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Abstract

Spatial memory is inevitable in animal movement mod-
eling but elusive in many classical models. A nonlocal
integral term involving space is a traditional way to
incorporate spatial memory, but the actual spatial mem-
ory should depend on past information so that delay
naturally arises. We propose a new consumer-resource
model with random and memory-based diffusions in
which the resource species has no memory or cognition,
whereas the consumer species has spatial memory. By
using the memory-based diffusion coefficient and the
averaged memory period of the consumer as the control
parameters, we find Hopf bifurcations and stability
switches occur and spatially nonhomogeneous periodic
solutions are generated. It is well known that prey-taxis
enhances the stability of a homogeneous coexistence
state in a predator—prey system, and here we show that
memory-based prey-taxis can destabilize a constant
coexistence and generate complex spatiotemporal pat-
tern formation. Using the obtained theoretical results,
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we study the impact of the memory-based diffusion on
the consumer-resource dynamics with Holling type-I
and type-II functional responses.
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consumer-resource, delay, diffusion, Hopf bifurcation, spatial
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1 | INTRODUCTION

The mechanistic modeling of animal movements has been a hot topic for several decades. The sig-
nificance of incorporating spatial memory and cognition into the modeling of animal movements
has been pointed out in the review paper,' and the mechanistic modeling of memory and learning
in animal movements has been thoroughly discussed in the synthesis paper.> For example, blue
whales seem to follow the past long-term distribution of chlorophyll-a in the ocean; thus, explicit
spatial memory is a necessary component in modeling blue whale movement and for predicting
blue whale migrations under global climate change.®* However, spatial memory is complicated
and poorly understood in both empirical and theoretical studies. Our recent spatial memory mod-
eling paper’ integrated spatial cognition and memory into a classical single species model with
diffusive movement in the simplest and self-contained way via a modified Fick’s law. The main
characteristic of the model proposed in Ref. 5 is that a discrete delay (known as memory delay) is
involved in the diffusion term. Note that spatial memory naturally depends on past information
so that delay should be explicitly incorporated. Recently, there has been an increasing activity and
interest on the dynamics of the single population model with memory-based diffusion.®'° It has
been shown in Ref. 5 that the stability of a spatially homogeneous steady state fully depends on
the reaction term and the ratio of the two diffusion coefficients but is independent of the memory
delay, whereas the cooperation of both memory delay and maturation delay can affect the stability
of a spatially homogeneous steady state.” In Refs. 6 and 9, to incorporate spatial memory and non-
local effect of animal movements with or without a maturation delay, we propose and investigate
the spatiotemporal dynamics of the single population model with memory-based diffusion and
nonlocal reaction. In Refs. 8 and 10, the influence of the spatiotemporal distributed delays on the
stability of the spatially homogeneous steady state is investigated.

In this paper, we extend the single species model with spatial memory to a consumer-resource
model with spatial memory of the consumer. Fagan et al proposed an advection-diffusion
consumer-resource model with an integral function for consumer’s resource perception.'! Their
resource-based advection term has the same structure as our memory-based diffusion term
derived in Ref. 5: The advection velocity in Ref. 11 is the gradient of resource, and the advection
velocity in Ref. 5 is the gradient of past animal density. The assumption “the higher animal density
leads to the lower resource density” gives the opposite signs in the beginning of these two terms.
The model in Ref. 11 has the consumer’s cognition but no spatial memory, whereas our model in
this paper has spatial memory explicitly. In addition, the model in Ref. 11 has static resource with
distribution determined by landscape, whereas our model has dynamic resource. We can have
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landscape-dependent parameters in the resource equation, which may be more realistic in many
situations. For simplicity, we assume that landscape is spatially homogeneous in this paper.

We consider the prey—predator interaction (u-density of prey, v-density of predator) with their
movements. The movements include both random walk and spatial memory-based walk. The
random walk, expressed as diffusion equation, is based on the basic mass balance law and the
Fick’s law, which assumes that the movement flux is in the direction of negative gradient of the
density distribution function, that is,

J,(x,t) = —d; Vu(x,t), .
1
J,(x,t) = —=dy, Vu(x, t).

To incorporate the spatial memory-based walk, we assume that the prey (or the predator) makes
the memory-based decision according to the predator (or the prey) distribution they remember.
Here, we assume that their own memorized distributions are negligible compared to the predation
thread (or the prey availability). We propose a modified Fick’s law that in addition to the negative
gradient of the density distribution function at the present time, there is a directed movement of
the prey (or the predator) toward the negative (or positive) gradient of the predator (or the prey)
density distribution function at a past time. This suggests a flux in the form of

J,(x,t) = —dy; Vu(x, t) — djulx, )F(Vo(x, t — 17)), @
2
Jv(x’ t) = _dZZVU(xa t) + dZIU(x’ t)G(Vu(xat - TZ));

where d;; and d,, are the Fickian diffusion coefficients, d;, and d,; are the memory-based diffu-
sion coefficients, the time delays 7; > 0 (i = 1, 2) represent the averaged memory periods of prey
and predator, and F and G are functions showing the dependence of memory-based diffusion on
the opponent population gradients at 7; (i = 1, 2) time units before the present time. The memory-
based diffusion flux is proportional to the population density at present time and the opponent
spatial gradients at a past time. By using the modified Fick’s law in (2) and combining the chemi-
cal/biological processes of the species, the density functions u(x, t) and v(x, t) satisfy the following
reaction-diffusion equations:

(3)
g—lt)(x, t) = dyAv(x, t) — dydiv(v(x, ))G(Vu(x, t — 15))) + g(x, t,u(x, t), v(x,t)),

where f and g describe the chemical reaction or biological birth/death of prey and predator, and
f and g are sufficient smooth if needed.

