


PEG graph represents the connectivity of the joint configu-
rations space with vertices that represent joint configurations
and edges that represent collision free movements, much
like a traditional probabilistic roadmap. In addition, each
vertex is labeled with information that encodes which hidden
portions of the environment can be cleared of unseen evaders
along some walk in the graph ending at that vertex. The
new replanning approach modifies this data structure when a
robot fails to reflect the removal of that robot from the search.
The remaining graph then provides a valuable starting point
for the process of planning to solve the problem with the
remaining n − 1 robots. The algorithm then expands this
graph by adding additional vertices, attempting to recover
the contributions made by the failed robot.

This work is, to the authors’ best knowledge, the first
to address the problem of recovery from pursuer failures
for this form of pursuit-evasion problem. In the remainder
of the paper, we review some related work (Section II),
formally define the problem (Section III). Then we describe
and evaluate the algorithm (Sections IV and V respectively)
before concluding with discussion and a preview of future
work (Section VI).

II. RELATED WORK

The visibility-based pursuit-evasion problem posed in this
paper can be thought of as a specialization of the broader
problem of search and target tracking. The common theme
across this work is the pursuit of an agent (or agents) by one
(or more) pursuers to either establish or maintain visibility
of the target [25], [26], [37].

The literature on these problems can by understood by
organizing according to underlying models, including differ-
ential game theory, graph variants, and geometric variants.
Though this work considers the geometric formulation, we
present a brief synopsis of the contributions in the domains
of differential game theory and graph theory.

The seminal work of Isaacs [13] and Ho et. al. [11] was
the first to adapt the pursuit-evasion problem to a dynamic
game-theoretic framework. This remains an active research
area [23], [34]. Recent results include continued progress
by utilizing techniques such as reinforcement learning [35]
and the exploitation of rich representations such as Voronoi
partitions to aid in the search [18], [36].

A different formulation in which the domain is modeled
as a discrete graph was initially proposed by Parsons [21]
and is referred to as the edge-searching problem. Petrov
later independently rediscovered some of Parsons’ results in
the context of differential game theory [22]. Golovach later
showed that both problems considered an equivalent discrete
game on graphs [8]. A number of survey papers [1], [3], [5]
provide overviews of the many problem variants that can be
realized within the graph model, such as specifying the rules
of movement for the pursuers and for the evaders [24], the
kind of graph [16], etc.

This paper specifically focuses on a variant of the problem
where the pursuers and evaders operate in a geometric
environment [10], [20], [31]. There are a number of results

for the single pursuer variant of the problem that range from
providing theoretical properties such as completeness [10]
and optimality [29], to more restricted scenarios where there
are limits on the actuation and sensing capabilities of the
pursuers [4], [17], [30], [33]. Due to the broad range of
practical applications, the multi-pursuer variant of the prob-
lem has drawn continued interest [7], [9], [15], [28] in recent
years. The multi-pursuer scenario poses additional challenges
owing to the problem complexity [27]. A common thread
through much of the existing work is an assumption that
the pursuer(s) can reliably execute the trajectories generated
for them by the planner. This work seeks to address this
limitation.

III. PROBLEM STATEMENT

We first define the basic problem in the absence of pursuer
failures (Section III-A) and describe how to cast that problem
in terms of a discrete representation of which areas of
the environment are ‘clear’ or ‘contaminated’ (Section III-
B), before introducing the possibility of pursuer failures
(Section III-C).

A. Environment, pursuers, and evaders

The environment F is a closed, bounded, and connected
polygonal region in R2. A team of n pursuers, who can
travel throughout the environment at bounded speed, are
equipped with omnidirectional sensors whose range is only
bounded by line of sight within the environment. That is,
a pursuer at point q ∈ F can detect anything within its
visibility polygon V (q) = {r ∈ F | qr ⊂ F}. We denote
the location of the ith pursuer as a function of the time t
by the continuous function fi(t) : [0, T ] → F , in which T
is some termination time which the pursuers may choose.
The n-robot joint pursuer configuration (JPC) at time t is
the vector 〈f1(t), f2(t), . . . , fn(t)〉 ∈ Fn.

