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a b s t r a c t

The security in information-flow has become a major concern for cyber–physical systems
(CPSs). In this work, we focus on the analysis of an information-flow security property,
called opacity. Opacity characterizes the plausible deniability of a system’s secret in the
presence of a malicious outside intruder. We propose a methodology of checking a
notion of opacity, called approximate opacity, for networks of discrete-time switched
systems. Our framework relies on compositional constructions of finite abstractions
for networks of switched systems and their approximate opacity-preserving simulation
functions. Those functions characterize how close concrete networks and their finite
abstractions are in terms of the satisfaction of approximate opacity. We show that
such simulation functions can be obtained compositionally by assuming some small-gain
type conditions and composing local simulation functions constructed for each switched
subsystem separately. Additionally, assuming certain stability property of switched
systems, we also provide a technique on constructing their finite abstractions together
with the corresponding local simulation functions. Finally, we illustrate the effectiveness
of our results through an example.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Cyber–physical systems (CPSs) are complex systems resulting from intricate interaction between embedded cyber
evices and physical plants. While the increased interaction between cyber and physical components increases systems’
unctionalities, it also exposes CPSs to more vulnerabilities and security challenges. Recently, the world has witnessed
umerous cyber-attacks which have led to great losses in people’s livelihoods [1,2]. Therefore, ensuring the security of
PSs has become significantly more important.
In this work, we focus on an information-flow security property, called opacity, which characterizes whether or not the

secret information of a system can be revealed to a malicious intruder outside the system. Opacity was first introduced
in [3] to analyze cryptographic protocols. Later, opacity was widely studied in the domain of Discrete Event Systems
(DESs), see [4,5] and the references therein. In this context, existing works on the analysis of various notions of opacity
mostly apply to systems modeled by finite state automata, which are more suitable for the cyber-layers of CPSs. However,
for the physical components, system dynamics are in general hybrid with uncountable number of states.
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.1. Related works

There have been some recent attempts to extend the notion of opacity to continuous-space dynamical systems [6–
1]. In [6,7], a framework for opacity was introduced for the class of discrete-time linear systems, where the notion
f opacity was formulated as an output reachability property rather than an information-flow one. The results in [8]
resented a new opacity enforcement mechanism for CPSs modeled as linear time-invariant systems, where the security
etric is considered as the interference attenuation capacity of the system. The results in [9] presented a formulation of
pacity-preserving (bi)simulation relations between transition systems, which allows one to verify opacity of an infinite-
tate transition system by leveraging its associated finite quotient one. However, the notion of opacity proposed in this
ork assumes that the outputs of systems are symbols and are exactly distinguishable from each other, thus, is only
uitable for systems with purely logical output sets. In a more recent paper [10], a new notion of approximate opacity
as proposed to accommodate imperfect measurement precision of intruders. Based on this, the authors proposed a
otion of approximate opacity-preserving simulation relation to capture the closeness between continuous-space systems
nd their finite abstractions (a.k.a symbolic models) in terms of preservation of approximate opacity. The recent results
n [11] investigated opacity for discrete-time stochastic control systems using a notion of initial-state opacity-preserving
tochastic simulation functions between stochastic control systems and their finite abstractions (a.k.a. finite Markov
ecision processes).
Although the results in [9–11] look promising, the computational complexity of the construction of finite abstractions

n those works grows exponentially with respect to the dimension of the state set, and, hence, those existing approaches
ill become computationally intractable when dealing with large-scale systems.
Motivated by those abstraction-based techniques in [9–11] and their limitations, this work proposes an approach to

nalyze approximate opacity for networks of switched systems by constructing their opacity-preserving finite abstractions
ompositionally. There have been some recent results [12–18]proposing compositional techniques for constructing finite
bstractions for networks of systems. The results in [12] first explored small-gain conditions for the compositional
onstruction of complete finite abstractions for a network of discrete-time control systems. Later, the compositional
ramework was extended in [16] to continuous-time systems based on a notion of disturbance bisimulation relation.
he results in [15] proposed a max-type small-gain type compositional condition which results in a finite abstraction
ith smaller approximation error. There are also other results in the literature [13,14] which provide compositional
onstruction of sound abstractions without imposing strong compositionality conditions. However, the aforementioned
ompositional schemes above are proposed for the sake of controller synthesis for temporal logic properties, and
one of them are applicable to deal with security properties including opacity. Recently, a compositional framework
s presented in [19] motivated by the computational complexity encountered in the analysis of a related property,
alled critical observability, for large-scale networks of finite state machines. A bisimulation equivalence is defined taking
nto account criticalities. More recently, the results in [20] present a compositional framework for the construction
f opacity-preserving finite abstractions for interconnected control systems without any discrete dynamic. Here we
nlarge the class of systems for the first time to hybrid ones with switching signals. If switched subsystems accept
ommon incremental Lyapunov functions, our proposed results here recover the ones presented in the previous work.
ompositional construction of finite abstractions for networks of switched systems is proposed in [17,18] using different
ompositionality schemes based on dissipativity theory and small-gain type conditions, respectively. Our result here
iffers from the ones in [17,18] in two main aspects. First note that we are interested in the verification of opacity based
n a new notion of opacity-preserving simulation functions, while the works in [17,18] rely on the standard notion of
lternating simulation functions (ASFs) to handle the problem of controller synthesis against temporal logic properties.
lthough requiring stronger conditions than ASFs, our new notion of opacity-preserving simulation functions is shown
o preserve approximate opacity across related systems. Hence, it can be used for the abstraction-based verification of
pproximate opacity for switched systems. Secondly, we provide here a top-down compositional construction framework
long with a detailed design guideline (cf. Algorithm 1), whereas the results in [17,18] present a bottom-up compositional
pproach. In particular, our methodology shows that given any desired precision for the overall opacity-preserving finite
bstraction, under a sufficient small-gain type condition, one can always orderly design local quantization parameters to
chieve the overall abstraction precisions. Note that such a systematic compositional scheme cannot be achieved by the
esults in [17,18].

.2. Contributions

In this paper, we provide for the first time a compositional approach to analyze approximate opacity of a network
f switched systems using their finite abstractions. We consider two types of approximate opacity, i.e., approximate
nitial-state opacity and approximate current-state opacity. A new notion of approximate initial-state (resp. current-state)
pacity-preserving simulation function (InitSOPSF, resp. CurSOPSF) is introduced as a system relation to characterize
he closeness between two networks in terms of preservation of approximate initial-state (resp. current-state) opacity.
e show that such an InitSOPSF (resp. CurSOPSF) can be established by composing certain local InitSOPSFs (resp.
urSOPSFs) which relate each switched subsystem to its local finite abstraction. Moreover, under some assumptions

nsuring incremental input-to-state stability of discrete-time switched systems, an approach is provided to construct
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Fig. 1. Compositional framework for opacity verification of networks of switched systems.

ocal finite abstractions along with the corresponding local InitSOPSFs (resp. CurSOPSFs) for all of the subsystems. Then,
e derive some small-gain type conditions, under which one can construct a finite abstraction of the concrete network of
witched systems by interconnecting local finite abstractions of subsystems. Finally, one can verify opacity based on the
onstructed finite abstraction, and then refine the results back to the concrete network based on their opacity-preserving
ystem relation. The proposed compositional abstraction-based opacity verification pipeline is depicted in Fig. 1.

.3. Organization

The rest of this paper is organized as follows. In Section 2, we first introduce necessary notations and preliminaries
f the paper. Then, new notions of approximate opacity-preserving simulation functions (InitSOPSFs and CurSOPSFs)
re proposed in Section 3. In Section 4, we provide a compositional framework for the construction of InitSOPSFs and

CurSOPSFs for a network of discrete-time switched systems. In Section 5, we present how to construct local finite
abstractions for a class of incrementally input-to-state stable subsystems, and then propose a small-gain type condition
required for the main compositionality result. Next, an illustrative example is provided in Section 6 that showcases how
one can leverage our compositionality results for the verification of opacity for a network of switched systems. Finally,
we conclude the paper in Section 7.

A preliminary investigation of our results appeared in [21]. Our results here improve and extend those in [21] in
the following directions. First, we provide here the proofs of all statements which were omitted in [21]. We also add
more detailed descriptions and discussions of the results announced in [21], with all definitions reformulated in a more
uniform manner. Second, we present here compositional approaches to tackle both initial-state and current-state opacity,
while [21] only considers initial-state opacity. Finally, an algorithm is provided here to serve as a systematic guideline for
the compositional construction of abstractions with any desired approximation precision, which is not presented in [21].

2. Notation and preliminaries

2.1. Notation

We denote by R and N the set of real numbers and non-negative integers, respectively. These symbols are annotated
with subscripts to restrict them in the obvious way, e.g. R>0 denotes the positive real numbers. We denote the closed,
open, and half-open intervals in R by [a, b], (a, b), [a, b), and (a, b], respectively. For a, b ∈ N and a ≤ b, we use [a; b], (a; b),
[a; b), and (a; b] to denote the corresponding intervals in N. Given any a ∈ R, |a| denotes the absolute value of a. Given
N ∈ N≥1 vectors νi ∈ Rni , ni ∈ N≥1, and i ∈ [1;N], we use ν = [ν1; . . . ; νN ] to denote the vector in Rn with n =

∑
i ni

consisting of the concatenation of vectors νi. Moreover, ∥ν∥ denotes the infinity norm of ν. The individual elements in a
matrix A ∈ Rm×n, are denoted by {A}i,j, where i ∈ [1;m] and j ∈ [1; n]. We denote by card(·) the cardinality of a given
set and by ∅ the empty set. For any set S ⊆ Rn of the form of finite union of boxes, e.g., S =

⋃M
j=1 Sj for some M ∈ N,

where Sj =
∏n

i=1[c
j
i , d

j
i] ⊆ Rn with c ji < dji, we define span(S) = minj=1,...,M ηSj and ηSj = min{|dj1 − c j1|, . . . , |d

j
n − c jn|}.

