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Abstract

Spatial memory has been considered significant in animal movement modeling. In this paper, we formu-
late a two-species interaction model by incorporating both random walk and spatial memory-based walk
in their movement. The spatial memory-based walk, described by a chemotactic-like term, is derived by a
modified Fick’s law involving a directed movement toward the gradient of the density distribution function
at a past time. For the proposed model, local stability and bifurcations are studied at constant steady states.
Unlike a classical reaction-diffusion equation, we show that the accumulation points of eigenvalues for the
model will locate at a vertical line in the complex plane, which will make the model generate spatially
inhomogeneous time-periodic patterns through Hopf bifurcation. As illustrations, we apply these results to
competition and cooperative models with memory-based diffusion. For the competition model, it turns out
that the outcomes are far more complicated than those of classic Lotka-Volterra reaction-diffusion models,
due to the consideration of memory-based diffusion. In particular, the existence of periodic oscillations is
proved under weak competition. Similar conclusions hold for the cooperative model.
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1. Introduction

Aside from Brownian motion, animal movement is commonly affected by other factors, such
as the resource distribution, the spatial memory of animals or living environment [10]. To incor-
porate the memory effect in movement models of high-developed animals, the following model
was proposed in [30]:

‘Z—’:=51Au+52v-(WF(u(x,z—r)))+G(u), (1.1)

for studying the movement of a single population with spatial memory. Here, Dy is the Fickian
diffusion rate, D, is the memory-based diffusion coefficient, T represents the averaged memory
period, F is a function showing the dependence of memory-based diffusion on the gradient of
concentration at T time unit before present time, and G describes the biological birth or death.
The model outcomes reveal that memory-based diffusion may have great impact on the spatial
distribution of the population. This model is also investigated in [29,32,35,36] by further consid-
ering the factors of maturation delay, nonlocal effect in reaction term, distributed memory delay,
or distributed delays in both diffusion and reaction.

In this paper, we incorporate the memory-based diffusion to classic diffusive models for de-
scribing the interaction of two species. The model is formulated along the same line as in [30],
by assuming the movements of two species (u1-population of species 1, u-population of species
2) are both governed by the modified Fickian flux in the form of

Ji(x,t) =—=D;Vu;(x,t) —diu; (x,t) F;(Vu1(x,t — 7;), Vua(x,t — 7)), i =1,2. (1.2)

Again, D; > 0, d; € R represent random diffusion and memory-based diffusion rates, respec-
tively. The function F; depends on the population gradients for both species at past time ¢t — t;.
Combining the chemical/biological processes of the species, the density functions u; (x, ¢) satisfy
the following reaction-diffusion equations:

%(x, t)=D;Au;(x,t) +d;V - [u; (x, 1) F;(Vuy(x,t — 1;), Vur (x, t — 17))] (13)

+ Gi(ul(-xs t)9 u2(x, t)),

where G; describes the chemical reaction or biological birth/death of species i. For simplicity,
in the following we assume that

Fi=a;Vui(x,t — 1) + BiVuy(x,t — 1),

where «;, B; describe the weights of the memorized two species distributions on the movement
decision of species i, and the movement is confined to a smooth bounded region  in RX.
Further, we assume the competing species have the same memory period, i.e. T = 72 = 7. Then,
we arrive at the following autonomous initial-boundary value problem by using the new notations
u=ur,v=un, f(u,v)=G1(u,v), gu,v)=Gy(u,v):
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0
8—’: = Di1Au+ DV - uVig) + D12V - uVue) + f(u,v), x€Q, 150,
0
a—'; — DsAv+ Dy V- (0Vitr) + D0V - (V) + g, v), x€Q, 150, L
3 d '
—u:O’ —U:O’ xeaQ,t>O,
on on
u(x,r)=¢1(x,1), vx,t)=¢ax,1), xeQ, —1<t<0,
where u; =u(x,t —tv), v, =v(x,t — 1)
Dy =diay, Dpp=diB1, D =drar, Dy =dp.
The initial functions of (1.4), still denoted by ¢; (x, t), satisfy
248,5/2 /5 i
¢i(x,1) € C (2 x [-7,0D, 8—(X,t)=0, (x,1) €92 x [-7,0], (1.5)
n

for some 8 € (0, 1). When t = 0, the model (1.4) is the same as the dispersive movement model
in continuous environment proposed in [33], hence (1.4) can also be viewed as an extension of
the model in [33] with memory-based self-diffusion (terms with coefficients D;; fori = 1,2) and
memory-based cross-diffusion (terms with coefficients D;; for i, j = 1,2 and i # j).

