = |U2(x, y, z)|2, where |U2 | represents the magnitude of the complex field U2 calculated
from Eq. (11).

To quantitatively characterize the propagation invariance property of the generated Bessel
beam, the axial intensity uniformity and coincidence of the cross-sectional intensity profiles are
two important performance indices. For appraising the axial intensity uniformity within the
longitudinal range [za zb], we define an axial intensity percentage error (AIPE) function as

δa(z) =
|I2(0, 0, z) − I2(0, 0, z)|

I2(0, 0, z)
× 100% , (12)

where I2(0, 0, z) and δa(z) represent the axial intensity and its percentage error for an arbitrary
observation point (0, 0, z), respectively; I2(0, 0, z) represents the average axial intensity within
the longitudinal range [za zb].



Research Article Vol. 4, No. 4 / 15 April 2021 / OSA Continuum 1228

For judging the coincidence of the cross-sectional intensity profiles within the central lobe, we
define the transverse intensity percentage error (TIPE) function as

δt =
∫

dm/2
−dm/2

∑︁M
m=1 |Ix(x, 0, zm) − Ix(x, 0)|dx

∫
dm/2
−dm/2

Ix(x, 0)dx
× 100% , (13)

where Ix(x, 0, zm) stands for the transverse intensity along the x-axis in the cross-sectional
plane at z = zm; M indicates the number of the calculated cross-sectional planes; Ix(x, 0) is
the average transverse intensity along the x-axis for all the above M planes, which is given by

Ix(x, 0) =
M∑︁

m=1
Ix(x, 0, zm)/M; the integral lower limit −dm/2 and upper limit dm/2 respectively

assign the first minimum intensity position on both sides of the central spot in the cross-sectional
plane at z = zm; δt represents the transverse intensity percentage error for the above M planes.

3. Performance analysis of the Bessel beam generated by the optical system
composed of the axicon doublet and the smoothing amplitude filter

In this section, we choose a set of parameters to simulate the propagating properties of the Bessel
beam generated by the proposed optical system consisting of the axicon doublet and the smoothing
amplitude filter. The propagating properties include the axial intensity distribution along the
optical axis and the transverse intensity distribution on several cross-sectional planes. Parameters
are selected as follows. The radius and base angle of the axicon doublet are respectively assigned
as R = 10 cm and α = 35◦, as shown in Fig. 2(b); the incident plane wave has a unit amplitude
and a wavelength of λ = 532 nm in vacuum; the positive and negative axicons are made of H51
and H50 glasses from CDGM company, with refractive indices being 1.5260 and 1.5254 for
λ = 532 nm, respectively. On setting the axial propagation range of the Bessel beam to [30 210]
m, we can calculate the annular transparent region radii as [12.60 88.23] mm from Eq. (6b). The
smoothing parameter is chosen as ε = 0.15 in Eq. (10).

3.1. Axial intensity of the long-distance stably propagating Bessel beam

With all the parameters selected above, we can calculate the axial intensity distribution of the
Bessel beam from Eq. (11) on setting x = y = 0, as shown in Fig. 3. Figures 3(a), 3(b), and
3(c) correspond to the axial intensity distributions of the Bessel beams generated by the axicon
doublets without amplitude filter, with the annular amplitude filter, and with the smoothing
amplitude filter, respectively. Their transmission coefficients are plotted in Figs. 3(d), 3(e), and
3(f), respectively. For the axicon doublet without amplitude filter, the axial intensity is linearly
increased with some oscillations, as seen in Fig. 3(a). Through putting an annular amplitude filter
behind the axicon doublet, the axial intensity climbing effect is substantially suppressed while
prominent oscillations still exist in the axial intensity profile, as shown in Fig. 3(b). Furthermore,
if we attach a smoothing amplitude filter to the axicon doublet, we have obtained a considerably
stable axial intensity distribution of the generated Bessel beam during a long axial range, as
shown in Fig. 3(c). Numerical results reveal that within the axial range [80 140] m the maximum
AIPEs are 50.50%, 12.52%, and 0.22% for Figs. 3(a), 3(b), and 3(c), respectively. If we expand
the axial range to [70 150] m, the maximum AIPEs are 65.40%, 14.51%, and 0.45% for Figs.
3(a), 3(b), and 3(c), respectively.

To demonstrate the long-distance propagating property of the Bessel beam generated by the
axicon doublet, the axial intensity distribution of a single positive axicon is also investigated
for comparison. The single positive axicon is made of H51 glass. Other parameters are the
same as above. Numerical results show that the maximum propagation distance for the single
positive axicon is only 20.37 cm; in contrast, the Bessel beam generated by the axicon doublet
can propagate as far as more than 200 meters. So far we have clearly proved both long distance
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Fig. 3. Axial intensity distributions of the Bessel beams generated by the axicon doublets
(a) without amplitude filter, (b) with the annular amplitude filter, and (c) with the smoothing
amplitude filter, respectively. (d), (e), and (f) correspond to the transmission coefficients for
the cases of (a), (b), and (c), respectively.

and axial stable propagation properties of the Bessel beam generated by the proposed optical
system.