Moreover, for a set in the form of X =
∏N

i=1 Xi, where Xi ⊆ Rni , ∀i ∈ [1;N], are of the form of finite union of boxes, and
any positive (component-wise) vector φ = [φ1; . . . ; φN ] with φi ≤ span(Xi), ∀i ∈ [1;N], we define [X]φ =

∏N
i=1[Xi]φi ,

where [X ] = [Rni ] ∩ X and [Rni ] = {a ∈ Rni | a = k φ , k ∈ Z, j = 1, . . . , n }. Note that if φ = [η; . . . ; η], where
i φi φi i φi j j i j i

3
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< η ≤ span(S), we simply use notation [S]η rather than [S]φ . With a slight abuse of notation, we write [S]0 := S. Note
hat [S]η ̸= ∅ for any 0 ≤ η ≤ span(S). We use notations K and K∞ to denote different classes of comparison functions, as
ollows: K = {α : R≥0 → R≥0| α is continuous, strictly increasing, and α(0) = 0}; K∞ = {α ∈ K| limr→∞ α(r) = ∞}. For
, γ ∈ K∞ we write α ≤ γ if α(r) ≤ γ (r), and, with abuse of the notation, α = c if α(r) = cr for all c, r ≥ 0. Finally, we
enote by Id the identity function over R≥0, that is Id(r) = r, ∀r ∈ R≥0. Given sets X and Y with X ⊂ Y , the complement
f X with respect to Y is defined as Y\X = {x : x ∈ Y , x /∈ X}.

.2. Discrete-time switched systems

We consider discrete-time switched systems of the following form.

efinition 1. A discrete-time switched system (dt-SS) Σ is defined by the tuple Σ = (X,X0,Xs, P,W, F ,Y, h), where

• X ⊆ Rn is the state set;
• X0 ⊆ X is the initial state set;
• Xs ⊆ X is the secret state set;
• P = {1, . . . ,m} is the finite set of modes;
• W ⊆ Rm is the internal input set;
• F = {f1, . . . , fm} is a collection of set-valued maps fp : X × W ⇒ X for all p ∈ P;
• Y ⊆ Rq is the output set;
• h : X → Y is the output map.

The dt-SS Σ is described by difference inclusions of the form

Σ :

{
x(k + 1) ∈ fp(k)(x(k), ω(k)),

y(k) = h(x(k)), (1)

where x : N → X, y : N → Y, p : N → P , and ω : N → W are the state, output, switching, and internal input signal,
respectively.

Let ϕk, k ∈ N≥1, denote the time when the kth switching instant occurs. We assume that signal p satisfies a dwell-time
condition [22] (i.e. there exists kd ∈ N≥1, called the dwell-time, such that for all consecutive switching time instants
ϕk, ϕk+1, ϕk+1 − ϕk ≥ kd). If for all x ∈ X, p ∈ P, w ∈ W, card(fp(x, w)) ≤ 1, we say the system Σ is deterministic, and
non-deterministic otherwise. System Σ is called finite if X,W are finite sets and infinite otherwise. We assume that for
every initial condition and any sequence of switching signals, the corresponding state signal is defined for all k ≥ 0.

2.3. Transition systems

In this subsection, we employ the notion of transition systems, originally introduced in [23], to provide an alternative
description of switched systems that can be later directly related to their finite abstractions in a common framework.

Definition 2. Given a dt-SS Σ = (X,X0,Xs, P,W, F ,Y, h), we define the associated transition system T (Σ) =

(X, X0, Xs,U,W ,F, Y ,H), where:

• X = X × P × {0, . . . , kd − 1} is the state set;
• X0 = X0 × P × {0} is the initial state set;
• Xs = Xs × P × {0, . . . , kd − 1} is the secret state set;
• U = P is the external input set;
• W = W is the internal input set;
• F is the transition function given by (x+, p+, l+) ∈ F((x, p, l), u, w) if and only if x+

∈ fp(x, w), u = p and one of the
following scenarios hold:

· l < kd − 1, p+
= p and l+ = l + 1: switching is not allowed because the time elapsed since the latest switch is

strictly smaller than the dwell time;
· l = kd − 1, p+

= p and l+ = kd − 1: switching is allowed but no switch occurs;
· l = kd − 1, p+

̸= p and l+ = 0: switching is allowed and a switch occurs;

• Y = Y is the output set;
• H : X → Y is the output map defined as H(x, p, l) = h(x).

Note that in the above definition, two additional variables p and l are added to the state tuple of the system Σ . The
ariable l serves as a counter to record the sojourn time of the switching signal, which allows or prevents the system
rom switching depending on whether the dwell-time condition is satisfied; the variable p acts as a memory to record
he current mode of the system.

The following proposition is borrowed from [17] showing that the output runs of a dt-SS Σ and its associated transition
ystem T (Σ) are equivalent so that one can use Σ and T (Σ) interchangeably.
4
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roposition 3. Consider a transition system T (Σ) in Definition 2 associated to Σ as in Definition 1. Any output trajectory of
can be uniquely equated to an output trajectory of T (Σ) and vice versa.

Next, let us introduce a formal definition of networks of dt-SS (or equivalently, networks of transition systems).

.4. Networks of systems

Consider N ∈ N≥1 dt-SS Σi = (Xi,X0i ,Xsi , Pi,Wi, Fi,Yi, hi), i ∈ [1;N], with partitioned internal inputs and outputs as

wi = [wi1; . . . ; wi(i−1); wi(i+1); . . . ; wiN ], Wi =

N∏
j=1,j̸=i

Wij, (2)

hi(xi) = [hi1(xi); . . . ; hiN (xi)], Yi =

N∏
j=1

Yij, (3)

ith wij ∈ Wij, and yij = hij(xi) ∈ Yij. The outputs yii are considered as external ones, whereas yij with i ̸= j are
nterpreted as internal ones which are used to construct interconnections between systems. In particular, we assume
hat wij = yji, if there is connection from system Σj to Σi, otherwise, we set hji ≡ 0. In the sequel, we denote by
i = {j ∈ [1;N], j ̸= i|hji ̸= 0} the collection of neighboring systems Σj, j ∈ Ni, that provide internal inputs to system Σi.
Now, we introduce the notions of networks (in both concrete and abstract domains) based on the notion of inter-

onnected systems in [24]. For a concrete network constructed as the interconnection of N ∈ N≥1 concrete subsystems,
efinition 1 reduces to the tuple Σ = (X,X0,Xs, P, F ,Y, h) without internal inputs and outputs as in the following
efinition.

efinition 4. Consider N ∈ N≥1 dt-SS Σi = (Xi,X0i ,Xsi , Pi,Wi, Fi,Yi, hi), i ∈ [1;N] with the input–output structure given
y (2) and (3). The network, representing the interconnection of N ∈ N≥1 dt-SS Σi, is a tuple Σ = (X,X0,Xs, P, F ,Y, h),
enoted by I(Σ1, . . . , ΣN ), where X =

∏N
i=1 Xi, X0 =

∏N
i=1 X0i , Xs =

∏N
i=1 Xsi , P =

∏N
i=1 Pi, F =

∏N
i=1 Fi, Y =

∏N
i=1 Yii,

(x) := [h11(x1); . . . ; hNN (xN )] with x = [x1; . . . ; xN ], subject to the constraint:

yji = wij,Yji ⊆ Wij, ∀i ∈ [1;N], j ∈ Ni. (4)

Similarly, given transition systems T (Σi), one can also define a network of transition systems I(T (Σ1), . . . ,
T (ΣN )). For the rest of the paper, we mainly deal with the transition systems as they allow us to model dt-SS Σ and
their finite abstractions in a common framework.

For an interconnection of N ∈ N≥1 finite dt-SS Σ̂i, with input–output structure configuration as in (2) and (3), we
introduce the following definition of networks of finite dt-SS.

Definition 5. Consider N ∈ N≥1 finite dt-SS Σ̂i = (X̂i, X̂0i , X̂si , P̂i, Ŵi, F̂i, Ŷi, ĥi), i ∈ [1;N] with the input–output
structure given by (2) and (3). The network, representing the interconnection of N ∈ N≥1 finite dt-SS Σ̂i, is a tuple
ˆ = (X̂, X̂0, X̂s, P̂, F̂ , Ŷ, ĥ), denoted by Î(Σ̂1, . . . , Σ̂N ), where X̂ =

∏N
i=1 X̂i, X̂0 =

∏N
i=1 X̂0i , X̂s =

∏N
i=1 X̂si , P̂ =

∏N
i=1 P̂i,

ˆ =
∏N

i=1 F̂i, Ŷ =
∏N

i=1 Ŷii, ĥ(x) :=

[
ĥ11(x̂1); . . . ; ĥNN (x̂N )

]
with x̂ =

[
x̂1; . . . ; x̂N

]
, subject to the constraint:

∀ŷji ∈ Ŷji, ∃ŵij ∈ Ŵij, s.t. ∥ŷji − ŵij∥ ≤ φij, i ∈ [1;N], j ∈ Ni, (5)

here φij is an internal input quantization parameter designed for constructing local finite abstractions (cf. Definition 20).

Similarly, given finite transition systems T (Σ̂i), one can also define a network of transition systems as Î(T (Σ̂1), . . . ,
(Σ̂N )).
An example of a concrete network and an abstract network is illustrated in Fig. 2, where each consists of three switched

ubsystems.

emark 6. Note that in the above definitions, the interconnection constraint in (4) for the concrete network is different
rom that for the abstract network in (5). For networks of finite abstractions, due to possibly different granularities of finite
nternal input sets Ŵij and output sets Ŷij, we introduce parameters φij in (5) for having a well-posed interconnection.
he values of φij will be designed later in Definition 20 when constructing local finite abstractions of the subsystems.

Before introducing the notion of approximate initial-state opacity for networks of transition systems, we introduce
ome notations that will be used to characterize opacity property. Consider network T (Σ). We use zk to denote a state of
(Σ) reached at time k ∈ N from initial state z0 under an input sequence ū with length k, and denote by {z0, z1, . . . , zn}
finite state run of T (Σ) with length n ∈ N.
5
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Fig. 2. [Left]: Concrete network composed of three switched subsystems Σ1 , Σ2 , and Σ3 with h13 = h31 = 0, where yji = wij , ∀i, j ∈ [1; 3]; [Right]:
Abstract network composed of three finite subsystems Σ̂1 , Σ̂2 , and Σ̂3 with ĥ13 = ĥ31 = 0, and the internal inputs ŵij for system Σ̂i are taken
from the discretized internal outputs of system Σ̂j under the constraint ∥ŷji − ŵij∥ ≤ φij , ∀i, j ∈ [1; 3], where φij are internal input quantization
parameters.