For simplicity, in the following, we assume that F and G are identity functions, and f and g
follow a classical autonomous prey-predator interaction. In this paper, the prey is considered as a
resource such as plants or “drunk” animals. In this scenario, the prey has no memory or cognition,
that is, d;, = 0, then the consumer-resource model with random and memory-based diffusions
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subject to Neumann boundary condition is as follows:

-

u,(x,t) = dyAulx, t) + f(u(x, t),v(x,t)), x e Q,t>0,

U (x, t) = dypAv(x, t) — dy div(v(x, ) Vu(x, t — 7))

+ g(u(x, t),v(x, 1)), xeQt>0,
\ 4)
outx,t) _ goxnt) 0, x €0Q,t >0,
ov ov
u(x, t) = up(x, t), x € Q,te[-1,0],
v(x, ) = vy(x), x e,

whered;;,d,, > 0,d,; > 0,7 = 7, (due to only one delay now), Q is a bounded domain in RN (N >
1) with C? boundary 3, and v is the unit outer normal vector of the boundary Q.

In general, if we consider spatially nonhomogeneous landscape and consider seasonality or
sudden events, then the parameters depend on both space and time, that is, the reaction terms
become f(x,t,u(x,t),v(x,t)) and g(x,t,u(x,t),v(x,t)), and the diffusion coefficients become
di1(x,t),dy (x,t),dy(x, t). Here we ignore these complexities so that we can effectively perform
stability and bifurcation analysis. Biologically, this is also an important and feasible start for a
spatial memory-based consumer-resource model.

The model (3) is also an extension of the prey-taxis/predator-taxis reaction—diffusion model in
which the prey population tries to evade the predator population while the predator population
chases the prey. Indeed, the version of (3) when 7; = 7, = 0 with both prey-taxis and predator-
taxis was proposed in Refs. 12 and 13, whereas the version of (4) with 7 = 0 with only prey-taxis was
proposed and studied in Refs. 14-17, see also'®~?* for more recent studies on global existence and
boundedness of solutions and existence of nonconstant steady state or time-periodic solutions.
The system with only predator-taxis was studied in Ref. 25.

Our main result in the paper is: if the prey (resource) and predator (consumer) achieves a stable
homogenous coexistence state when the two species only move following passive diffusion (i.e.,
di1,dy > 0 and d,; = 0), then such stability remains the same with the addition of a prey-taxis
with d,; > 0 (but 7 = 0); however, when d,, passes some threshold d}, > 0 and 7 > 7,(d,,), the
homogenous coexistence state becomes unstable and an associated Hopf bifurcation generates a
spatially nonhomogeneous time-periodic solution. That is, a memory-based predator movement
toward high prey concentration (prey-taxis) leads to time-periodic motion of both prey and preda-
tor. It is well known that (memory-less) prey-taxis, in general, enhances the stability of a homo-
geneous coexistence state in a predator-prey system;'*'”-?23 however, in this paper, we show that
memory-based prey-taxis destabilizes a homogeneous coexistence state and it is a new mechanism
for spatiotemporal pattern formation.

The paper is organized as follows. In Section 2, we address the well-posedness of solutions to
system (4). In Section 3, we investigate the distribution of characteristic roots and derive the con-
ditions for the stability of the constant coexistence equilibrium, delay-induced Hopf bifurcations,
and stability switches. In Section 4, we apply the theoretical results in Section 3 to investigate
the dynamics of the consumer-resource model with Holling type-I/type-II functional response.
We discuss our model and results in Section 5. Throughout the paper, N represents the set of all
positive integers, and N, = N U {0} represents the set of all nonnegative integers.
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2 | WELL-POSEDNESS OF SOLUTIONS

In this section, we investigate the well-posedness (existence, uniqueness, and positivity) of solu-
tions to system (4) with the following assumptions on the initial condition:

—auo(x’[) = 07 (x’ t) (S 0Q X [_‘[7 0]1 ae (0’ 1)’

uy(x,t) € C>*(Q x [-7,0]), ™ )

vo(x) € C(Q).

We assume that functions f, g in (4) satisfy

(f1) Assume that f € C!([0, 0] X [0, 0], R), £(0,v) = 0 for v > 0, and there exists F : [0, o) —
R and M > 0 such that f(u,v) < F(u), and F satisfies F(0) = 0, F(u) < 0 for u > M.

(g;) Assume thatg € C'([0, c0] X [0, c0], R), g(u,0) = 0for u > 0, and there exist K; > 0,K, > 0
such that g(u,v) < (K; + K,u)v.

Proposition 1. Suppose thatd;; > 0,d,, > 0,d, € R, 7 > 0, Q is a bounded, connected open sub-
set of RN with C? boundary 0Q, and f, g satisfy (f,) and (g;). Then system (4) with the initial con-
dition (5) possesses a unique solution (u(x, t), v(x, t)) for (x,t) € Q x [0, 00), and u(x, t), v(x,t) €
C>1(Q x [0, 00)). Moreover, if uy(x,t) > 0 for (x,t) € QX [—1,0), vy(x) > (£)0 for x € Q, then
u(x,t) > 0,v(x,t) > 0 for (x,t) € Q X [0, c0).

Proof. Fort € [0, 7], u(x,t — 7) coincides with the initial function uy(x, t). Setting

FO(t, x,u,v) = f(u(x, 1), v(x, 1)),

FO(t, x,u,v) = —d,yy div(u(x, ) Vuy(x, t — 7)) + g(u(x, t), v(x, 1)), ©)
then it follows from (f;) and (g;) that F') and F® are continuous and satisfy a Hélder condition
with respect to t, a Lipschitz condition with respect to u and v. As dQ is C?, it follows from Ref.
[26, Proposition 7.3.3] that u(x, t), v(x,t) can be solved uniquely on [0, §] for some § > 0. The
condition (f;) guarantees that u(x, t) can be extended to [0, 7], so u(x, t) is also bounded on [0, ]
by a constant B, > 0. According to (g7), v(x, t) satisfies