For (1.4), we mainly focus the impact of memory-based self-diffusion and cross-diffusion on
its dynamics, by carrying out the stability and bifurcation analysis. To this end, we analyze the
associated characteristic equations of steady states in the first place, particularly on the positive
one, whose eigenvalues will determine the asymptotic stability of steady states as in [30]. Due to
the Neumann boundary condition, the characteristic equations of (1.4) consist of a sequence of
transcendental equations, and therefore, many techniques in the literature, such as [5,40,19,34],
could be applied to deal with such problems. Similar to results for the single population model
in [30], we prove that most eigenvalues of the characteristic equations for the positive steady
state are also determined by a transcendental equation corresponding to a difference equation
with continuous time. Another observation of the distribution of roots for characteristic equation
is that: the eigenvalues derived from the n-th characteristic equation may locate at the right
hand side of the ones for (n — 1)-th equation, under a certain choice of parameters. Due to
this fact, we show that the memory-based self-diffusion and cross-diffusion will indeed generate
spatially inhomogeneous time-periodic patterns for the model through Hopf bifurcations. This
phenomenon rarely occurs for classical reaction-diffusion equations.

As illustrations, we apply the above conclusions to diffusive competition and cooperative
models with memory-based self-diffusion and cross-diffusion. Recall that, for the classic compet-
itive and cooperative models, with the aid of the theory of monotone dynamical systems, one can
easily show the global stability of the positive steady state in the weak competition (cooperation)
regime. When memory-based diffusion is considered, we find that, the stability of semi-trivial
equilibria depends on the choice of competition parameters « and §, as well as memory-based
self-diffusion rates D| and Dj,; while the memory-based cross-diffusion rates D1, and D> do
not affect their stabilities. At the positive steady state, we show that either Turing or Hopf bi-
furcation will take place, provided that only one of the four memory-based diffusion rates is not
equal to O (could be D13 or D»1), that is, only one species moves toward the gradient of density
of the other species. This implies that the factors (diffusion rate or average memory period) of
memory-based diffusion will drive these models to generate spatially inhomogeneous pattern,
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or spatially inhomogeneous time-periodic pattern. In addition, for the Hopf bifurcation analysis,
we employ the algorithm for computing first Lyapunov coefficient for neutral equations in [37]
to derive the explicit formula of first Lyapunov coefficients for the competition and cooperative
models with memory-based diffusion. This makes Hopf bifurcation analysis more complete than
our previous work on one-dimensional population model in [29], where the computation of first
Lyapunov coefficient is not accomplished.

Mathematical models on competition between two species have long been studied, such as
the classic Lotka-Volterra competition model (LV model) [4,16], the LV model with spatial het-
erogeneity [7,11-13,17,18,21], the LV model in the advective environment [1,25,41,42], the LV
model with cross-diffusion and self-diffusion effect [23,24,26,33] and the LV model with nonlo-
cal effect [27,31]. Among all these references, it appears that time-periodic pattern rarely occurs
for competition models. Here we show that for the LV competition model with a memory-based
cross-diffusion, increasing the average memory period T will destabilize the constant coexistence
state and generate spatially inhomogeneous time-periodic solutions via Hopf bifurcations. This
means, if the species u is an aggressive competitor who tracks it opponent v by moving upward
its past gradient, then the outcome of competition between two species can be a coexistence with
time-periodic oscillations.

It is remarked that the memory-based cross-diffusion term, such as D1,V - (uVv;), can be
viewed as the chemotactic movement driven by the past gradient of v. For the classic chemotac-
tic models (i.e., T = 0), there are a tremendous amount of studies, see survey articles [2,14,15]
and references therein. Most of these works focused on the global existence or blow-up of solu-
tions, and the global stability of the constant steady state, even though various spatial-temporal
patterns were also observed. However, the time-periodic patterns were less investigated with few
exceptions, such as [20] where the occurrence of Hopf bifurcations was proved for a Keller-Segel
model with both attraction and repulsion effect of chemical, and [32], where Hopf bifurcation can
induce time-periodic patterns in a memory-based diffusion model with spatial-temporal memory
effect. Numerical simulations also show time-periodic patterns existing in basic Keller-Segel
chemotactic models [8,28]. Our study here indicates that the time-periodic patterns are very
likely to take place in models with memory-based cross-diffusion, which suggests this may also
be the case if the time delay is taken into account for chemotaxis models.