2.5. Approximate opacity

Here, let us review a notion of approximate initial-state (resp. current-state) opacity [10]. In this context, the system’s
behaviors are assumed to be observed by an outside intruder which aims at inferring secret information of the system.
The adopted concept of secrets are formulated as state-based.

Definition 7. Consider network T (Σ) = (X, X0, Xs,U,F, Y ,H) and a constant δ ≥ 0. Network T (Σ) is said to be

• δ-approximate initial-state opaque if for any z0 ∈ X0∩Xs and any finite state run {z0, z1, . . . , zn}, there exist z̄0 ∈ X0\Xs
and a finite state run {z̄0, z̄1, . . . , z̄n} such that maxk∈[0;n] ∥H(zk) − H(z̄k)∥ ≤ δ.

• δ-approximate current-state opaque if for any z0 ∈ X0 and finite state run {z0, z1, . . . , zn} such that zn ∈ Xs, there
exists z̄0 ∈ X0 and a finite state run {z̄0, z̄1, . . . , z̄n} such that z̄n ∈ X \ Xs and maxk∈[0;n] ∥H(zk) − H(z̄k)∥ ≤ δ.

Intuitively, the notion of δ-approximate initial-state opacity requires that, whenever observing any output run, an
intruder with measurement precision δ is never certain that the system is initiated from a secret state. In other words,
the systems’ secret information can never be revealed in the presence of an intruder that does not have an enough
measurement precision. Similarly, δ-approximate current-state opacity says that the intruder with measurement precision
δ never knows for sure that the system is currently at a secret state no matter which output run is generated.

In the next corollary, we show that if a system equipped with secret set Xs is δ-approximate opaque, then the system
is also δ-approximate opaque with a smaller secret set contained in Xs.

Corollary 8. Consider networks T (Σ1) = (X, X0, Xs,U,F, Y ,H) and T (Σ2) = (X, X0, X ′
s,U,F, Y ,H) with X ′

s ⊆ Xs. If T (Σ1)
is δ-approximate initial-state (resp. current-state) opaque, then T (Σ2) is also δ-approximate initial-state (resp. current-state)
opaque.

Proof. We start by showing the preservation of approximate initial-state opacity across systems T (Σ1) and T (Σ2).
Consider any z0 ∈ X0 ∩ X ′

s and any finite state run {z0, z1, . . . , zn} in T (Σ2). Given that X ′
s ⊆ Xs, we get z0 ∈ X0 ∩ Xs. Since

T (Σ1) is δ-approximate initial-state opaque, from Definition 7, there exist z̄0 ∈ X0\Xs and a finite state run {z̄0, z̄1, . . . , z̄n}
such that maxk∈[0;n] ∥H(zk) − H(z̄k)∥ ≤ δ. Moreover, given that {X0 \ Xs} ⊆ {X0 \ X ′

s}, we get z̄0 ∈ X0 \ X ′
s . Therefore, by

Definition 7, T (Σ2) is also δ-approximate initial-state opaque. Similarly, we show the preservation of approximate current-
state opacity across systems T (Σ1) and T (Σ2). Consider any z0 ∈ X0 and any finite state run {z0, z1, . . . , zn} such that
zn ∈ X ′

s in T (Σ2). Since T (Σ1) is δ-approximate current-state opaque, from Definition 7, there exist z̄0 ∈ X0 and a finite
state run {z̄0, z̄1, . . . , z̄n} such that z̄n ∈ X \Xs and maxk∈[0;n] ∥H(zk)−H(z̄k)∥ ≤ δ. Moreover, given that {X \Xs} ⊆ {X \X ′

s},
we get z̄n ∈ X \ X ′

s . Therefore, by Definition 7, T (Σ2) is also δ-approximate current-state opaque. □

Remark 9. Note that it is assumed in Definitions 4 and 5 that the secret set of the network is the Cartesian product of the
secret sets of the subsystems. However, if the secret set of the original network is in a more general from (e.g. polytopes),
one can use minimum bounding box algorithms [25] to compute the smallest hyper-rectangle containing the secret set
of the original network. If we consider this hyper-rectangle as the new secret set and follow the same procedure to verify
opacity of the system, then by Corollary 8, the results (if successful) can be carried over to the original network.
6



S. Liu, A. Swikir and M. Zamani Nonlinear Analysis: Hybrid Systems 42 (2021) 101084

R
n
O
c
f
n
c
r
n

3

t
f

emark 10. The notions of approximate initial-state and current-state opacity are, in general, hard to check for a concrete
etwork since there is no systematic way in the literature to check opacity for systems with infinite state set so far.
n the other hand, existing tool DESUMA1 and algorithms [26,27], [9, Sec. IV] in DESs literature can be leveraged to
heck exact opacity for networks with finite state sets. For the verification of approximate opacity of the constructed
inite abstractions, one can readily resort to [10, Sec. IV] for an effective verification approach that was developed for the
otion of approximate opacity for finite systems. The above-mentioned algorithms helps us to verify opacity for networks
onsisting of finite abstractions and then carry back the verification result to concrete ones, given a formal simulation
elation between those networks. To this purpose, an opacity-preserving simulation relation will be introduced in the
ext section which formally relate a network of transition systems and its finite abstraction.

. Opacity-preserving simulation functions

In this section, we introduce notions of approximate opacity-preserving simulation functions to quantitatively relate
wo networks of transition systems in terms of preserving approximate initial-state and current-state opacity. Such a
unction can be constructed compositionally as shown in Section 4.

First, we introduce a notion of approximate initial-state opacity-preserving simulation functions in the following
definition.

Definition 11. Consider networks T (Σ) = (X, X0, Xs,U,F, Y ,H) and T (Σ̂) = (X̂, X̂0, X̂s, Û, F̂, Ŷ , Ĥ) with Ŷ ⊆ Y . For
ε ∈ R≥0, a function S : X × X̂ → R≥0 is called an ε-approximate initial-state opacity-preserving simulation function
(ε-InitSOPSF) from T (Σ) to T (Σ̂) if there exists a function α ∈ K∞ such that

1 (a) ∀z0 ∈ X0 ∩ Xs, ∃ẑ0 ∈ X̂0 ∩ X̂s, s.t. S(z0, ẑ0) ≤ ε;
(b) ∀ẑ0 ∈ X̂0 \ X̂s, ∃z0 ∈ X0 \ Xs, s.t. S(z0, ẑ0) ≤ ε;

2 ∀z ∈ X, ∀ẑ ∈ X̂ , α(∥H(z) − Ĥ(ẑ)∥) ≤ S(z, ẑ);
3 ∀z ∈ X, ∀ẑ ∈ X̂ s.t. S(z, ẑ) ≤ ε, one has:

(a) ∀u ∈ U , ∀z+
∈ F(z, u), ∃û ∈ Û , ∃ẑ+

∈ F̂(ẑ, û), s.t. S(z+, ẑ+) ≤ ε;
(b) ∀û ∈ Û , ∀ẑ+

∈ F̂(ẑ, û), ∃u ∈ U , ∃z+
∈ F(z, u), s.t. S(z+, ẑ+) ≤ ε.

Similarly, we introduce a notion of approximate current-state opacity-preserving simulation functions defined as
follows.

Definition 12. Consider networks T (Σ) = (X, X0, Xs,U,F, Y ,H) and T (Σ̂) = (X̂, X̂0, X̂s, Û, F̂, Ŷ , Ĥ) with Ŷ ⊆ Y . For
ε ∈ R≥0, a function S : X × X̂ → R≥0 is called an ε-approximate current-state opacity-preserving simulation function
(ε-CurSOPSF) from T (Σ) to T (Σ̂) if there exists a function α ∈ K∞ such that

1 ∀z0 ∈ X0, ∃ẑ0 ∈ X̂0, s.t. S(z0, ẑ0) ≤ ε;
2 ∀z ∈ X, ∀ẑ ∈ X̂ , α(∥H(z) − Ĥ(ẑ)∥) ≤ S(z, ẑ);
3 ∀z ∈ X, ∀ẑ ∈ X̂ s.t. S(z, ẑ) ≤ ε, one has:

(a) ∀u ∈ U , ∀z+
∈ F(z, u), ∃û ∈ Û , ∃ẑ+

∈ F̂(ẑ, û), s.t. S(z+, ẑ+) ≤ ε;
(b) ∀u ∈ U , ∀z+

∈ F(z, u) s.t. z+
∈ Xs, ∃û ∈ Û , ∃ẑ+

∈ F̂(ẑ, û) with ẑ+
∈ X̂s, s.t. S(z+, ẑ+) ≤ ε;

(c) ∀û ∈ Û , ∀ẑ+
∈ F̂(ẑ, û) ∃u ∈ U , ∃z+

∈ F(z, u), s.t. S(z+, ẑ+) ≤ ε;
(d) ∀û ∈ Û , ∀ẑ+

∈ F̂(ẑ, û) s.t. ẑ+
∈ X̂ \ X̂s, ∃u ∈ U , ∃z+

∈ F(z, u) with z+
∈ X \ Xs, s.t. S(z+, ẑ+) ≤ ε.

We say that T (Σ̂) is an abstraction of T (Σ) if there exists an ε-InitSOPSF, or ε-CurSOPSF, from T (Σ) to T (Σ̂). In addition,
if T (Σ̂) is finite (X̂ is a finite set), system T (Σ̂) is called a finite abstraction (symbolic model) of the network T (Σ), and
is denoted by T (Σ) ⪯

ε T (Σ̂).
Although Definitions 11 and 12 are general in the sense that networks T (Σ) and T (Σ̂) can be either infinite or finite,

network T (Σ̂) practically consists of N ∈ N≥1 finite abstractions. Hence, checking approximate initial-state, or current-
state, opacity for the concrete network T (Σ) can be done by resorting to that of its finite abstraction T (Σ̂) and then carry
the results back to the concrete network. Since T (Σ̂) is a finite system, one can verify opacity of T (Σ̂) algorithmically.
We refer interested readers to an existing verification approach proposed in [10, Sec.IV], which is tailored to the notion
of approximate opacity for finite systems.

The next proposition shows that the existence of an ε-InitSOPSF (resp. ε-CurSOPSF) as we proposed in Definition 11
(resp. Definition 12) for networks of transition systems implies the existence of an approximate initial-state (resp. current-
state) opacity-preserving simulation relations which was originally proposed in [10, Definition V.1] (resp. [10, Definition
V.6]).