U(x,t) < dpAv(x,t) — dydiv(v(x, t)Vuy(x,t — 1)) + (K1 + K;By)v, x € Q,0<t < T,

ov(x,t) _
v

v(x,0) = vy(x), x € Q,

0, x €0Q,t >0, @)

then v(x, t) can also be extended to [0, T]. Repeating this process, the solution can be extended
to [7,27] and further to [k7,(k + 1)7] for any k € N. Moreover, from the maximum principle,
u(x,t) > 0and v(x,t) > 0 for (x,t) € QX [0, ). [ |
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3 | DELAY-INDUCED HOPF BIFURCATION AND STABILITY
SWITCHES

In this section, we consider delay-induced instability and stability switches of a constant steady
state in system (4). We assume that E,, = (u,, v,) is a constant coexistence (positive) equilibrium
of system (4). The linearization of system (4) at (u,,, v,.) is

(u,(x, t)> <Au(x, t)) <Au(x, t— T)> (u(x, t))
= Dl + D2 + A N (8)
v(x,t) Av(x,t) Av(x,t — 1) v(x,t)

where
d; O 0 0 apin G2
Dl = ) D2 = ) A = s (9)
0 dyp —dyv, 0 az1 Axp
and
5 (u*,v*) a (uy, v>;:) a (uY7v>’) a (u*,U*)
ap = fT, ap = fT, axy = gT, ay = gT (10)
Let g, be the eigenvalues of
Aw(x)+ow(x) =0, x€Q, atgix) =0, x€0dQ, (11)

satisfying 0 = 0y < 07 < 0, < -+, and let w,(x) be the eigenfunction corresponding to o,. In
this paper, we assume that for n € N, all g, are simple eigenvalues with a one-dimensional
eigenspace. Note that this assumption holds for generic domain Q in RY, and it always hold for a
one-dimensional domain Q = (0, ¢7) with o,, = n?/¢? and w,(x) = cos(nx/¢) where £ > O is a
length parameter. Assume that the solution of (8) is in form of

u,(x,t) X (A
< ' >= Z( ”>elnfwn(x). (12)
Ut(xa t) n=0 Bn
From the orthogonality of the eigenfunctions {w,, : n € Ny}, one can conclude that 4, is the root
of det(M,,(1)) = 0 where the characteristic matrix
M,(A) = AL, + 0,D; + g,e "D, — A, (13)

and I, is the 2 x 2 identity matrix. Hence, the characteristic equation of (8) is

[ITt.@w=o (14)

neNy

where

I,(1) = det(M,,(1)) =1> =T, A+ T,(r) =0, 15)
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and

T, =Tr(A) —Tr(Dy)o,,
_ (16)
T,(7) = dy1dpos — (diyas; + dypayy + dyyv.ape74 )0, + Det(A),

Wlth TF(A) =dan + as, Tr(Dl) = dll + d22 and Det(A) = 4110y — Aq20477.
For biological relevance of a consumer-resource model, throughout the paper, we always
assume that

(Cyp) a2 <0, ay >0.
This implies that u is the prey and v is the predator in (4). We further assume that the fol-
lowing two conditions

(C)) Tr(A) <0, Det(A) >0,
and

(Cy) diay; +dynay < 24/dydy,Det(A)

hold. The condition (C) implies that the positive constant equilibrium E,, is locally asymptotically
stable for (4) without diffusion (d;; = 0 for i, j = 1,2), and (C,) implies that there is no diffusion-
driven Turing instability for (4) with only passive diffusion but without spatial memory diffusion
(dy; = 0) (see Ref. 27, Section 2.3).

Set

Ty = di1dp07, — (di1ay, + dya11)0, + Det(A), 17)
It is easy to verify that under the conditions (C;) and (C,),
T,<0, J,>0, neN,, (18)

which implies that when d,; = 0, the positive constant equilibrium E,, of (4) is locally asymptot-
ically stable for any d,;, d,, > 0. Notice that

T2(0) = J,, — dy10,.a150,,. (19)

So,J,, > 0implies J,,(0) > O since a;, < 0 and d,; > 0. Therefore, under the conditions (Cy), (C;),
and (C,), the positive equilibrium E, is locally asymptotically stable for (4) with d,; > Oand 7 = 0.

In what follows, for d,; > 0, we take t and d,; as bifurcation parameters, and investigate the
influence of the spatial memory-based diffusion on the stability of the positive constant equilib-
rium E,.. The stability of the positive constant equilibrium E,. depends on the distribution of roots
of (15) for all n € N. In particular, we look for the conditions such that (15) has roots with zero
real parts for some n € N, which indicates the change of stability. First, notice that under the
conditions (Cy), (C;), and (C,), we have T',,(0) = J,, — dy;0,.a1,0, > 0. This implies that A = 0 is
not a root of Equation (15) for any n € N and there is no occurrence of steady-state bifurcations
under these conditions. Thus, the instability must occur in a form of wave instability with a purely
imaginary A = +iw.
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Let 1 = iw(w > 0) be aroot of (15). Substituting it into (15) and separating the real and imaginary
parts, we have

J, —w? = 0,d,v.a;, cos(wr),

(20)
T, = 0,d50,.a;, sin(wr),
which yields
w* +P,0*+Q, =0, (21)
where
P, =T} -2, = (d2, +d3,)op — 2(dy1a1; + dy0055)0, + a7 + a3, + 2a1,az, (22)
and
Qn = Uy — d210,0120,)J + d10,,0120,). (23)
The solvability of (21) also depends on the discriminant
A, =P}, —4Q, = Ty — 4T,J,, + 4d3 vial,0;. (24)

The number of the positive roots of Equation (21) is determined by the signs of P,,, Q,,, and A,,. In
what follows, we use d,; and 7 as the parameters to investigate the number of the positive roots
of Equation (21) and then determine the stability of E,, and associated bifurcations.

