Bandgap tuning in kerfed metastrips under extreme deformation
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The process of kerfing enables planar structures with the ability to undergo dramatic out-of-plane
deformation in response to static loads. Starting from flat and stiff sheets, kerfing allows for the
formation of a wide variety of unconventional free-form shapes, making the process especially at-
tractive for architectural applications. In this work, we investigate numerically and experimentally
the bandgap behavior of densely cut kerfed strips. Our study reveals a rich landscape of bandgaps
that is predominantly ascribable to the activation of resonant sub-units within the kerf unit cells.
We also document how the extreme deformability of the strips under twisting and bending loads,
enhanced by the meandering cut pattern, can serve as a bandgap tuning mechanism.

Kerfing (or relief cutting) is a perforation process con-
sisting of introducing an intricate, periodic pattern of
cuts, referred to as a kerf, in a thin structure in a fash-
ion aimed at deliberately increasing its compliance [1, 2].
Kerfing can be performed via laser or water-jet cutting
on a variety of material platforms,; including composites,
such as medium-density fiberboard (MDF), and metals
like aluminum or steel. The spatial periodicity makes the
design of kerf patterns easily achievable via automatic
generation algorithms [3]. By removing solid material
and leaving behind a network of interconnected slender
elements, kerfing endows an initially flat, homogeneous
and relatively stiff sheet with an excess of compliance,
making it capable of undergoing dramatic out-of-plane
deformation in response to static loads [4].

It is possible to classify kerf patterns according to three
archetypal genealogies [5]: 1) linear-cut patterns, involv-
ing only parallel cuts and leading to single curvature;
2) offset patterns, in which straight cuts are offset and
connected at given angles, allowing double curvature; 3)
meandering patterns (the focus of this Letter), featur-
ing tightly interlocking chiral cuts realizable with a vari-
ety of cut densities, also conducive to double curvature.
The small-scale heterogeneity of densely cut meandering
kerfs endows them with extreme deformability that en-
ables morphing into free-form structures. Deformations
typically occur within the elastic limit of the material,
and are fully reversible upon unloading although, work-
ing with composites, it is possible to lock the deformed
shapes using epoxy resins. With respect to their abil-
ity to undergo large deformation as a result of strategi-
cally placed cuts, kerfed sheets are conceptually similar to
kirigami structures [6, 7] and structures in which out-of-
plane instabilities are promoted by a cut pattern [8, 9].
Though not specifically referred to as kerfing patterns,
chiral meandering patterns like the ones studied in this
letter have been studied for their in-plane elastic proper-
ties [10], where they were found to have a slight auxetic
behavior, and for their energy dissipation properties [11].

Kerfed panels are especially appealing for architec-
tural applications, where free-form structures have be-

come increasingly ubiquitous for the design of building
facades [12, 13] thanks to their ability to meet simulta-
neously aesthetic and functional requirements. In this
context, kerfed sheets represent a light-weight material
that naturally lends itself to being reconfigured in free-
form shapes of diverse, pre-designed complexity. An ad-
ditional benefit lies in the fact that kerfed sheets can
be shipped flat and deformed on-site before installation,
with major implications for transportation and logistics.

The periodic microstructure of kerfs allows classify-
ing them as examples of elastic phononic crystals (PCs)
and metamaterials [14-18], as well as a special subfam-
ily of perforated plates [19-22]. We therefore expect
them to exhibit a whole array of dynamical properties
classically observed in PCs, and specifically the ability
to open bandgaps [23-27]. The first objective of this
study is to assess the effectiveness of kerfed structures
as bandgap materials. Recently, significant interest has
revolved around the design of tunable structures capa-
ble of adjusting their behavior in response to externally
applied stimuli. A number of strategies have been pro-
posed, in which the tuning is brought about via electro-
mechanical [28] or magneto-mechanical [29, 30] coupling,
or by deformation or buckling [31]. In this vein, the sec-
ond objective of this study is to assess whether the in-
trinsic extreme deformability of kerfs can be leveraged as
an effective tuning mechanism.