1 Available at URL http://www.eecs.umich.edu/umdes/toolboxes.html.
7
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P
roposition 13. Consider networks T (Σ) = (X, X0, Xs,U,F , Y ,H) and T (Σ̂) = (X̂, X̂0, X̂s, Û, F̂, Ŷ , Ĥ) where Ŷ ⊆ Y . Assume
S is an ε-InitSOPSF (resp. ε-CurSOPSF) from T (Σ) to T (Σ̂) as in Definition 11 (resp. Definition 12). Then, relation R ⊆ X × X̂
defined by

R =

{
(z, ẑ) ∈ X × X̂ |S(z, ẑ) ≤ ε

}
, (6)

is an ε̂-InitSOP (resp. ε̂-CurSOP) simulation relation from T (Σ) to T (Σ̂) with

ε̂ = α−1(ε). (7)

Proof. First, we show that the proposed definition of ε-InitSOPSF implies the notion of ε̂-InitSOP simulation relation
as in [10, Definition V.1]. Condition 1 of the ε̂-InitSOP simulation relation follows immediately from condition 1 in
Definition 11, i.e. S(z0, ẑ0) ≤ ε. Next, we show that ∀(z, ẑ) ∈ R: ∥H(z)− Ĥ(ẑ)∥ ≤ ε̂. From the definition of R and condition
2 in Definition 11, it is readily seen that ∥H(z) − Ĥ(ẑ)∥ ≤ α−1(ε) = ε̂. Finally, we show condition 3 for R. Consider any
pair of (z, ẑ) ∈ X × X̂ in relation R and by the definition of R, one has S(z, ẑ) ≤ ε. Additionally, from 3(a) in Definition 11,
one also has ∀u ∈ U , ∀z+

∈ F(z, u), ∃û ∈ Û , ∃ẑ+
∈ F̂(ẑ, û) s.t. S(z+, ẑ+) ≤ ε. Hence, it follows that (z+, ẑ+) ∈ R which

satisfies condition 3(a) of R. Condition 3(b) can be proved in the same way and is omitted here. Note that by following
a similar reasoning as above, one can show that the definition of ε-CurSOPSF implies the notion of ε̂-CurSOP simulation
relation. □

Instead of directly working with the opacity-preserving simulation relations [10, Definitions V.1 and V.6], in the sequel,
we will mainly focus on the proposed notions of ε-InitSOPSFs and ε-CurSOPSFs as in Definitions 11 and 12 which allow
us to establish our compositionality result in an easier way.

The following corollary borrowed from [10] shows the usefulness of an approximate opacity-preserving simulation
function in terms of preserving approximate opacity across related networks.

Corollary 14. Consider networks T (Σ) = (X, X0, Xs,U,F, Y , H) and T (Σ̂) = (X̂, X̂0, X̂s, Û, F̂, Ŷ , Ĥ) where Ŷ ⊆ Y . Assume
there exists an approximate opacity-preserving simulation function from T (Σ) to T (Σ̂) as in Definitions 11 and 12 associated
with ε ∈ R≥0 and α ∈ K∞. Let ε̂, δ ∈ R≥0 where ε̂ = α−1(ε) and ε̂ ≤

δ
2 . Then the following implication holds

T (Σ̂) is (δ − 2ε̂)-approximate opaque
⇒ T (Σ) is δ-approximate opaque.

Note that the above implication across two related systems holds for both notions of approximate initial-state and
current-state opacity in Definition 7. Corollary 14 provides us a sufficient condition for verifying approximate opacity of
a complex network using abstraction-based techniques. Particularly, when confronted with a large network of switched
systems, one can construct a finite abstraction T (Σ̂) of the concrete network T (Σ), conduct the opacity verification over
the simpler network T (Σ̂) and carry back the results to the concrete one.

4. Compositional construction of approximate opacity-preserving simulation function

As shown in the previous section, the proposed ε-InitSOPSF (resp. ε-CurSOPSF) can be used for checking approximate
initial-state (resp. current-state) opacity of concrete networks by leveraging their finite abstractions. However, for a
network consisting of a large number of switched subsystems, constructing the corresponding simulation function and
the abstract network monolithically is not feasible in general due to curse of dimensionality. Hence, in this section, we
introduce a compositional framework based on which one can break down the intricate task in parts that are more
manageable to accomplish. In particular, we first relate local finite abstractions of the subsystems via local InitSOPSFs or
CurSOPSFs. Then, one can obtain the abstract network by interconnecting the local finite abstractions of the subsystems.
Additionally, the corresponding ε-InitSOPSF (resp. ε-CurSOPSF) to capture the closeness between the concrete and the
abstract networks can be established by composing the local InitSOPSFs (resp. CurSOPSFs) as well.

Let us first introduce new notions of local InitSOPSFs and CurSOPSFs for switched subsystems with internal inputs in
the following subsection.

4.1. Local approximate opacity-preserving simulation function

Suppose that we are given N dt-SS Σi = (Xi,X0i ,Xsi , Pi,Wi, Fi,Yi, hi), i ∈ [1;N], or equivalently, T (Σi) =

(Xi, X0i , Xsi ,Ui,Wi,Fi, Yi,Hi). Moreover, we assume that each system T (Σi) and its abstraction T (Σ̂i) admit a local
approximate opacity-preserving simulation function as defined next.

Definition 15. Consider transition systems T (Σi) = (Xi, X0i , Xsi ,Ui,Wi,Fi, Yi, Hi) and T (Σ̂i) = (X̂i, X̂0i , X̂si , Ûi, Ŵi, F̂i,

Ŷi, Ĥi), for all i ∈ [1;N], where Ŵi ⊆ Wi and Ŷi ⊆ Yi. For εi ∈ R≥0, a function Si : Xi × X̂i → R≥0 is called a local
ε -InitSOPSF from T (Σ ) to T (Σ̂ ) if there exist a constant ϑ ∈ R , and a function α ∈ K such that
i i i i ≥0 i ∞

8
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1 (a) ∀z0i ∈ X0i ∩ Xsi , ∃ẑ
0
i ∈ X̂0i ∩ X̂si , s.t. Si(z0i , ẑ

0
i ) ≤ εi;

(b) ∀ẑ0i ∈ X̂0i \ X̂si , ∃z
0
i ∈ X0i \ Xsi , s.t. Si(z0i , ẑ

0
i ) ≤ εi;

2 ∀zi ∈ Xi, ∀ẑi ∈ X̂i, αi(∥Hi(zi) − Ĥi(ẑi)∥) ≤ Si(zi, ẑi);
3 ∀zi ∈ Xi, ∀ẑi ∈ X̂i s.t. Si(zi, ẑi) ≤ εi, ∀wi ∈ Wi, ∀ŵi ∈ Ŵi s.t. ∥wi − ŵi∥ ≤ ϑi, one has:

(a) ∀ui ∈ Ui, ∀z+

i ∈ Fi(zi, ui, wi), ∃ûi ∈ Ûi, ∃ẑ+

i ∈ F̂i(ẑi, ûi, ŵi) s.t. Si(z+

i , ẑ+

i ) ≤ εi;
(b) ∀ûi ∈ Ûi, ∀ẑ+

i ∈ F̂i(ẑi, ûi, ŵi), ∃ui ∈ Ui, ∃z+

i ∈ Fi(zi, ui, wi) s.t. Si(z+

i , ẑ+

i ) ≤ εi.

Note that the local εi-InitSOPSFs are mainly proposed for constructing a ε-InitSOPSF for the networks and they are
not directly used for deducing approximate initial-state opacity-preserving simulation relation. Similarly, we introduce a
notion of local εi-CurSOPSFs for subsystems that can be used to establish ε-CurSOPSF for networks of switched systems.

Definition 16. Consider transition systems T (Σi) = (Xi, X0i , Xsi ,Ui,Wi,Fi, Yi, Hi) and T (Σ̂i) = (X̂i, X̂0i , X̂si , Ûi, Ŵi, F̂i,

Ŷi, Ĥi), for all i ∈ [1;N], where Ŵi ⊆ Wi and Ŷi ⊆ Yi. For εi ∈ R≥0, a function Si : Xi × X̂i → R≥0 is called a local
εi-CurSOPSF from T (Σi) to T (Σ̂i) if there exist a constant ϑi ∈ R≥0, and a function αi ∈ K∞ such that

1 ∀z0i ∈ X0i , ∃ẑ
0
i ∈ X̂0i , s.t. Si(z0i , ẑ

0
i ) ≤ εi;

2 ∀zi ∈ Xi, ∀ẑi ∈ X̂i, αi(∥Hi(zi) − Ĥi(ẑi)∥) ≤ Si(zi, ẑi);
3 ∀zi ∈ Xi, ∀ẑi ∈ X̂i s.t. Si(zi, ẑi) ≤ εi, ∀wi ∈ Wi, ∀ŵi ∈ Ŵi s.t. ∥wi − ŵi∥ ≤ ϑi, one has:

(a) ∀ui ∈ Ui, ∀z+

i ∈ Fi(zi, ui, wi), ∃ûi ∈ Ûi, ∃ẑ+

i ∈ F̂i(ẑi, ûi, ŵi) s.t. Si(z+

i , ẑ+

i ) ≤ εi;
(b) ∀ui ∈ Ui, ∀z+

i ∈ Fi(zi, ui, wi) s.t. z+

i ∈ Xsi , ∃ûi ∈ Ûi, ∃ẑ+

i ∈ F̂i(ẑi, ûi, ŵi) with ẑ+

i ∈ X̂si s.t. Si(z+

i , ẑ+

i ) ≤ εi;
(c) ∀ûi ∈ Ûi, ∀ẑ+

i ∈ F̂i(ẑi, ûi, ŵi), ∃ui ∈ Ui, ∃z+

i ∈ Fi(zi, ui, wi) s.t. Si(z+

i , ẑ+

i ) ≤ εi;
(d) ∀ûi ∈ Ûi, ∀ẑ+

i ∈ F̂i(ẑi, ûi, ŵi) s.t. ẑ+

i ∈ X̂i \ X̂si , ∃ui ∈ Ui, ∃z+

i ∈ Fi(zi, ui, wi) with z+

i ∈ Xi \Xsi s.t. Si(z+

i , ẑ+

i ) ≤ εi.