For fixed n € N, define

J 1 Det(A)
d=—n__ - did —(d d >0, 25
2T Dlaplon - viag] \ 1 220 + o, (dnaz; +dyay) (25)

and

/ _ T2
*(}’l) _ |Tl1| 4]1’1 Tl'l

d =
21 2v.|ay;zloy

, when4J, > T2. (26)

Tyl \/4,—T3

#(n) o 4(n) o 12
Note that 0 < d,; "~ < d,," asJ; —( >

2=, - %Tf,)2 > 0. Then we have

(n)
21

Qui=0, dy=d, @7)

<0, dy > dg’ll).

>0, 0<d, <d
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Similarly, A, > 0 for all d,; > 0 when 4J,, < T2, and when 4J,, > T2,

#(n)
21
Ay=0, dy =d.", (28)

>0, dy > di\".

<0, 0<dy <d

From (27) and (28) and noticing the fact that 4J, > T2 provided that P, < 0, we obtain the
following result on the positive roots of (21) when d,; varies.

Proposition 2. For fixed n € N, we have the following results on the distribution of the positive roots
of Equation (21). Define

_Pni\/A_n

2

S+

(29)

(i) IfP, = T2 — 2], > 0, then Equation (21) has no positive root when 0 < d,; < dg}) and has one
(n)
21
(ii) If P, = T2 —2J, < 0, then Equation (21) has no positive root when 0 < d», < d

(n)
217

positive root w;; when d,; > d

*

(1)
s has two

positive roots w;; when d;‘in) < d, < d;;, and one positive root w;; when d,; > dg).

It follows from (20) that sin(w7) > 0 because T, < 0, a;, < 0and d,; > 0. Therefore, we imme-
diately have the following proposition identifying the critical delay values where (15) has purely
imaginary roots.

Proposition 3. When the positive roots w; of Equation (21) defined as in (29) exist, define

1 Ty = (f)’
= = —Jdarccosd ——~ "/ +2jmre, jEN;,, neN. (30)

=
W dy10,.0120,

Then (15) has a pair of purely imaginary roots +w/ i att = t;,j and +w,iatt = Trzj, respectively.

Atthe critical delay values t = 1':—:]. ,we have the following transversality condition for the eigen-
values.

Lemma 1. Let A(t) = a(r) + iB(t) be the pair of roots of Equation (15) near T = T;fj satisfying

a(c? ) = 0 and B(zE ) = wi. Then =X dRe(A()

> 0, and

|T=f’. <0.
n.Jj

|T=T+ )
n,j
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Proof. Differentiating Equation (15) with respect to 7 and noticing that 1 is a function of 7, we
have

da\" _ @=Tpe" an
dr T opdyv.apd A
Using (20) and (29), it is not hard to show that
-1 — -+
7/A >0, =1,
Re <‘;—}‘) =+— 0 " (32)
t A=wir=r* (Undnv*au) <0, 7= Tn,j‘

n,j

This, together with the fact that

dRe(A(r)) . (dA da\\ _ i\~
T—Re<5>, sgn(Re<E>>—sgn<Re<<E> >>, (33)

completes the proof. [ |

By Proposition 3 and Lemma 1, we have the following result on mode-n Hopf bifurcations
occurred when a delayed memory cross-diffusion is present with d,; > 0.

Theorem 1. Assume that the conditions (Cy), (Cy), and (C,) hold, and d,; > 0.

(i) If Equation (21) has no positive roots for any n € N, then the positive constant equilibrium E,,
is locally asymptotically stable with respect to (4) for any T > 0.
(ii) For n € N, if Equation (21) has one positive root co;, then there exists one sequence of Hopf
. . . + . . . .
bifurcation points T (defined as in (30)) for (4) where mode-n Hopf bifurcations occur.
(iii) For n € N, if Equation (21) has two positive roots co;f, then there exist two sequences of Hopf
. . . + — . . .
bifurcation points T and T (defined as in (30)) for (4) where mode-n Hopf bifurcations
occur.

Finally, we discuss for a fixed d,; > 0, at which Equation (21) has positive roots, so the sequence
of mode-n Hopf bifurcations in Theorem 1 exists. This mode selection determines the spatial pro-
file of the pattern formation at such a cross-diffusion coefficient d,; > 0. Define

S,={neN:P, <0} (34)

which is independent of d,;, and is a finite set (possibly empty) from (22) and the fact that o,
increasesinn and o, - co asn — oo.

From (25), it is easy to verify that dg’ll) is decreasing for o, < 4/ gL;A) and is increasing for
11422

Op >4/ ZL;A) and dgll) — 00 as n — oo. This implies that minngsp d;’ll) exists. If S, is not empty,
11422
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then min, cs, d;i") > 0as S, is finite and d;g”) exist for n € S,,. Thus, we can set

21
d* = neSp ne (35)

mind™ > 0, when S, = §.
neN

min {mlnd () m1n d(n)} >0, whenS, # a4,

The following result is a direct consequence of Proposition 2 and (35).
Theorem 2. Assume that the conditions (Cy), (C;), and (C5) hold.

(i) If0 < dy; < dj,, then the positive constant equilibrium E, is locally asymptotically stable with
respect to (4) for any T > 0.

(ii) Ifdy > d3,, then the positive constant equilibrium E., is possibly unstable for some mode n and
somet > 0.

For each fixed d,; > d3,, there are delay-induced Hopf bifurcations using 7 as the bifurcation
parameter. Specifically we have the following results.