Here we focus our attention on kerfed strips, obtained
by tessellating in one dimension a macro-cell consisting
of a finite number of kerf cells. This choice is motivated
by the extreme deformability and reconfigurability that
are achievable working with strips, even under relatively
small loads. The deformability of the strips results from
the combined effect of the compliance inherently provided
by their slenderness and the geometric softening intro-
duced by the kerfing process. Let us model a strip as
shown in Fig. 1(b) via 1D tessellation of the three-cell-
wide macro-cell with a densely cut kerfing pattern shown
in Fig. 1(a). The geometry of the kerf is as follows: cell
size h = 1.905cm, ligament width w = 1.143 mm and
out-of-plane strip thickness 0.762mm. We assume the
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FIG. 1. (a) Macro-cell of densely cut kerfed strip. (b) 3x24 strip with excitation and response sampling points highlighted in
green and yellow, respectively. (c¢) Macro-cell band diagram with main flexural bandgaps highlighted in purple and secondary
regions of attenuation in bright pink. (d) Transmissibility curve from harmonic analysis of finite strip. (e-g) Details of secondary
attenuation regions revealing clusters of narrow bandgaps separated by nearly-flat modes

material properties of 304 stainless steel: Young’s modu-
lus F = 193 GPa, Poisson’s ratio v = 0.27 and density p
= 7955 kg/m>. We build a finite element (FE) model of
the macro-cell, using a mesh of 8-node isoparametric ele-
ments featuring two elements through the thickness. This
modeling process is done using the software GMSH [32].
To obtain a band diagram, we follow the canonical steps
of 1D Bloch analysis, whereby we apply 1D Bloch condi-
tions between the L and R edge nodes, here confined to
the protruding elements marked in blue, leaving the other
edges free. We then sweep the scalar non-dimensional
wavenumber ¢ in the irreducible Brillouin zone, and, for
each &, we solve an eigenvalue problem involving the re-
duced stiffness and mass matrices of the macro-cell, yield-
ing the macro-cell dispersion branches. The end result is
the band diagram of Fig. 1(c), whose high modal den-
sity stems from the ability of the 3D FE model to cap-
ture all wave polarizations. Through a comparison of the
branches against those obtained from a companion pla-
nar model of the macro-cell based on 2D elasticity (de-
tails in the SM), we can discriminate between the strictly
in-plane modes, marked in red, from those that possess
significant out-of-plane character, shown in black. While

no total bandgaps are found in the frequency interval of
interest, we recognize two flexural bandgaps, marked in
purple, in which flexural modes are evanescent but in-
plane waves can propagate.

We complement Bloch analysis with a full-scale steady-
state analysis on the 3x24 kerfed strip depicted in
Fig. 1(b). We prescribe fixed boundary conditions at
both ends and we apply a sustained harmonic excitation
at the mid point (green dot), sweeping the frequency.
The displacement is sampled at the point marked by the
yellow dot and normalized by the displacement of the ex-
citation point to construct a curve of transmissibility vs.
frequency, plotted in Fig. 1(d). The curve features sev-
eral regions of attenuation, highlighted in gray. It is clear
that only two of these regions can be pinpointed to the
major flexural bandgaps discussed above. To elucidate
the sources of the other attenuation zones, we zoom in on
the corresponding intervals of the band diagram marked
in bright pink, detailed in the Fig. 1(e-g) insets. We ob-
serve the appearance of clusters of narrower bandgaps,
interspersed by nearly flat modes characterized by slow
propagation velocities, which, in concert, make these in-
tervals globally unfavorable for transmission.



FIG. 2. (a) Flat densely cut kerfed strip with sampling points
highlighted in red and excitation point marked in green. (b)
Experimental setup showing clamped specimen and laser vi-
brometer in the foreground. (c) Rear face of specimen showing
placement of the shaker. (d) Close-up of sampling region.

From the numerics, we have evinced a rich bandgap
landscape and an even richer availability of transmission
attenuation intervals, which suggests that densely cut
kerfed strips work efficiently as 1D filters. We now seek
experimental validation of these findings through a test
whose key features are summarized in Fig. 2. The strip
shown in Fig. 2(a) is kerfed from a steel plate according
to the geometry used for the model. Fig. 2(b) shows the
strip ends clamped using a pair of vices and the scanning
head of a laser vibrometer (Polytec PSV-400M-3D, used
in 1D mode). The excitation is prescribed out-of-plane
with a shaker at the point boxed in green on the rear face
of the strip (Fig. 2(c)). The red box denotes the response
sampling region; in the Fig. 2(d) detail one can appre-
ciate patches of retro-reflective tape applied at the scan
points, conveniently located at the connections between
cells where uncut areas are more amenable to scanning.