We say that T (Σ̂i) is an abstraction of T (Σi) if there exists a local εi-InitSOPSF, or εi-CurSOPSF, from T (Σi) to T (Σ̂i). In
ddition, if T (Σ̂i) is finite (X̂i and Ŵi are finite sets), system T (Σ̂i) is called a finite abstraction (symbolic model) of T (Σi),
nd is denoted by T (Σi) ⪯

εi
L T (Σ̂i).

Next, we show how to compose the above defined local simulation functions so that it can be used to quantify the
istance between two networks.

.2. Compositional construction of opacity-preserving simulation function

In this subsection, we provide one of the main results of the paper. The following theorem provides a compositional
pproach for the construction of an opacity-preserving simulation function from T (Σ) to T (Σ̂) via the proposed local
i-InitSOPSF (resp. εi-CurSOPSF) from T (Σi) to T (Σ̂i).

heorem 17. Consider network T (Σ) = I(T (Σ1), . . . , T (ΣN )). Assume that each T (Σi) admits an abstraction T (Σ̂i)
ogether with a local εi-InitSOPSF (resp. εi-CurSOPSF) Si, associated with function αi and constant ϑi as in Definition 15 (resp.
efinition 16). Let ε = maxi εi. If ∀i ∈ [1;N], ∀j ∈ Ni,

α−1
j (εj) + φij ≤ ϑi, (8)

here φij is an internal input quantization parameter for constructing the local finite abstractions T (Σ̂i), then, function
: X × X̂ → R≥0 defined as

S(z, ẑ) := max
i

{
ε

εi
Si(zi, ẑi)}, (9)

is an ε-InitSOPSF (resp. ε-CurSOPSF) from T (Σ) = I(T (Σ1), . . . , T (ΣN )) to T (Σ̂) = Î(T (Σ̂1), . . . , T (Σ̂N )).

Proof. First, we show that condition 1(a) in Definition 11 holds. Consider any z0 ∈ X0 ∩ XS . For any system T (Σi) and
the corresponding εi-InitSOPSF Si, from the definition of Si, we have ∀z0i ∈ X0i ∩ Xsi , ∃ẑ0i ∈ X̂0i ∩ X̂si s.t. Si(z0i , ẑ

0
i ) ≤ εi.

Then, from the definition of S in (9) we get S(z0, ẑ0) ≤ ε, where ẑ0 ∈ X̂0 ∩ X̂s. Thus, condition 1(a) in Definition 11
olds. Condition 1(b) can be proved in the same way, thus is omitted. Now, we show that condition 2 in Definition 11
olds for some K∞ function α. Consider any z = [z1; . . . ; zN ] ∈ X and ẑ =

[
ẑ1; . . . ; ẑN

]
∈ X̂ . Then, using condition 2 in

efinition 15, one gets

∥H(z) − Ĥ(ẑ)∥ = max
i

{∥Hii(zi) − Ĥii(ẑi)∥}

≤ max
i

{∥Hi(zi) − Ĥi(ẑi)∥} ≤ max
i

{α−1
i ◦ Si(zi, ẑi)} ≤ α̂ ◦ max

i
{
ε

εi
Si(zi, ẑi)},
9
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here α̂ = maxi{α−1
i }. By defining α = α̂−1, one obtains

α(∥H(z) − Ĥ(ẑ)∥) ≤ S(z, ẑ),

hich satisfies condition 2 in Definition 11. Now, we show that condition 3 holds. Let us consider any z ∈ X and ẑ ∈ X̂
uch that S(z, ẑ) ≤ ε. It can be seen that from the structure of S in (9), we get Si(zi, ẑi) ≤ εi, ∀i ∈ [1;N]. For each pair of
ystems T (Σi) and T (Σ̂i), the internal inputs satisfy the chain of inequality

∥wi − ŵi∥ = max
j∈Ni

{∥wij − ŵij∥} = max
j∈Ni

{∥yji − ŷji + ŷji − ŵij∥}

≤ max
j∈Ni

{∥yji − ŷji∥ + φij} ≤ max
j∈Ni

{∥Hj(zj) − Ĥj(ẑj)∥ + φij}

≤ max
j∈Ni

{α−1
j ◦ Sj(zj, ẑj) + φij} ≤ max

j∈Ni
{α−1

j (εj) + φij}.

Using (8), one has ∥wi − ŵi∥ ≤ ϑi. Therefore, by condition 3(a) in Definition 15, for each pair of systems T (Σi) and
T (Σ̂i), one has ∀ui ∈ Ui, ∀z+

i ∈ Fi(zi, ui, wi), there exists ûi ∈ Ûi and ẑ+

i ∈ F̂i(ẑi, ûi, ŵi) such that Si(z+

i , ẑ+

i ) ≤ εi. As a
result, we get ∀u = [u1; . . . ; uN ] ∈ U , ∀z+

∈ F(z, u), there exists û =
[
û1; . . . ; ûN

]
∈ Û and ẑ+

∈ F̂(ẑ, û) such that
S(z+, ẑ+) = maxi{ ε

εi
Si(z+

i , ẑ+

i )} ≤ ε. Therefore, condition 3(a) in Definition 11 is satisfied with ε = maxi εi. In addition, by
ondition 3(b) in Definition 15, for each pair of systems T (Σi) and T (Σ̂i), one has ∀ûi ∈ Ûi, ∀ẑ+

i ∈ F̂i(ẑi, ûi, ŵi), there exists
i ∈ Ui and z+

i ∈ Fi(zi, ui, wi) such that Si(z+

i , ẑ+

i ) ≤ εi. As a result, we get ∀û =
[
û1; . . . ; ûN

]
∈ Û , ∀ẑ+

∈ F̂(ẑ, û), there
xists u = [u1; . . . ; uN ] ∈ U and z+

∈ F(z, u) such that S(z+, ẑ+) = maxi{ ε
εi
Si(z+

i , ẑ+

i )} ≤ ε. It follows that condition 3(b)
in Definition 11 is satisfied as well. Therefore, we conclude that S is an ε-InitSOPSF from T (Σ) = I(T (Σ1), . . . , T (ΣN )) to
(Σ̂) = Î(T (Σ̂1), . . . , T (Σ̂N )). Note that by following similar lines of reasoning as above, one can prove that S is also an
-CurSOPSF from T (Σ) = I(T (Σ1), . . . , T (ΣN )) to T (Σ̂) = Î(T (Σ̂1), . . . , T (Σ̂N )). □

Till here, we have seen that one can construct an abstraction of a network of switched systems by interconnecting local
bstractions of the subsystems. The overall InitSOPSF (resp. CurSOPSF) between two networks is established by composing
ocal InitSOPSFs (resp. local CurSOPSFs) as well. This abstract network satisfies Definition 11 or Definition 12, which allows
s to check approximate opacity property over the simpler abstract network and carry the results back to the concrete
etwork using the results provided in Corollary 14.
Next, we are going to impose certain conditions on the dynamics of the subsystems, such that one can construct proper

bstractions for all of the subsystems together with the corresponding local InitSOPSFs or CurSOPSFs.

. Construction of finite abstractions

In this section, we are going to explore how to construct finite abstractions together with local InitSOPSFs or CurSOPSFs
or subsystems. The dt-SS Σ = (X,X0,Xs, P , W, F ,Y, h) are assumed to be infinite and deterministic. Moreover, we
ssume the output map h satisfies the following general Lipschitz assumption: there exists an ℓ ∈ K∞ such that:
h(x) − h(y)∥ ≤ ℓ(∥x − y∥) for all x, y ∈ X. Here, we also use Σp to denote a dt-SS Σ in (1) with constant switching
ignal p(k) = p, ∀k ∈ N.

.1. Construction of local finite abstractions

Note that throughout this subsection, we are mainly talking about switched subsystems rather than the overall
etwork. However, for the sake of better readability, we omit index i of subsystems throughout the text in this subsection,
.g., we write T (Σ) instead of T (Σi).
Here, we establish a local ε-InitSOPSF or ε-CurSOPSF between T (Σ) and its finite abstraction by assuming that, for all

∈ P , Σp is incrementally input-to-state stable (δ-ISS) [28] as defined next.

efinition 18. System Σp is δ-ISS if there exist so-called δ-ISS Lyapunov functions Vp : X × X → R≥0, αp, αp, ρp ∈ K∞,
nd constant 0 < κp < 1, such that for all x, x̂ ∈ X, and for all w, ŵ ∈ W

αp(∥ x − x̂ ∥) ≤ Vp(x, x̂) ≤ αp(∥x − x̂∥), (10)

Vp(fp(x, w),fp(x̂, ŵ)) ≤ κpVp(x, x̂) + ρp(∥w − ŵ∥). (11)

emark 19. We say that Vp, ∀p ∈ P , are multiple δ-ISS Lyapunov functions for subsystem Σ if it satisfies (10) and
11). Moreover, if Vp = Vp+ , ∀p, p+

∈ P , we omit the index p in (10), (11), and say that V is a common δ-ISS Lyapunov
function for system Σ . We refer interested readers to [22] for more details on common and multiple Lyapunov functions
for switched systems.

Next, we provide an approach, inspired by [29], to construct a local finite abstraction T (Σ̂) of transition system T (Σ)
associated to the switched subsystem Σ in which each mode Σp is δ-ISS.
10
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D

A
c

efinition 20. Consider a transition system T (Σ) = (X, X0, Xs,U,W ,F, Y ,H), associated to the switched subsystem
Σ = (X,X0,Xs, P,W, F ,Y, h), where X,W are assumed to be finite unions of boxes. Let Σp be δ-ISS as in Definition 18.
Then one can construct a finite abstraction T (Σ̂) = (X̂, X̂0, X̂s, Û, Ŵ , F̂, Ŷ , Ĥ) where:

• X̂ = X̂ × P × {0, . . . , kd − 1}, where X̂ = [X]η and 0 < η ≤ min{span(Xs), span(X \ Xs)} is the state set quantization
parameter;

• X̂0 = X̂0 × P × {0}, where X̂0 = [X0]η;
• X̂s = X̂s × P × {0, . . . , kd − 1}, where X̂s = [Xθ

s ]η , and Xθ
s = {x ∈ X | ∃x̄ ∈ Xs, ∥x − x̄∥ ≤ θ} denotes the θ-expansion

of set Xs where θ > 0 is a design parameter;
• Û = U = P;
• (x̂+, p+, l+) ∈ F̂((x̂, p, l), û, ŵ) if and only if ∥fp(x̂, ŵ) − x̂+

∥ ≤ η, û = p and one of the following scenarios hold:

· l < kd − 1, p+
= p and l+ = l + 1;

· l = kd − 1, p+
= p and l+ = kd − 1;

· l = kd − 1, p+
̸= p and l+ = 0;

• Ŷ = {H(x̂, p, l)|(x̂, p, l) ∈ X̂};
• Ĥ : X̂ → Ŷ , defined as Ĥ(x̂, p, l) = H(x̂, p, l) = h(x̂);
• Ŵ = [W]φ , where φ, satisfying 0<∥φ∥≤ span(W), is the internal input set quantization parameter.