Theorem 3. Assume that the conditions (Cyp), (C;), and (C,) hold.
(I) IfS, = 0, define

U'(dyy) = {n eN:d" < d21}, t.(dy)= min (36)

nell(dy) ™0

then when dy, > d3,, the positive constant equilibrium E, is local asymptotically stable for t <
7.(dy1) and is unstable fort > t,(d,;), and Hopf bifurcations occuratt = ‘L'::jforn € Ul(dy).
(1) IfS, # 0, set

d;; =max {d}}}. (37)

21 neSy

(i) When d,, € (d3,,d;)), define
T'(d )—{neN‘d(")<d } T(d )—{nes L di < d <d(")}
21) — - Y1 21 (» 21) — p - 21 21 )
(38)
7.(dy) = min{ min 7, min {710,7;0}}.

nell(dy)) — neU2(dy)
Then the positive constant equilibrium E,, is local asymptotically stable for t < t,(d,;) and
is unstable for > t,(d,;), and Hopf bifurcations occur at t = T:j forn € U*(dy;) and at
T= T+] for n € U'(dy,). In this case, stability switches are possible.
(ii) When d,, > d3;, define

_ . (n) — :
U(dy)=S,U {n &S, : < d21} 7.(dy) = nenl}brilzl) {T:’O}. (39)
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Then the positive constant equilibrium E, is local asymptotically stable for t < t,(d,;) and
is unstable for T > 7,.(d,; ), and Hopf bifurcations occur at T = T:l“j forn € U(dy).

Proof.

(I) Notice the fact that dgq) — 00 as n — oo. This implies that U'(d,;) is a finite set. Since

S, =, it is easy to see that P, > 0 and Q,, < O forn € U'(d,;), and P, > 0 and Q, > 0 for

n & U'(d,;). Therefore, Equation (21) has one positive root w," only for n € U'(d,;), and no
positive root for n & U'(d,;). Then the conclusion follows from Theorem 1.

(IT) If S, # @, for fixed d,, € (d5,,d;)), there exists at least one n € S, such that d,; < d;q). For

n € N such that dgll) < dy;, we have Q,, < 0. This implies that Equation (21) has one posi-

tive root e, for n € U'(dy). For n € S,,, we have dz*in) < d;q). Thus, for n € S, such that

d;in) <dy < dgll), we have Pn~< 0,Q, > 0 and A, > 0. This implies that Equation (21) has
two positive roots w;" for n € U?(d,,). In addition, notice that Equation (21) has no positive
root for either n € S, such that d,; < d;in) orn & S, such thatdy < dgll). In addition, notice

that Tio = miney, {Tij }. Again, the conclusion follows from Theorem 1.

(IT) For fixed d,; > d;} and n € S, we have dgq) < dy; and then Q,, < 0. Therefore, Q,, < 0 for
n € U(dy),and P, > 0,Q, > 0forn ¢ U(d,;). This implies that Equation (21) has one posi-
tive root ;" only for n € U(d,,), and no positive root for n & U(d,;). Then the result follows
from Theorem 1.

Under the conditions (Cy), (C;), and (C,), the positive constant equilibrium (u,, v,,) is locally
asymptotically stable (and there is associated pattern formation) for the ordinary differential equa-
tion (ODE) model (d,; = d,; = d,; = 0), the reaction—diffusion model (d;,d», > 0and d,; = 0),
and the reaction-diffusion model with prey-taxis (d;;, d»,d>; > 0 and 7 = 0).Theorem 3 shows
that the positive constant equilibrium (u,,v,) could be destabilized to produce spatially non-
homogeneous time-periodic patterns if there is a delayed prey-taxis in addition to the reaction—-
diffusion predator-prey model (d1, d5,,dy; > 0 and T > 0).

Remark 1.

1. When S, = §, for different values dj, and d§1 of dy; such that dj; <dj, < dgl, we have

Ul(dgl) C Ul(dlz’l). This means when d,; increases, the number of Fourier modes of possi-
ble Hopf bifurcation increases. The most likely mode for spatial pattern when d,; = dj, is i

such that o, is the closest to A / ZL;A). For the one-dimensional spatial domain Q = (0, £7),
11422

we have

= () (7+1)
N = n dy <dy Fo|es Det(A) (40)
1 — ~ - ’
A+1, d>do, di1dy

where [-] is the integer part function.
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2. If the conditions (Cy) and (C;) are satisfied but the condition (C,) is not satisfied, then it is
possible to choose d;;, d,, > 0 such that the positive constant equilibrium (u,, v,.) is unstable
with respect to the corresponding reaction-diffusion model, so the Turing instability occurs. It
is known that a prey-taxis without delay (d;;, d,,, d>; > 0 and t = 0) can stabilize the constant
equilibrium (u,, v,)" by setting d,; large. By using the similar methods in this section, we can
show that the constant equilibrium (u,, v,) can be destabilized with a large T > 0.

By Theorem 3, the occurrence of delay-induced stability switches depends on whether the set
S, is empty or not. The following proposition gives a sufficient condition on whether S, is empty
or not, which is useful for applications to consumer-resource models.

Proposition 4. Assume that the condition (Cy) holds, d1; < dy, and a,, < 0.

) Ifaf1 + agz +2ay,a;, >0, then S, = 0.
(i) Ifotf1 + agz + 2a,,a,, < 0, then there exists a positive integer n,, € Nsuchthat P, > 0forn > n,
and P, <0 forn <n,, and then S, = fwhenn, =1landS, ={1,...,n, — 1} whenn, > 2.

Proof. From (16) and (17), we have
Pn = T% - 2Jn = (d%l + dgz)oﬁ - 2(d11a11 + dzzazz)an + a%l + agz + 2(112(121. (41)

With Ty < 0and dy; < dj,, itis easy to verify thatd;;a;; + dy,a,, < 0because a,, < 0. Therefore,
P, > 0foranyn € Nifa?, + a3, + 2a;,a,; > 0. This proves (i). On the other hand, if a?, + a3, +
2a;,05; < 0, we have Py < 0 and P,, is increasing in n, which implies (ii). [ |

4 | EXAMPLES

In this section, we apply the theoretical results in Section 3 to the consumer-resource models with
Holling type-I or type-II functional responses and investigate possible pattern formations induced
by the memory diffusion. Throughout this section, we restrict the spatial domain Q to be the one-
dimensional spatial domain (0, £7) and choose ¢ = 2 for the numerical simulations. In this case,
we have o, = (n/¢)? for n € N,. In the following numerical simulations, we always choose the
initial function u(x, t) = u(x,0) for t € [—7,0], and for simplification of notations, we use the
initial function u(x, 0) instead of u(x, t) for -7 <t < 0.