This paper is organized as follows. In Section 2, the global existence of solution for (1.4)
is proved, and the characteristic equation associated with steady states is analyzed, which turns
to be closely related to a transcendental equation associated with a difference equation. In Sec-
tions 3 and 4, we apply the results in Section 2 to diffusive competition and cooperative models
with memory-based cross-diffusion and self-diffusion, respectively. The main conclusions are
summarized in Section 5, and in the Appendix, we compute the normal forms of the Hopf bifur-
cations for (1.4). Throughout the paper, N is the set of all positive integers, No = N U {0} is the
set of all non-negative integers, and Z is the set of all integers.

2. Stability and bifurcation

In this section, we first prove the well-posedness of (1.4), and then study its local dynamics
near steady states. Throughout this paper, we assume

HO0) f(u,v) =ufi(u,v) and g(u, v) = vgi(u,v) for some fi, g € CL(R1), and there exist
M > 0 such that f;(u,v) <M and g1 (u,v) <M forall u,v e R* :=[0, 00).
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Theorem 2.1. Suppose (HO) holds. Then (1.4) has a unique positive classical solution that exists
for t € (0, 00) if the initial values satisfy (1.5).

Proof. For 0 <t < t, rewrite the equations in (1.4) as

ou
i DiAu+ (D11Vur + D12Vue) - Vu 4+ (D11 Aur + DipAvo)u + f(u, v),

ov
vl Dy Av + (D21 Vur + D V) - Vo + (D21 Aur + Dopp Ave)v + g(u, v).

@2.1)

By letting f: (D11Au; + DipAv)u + f(u,v) and g = (D21 Auy + DanAvy)v + g(u, v) and
noting (1.5) and (HO0), we can apply Theorem 4.2 in [39] to conclude that (2.1) possesses a unique
classical solution for ¢ € (0, T') with T > 0. Moreover since f (u, v) < Mu and g(u, v) < Mv for
all u, v > 0 in (HO), the solution can be extended to 7 € [0, t] and u, v € C2T5:1+8/2(Q x [0, 7]).
From f(u,v) = ufi(u,v) and the comparison principle for parabolic equations, we have u >0
for ¢ € [0, ] from the first equation of (2.1), and u > 0 for ¢ € [0, 7] from the strong maximum
principle. Similarly we have v > 0 for ¢ € [0, t]. Repeating the above proof for 7 € [7,27] and
further for any [kt, (k + 1)7] with k > 2, we obtain the global existence of a unique classic
solution for (1.4) if the initial values satisfy (1.5), and the solution (u, v) is positive fort > 0. O

Now, assume that (1.4) admits a constant steady state (u#, v) which is locally asymptotically
stable with respect to the kinetic system u; = f(u, v), v; = g(u, v). That is,

H1) f(a,v)=g@,v)=0, f, + gy <0and f,8, — fugu > 0 at (it, v), where
of _ _ dg _ _ dg _ _
fu= @D, fv=£(u,v), G= @D, gm0

We consider the stability of (i, v) with respect to the reaction-diffusion system with memory-
induced movement (1.4). The linearization of (1.4) at (i, v) is given by

B _ _

== Di8p+ DuiiAg: + DiiiAY: + fup + filr. x€Q 10,

d _ _

a—if =Dy AY + D1 0A¢r + DnUAYr + gup + &Y,  x €K, 1> 0, 22
d 0

—(pzo’ —wZO’ XEBQ,I>O.

on on

Let 0=po < pu1 <pup <---<pu, <---— 0o be the sequence of eigenvalues of the linear
eigenvalue problem

Ap+up=0, xeg,

0 2.3
—¢ :0, x € 092. ( )
an

D 0 Dy Dii
B =" By = P Duin) g gy S
0 D Dyiv Do gu &
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and
I, (A) = A 4 iy By + e " Ba(it, ) — B3 (i, ).
The characteristic equations of (2.2) are the following sequence of transcendental equations
det(IT, (1)) =0, n e Ny,
or equivalently,
E(,t,0) =2+ aph+ by + (cak +dp)e " +hye 7 =0, neN, (2.4)

where the coefficients, depending on n, are given by

an:(Dl+D2)Mn_fu 8v, n—bM%_(Dlgv+D2fu)Mn+fugv_fvgu7 2.5)
dy = du; + (D21 fo + Di2guil — D11guit — Dop fu)fdn, Cn = Clin, hy=hp;,
with
b=D1Dy, ¢c=Diu+ Dpv, d=DyDyju+ D1Dpnv, h=(D11Dxn— Di2Dy)uv. (2.6)