Note that in the case when the concrete switched subsystem Σ admits a common δ-ISS Lyapunov function as in
Remark 19, Definition 20 boils down to the following.

Definition 21. Consider a transition system T (Σ) = (X, X0, Xs,U,W ,F, Y ,H), associated to the switched subsystem
Σ = (X,X0,Xs, P,W, F ,Y, h), where X,W are assumed to be finite unions of boxes. Suppose Σ admits a common δ-ISS
Lyapunov function as in Remark 19. Then one can construct a finite abstraction T (Σ̂) = (X̂, X̂0, X̂s, Û, Ŵ , F̂, Ŷ , Ĥ) where:

• X̂ = [X]η , where 0 < η ≤ min{span(Xs), span(X \ Xs)} is the state set quantization parameter;
• X̂0 = [X0]η;
• X̂s = [Xθ

s ]η , where Xθ
s = {x ∈ X | ∃x̄ ∈ Xs, ∥x − x̄∥ ≤ θ} denotes the θ-expansion of set Xs where θ > 0 is a design

parameter;
• Û = P;
• x̂+

∈ F̂(x̂, û, ŵ) if and only if ∥fû(x̂, ŵ) − x̂+
∥ ≤ η;

• Ŷ = {h(x̂)|x̂ ∈ X̂};
• Ĥ : X̂ → Ŷ , defined as Ĥ(x̂) = h(x̂);
• Ŵ = [W]φ , where φ, satisfying 0<∥φ∥≤ span(W), is the internal input set quantization parameter.

In order to construct a local ε-InitSOPSF or ε-CurSOPSF from T (Σ) to T (Σ̂), we raise the following assumptions on
functions Vp appeared in Definition 18, which are used to prove some of the main results later.

Assumption 22. There exists µ ≥ 1 such that

∀x, y ∈ X, ∀p, q ∈ P, Vp(x, y) ≤ µVq(x, y). (12)

Assumption 22 is an incremental version of a similar assumption in [30] that is used to prove input-to-state stability
of switched systems under constrained switching signals.

Assumption 23. For all p ∈ P , there exists a K∞ function γp such that

∀x, y, z ∈ X, Vp(x, y) ≤ Vp(x, z) + γp(∥y − z∥). (13)

Assumption 23 is non-restrictive as shown in [31] provided that one is interested to work on a compact subset of X.
Now, we establish the relation between T (Σ) and T (Σ̂), introduced above, via the notion of local ε-InitSOPSF as in

Definition 15.

Theorem 24. Consider a dt-SS Σ = (X,X0,Xs, P,W, F ,Y, h) with its equivalent transition system T (Σ) = (X, X0, Xs,U,W ,

F, Y ,H). Suppose Σp is δ-ISS as in Definition 18, with a function Vp equipped with functions αp, αp, ρp and constant κp, and
ssumptions 22 and 23 hold. Let ϵ > 1. For any design parameters ε, ϑ ∈ R≥0, let T (Σ̂) be a finite abstraction of T (Σ)
onstructed as in Definition 20 with any quantization parameter η ∈ R>0 satisfying

η ≤ min{γ̂ −1((1 − κ)ε − ρ(ϑ)), α−1(ε)}, (14)
11
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w

ϵ

i

P

H

i

(
a

f

s

here κ = maxp∈P

{
κ

ϵ−1
ϵ

p

}
, ρ = maxp∈P

{
κ

−
kd
ϵ

p ρp

}
, γ̂ = maxp∈P

{
κ

−
kd
ϵ

p γp

}
, α = maxp∈P

{
κ

−
l
ϵ

p αp

}
. If, ∀p ∈ P, kd ≥

ln(µ)
ln( 1

κp )
+ 1, then function V defined as

V((x, p, l), (x̂, p, l)) := Vp(x, x̂)κ
−l
ϵ

p , (15)

s a local ε-InitSOPSF from T (Σ) to T (Σ̂) and from T (Σ̂) to T (Σ).

roof. We start by proving condition 1 in Definition 15. Consider any initial and secret state (x0, p0, 0) ∈ X0 ∩ Xs in
T (Σ). From Definition 20, for every (x0, p0, 0) ∈ X0 ∩ Xs, there always exists (x̂0, p0, 0) ∈ X̂0 ∩ X̂s such that ∥x0 − x̂0∥ ≤ η.
ence, using (10), there exists (x̂0, p0, 0) ∈ X̂0 ∩ X̂s with V((x0, p0, 0), (x̂0, p0, 0)) ≤

αp(∥x0−x̂0∥)

κ
l
ϵ
p

≤
αp(η)

κ
l
ϵ
p

, and condition 1(a)

s satisfied with α = maxp∈P

{
κ

−
l
ϵ

p αp

}
and α(η) ≤ ε by (14). For every (x̂0, p0, 0) ∈ X̂0 \ X̂s, by choosing x0 = x̂0 with

x0, p0, 0) also being inside X0 \ Xs, we get V((x0, p0, 0), (x̂0, p0, 0)) = 0 ≤ ε. Hence, condition 1(b) in Definition 15 holds
s well.
Next, we show condition 2 in Definition 15 holds. Given the Lipschitz assumption on h and since, ∀p ∈ P , Σp is δ-ISS,

rom (10), ∀(x, p, l) ∈ X and ∀(x̂, p, l) ∈ X̂ , we have

∥H(x, p, l) − Ĥ(x̂, p, l)∥ = ∥h(x) − ĥ(x̂)∥ ≤ ℓ(∥x − x̂∥)

≤ ℓ ◦ α−1
p (Vp(x, x̂)) = ℓ ◦ α−1

p

(
κ

l
ϵ
p V((x, p, l), (x̂, p, l))

)
≤ ℓ ◦ α−1

p

(
V((x, p, l), (x̂, p, l))

)
≤ α̂

(
V((x, p, l), (x̂, p, l))

)
,

where α̂ = maxp∈P {ℓ ◦ α−1
p }. By defining α = α̂−1, one obtains

α(∥H(x, p, l) − Ĥ(x̂, p, l)∥) ≤ V((x, p, l), (x̂, p, l)),

atisfying condition 2. Now we show condition 3 in Definition 15. From (13), ∀x ∈ X, ∀x̂ ∈ X̂, ∀w ∈ W , ∀ŵ ∈ Ŵ , we have

Vp(fp(x, w), x̂+) ≤ Vp(fp(x, w), fp(x̂, ŵ)) + γp(∥x̂+
− fp(x̂, ŵ)∥),

for any x̂+ such that (x̂+, p+, l+) ∈ F̂((x̂, p, l), û, ŵ). Now, from Definition 20, the above inequality reduces to

Vp(fp(x, w), x̂+) ≤ Vp(fp(x, w), fp(x̂, ŵ)) + γp(η).

Note that by (11), one gets

Vp(fp(x, w), fp(x̂, ŵ)) ≤ κpVp(x, x̂) + ρp(∥w − ŵ∥).

Hence, ∀x ∈ X, ∀x̂ ∈ X̂, ∀w ∈ W , ∀ŵ ∈ Ŵ , one obtains

Vp(fp(x, w), x̂+) ≤ κpVp(x, x̂) + ρp(∥w − ŵ∥) + γp(η), (16)

for any x̂+ such that (x̂+, p+, l+) ∈ F̂((x̂, p, l), û, ŵ). Now, in order to show function V defined in (15) satisfies condition
3 in Definition 15, we consider the different scenarios in Definition 20:

• l < kd − 1, p+
= p and l+ = l + 1, using (16) and kd > l + 1, we have

V((x+, p+, l+), (x̂+, p+, l+)) =
Vp+ (x+, x̂+)

κ
l+
ϵ

p

=
Vp(fp(x, w), x̂+)

κ
l+1
ϵ

p

≤
κpVp(x, x̂) + ρp(∥w − ŵ∥) + γp(η)

κ
l+1
ϵ

p

=
κp

κ
1
ϵ
p

Vp(x, x̂)

κ
l
ϵ
p

+
ρp(∥w − ŵ∥) + γp(η)

κ
l+1
ϵ

p

≤ κ
ϵ−1
ϵ

p V((x, p, l), (x̂, p, l)) +
ρp(∥w − ŵ∥) + γp(η)

κ
kd
ϵ

p

.

• l = kd − 1, p+
= p and l+ = kd − 1, using (16) and ϵ−1

ϵ
< 1, one gets

V((x+, p+, l+), (x̂+, p+, l+)) =
Vp+ (x+, x̂+)

κ
l+
ϵ

p

=
Vp(fp(x, w), x̂+)

κ
l
ϵ
p

≤
κpVp(x, x̂) + ρp(∥w − ŵ∥) + γp(η)

l
ϵ

= κp
Vp(x, x̂)

l
ϵ

+
ρp(∥w − ŵ∥) + γp(η)

l
ϵ
κp κp κp

12
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N

(

w
u
T

t
a
w
t

T
F
A
c

w

i

P

c

≤ κ
ϵ−1
ϵ

p V((x, p, l), (x̂, p, l)) +
ρp(∥w − ŵ∥) + γp(η)

κ
kd
ϵ

p

.

• l = kd − 1, p+
̸= p and l+ = 0, using (16), µκ

kd−1
ϵ

p ≤ 1, and ϵ−1
ϵ

< 1, one has

V((x+, p+, l+), (x̂+, p+, l+)) =
Vp+ (x+, x̂+)

κ
l+
ϵ

p+

≤ µVp(fp(x, w), x̂+)

≤
µκ

kd−1
ϵ

p
(
κpVp(x, x̂) + ρp(∥w − ŵ∥) + γp(η)

)
κ

kd−1
ϵ

p

= κp
Vp(x, x̂)

κ
l
ϵ
p

+
ρp(∥w − ŵ∥) + γp(η)

κ
l
ϵ
p

≤ κ
ϵ−1
ϵ

p V((x, p, l), (x̂, p, l)) +
ρp(∥w − ŵ∥) + γp(η)

κ
kd
ϵ

p

.