A single evader seeks to avoid detection by the pursuers
by moving continuously within the environment, without any
bound on its speed. We denote its location, as a function
of time, by the continuous function e(t) : [0,∞) → F ,
unknown to the pursuers. Observe that, because we plan for
the worst case, any strategy for the pursuers that guarantees
detection of a single evader can also guarantee detection for
each of potentially many evaders.

The pursuers’ objective is to establish visibility with
the evader. Thus, for a given environment F , the goal
is to choose the termination time T and the functions
f1, f2, . . . , fn to ensure that for any evader trajectory e, there
exists a time t0 ∈ [0, T ], such that e(t0) ∈

⋃
i≤n V (fi(t0)).

Figure 3 illustrates the notation.

B. Shadows

The primary difficulty in this type of visibility-based
pursuit-evasion concerns reasoning about the regions of the
environment that are not currently visible to the pursuers at
the present time. To resolve that difficulty, Guibas, Latombe,
LaValle, Lin, and Motwani [10] introduced a reformulation
of the problem, based upon tracking which, if any, of the





before the failure occurred. Notice, for example, in the right
portion of Figure 1, that the large shadow encompassing the
center and upper left portion of the environment is marked
contaminated because it overlaps the central shadow which
was contaminated before the failure. In contrast, the smaller
shadow in the lower right has a clear label after the failure,
because the only pre-failure shadow with which it intersects
(namely, itself) had a clear label. This feature of the definition
of success, which allows shadows to remain clear even
across a failure of one of the pursuers, is crucial because
it allows the pursuers the possibility of retaining some of
their progress (i.e. cleared shadows) toward completing the
task, rather than starting from scratch each time.

IV. ALGORITHM OVERVIEW

This section provides a detailed description of our algo-
rithm. Because no efficient algorithm for solving even the
failure-free case is known [27], we take a sampling-based
approach. The basic idea is to construct a roadmap within
the pursuers’ joint configuration space, using an existing data
structure called the sample-generated pursuit-evasion graph
(SG-PEG), which a subset of the present authors originally
introduced for the failure-free case [28]. We leverage this
data structure in a new way by introducing new sampling
strategies designed to rapidly re-acquire a solution in cases
where a pursuer must be removed.

The core of the algorithm is a method called DROPROBOT
which, given a solution path for k robots (for some k), uses
an SG-PEG to attempt to rapidly generate a solution for
k − 1 robots, using the original k-robot solution as a guide.
Our algorithm relies upon DROPROBOT both to generate an
initial solution for the full set of n robots —by iteratively
reducing from a rapidly-generated trivial solution— and for
replanning when a pursuer fails.

The remainder of this section presents details of the
method. After a brief review of the SG-PEG (Section IV-
A), we describe the DROPROBOT method (Section IV-B)
and how that method is used to generate the initial solution
(Section IV-C.1) and for replanning (Section IV-C.2).

A. SG-PEG

The SG-PEG is a data structure the represents a roadmap
of valid joint paths for a team of pursuers in a known envi-
ronment F , augmented with information about the shadow
labels that can be achieved by executing those paths. We
present here a concise overview; additional detail may be
found in the original paper [28].

An SG-PEG is a directed graph G = (VG, EG), in
which one vertex v0 is designated as the root vertex. Each
SG-PEG is constructed for a specific number n of pur-
suers. Each vertex v ∈ VG corresponds to a specific JPC
〈p1, . . . , pn〉 ∈ Fn. Each directed edge e ∈ EG connects
two vertices v, u ∈ VG for which it is possible for every
pursuer to make a collision-free straight line motion between
the representative configurations. That is, the existence of an
edge from v to u means that, for each 1 ≤ i ≤ n, viui ⊂ F .