4.1 | Holling type-I functional response

In this subsection, we consider the following consumer-resource model with Holling type-I func-
tional response (Lotka-Volterra model):

ut(x,t):duuxx(x,t)+u<l—g)—buv, 0<x<{?mt>0,
0%, 1) = dypUy (%, 1) = dyy 00k, D (X, £ = D)y —cv+ buv, 0<x<émt>0, (42)
u, (0,t) = u, (€m,t) = v,(0,t) = v, (€7, t) =0, t>0.
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FIGURE 1 The critical values d;’ll)
with respective to the wave number n for
system (42) with parameters in (45). At
dy = dé'{), Q,=0

System (42) has a unique positive equilibrium E, = (%’ _abb_zc
a

equilibrium E,,, we have

), provided that ab > c. For this

c ab—c
a1 =——><0, ap=-6<0, a,= >0, ay, =0, 43
11 ab 12 21 ab 22 (43)
and
212
20, = 12a2bb’
2 2 +2a
an + a22 + 2a12a21 2a2h? (44)
<0, c< .
1+2ab

From (43), we can see that the conditions (Cy), (C;), and (C,) hold. Thus, when d,; = 0, the posi-
tive equilibrium E,, islinearly stable for any d;;, d», > 0.Indeed, it is well known that E,, is globally
asymptotically stable for all positive initial conditions in this case.

From Proposition 4, Theorem 3, and (44), delay-induced instability and stability switches may

2a*b?
occur only when ¢ < ——. Here we use
1+2ab
a=2, b= 3.2, c=1.6, dll =1, d22 =2, ¢ =2. (45)

In this case, the positive constant equilibrium is E,(0.5,0.2344) and afl + agz +2a1,ay =

—2.3375 < 0. We also have P,, = 5(n/¢)* + %(n/ﬁ)2 - %, and n* = 2and Sp = {1} for ¢ = 2.

By (25), we can obtain the critical values dgl’) as follows:

d? = 9.8667 < d\) = 14.7556 < d}) = 15.4667 < d'}) = 23.4667 < ---. (46)

(2

1 is the minimum of

Figure 1 shows the critical values for 0 < d,; < 30, and we observe that d
dgq) forn € N. As n, = 2 and Sp = {1}, it follows from (26) and (46) that

. ok(n) (D) L g _ S(2) .
VI[I%{QI; d21 = d21 = 11.6847, rl;l;{gr[l) d21 = d21 = 9.8667, (47)
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% /11::@

FIGURE 2 (A) Stability region and Hopf bifurcation curves in the d,,-t plane for system (42) with
parameters in (45). Here the blue curves are the Hopf bifurcation curves 7 = T;:O with n = 2, 3,4, and the red
curves are 7 = Tl o> do = d3, is vertical asymptotic line of 7 = T+ and d,, = dJ] is the vertical asymptotic line of
thet =17 (B) Enlarged (A) restricted to the region 16 < d,; < 18 07<7t<09.7=71!,and7 = T{O are Hopf
bifurcatlon curves and p; is the double Hopf bifurcation point

2,0°

which, together with (35), implies that

d}, = min {rnélsn dzi ), r?élsn dgll)} = d(z) 9.8667. (48)
p
By (37), we have
d5j = maxdy}) = dj) = 15.4667, (49)
P

which, together with (24), (27), and (29), implies that w]” = 0 for d,; = d};. Thus, the straight line
d,, = dj; is the of the vertical asymptotic line of the Hopf bifurcation curves 7 = 7

Flgure 2(A) shows the stability region and Hopf bifurcation curves associated w1th E inthe d,; -
7 plane. The dotted region is the stability region where E,, is locally asymptotically stable, and 7 =
Ti are the Hopf bifurcation curves for the positive equilibrium E. . The boundaries of the stability
region consist of the Hopf bifurcation curves t = r2 pandt = ‘[' o When 0 < dy; <dj, =9.8667,
the positive equilibrium E,, is locally asymptotically stable for any T >0, and when dy > d;),
there exists a critical delay value 7,(d,;) as in Theorem 3 such that the positive equilibrium E,,
is locally asymptotically stable for 7 < 7, and is unstable for t > r,. There is no delay-induced
stability switches for these parameters. The Hopf bifurcation curves r = rz pandt = 71 o intersect
at the points p}(11.7441,1.9002) and p;(17.0276,0.7872) that are double Hopf bifurcation points.
Figure 2(B) is a close-up look of Figure 2(A) near the double Hopf bifurcation point p3.

Guided by the bifurcation diagram in Figure 2(A), we show some numerical simulations for
system (42) with parameters in (45) with d5; = 10.5 € (d},, ;gl) ). In this case, we have the first
Hopf bifurcation value T = 3.5807. The positive equilibrium E,.(0.5,0.2344) is asymptotlcally
stable for 7 < r =3. 5807 as shown in Figures 3(A) and (C), and it is unstable for 7 > T

3.5807 as shown in Figures 3(B) and (D). System (42) undergoes a Hopf bifurcation at 7 = 1'2 o
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FIGURE 3 Numerical simulations for system (42) with parameters in (45) and

d;, =9.8667 < dy; = 10.5 < d;.” = 11.6847. (A) and (C) The positive equilibrium E, (0.5,0.2344) is
asymptotically stable fort =2 < TZ,O = 3.5807. (B) and (D) The positive equilibrium E. (0.5, 0.2344) is unstable
fort =3.6 > Tz+, o = 3.5807 and there exists a periodic solution with mode cos(x). The initial conditions are
u(x,0) = 0.5 + 0.02 cos(x), v(x,0) = 0.2344 — 0.1 cos(x)

Figure 4 shows the numerical simulations of system (42) with parameters in (45) for (d,;,7)
near the double Hopf bifurcation point pJ in Figure 2(B). For (d,;,7) = (16.2,0.85) € R; in Fig-
ure 2(B), Figures 4(A) and (D) show the occurrence of a mode-1 periodic solution with spatial pro-
file cos(x/2), which bifurcates from the Hopf bifurcation at 7 = Tl o for (dy;,7) = (17.9,0.728) €
R, in Figure 2(B), Figures 4(B) and (E) show the occurrence of a mode-2 periodic solution with spa-
tial profile cos(x), which bifurcates from the Hopf bifurcation at t = T o- The interaction of these
different mode Hopf bifurcations at 7 = 7} and at 7 = 7 leads to the occurrence of the quasi-
periodic spatiotemporal pattern as shown 1n Figures 4(C) and (F) for (dy;,7) = (17,0.83) € R; in
Figure 2(B).