Note that ∀p ∈ P, µκ
kd−1

ϵ
p ≤ 1, since ∀p ∈ P, kd ≥ ϵ

ln(µ)
ln( 1

κp )
+ 1. Hence, ∀(x, p, l) ∈ X , ∀(x̂, p, l) ∈ X̂ , ∀w ∈ W , ∀ŵ ∈ Ŵ , one

gets

V((x+, p+, l+), (x̂+, p+, l+)) ≤ κV((x, p, l), (x̂, p, l)) + ρ(∥w − ŵ∥) + γ̂ (η). (17)

ow, we show the condition 3(a) in Definition 15 holds. Let us consider any pair of states (x, p, l) ∈ X , (x̂, p, l) ∈ X̂ ,
satisfying V((x, p, l), (x̂, p, l)) ≤ ε, and any w ∈ W , ŵ ∈ Ŵ such that ∥w − ŵ∥ ≤ ϑ . Combining (17) with (14) for any
x+, p+, l+) ∈ F((x, p, l), u, w) and any (x̂+, p+, l+) ∈ F̂((x̂, p, l), û, ŵ) with û = u, one obtains:

V((x+, p+, l+), (x̂+, p+, l+)) ≤ κε + ρ(ϑ) + γ̂ (γ̂ −1((1 − κ)ε − ρ(ϑ))) = ε, (18)

hich shows that condition 3(a) is satisfied. Similarly, for any (x̂+, p+, l+) ∈ F̂((x̂, p, l), û, ŵ), condition 3(b) is also satisfied
sing the same reasoning with (x+, p+, l+) ∈ F((x, p, l), û, w). Therefore, we conclude that V is a local ε-InitSOPSF from
(Σ) to T (Σ̂). Similarly, one can show that V is a also a local ε-InitSOPSF from T (Σ̂) to T (Σ). □

Note that a similar framework for constructing symbolic models of switched systems was first proposed in [29], where
he results take a monolithic view of the concrete switched systems without considering the distinction between internal
nd external inputs and outputs. However, their distinction plays an important role in our proposed compositional scheme
hich allows us to build symbolic models for switched subsystems individually and then construct a symbolic model for
he overall network by interconnecting those local ones.

Next, we provide a similar result as in Theorem 24, but tailored to approximate current-state opacity.

heorem 25. Consider a dt-SS Σ = (X,X0,Xs, P,W, F ,Y, h) with its equivalent transition system T (Σ) = (X, X0, Xs,U,W ,
, Y ,H). Suppose Σp is δ-ISS as in Definition 18, with a function Vp equipped with functions αp, αp, ρp and constant κp, and
ssumptions 22 and 23 hold. Let ϵ > 1. For any design parameters ε, ϑ ∈ R≥0, let T (Σ̂) be a finite abstraction of T (Σ)
onstructed as in Definition 20 with any quantization parameters η ∈ R>0 and θ ∈ R>0 satisfying

η ≤ min{γ̂ −1((1 − κ)ε − ρ(ϑ)), α−1(ε)}; (19)

α−1(ε) ≤ θ, (20)

here κ = maxp∈P

{
κ

ϵ−1
ϵ

p

}
, ρ = maxp∈P

{
κ

−
kd
ϵ

p ρp

}
, γ̂ = maxp∈P

{
κ

−
kd
ϵ

p γp

}
, α = maxp∈P

{
κ

−
l
ϵ

p αp

}
, α = minp∈P

{
κ

−
l
ϵ

p αp

}
.

If, ∀p ∈ P, kd ≥ ϵ
ln(µ)
ln( 1

κp )
+ 1, then function V defined as

V((x, p, l), (x̂, p, l)) := Vp(x, x̂)κ
−l
ϵ

p , (21)

s a local ε-CurSOPSF from T (Σ) to T (Σ̂).

roof. We start by proving condition 1 in Definition 16. Consider any initial state (x0, p0, 0) ∈ X0 in T (Σ). Note that
from Definition 20, we have X̂0 = X̂0 × P × {0}, where X̂0 = [X0]η . Therefore, for every (x0, p0, 0) ∈ X0, there always
exists (x̂0, p0, 0) ∈ X̂0 such that ∥x0 − x̂0∥ ≤ η. Hence, one gets V((x0, p0, 0), (x̂0, p0, 0)) ≤

αp(∥x0−x̂0∥)

κ
l
ϵ
p

≤
αp(η)

κ
l
ϵ
p

by (10), and

ondition 1 is satisfied with α = maxp∈P

{
κ

−
l
ϵ

p αp

}
and α(η) ≤ ε by (19). The proof for conditions 2, 3(a), and 3(c) in

Definition 16 is similar to that of Theorem 24, and is omitted here.
13
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w

For condition 3(b), let us consider any u ∈ U s.t. (x+, p+, l+) ∈ Xs. By choosing û = u and following same reasoning as
in Theorem 24, we obtain V((x+, p+, l+), (x̂+, p+, l+)) ≤ ε. Additionally, by combining (10) and (21), one gets

∥x+
−x̂+

∥
(10)
≤ α−1

p (Vp(x+, x̂+))
(21)
= α−1

p κ
l
ϵ
p (V((x+, p+, l+), (x̂+, p+, l+)))≤α−1(ε),

here α = minp∈P

{
κ

−
l
ϵ

p αp

}
. Moreover, by (20), one gets ∥x+

− x̂+
∥ ≤ α−1(ε) ≤ θ . Note that by the structure of the

abstraction as in Definition 20, we have X̂s = X̂s × P × {0, . . . , kd − 1} where X̂s = [Xθ
s ]η and Xθ

s = {x ∈ X | ∃x̄ ∈

Xs, ∥x − x̄∥ ≤ θ}. This implies that (x̂+, p+, l+) ∈ X̂s, and thus, condition 3(b) is satisfied as well. Condition 3(d) of
Definition 16 can be proved in a similar way and is omitted here. Therefore, we conclude that V is a local ε-CurSOPSF
from T (Σ) to T (Σ̂). □

Remark 26. If Σ admits a common δ-ISS Lyapunov function satisfying Assumption 23, then functions V defined in
Theorems 24 and 25 reduce to V((x, p, l), (x̂, p, l)) := V (x, x̂).

Given the results of Theorems 17 and 24 (resp. 25), one can see that conditions (8) and (14) (resp. (19)) may not hold
at the same time. In the following subsection, we will discuss about the inherent property that the network should have
such that one can design suitable quantization parameters to satisfy conditions (8) and (14) (resp. (19)) simultaneously.

5.2. Compositionality result

We raise the following assumption which provides a small-gain type condition, inspired by [32, Theorem 5.2], so that
one can verify whether the competing conditions (8) and (14) (resp. (19)) can be satisfied simultaneously.

Assumption 27. Consider network I(T (Σ1), . . . , T (ΣN )) induced by N ∈ N≥1 transition systems T (Σi). Assume that
each T (Σi) and its finite abstraction T (Σ̂i) admit a local εi-InitSOPSF (resp. εi-CurSOPSF) Vi defined in (15) (resp. (21)),
associated with functions and constants κi, αi, and ρi that appeared in Theorem 24 (resp. Theorem 25). Define

γij :=

{
(1 − κi)−1ρi ◦ α−1

j if j ∈ Ni,

0 otherwise,
(22)

for all i, j ∈ [1;N], and assume that functions γij defined in (22) satisfy

γi1i2 ◦ γi2 i3 ◦ · · · ◦ γir−1 ir ◦ γir i1 < Id, (23)

∀(i1, . . . , ir ) ∈ {1, . . . ,N}
r , where r ∈ {1, . . . ,N}.

Now, we show that, under the above small-gain assumption, one can always compositionally design local quantization
parameters to satisfy conditions (8) and (14) (resp. (19)) simultaneously.

Theorem 28. Suppose that Assumption 27 holds. Then, there always exist local quantization parameters ηi and φij, ∀i, j ∈

[1;N], as designed in Algorithm 1, such that (8) and (14) (resp. (19)) can be satisfied simultaneously.

Proof. First, let us note that the small-gain condition (23) implies that ∃σi ∈ K∞ satisfying ∀i ∈ [1;N],

max
j∈Ni

{γij ◦ σj} < σi, (24)

see [32, Theorem 5.2]. Then, from (22), we have ∀i ∈ [1;N],

max
j∈Ni

{γij ◦ σj} < σi H⇒ max
j∈Ni

{(1 − κi)−1ρi ◦ α−1
j ◦ σj} < σi

H⇒ ρi ◦ max
j∈Ni

{α−1
j ◦ σj} < (1 − κi)σi. (25)

Next, suppose that we are given a sequence of functions σi ∈ K∞, ∀i ∈ [1;N], satisfying (24). Assume we are given any
desired precision ε as in Definition 11. Let us set εi = σi(r), ∀i ∈ [1;N], where r ∈ R>0 is chosen such that maxi{σi(r)} = ε.
Then, we choose internal input quantization parameters φij, ∀i, j ∈ [1;N], such that

max
j∈Ni

{φij} < ρ−1
i ((1 − κi)εi) − max

j∈Ni
{α−1

j (εj)}. (26)

Now, by setting ϑi = maxj∈Ni{α
−1
j (εj) + φij}, and combining (25) and (26), one has ∀i ∈ [1;N]

ρi(ϑi) = ρi(max
j∈Ni

{α−1
j (εj) + φij}) ≤ ρi(max

j∈Ni
{α−1

j (εj) + max
j∈Ni

{φij}}) < (1 − κi)εi. (27)

Thus, by (27), given any pair of parameters (εi, ϑi), one can always find suitable local parameters ηi to satisfy (14) (resp.
(19)). Additionally, the selection of ϑi = maxj∈Ni{α

−1
j (εj) + φij} ensures that (8) is satisfied as well, which concludes the
proof. □

14
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Algorithm 1: Compositional design of local quantization parameters ηi ∈ R>0 and φij ∈ R>0, ∀i ∈ [1;N].

Input: The desired precision ε ∈ R>0; the simulation functions Vi equipped with functions κi, αi, ρi, γ̂i, and αi,
∀i ∈ [1;N]; functions σi , ∀i ∈ [1;N], satisfying (24).