In addition to this graph structure, each vertex v maintains
a set of reachable shadow labels. Specifically, a shadow label
` will be recorded at a particular vertex v as a reachable
shadow label if there exists a walk from v0 to v that results
in the shadow marked clear within ` indeed being clear.

The primary operation that can be performed on a SG-PEG
is ADDSAMPLE(〈p1, . . . , pn〉), which accepts a collision-
free JPC as input and performs the following steps:

(i) It inserts a new vertex v at the given JPC.
(ii) For every existing vertex u for which the segment uv is

collision free in Fn, it adds the edges −→uv and −→vu. The
operation then computes a mapping that describes how
the shadows at vertex u evolve as the pursuers move
from the JPC at vertex u to the JPC at vertex v. (The
inverse mapping is applied to −→vu).

(iii) Finally, the reachable shadow label information across
the graph is updated by propagating the reachable
shadow labels, using the mappings attached to each
edge, recursively across the graph, to determine what
new reachable shadow labels, if any, arise due to the
inclusion of the new sample v.

The SG-PEG data structure is useful for our problem be-
cause, starting from a root vertex at the pursuers’ initial
positions, executing a sequence of ADDSAMPLE operations
can eventually lead to a vertex being marked with an all-
zero reachable shadow label. From there, a sequence of JPCs
solving the problem can readily be extracted by walking
backward along through the graph.

B. Dropping a robot

Suppose k pursuers are at some JPC q with shadow label
`, and have computed a sequence of future JPCs to visit that
will solve the problem from that point, eventually reaching
JPC with an all-clear shadow label. How can we use this
information to construct a new solution that can be executed
from this point by only k − 1 of these pursuers, removing
one particular pursuer from the solution? Notice that this
scenario applies both to the case of a failed pursuer (in which
case q and ` can be derived from the current state when the
failure occurred, and ` may mark some shadows as clear) and
to a complete solution starting from the pursuers’ starting
position and all-contaminated shadow label. To simplify the
notation below, we assume without loss of generality that nth

pursuer is the one removed.
The DROPROBOT method, shown in Algorithm 1, solves

this problem. The algorithm constructs an SG-PEG Gk−1,
starting with a root vertex at which the nth pursuer has been
removed and the shadow label has been updated accordingly.
From there, it adds a collection of junction samples, designed
to recover information lost due to the removal of the nth

pursuer at each step of the existing solution. If Gk−1 does
not contain a solution after that step, DROPROBOT continues
by inserting additional samples called web samples designed
to provide good coverage, in the sense of visibility, of
the environment. The process continues until a solution is
found, or until some arbitrary timeout expires. Details about
junction sampling and web sampling appear below.





a randomly shuffled order. See Figure 6.
To use these webs within WEBSAMPLE (recall line 9 in

Algorithm 1), we generate one web for each of the k − 1
pursuers. Then select a random vertex v from Gk−1 and,
for two of the robots in that JPC, form a new sample
by replacing the existing positions with positions drawn
(without replacement) from those pursuers’ respective webs.
If any web ever has no more points to choose from, we
generate new webs for each pursuer and continue the process.

C. Planning, execution, and replanning

Armed with the DROPROBOT method, we can consider
how to use that algorithm for the overall problem.

1) Generating the initial solution: To begin, we must
generate an initial solution that the full complement of n
robots can begin to execute. First, we generate a trivial
solution, namely a strategy where no movement is required
by the pursuers because their visibility polygons fully cover
the environment. We do so by iteratively adding pursuers
at random unseen locations until no shadows remain. This
single JPC becomes our trivial solution.