The spectral set of (2.2) is
on(t1)={AeC:En,t,1) = o(r) = Uan(t) n € N. 2.7)

The constant steady state (i, v) is linearly stable if 0 (t) C C™ :={a +if : @ < 0}, and it is
unstable if there exists n € Ng such that 6,,(t) NC+ #£ .

From the assumption (H1), the only two elements in oo(7) have strictly negative real parts.
But unlike the classic diffusive model (i.e. without memory-induced diffusion), the real parts
of elements in o, (t) will not always be negative for n > 1 large enough. This suggests that
the memory-based diffusion might induce new dynamics of (1.4), even if the dynamics of the
system without memory-based diffusion are relatively simple (such as the classic Lotka-Volterra
competition model). To verify this, we first study the distribution of the roots of E(n, 7,A) =
for large n, which is closely related to the roots of a limiting equation

Eo(t,2) :=be"" +d + he " =0. (2.8)
In the following we discuss the roots of (2.8) in terms of d, h € R and b, t > 0. Define
000(1) ={A € C : Exo(t,A) =0}.
Related results on that regard have also been considered in [5,19,34,40].
Proposition 2.2. Assume that d > 0.
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(1) When h > 0, ifd < 2+/hb, then
2k
ooo(r)z{p*:l:iv*+i—ne(C:k€Z}, (2.9)
T

where

o* e In(|h|/b) S arccos(—d /(2v/hb))

2.10
2T T ( )

if d > 2+/hb, then

[k + D

2%k +1
i@e@:keZ}U{m%—zieC:keZ}, @2.11)
T

00o(T) = {pl +

where py < p* < py satisfying be”'t + he Pt =d fori =1, 2.
(2) When h <0, then

2% 2%+ 1
aoo(r)z{p3+iTne(C:keZ}U{p4+ig66:k62}, (2.12)

where p3 < p* < p4. Moreover, if b+d+h >0 (b+d+h <0), then p3 <0 (p3 >0); if
b—d+h>0(b—-d+h<0) then ps <0 (pg > 0).

Proof. Suppose that p £ iv are the roots of (2.8), then

(be* +he P")cosvt +d =0,

(2.13)
(bet — he P")sinvt =0.

(1) Suppose that & > 0. Case I: d < 2+/hb. If sinvt # 0, it then follows from the second

equation of (2.13) that p = p*. Therefore, cosvt = #‘Z_h € (—1, 0], which has infinitely many
solutions of v. If sinvt =0, then cosvt =1 or cosvt = —1. When cos vt = 1, the first equation
of (2.13) turns into

bet +he P +d =0, (2.14)
which has no solution for p since b > 0, d > 0 and & > 0. When cosvt = —1, we have

—bePT —he Pt +d=0. (2.15)

But for any p € R, beP™ + he™PT > 2+/bh > d, therefore (2.15) has no solution for p. Accord-
ingly, the roots of (2.8) are given by p* 4+ iv with cosvt = #217;' Case II: d =2+/hb. Along the

same lines as above, we can conclude that p* + i w, k € Z are precisely all the roots for

.8). Case III: d > . In this case, if sinvt , then p = p™ again and cosvt = ——— has
(2.8). Case III: d > 2+/hb. In thi if si 0, th * agai d ZJ‘Z_hh

no solution for v. If sinvt = 0 and cos vt = —1, it then follows from d > 2+/hb, (2.15) always
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has two real roots o1, py such that p; < p* < p1, which correspond to two sequences of complex

roots py + i LT + DT and p, +t(2k+1)” keZ.
(2) Suppose that h < 0. When sinvt # 0, from the second equation of (2.13), we have be’" =
he™PT, which has no solution for p. When sinvt = 0, we have cosvt =1 or cosvt = —1.