4.2 | Holling type-II functional response

In this subsection, we consider the following consumer-resource model with Holling type II func-
tional response:

ut(x,t)=d11uxx(x,t)+u<1—g>—’;LZ, O0<x<f¥€mt>0,
U (x, £) = dypUy (X, 1) — dyy (U(x, Huy(x,t — 7)), —cv + f%, 0<x<tmt>0, (50)

u,(0,t) = u, (€7, t) = v,(0,t) = v, (€, t) = 0, t>0.
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FIGURE 4 Numerical simulations for system (42) with parameters in (45). (A) and (D)

(dy,7) = (16.2,0.85) € R, in Figure 2(B), convergence to a mode-1 periodic solution with profile cos(x/2) in
space, and the initial conditions are u(x,0) = 0.5 + 0.2 cos(x/2), v(x,0) = 0.2344 + 0.1 cos(x/2); (B) and (E):
(dy1,7) = (17.9,0.728) € R, in Figure 2(B), convergence to a mode-2 periodic solution with profile cos(x) in
space, and the initial conditions are u(x,0) = 0.5 + 0.02 cos(x), v(x, 0) = 0.2344 + 0.01 cos(x); (C) and (F)
(dy,7) = (17,0.83) € R; in Figure 2(B), a quasi-periodic spatiotemporal pattern showing the interaction of
mode-1 and mode-2 near the double Hopf bifurcation point, and the initial conditions are

u(x,0) = 0.5 + 0.1 cos(x/2), v(x,0) = 0.2344 + 0.2 cos(x)

System (50) has a unique positive equilibrium E, (y, v, ), where

- _@=pa+y
Thoe YT 1)

provided thatb > @ (or equivalently, 0 < ¥ < a) holds. For this equilibrium E..(y, v, ), we have
a—1
<0, T <y<a,

>0, 0<y< aT_l (52)
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FIGURE 5 The critical values dgll)
with respective to the wave number n for
D= e e e m = = = = = (1) _ system (50) with parameters in (45). At
dy = dé'{), Q,=0

1.5F-=-=-=--- 3
i (dél)a?’/g)
I~ T

05F--

O L
0 5 10 15 20 25
doy
and
>0, c<ec,, 20y _ 1 _ 2
a?, + a3, + 2a;ay { co ese where ¢, = —zya((f+ yl) (azi/)y)' (53)

When d,; = 0, Hopf and steady-state bifurcations for system (50) with parameter y have been
found in Ref. 28. When aT_l <y < a, we have a;; <0 and then d;;a,5, + dya;; < 0. Thus, the
conditions (Cy), (C;), and (C;) hold and the positive constant equilibrium E.(y,v,) is locally
asymptotically stable for any d;;, d,, > 0.

We still use parameters in (45). Theny = 1, E,.(1,0.3125),c, = 0.125,and afl + agz + 201,01 <
0. So, from By Theorem 3 and Proposition 4, stability switches may occur. From (22) and Propo-
sition 4, we also have n, =2, Sp = {1}. By (25), we can obtain the critical values dg{) of d,; as
follows:

1 _ @ _ 3 - @ _
d,) =52<d)y =58<d;’=103556 <d, =172 <---. (54)

Flgure 5 shows these critical values for 0 < d,; < 25 and shows that min, ¢y d(") d(l) Since
. =2and Sp = {1}, by (26) and (54), we have

mlsnd*(") d*(l) 5.0596, mlnd(n) d(z) 5.8, (55)
ne

which, together with (35), implies that

. 1) .
d3, = min { min d;.", mind} d(”)} = ditV = 5.059%. (56)

nes,

By (37), we have

- _ W\ _ 40 _
;i = max (a0} =dy =52, (57)
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FIGURE 6 Stability region and Hopf bifurcation curves in the d,,-7 plane for system (50) with parameters
in (45). The dotted region is the stability region and 7 = ‘[io is the critical Hopf bifurcation curves for the positive
equilibrium E, (1, 0.3125). (A) Here, the blue dashed curves are the Hopf bifurcation curves 7 = TL. with

j =0,1,2,and the red curves are 7 = T with j = 0,1; d,; = dj; is the vertical asymptotic line of 7 = T and the
Hopf bifurcation curves 7 = TI ; and T =71, ; are tangent to the vertical line dy; = dJ,. (B) Here, the blue dashed
curves are the Hopf bifurcation curves 7 = TI*J with j = 0,1,2, and the black curves are 7 = 7 with n = 2,3,4

Thus, according to (30) and Theorem 3, the stability region and Hopf bifurcation curves can be
plotted in the d,;-7 plane as shown in Figure 6.
For 0 < dy; < dj; = 5.0596, the positive equilibrium E, (1, 0.3125) is locally asymptotically sta-

ble for any 7 > 0. For dj; < d,; <dj] = d(l) = 5.2, there exist two sequences of Hopf bifurcation
values {T } and {r] ;} The alternatmg occurrence of the two sequences of Hopf bifurcation val-
ues leads to a delay-induced stability switches when increasing the delay value 7 (see Figure 6(A)).
The Hopf bifurcation curves 7 = o and 7 = T , interact at the point M, (5.1488,16.3545), and
Hopf blfurcatlon curvesT =7, ,and 7 = r 1nteract at the point M,(5.0906, 32). For fixed d,; =