We prescribe a broadband pseudo-random excitation
to excite a broad range of frequencies. A drawback of
using this kind of signal is that the shaker output energy
spectrum decays sensibly with frequency in the interval
of interest, thus failing at supplying enough energy at
high frequencies. To overcome this, we apply the signal
in 2 kHz increments between 0 and 8 kHz, prescribing
higher amplitudes in the upper half of the range, such
that a roughly equal amount of energy is injected into the
system for all frequencies. We measure the out-of-plane
velocity at the designated sampling points which span
the width of the strip. We average their velocities and
normalize this average by the response of the excitation
point to construct a measure of velocity transmissibility,
plotted against frequency in Fig. 3(a).

We highlight in gray all the regions of attenuation.
Comparing against the band diagram juxtaposed in

Fig. 3(b) for reference, we observe an overall satisfac-
tory agreement between these intervals and the regions
of attenuation predicted by Bloch analysis. Specifically,
we can attribute the large drops in transmissibility start-
ing around 2.6 kHz and 5 kHz to the two major flexural
bandgaps highlighted in purple, albeit with some discrep-
ancies in the onset frequencies that we will discuss be-
low. Additionally, we can pinpoint the attenuation zone
starting around 1.2 kHz and the upper portion of the
one starting at 3.2 kHz to the narrow bandgap clusters
previously identified in those intervals.

However, the experimental data displays other dips in
transmissibility that cannot be attributed to any obvious
attenuation mechanism indicated by the band diagram.
Some rationale into this discrepancy can be gained by
looking at the mode shapes associated with selected spec-
tral points in these ranges. For example, let us consider
the two mode shapes at the spectral point highlighted
by the yellow dot at 3.6 kHz, plotted in Fig. 3(c) with
color map proportional to the normalized out-of-plane
displacement. We observe a localization of deflection at
the free edges of the macro-cell (the long sides of the
strip), deeming these as waveguide modes germane to
the 1D geometry of the strip, while the bulk of the strip
experiences negligible motion. The black circles superim-
posed to the figure mark the location of the scan points
where we sample the response. The decision to cluster
the sampling in the interior of the strip is dictated by
practical difficulties encountered in reliably scanning the
peripheral portion of the specimen, mostly due to the
abnormal lateral deformation and warping exhibited by
the edge cells as the result of the cutting process. We
recognize that, at this frequency, our scan point selection
cannot pick up any response associated with these modes,
thus outputting a spurious attenuation zone. Similar con-
siderations can be made about the mode shapes for the
spectral points marked by the green and blue dots in
Fig. 3(d). While these are definitely bulk modes, they
feature nodes (points experiencing negligible displace-
ments) at the scan point locations, which makes them
transparent to our sensing strategy. Here, a denser scan
would likely detect this modal response and absorb the
apparent bandgap conditions, but such refinement would
be prohibitive to achieve with a dense cutting pattern.

We also report other discrepancies that appear consis-
tently across experimental takes and that cannot be as
easily explained by the morphology of the mode shapes
or by the sampling procedure. For instance, we observe
frequency downshifts in the experimental data at the on-
set of both major flexural bandgaps. We believe that the
root of these discrepancies lies in defects and geometri-
cal non-idealities embedded in the specimen during the
fabrication process, shown in Fig. 3(e), which cause the
specimen to deviate from the model. For example, we de-
tect a “waviness” of the cut path that causes a variation
in the width of the beams along the kerf pattern. Addi-
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FIG. 3. (a) Experimental transmissibility curve with regions of attenuation highlighted in gray. (b) 1D Bloch band diagram
juxtaposed for reference, with out-of-plane modes highlighted in black. (c)-(d) Mode shapes corresponding to experimentally
observed frequency ranges of attenuation, with color map corresponding to normalized out-of-plane displacement. Points where
the strip is sampled in the experiments, circled in black, featuring negligible displacement. (e) Close-ups of specimen cells,

revealing defects and non-idealities.

tionally, we note the presence of fillets where the cutting
path terminates, which locally reduce the beam width.
Finally, we observe some residual in-plane deformation
of the cells located near the edges of the strip, resulting
from the lateral pressure exerted during the cutting pro-
cess. The random distribution of such defects over the
specimen inevitably relaxes the asssumption of perfect
periodicity underpinning the numerical model.