3.2. Transverse intensity of the long-distance stably propagating Bessel beam

In addition, the cross-sectional intensity patterns are studied to see the central lobe stableness of
the generated Bessel beam. To this end, we select four cross-sectional planes with longitudinal
positions at z1 = 80 m, z2 = 100 m, z3 = 120 m, and z4 = 140 m. For the axicon doublet without
amplitude filter, the cross-sectional intensity patterns at z1 = 80 m, z2 = 100 m, z3 = 120 m, and
z4 = 140 m are displayed in Figs. 4(a), 4(b), 4(c), and 4(d), respectively. It is seen from Figs.
4(a) to 4(d) that the central spots almost have identical sizes, but the peak intensity increases
about twice, as shown by the colorbars. For the axicon doublet with the annular amplitude filter,
the intensity patterns in above four cross-sectional planes are drawn in Figs. 4(e), 4(f), 4(g), and
4(h), respectively. The peak intensity differs much less from the colorbars of Figs. 4(e) to 4(h),
and the four central spot sizes still keep unchanged. For the axicon doublet with the smoothing
amplitude filter, the corresponding four intensity patterns are shown in Figs. 4(i), 4(j), 4(k), and
4(l), respectively. From Figs. 4(i) to 4(l), not only the four central spots have identical sizes, but
also their peak intensities almost have no difference.

To see the transverse intensity profiles more accurately, we extract the line-scan intensities
along the x-axis from Figs. 4(a) to 4(d) and plot them together in Fig. 5(a). It is exhibited in
Fig. 5(a) that the peak intensity steadily increases with the increase of the propagation distance.
Numerical results reveal that the central spot radii in Fig. 5(a) are 481, 485, 481, and 476 µm
for the four transverse planes located at z1 = 80 m, z2 = 100 m, z3 = 120 m, and z4 = 140 m,
respectively. The TIPE is as large as 83.66%. Figures 5(b) and 5(c) are the same as Fig. 5(a)
except for the axicon doublets with the annular amplitude filter and with the smoothing amplitude
filter, respectively. A main difference between Fig. 5(b) and 5(a) is that the axial intensity
increasing effect is significantly depressed and the peak intensity difference is now confined in a
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(b) Without amplitude filter, z2=100 m
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(c) Without amplitude filter, z3=120 m
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(d) Without amplitude filter, z4=140 m
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(e) Annular amplitude filter, z1=80 m
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(f) Annular amplitude filter, z2=100 m
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(g) Annular amplitude filter, z3=120 m
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(h) Annular amplitude filter, z4=140 m
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(i) Smoothing amplitude filter, z1=80 m
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(j) Smoothing amplitude filter, z2=100 m
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(k) Smoothing amplitude filter, z3=120 m
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(l) Smoothing amplitude filter, z4=140 m
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Fig. 4. Transverse intensity patterns in the four cross-sectional planes. (a), (b), (c), and
(d) respectively correspond to the Bessel beam intensity patterns at z1 = 80 m, z2 = 100 m,
z3 = 120 m, and z4 = 140 m for the case of the axicon doublet without amplitude filter. (e)
to (h) are the same as (a) to (d) except for the axicon doublet with the annular amplitude
filter. (i) to (l) are the same as (a) to (d) except for the axicon doublet with the smoothing
amplitude filter.

relatively small range. Numerical results indicate that the central spot sizes in Fig. 5(b) are 486,
486, 485, and 498 µm for the four consecutive planes. The TIPE is decreased to 12.44%. In Fig.
5(c), all the four intensity profiles overlap with one another, which suggests that the generated
Bessel beam propagates stably along the axial direction. Numerical results reveal that the four
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Fig. 5. Transverse intensity distributions along the x-axis. (a), (b), and (c) correspond to
the axicon doublets without amplitude filter, with the annular amplitude filter, and with the
smoothing amplitude filter, respectively. The blue, green, red, and cyan curves represent the
intensity profiles in four cross-sectional planes at z1 = 80 m, z2 = 100 m, z3 = 120 m, and
z4 = 140 m, respectively.
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central spot sizes in Fig. 5(c) are all identical as 485 µm, and the TIPE is as small as 0.33%. It is
concluded that the propagating Bessel beam maintains a very stable transverse intensity profile
with the use of the smoothing amplitude filter, due to a constant central spot size and high degree
of transverse intensity coincidence.

4. Conclusion and discussions

In this paper, we propose a new optical system consisting of an existing axicon doublet and a
newly proposed amplitude filter. The axicon doublet extends the propagating distance of the
generated Bessel beam up to around three orders of magnitude in comparison with the single
positive axicon, owing to a very small refractive index difference between the double axicons.
The proposed smoothing amplitude filter precisely manipulates the axial intensity profile so that a
stable Bessel beam is produced during the whole propagation range. The generated long-distance
stably propagating Bessel beam is expected to have practical applications for far-distance focusing
and imaging. Higher order stable Bessel beams with long propagation distance can be generated
through inserting a vortex phase plate in the input plane. It is worth to mention that the Bessel
beam propagation distance may be furtherly extended to several kilometers through increasing
the axicon doublet diameter, decreasing the base angle of the axicon doublet, or reducing the
refractive index difference between the double axicons.

Since the proposed axicon doublet can produce very small angle conical waves, it can also
be used to analyze parallelism of light. In addition, the maximum propagation distance of
the Bessel beam is sensitive to the refractive index difference between the double axicons,
so the axicon doublet may also be applied for measuring material refractive index with high
precision. Dispersive property investigation of the axicon doublet may open up new application
opportunities. For instance, if the double axicon materials are specially chosen to enlarge optical
dispersion, the axicon doublet can serve as a color separating and focusing element for optical
display.
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