Note, however —recalling that only n robots are available
at the start—, that it is rather likely that the trivial solution
will require more than n robots. If so, we repeatedly apply
DROPROBOT, selecting the pursuer to remove at random,
until a solution requiring only n pursuers has been formed.
The pursuer team then begins to execute this strategy.1

2) Replanning after pursuer failures: If a pursuer fails
during the execution of the search, a replanning operation is
required. In that case, we pause the pursuers’ movement until
a new solution with one fewer pursuer is generated. Should
two or more pursuers fail simultaneously, our algorithm
sequentially resolves each failure individually. This new
solution is generated directly by DROPROBOT. Notice that
the inputs to that algorithm include the current state of the
search (including the current JPC and the current shadow
label), which are leveraged to replan more rapidly than
planning from scratch each time. Once a new solution is
computed, the pursuers resume their search.

V. EVALUATION

We implemented our algorithm in C++ and executed the
code on an Ubuntu 20.04 laptop equipped with an Intel i7-
10510U CPU and 16GB of RAM.

An example execution is illustrated in Figure 7. First, an
initial solution is generated (Figure 7a). Next, Figures 7b,c
represent the input and output of Algorithm 1 when the green
pursuer malfunctions. Similarly, Figures 7d,e show the state
before and after the failure of the orange pursuer.

1It is possible in principle that the trivial solution may require n robots
or less. In that case, we can ignore any additional robots beyond the m that
are required for the trivial solution and simply ‘execute’ the trivial solution.

We simulated teams initially consisting of n = 5 pursuers2

in three different environments, depicted in Figures 3, 4, and
6. These environments were selected because they highlight
several interesting attributes, such as hard to reach corners,
narrow corridors, and evenly spaced obstacles. Additionally,
these environments allow us to more directly compare against
existing results. In particular, we compare the algorithm
presented in Section IV (‘this paper’) against our previous
algorithm [19] (‘OTSO21’), which was designed for the
failure-free setting, as a baseline. During each execution, we
simulated m pursuer failures. For each failure, a randomly-
selected pursuer was removed when the pursuers had com-
pleted a percentage β of their planned paths. For OTSO21,
the algorithm was executed from scratch for the initial
solution and at each robot failure. Runs were conducted for
all four combinations of m ∈ {2, 3} and β ∈ {30%, 70%}.
Because each of the selected environments requires at least
two pursuers to solve, choosing m ≥ 4 would guarantee that
no solution exists.

Each trial was limited to at most 10 minutes of run time,
including both planning time and (simulated) execution time.
If, after that time, the robots had not yet successfully cleared
all shadows, the simulation would have been considered a
failure. In the results presented here, none of the trials failed.

For each combination of environment, algorithm, team size
n, number of failures m, and failure time β, we conducted 25
trials. The success or failure of the run and total computation
time spent planning and replanning were recorded. Planning
time is summarized by the mean (µ) and the standard
deviation (σ) over all trials. Tables I and II report the results,
from which a few conclusions may be drawn.

Replanning is beneficial Recall from Section IV-B.1 that
junction sampling was developed to “recover” information
in the event of a pursuer failure. The notable improvements
for the proposed algorithm compared to OTSO21 in the
environments of Figure 3 and Figure 4 can be attributed
to efficiencies gained by re-planning rather than starting
from scratch. In the environment of Figure 6, the proposed
algorithm had a similar execution time average, with slightly
higher variance, when compared to OTSO21. This is likely
due to the complexity of the environment resulting in a high
number of pursuers in its trivial solutions and subsequently
more calls to DROPROBOT to reach the initial solution.

Later failures are easier to recover For the trials with
β = 70%, the total planning time was less than when
β = 30%. This is likely due to the fact that allowing
more time to traverse the solution path will, in many cases,
provide the next planning stage with an improved shadow
label (i.e. more cleared shadows), reducing the difficulty of
the replanning problem.

2Increasing n has a positive effect on the planning time of the proposed
algorithm, since, by construction, we need to generate solutions for each
number of pursuers between the number of pursuer in the trivial solution
and n. In contrast, OTSO21 can struggle with larger values of n due to
the increased complexity of the joint configuration space, making it more
difficult to connect pursuer configurations. Thus, we hold n fixed at 5 to
enable a fair comparison.
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