1 Choose r ∈ R>0 s.t. max
i∈[1;N]

{σi(r)} = ε;

2 Set εi = σi(r), ∀i ∈ [1;N];
3 Design φij ∈ R>0 s.t. max

j∈Ni
{φij} < ρ−1

i ((1 − κi)εi) − max
j∈Ni

{α−1
j (εj)}, ∀i, j ∈ [1;N];

4 Set ϑi = max
j∈Ni

{α−1
j (εj) + φij}, ∀i ∈ [1;N];

5 Design ηi ∈R>0 s.t. ηi ≤ min{γ̂ −1
i ((1 − κi)εi − ρi(ϑi)), α−1

i (εi)};
Output: Quantization parameters ηi ∈ R>0 and φij ∈ R>0, ∀i ∈ [1;N].

Fig. 3. Compositionality result.

Remark 29. The compositionality result in Theorem 28 imposes a small-gain type condition on the concrete network
of switched subsystems for the existence of proper compositional finite abstraction, as depicted in Fig. 3. In particular,
under such small-gain type conditions, one can always find suitable local quantization parameters to construct local
finite abstractions. The interconnection of the local finite abstractions can be used to serve as a finite abstraction for the
concrete network satisfying the simulation relation T (Σ) ⪯

ε T (Σ̂). Intuitively, the small-gain type condition facilitates
the compositional construction of finite abstractions by certifying a small (weak) interaction of the subsystems which
prevents an amplification of the signals across the possible interconnections.

Remark 30. Let us provide a general guideline on the computation of K∞ functions σi, i ∈ [1;N], that are used in
Theorem 28: (i) in a general case when the network is consisting of N ≥ 1 subsystems, functions σi, i ∈ [1;N], can be
constructed numerically by leveraging the algorithm introduced in [33] and the technique presented in [32, Proposition
8.8], see [34, Chapter 4]; (ii) for the case of having two and three subsystems in the network, there have been some
construction techniques proposed in [35] and [32, Section 9], respectively; (iii) when the gain functions appeared in (22)
satisfy γij < Id, ∀i, j ∈ [1;N], then one can always choose σi, i ∈ [1;N] to be identity functions.

6. Illustrative example

Here, we provide an illustrative example to show how one can leverage the proposed compositional approach to check
approximate initial-state opacity of a network of switched systems based on its finite abstraction.

Consider a network of discrete-time switched systems Σ = (X,X0,Xs, P, F , Y, h) as in Definition 4, consisting of n
subsystems Σi each described by:

Σi :

{
xi(k + 1) = aipi(k)xi(k) + diωi(k) + bipi(k), (28)
yi(k) = cixi(k),
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Fig. 4. The interconnection topology of the network of discrete-time switched subsystems Σi .

where pi(k) ∈ Pi = {1, 2}, ∀k ∈ N, denotes the modes of each subsystem Σi. The other parameters are as the following:
ai1 = 0.05, ai2 = 0.1, bi1 = 0.1, bi2 = 0.15, di = 0.05, ci = [ci1; . . . ; cin] with ci(i+1) = 1, cij = 0, ∀i ∈ [1; n− 1], ∀j ̸= i+ 1,
cn1 = cnn = 1, cnj = 0, ∀j ∈ [2; n − 1]. The internal inputs are subject to the constraints ω1(k) = cn1xn(k) and
ωi(k) = c(i−1)ix(i−1)(k), ∀i ∈ [2; n]. For each switched subsystem, the state set is Xi = X0i = (0, 0.6), ∀i ∈ [1; n], the secret
set is Xs1 = (0, 0.2], Xs2 = [0.4, 0.6), Xsi = (0, 0.6), ∀i ∈ [3; n], the output set is Yi =

∏n
j=1 Yij where Yi(i+1) = (0, 0.6),

Yii = Yij = {0}, ∀i ∈ [1; n − 1], ∀j ̸= i + 1, Ynn = Yn1 = (0, 0.6), Ynj = {0}, ∀j ∈ [2; n − 1], and internal input set is
1 = Yni, Wi = Y(i−1)i, ∀i ∈ [2; n]. Intuitively, the output of the network is the external output of the last subsystem Σn.
he interconnection topology of the network is depicted in Fig. 4.
The main goal of this example is to check approximate initial-state opacity of the concrete network using its finite

bstraction. Now, let us construct a finite abstraction of Σ compositionally with accuracy ε̂ = 0.25 as defined in (7),
hich preserves approximate initial-state opacity. We implement our compositional approach to achieve this goal.
Consider functions Vipi = |xi − x̂i|, ∀i ∈ [1; n]. It can be readily verified that (10) and (11) are satisfied with

αipi
= αipi = Id, ρipi = 0.05, ∀pi ∈ Pi, κi1 = ai1 = 0.05, κi2 = ai2 = 0.1. Condition (13) is satisfied with

ipi = Id, ∀pi ∈ Pi. Moreover, since Vipi = Vip+

i
, ∀pi, p+

i ∈ Pi, Vi(xi, x̂i) = |xi − x̂i| is a common δ-ISS Lyapunov
function for subsystem Σi. Next, given functions κi = 0.1, ρi = 0.06Id, αi = Id, γ̂i = 1.05Id, αi = Id as appeared
n Theorem 24, we have γij < Id by (22), ∀i, j ∈ [1; n]. Hence, the small-gain condition (23) is satisfied. Then, by applying
heorem 28 and choosing functions σi = Id, ∀i ∈ [1; n], such that (24) holds, we obtain proper pairs of local parameters
εi, ϑi) = (0.25, 0.25) for all of the transition systems. Accordingly, we provide a suitable choice of local quantization
arameters as ηi = 0.2, ∀i ∈ [1; n], such that inequality (14) for each transition system T (Σi) is satisfied. Then, we
onstruct local finite abstractions T (Σ̂i) = (X̂i, X̂0i , X̂si , Ûi, Ŵi, F̂i, Ŷi, Ĥi) as in Definition 21, where:

X̂i = X̂0i = {0.2, 0.4}, ∀i ∈ [1; n],

X̂si =

{
{0.2}, if i = 1
{0.4}, if i = 2
{0.2, 0.4}, otherwise

Ŷi =

{ ∏i
j=1{0}×{0.2, 0.4}×

∏n
j=i+2{0}, if i ∈ [1; n−1]

{0.2, 0.4}×
∏n−1

j=2 {0}×{0.2, 0.4}, otherwise

Ŵi = {0.2, 0.4}, ∀i ∈ [1; n].

sing the result in Theorem 24, one can verify that Vi(xi, x̂i) = |xi − x̂i| is a local εi-InitSOPSF from each T (Σi) to its
inite abstraction T (Σ̂i). Furthermore, by the compositionality result in Theorem 17, we obtain that V = maxi{Vi(xi, x̂i)} =

axi{|xi − x̂i|} is an ε-InitSOPSF from T (Σ) = I(T (Σ1), . . ., T (Σn)) to T (Σ̂) = Î(T (Σ̂1), . . . , T (Σ̂n)) with ε = maxi εi =

.25.
Now, let us verify approximate initial-state opacity for T (Σ) using the network of finite abstractions T (Σ̂). To do this,

e first show an example of a network consisting of 3 transition systems, as shown in Figs. 5 and 6. The three automata
n Fig. 5 represent the finite abstractions of the local transition systems, and the one in Fig. 6 is the network of finite
bstractions. Each circle is labeled by the state (top half) and the corresponding output (bottom half). Initial states are
istinguished by being the target of a sourceless arrow. The states marked in red represent the secret states. The symbols
n the edges show the switching signals p(k) ∈ {1, 2}3 and internal inputs coming from other local transition systems. For
implicity of demonstration, we use symbols to represent the state and output vectors, where the states of local transition
ystems are denoted by q1 = [0.4], q2 = [0.2], the states of network of transition systems are denoted by

z1 = [q1; q2; q2], z2 = [q2; q2; q2], z3 = [q2; q1; q2], z4 = [q1; q1; q2],
z5 = [q1; q2; q1], z6 = [q1; q1; q1], z7 = [q2; q2; q1], z8 = [q2; q1; q1],

nd the outputs of the corresponding states are represented as y = 0.2 and Y = 0.4 with the symbols like 00y =

0; 0; 0.2], 00Y = [0; 0; 0.4] representing concatenated output vectors. One can easily see that Î(T (Σ̂1), T (Σ̂2), T (Σ̂3))
s 0-approximate initial-state opaque, since for any run starting from any secret state, i.e. z3 and z8, there exists a
un from a non-secret state, i.e. z1 and z6, such that the output trajectories are exactly the same. Essentially, one
an verify that the abstract network holds this property regardless of the number of systems (i.e. n), due to the
omogeneity of systems Σ and the symmetry of the circular network topology. Thus, one can conclude that T (Σ̂) =
i
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Fig. 5. Local finite abstractions of transition systems.

Fig. 6. Finite abstraction of a network of 3 transition systems.

ˆ(T (Σ̂1), . . . , T (Σ̂n)) is 0-approximate initial-state opaque. Therefore, by Corollary 14, we obtain that the original network
(Σ) = I(T (Σ1), . . . , T (Σn)) is 0.5-approximate initial-state opaque.

. Conclusion and discussion

In this paper, we provided a compositional framework for the construction of opacity-preserving finite abstractions
or networks of discrete-time switched systems. First, an approximate opacity-preserving simulation function is defined
o characterize the simulation relation between two networks, which facilitates the abstraction-based opacity verification
rocess. Then we presented a compositional approach to construct finite abstractions locally for concrete subsystems
nder incremental input-to-state stability property. The interconnection of local finite abstractions forms an abstract
etwork that mimics the behaviors of the concrete network while preserving approximate initial-state (resp. current-
tate) opacity via the proposed simulation functions. Furthermore, we derived a small-gain type condition, under which
ne can guarantee the existence of proper quantization parameters for the construction of finite abstractions. Note that
e presented compositionality results on the construction of finite abstractions for notions of approximate initial-state
nd current-state opacity. One can readily follow the same lines of reasoning to establish similar results for the notion
f approximate infinite-step opacity [10,36]. We preferred to not include those results for the sake of brevity. For future
ork, it would be interesting to investigate opacity property for large-scale switched systems with unstable modes, and
lso for other classes of hybrid systems, e.g., impulsive systems.
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