Having established the attenuation behavior of a flat
strip, we investigate the possibility to tune its bandgap
landscape by subjecting it to a variety of large deforma-
tion modes. In our first scenario, we consider a strip
twisted by 180° from end-to-end, as shown in Fig. 4(a).
In the second case, we bend the strip to form a nearly
closed loop, as shown in Fig. 4(b). In both cases, the
applied deformation is enabled by a dramatic reconfigu-
ration of the cell’s internal features, which experience lo-
calized out-of-plane deflections, effectively “popping” out
of the strip plane as shown in Figs. 4(c) and (d). We first
examine the transmissibility for the twisted case shown
in Fig. 4(e). We observe that the attenuation zones,
while overall matching those of the flat strip highlighted
in gray and recalled in Fig. 4(g), differ in both shape
and width. Specifically, the lowest and highest bandgap

openings (around 1 and 5 KHz) display a lower onset
compared to their flat strip counterparts, which stretches
the intervals of attenuation by the amount marked in
pink. Additionally, we observe a merging of the atten-
uation zones between 2 and 3 KHz at the expense of
the major bandgap depth. These results were confirmed
by a separate set of tests executed following the same
protocols whose results, reported in the SM, show the
same qualitative bandgap intervals and correction trends
(with minor fluctuations that can be ascribed to some
unavoidable residual strains accumulated over deforma-
tion cycles). Turning our attention to the bending case
of Fig. 4(f), we observe a remarkably similar landscape of
modifications in the transmissibility curve, here shaded
in green.

While the available data does not allow reaching a
definitive explanation for these corrections, we have ele-
ments to speculate on the most likely factors behind the
observed trends. As the strip deforms, the “pop-out”
mechanisms observable in Figs. 4(c) and (d) modify the
internal geometry of the cells, thus tuning their resonant
characteristics. Incidentally, these modifications are sim-
ilar between twisting and bending. Since we pinpointed
the bandgap formation mechanisms to the resonant be-
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FIG. 4. (a) 180° twisted strip. (b) Bent strip forming nearly closed loop. (c-d) Close-ups of out-of-plane popping mechanisms
enabled by the twisting and bending deformations, respectively. (e) Experimental transmissibility curve for twisted strip. Pink
regions denote changes in the attenuation zones brought about by twisting. (f) Transmissibility curve for the bent strip, with
green regions denoting the corrections induced by bending. (g) Flat strip transmissibility curve.

havior of the internal microstructure, it is reasonable to
expect these morphological changes in the resonators to
bear an effect on the onset of bandgaps. Another source
of correction can lie in the stresses that are developed
in the strip upon static deformation. This conjecture is
corroborated by a comparison with a small-on-large nu-
merical simulation of the twisted case, reported in the
SM; for this, we simulate the twist using a geometrically
nonlinear FEM model of the strip, followed by a linear
frequency-domain vibration analysis of the twisted strip
using the deformed shape as the new reference config-
uration. Interestingly, the simulation shows negligible
tuning. The fact that small-on-large analysis assumes a
deformed but unstressed strip suggests that the stresses
developed in the physical strip must play a role in cor-
recting the response. Notably, the bandgap widening
observed here is reminiscent of that observed in certain
metamaterials upon randomization of their resonant mi-
crostructure [33]. The spatial non-uniformity of the cell
reconfiguration induced by the deformation hints at ran-
domness as a possible co-factor behind these corrections.

In conclusion, we have demonstrated experimentally
the rich filtering behavior of kerfed metastrips resulting
from the activation of their internal resonant microstruc-
ture. This behavior can be modified through the appli-
cation of extreme twisting and bending, suggesting that
the compliance induced by kerfing can be leveraged as a
bandgap tuning mechanism.
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