1,1
5.12 € (dj;,d57), from (30), we have a sequence of Hopf bifurcation values as follows:

21’

T/ = 4.5183 <7, = 121765 <7, =17.1357 <7, =29.7532 <7, =39.7247.  (58)
From Lemma 1, the positive constant equilibrium E* is locally asymptotically stable for 7 €
(0, rIO) U (t7,, 7,,), and is unstable for 7 € (Ti 0 Tr0) Y (7;1’ +00). Figure 7 shows the changes
of the asymptotic spatiotemporal patterns for system (50) with the increase of the delay 7. For
T=4< 7:1 0 the positive equilibrium E, is locally asymptotically stable, as shown in Figures 7(A)
and (E);fort = 4.6 € (1'1 0Tl 0) E, is unstable and a mode-1 periodic solution with spatial profile
cos(x) appears as the result of Hopf bifurcation at t = Tl 0 as shown in Figures 7(B) and (F); for
T=14¢€ (Tl 0 ) the positive equilibrium E, regains the stability, as shown in Figures 7(C) and
(G); and for t = 17 16 > ‘['1 1» the positive equilibrium E, becomes unstable again and a mode-1
periodic solution with spat1al profile cos(x) appears agaln as shown in Figures 7(D) and (H).

For d,; > d57, there exist Hopf bifurcation values like T . and no Hopf bifurcation values like
T, )’ , and there exists a positive bifurcation value 7., such that the positive equilibrium E,.(1, 0.3125)
is locally asymptotically stable for < 7, and unstable for T > 7,.. Figure 6(B) shows these Hopf
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Numerical simulations for system (50) with parameters in (45) and d,; = 5.12. (A) and (E)
T=4<7;B)and(F)r =46 € (TIO,rio); (C)and (G):t =14 € (T;O,TIO); (D)and (H) 7 = 17.16 > T1+,1- The
initial conditions are chosen as u(x,0) = 1 + 0.2 cos(x), v(x, 0) = 0.3125 — 0.1 cos(x) except for (C) and (G), and
the initial conditions for (C) and (G) are u(x,0) = 1 + 0.06 cos(x), v(x, 0) = 0.3125 — 0.04 cos(x)
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blfurcatlon curves for 5.3 < d,; < 18,0 < 7 < 10. The Hopf bifurcation curves 7 =7, ) and 7 =
, interact at the point M3(13.4531, 0.6811) and it is shown that z, = ‘[' o fordiy < dzl < 13.4531
and T, = ‘L' o for 13.4531 < d,; <18.

5 | DISCUSSION

In this paper, we apply the derivation of the single-species spatial memory model originally pro-
posed by Shi et al’ to model the consumer-resource interaction with consumer’s spatial memory.
This novel model has broad applicability in better describing consumer-resource interactions than
nonspatial memory models because the spatial memory of any consumer naturally exists and is
especially pivotal for species with long life span and long-term memory, such as blue whales.**
The movement of blue whales shows similar dynamical behaviors of our model, and the corre-
sponding author is collaborating with Bill Fagan on this direction that requires massive datasets
and parametrization. Under the assumption that the coexistence equilibrium of the system with-
out memory-based diffusion is asymptotically stable, we investigate the effects of the memory-
based diffusion coefficient d,; and the averaged memory period 7 of the consumer on stability.
We show that the consumer’s memory-based diffusion has significant influence on stability and
generates rich dynamics.

We summarize the effects of the memory-based diffusion coefficient and the averaged mem-
ory period of the consumer on stability as follows: (i) When d,, is small enough (d,, < d3,), the
delay 7 does not affect stability, that is, the coexistence equilibrium is always stable for any 7 > 0.
(i) When d,; is moderate (d3, < d,; < d3)), there are two kinds of critical values r nj and 7, i of
Hopf bifurcations and the delay T may induce stablhty switches. (iii) When d,; is large enough
(dy > d3;), only one kind of the critical values ‘L' nj of Hopf bifurcations exists, and the coexis-
tence equlllbrlum is stable for 7 less than some critical value and unstable for 7 larger than this
critical value.

The impact of spatial memory on the consumer-resource dynamics is different from the impact
in the single-species model,” where the stability of the coexistence equilibrium is independent of
the time delay and no delay-induced Hopf bifurcation occurs. However, for the consumer-resource
model with random and memory-based diffusions, delay-induced Hopf bifurcation and double
Hopf bifurcation can occur. This phenomenon is partially similar to the model that incorporates
the maturation delay into the single-species spatial memory model.” For the Holling type-I func-
tional response, when d, < d,; < d}, there are delay-induced Hopf bifurcation and double Hopf
bifurcation but no stability switches. This double Hopf bifurcation is generated by the interaction
of Hopf bifurcations with different wave numbers. However, for the Holling type-1I functional
response, when d; < d,; < dj;, there exist delay-induced stability switches and double Hopf
bifurcation, which is generated by the interaction of Hopf bifurcations with the same wave num-
ber.

If we start with a random diffusion model without Turing bifurcation to incorporate spatial
memory, then Turing bifurcation cannot be induced by spatial memory. If we incorporate spatial
memory into a random diffusion model with Turing instability, how does spatial memory regu-
late Turing patterns? This is an open question for future study. For instance, when the functional
response is chosen as the ratio-dependent type where Turing bifurcation and Turing-Hopf bifur-

cation exist,”’ we conjecture that spatial memory can result in much more complicated dynamics.
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This paper formulates and studies a diffusive consumer-resource model with explicit spatial
memory of the consumer because the producer naturally has no memory or cognition. It is an
intriguing problem to study a diffusive prey-predator model with spatial memory/cognition in
both prey and predators, where prey are small animals instead of plants. In this case, rigor-
ous mathematical analysis will be extremely challenging, and new mathematical techniques are
expected to be developed.
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