Denote F(p) = be”® + he P* +d. Then F(—00) = —00, F(+00) = +00 and F'(p) > 0. If
cos vt = 1, it then follows that (2.14) always has a unique root for p, denoted by p3. Furthermore,
p3<0forb+d+h=>0,and p3 >0forb+d+h <0.From F(p*) =d > 0, we know that
p3 < p*. Similarly, if cosvt = —1, (2.15) has a unique negative (or positive) root ps > p* for
b—d+h>0(rb—-—d+h<0). O

Corollary 2.3. Assume that d > 0. Then,

(1) When h > b, (2.8) has infinitely many complex roots with positive real parts;
(2) When O <h <b, ifb—d + h <0, then all the roots of (2.8) are in form (2.11) with py <
p* <0< p1;ifb—d+h >0, then all the roots of (2.8) have strictly negative real parts.

Proof. (1) If 4 > b, then p* > 0. It then follows from (1) of Proposition 2.2 that (2.8) always has
a sequence of complex roots with positive real parts, no matter whether d < 2+/hb or d > 2+/hb.

QIfh>0andb—-—d+h<0,thend >b+h> 2\/_ By (1) of Proposmon 2.2 again,
we know (2. 8) has two sequence of complex roots p; + i ~“———— k'H)" and oo +1i ktl)” keZ,
with py < p* < p1. Since h < b, we have p < p* < 0. Notethatb d + h < 0 if and only if
F(0) < 2d. This implies p; > 0 as long as b —d + h < 0. On the other hand, if b —d + h > 0,
then the real parts of the roots for (2.8) are either p* or pg, pp such that p; < p* < p1, depending
on the value of d. Furthermore py <Oasb+h >d. O

By similar arguments as in Proposition 2.2 and Corollary 2.3, we have results on the roots of
(2.8) when d < 0 as well.

Corollary 2.4. Assume that d < 0. Then,

(1) When h > b, then (2.8) has infinitely many complex roots with positive real parts;
(2) WhenO<h <b,ifb+d+h <0, then

2% 2%
am(r)z{p5+iTneC:keZ}U{p6+iTne(C:keZ}, (2.16)

with pe < p* <0 < ps; if b+d + h > 0, then all the roots of (2.8) have strictly negative
real parts.

(3) When h < 0, then all the roots of (2.8) are in form (2.12). Moreover, if b+d + h > 0
(b+d+h<0), then p3 <0 (p3>0); ifb—d+h>0(b—-d+h<0) then pg <0
(p4>0).

From Corollaries 2.3 and 2.4, we have a complete classification of the set o (7) for fixed
T > 0 with d,h € R and b > 0, which completely determine the stability with to the limiting
equation (2.8).
Proposition 2.5. Assume that t > 0, and d, h € R, b > 0 satisfy
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d®-4hb=0 | "

b
\ W
d
2b

H2) P

Fig. 1. The regions of (h, d), satisfying (H2) and (H3), for fixed b > 0.

(H2) h>b,orh<bandb+h—|d| <0,

then (2.8) has infinitely many complex roots with positive real parts; on the other hand, when

d,h eR, b > 0 satisfy
H3) h<bandb+h —|d| > 0,
then all the roots of (2.8) have strictly negative real parts.

The regions of (&, d) defined by (H2) and (H3) are shown in Fig. 1. Next we use the informa-
tion of the limiting spectral set 05 (7) to determine the stability of (i, v) with respect to (2.4).
From (2.9), (2.11), (2.12) and (2.16), the set 0o, (t) must lic on one or two vertical lines in the
complex plane. In order to study the relations of o (7) and o, (t) for large n, we prove the
following perturbation result based on the implicit function theorem.

Lemma 2.6. Consider a function F : (—38,8) x C — C defined by

Fle, ) =222+ (fie + LA +b+ (fze + f1€2) + (fse + foer+d)e T +he 2T, (2.17)

where 8,7 > 0, b,d, h € R satisfying d*> — 4hb #0, and f; € R for i =1,2,---, 6. Suppose
that Ly € C satisfies F(0, Ag) = 0. Then, there exists §1 € (0,8) and an analytic function A :
(=81, 681) = C such that F (e, A(€)) = 0 and 1(0) = Ay, and

Mo fi+ f3) + (hofo+ fs)e ot

Ae)=A
(©=ho+e Te= 207 (d + 2he=H0T)

+o(e)

is the unique solution of F (€, L) =0 near . = ).

Proof. Suppose that A is a root of F(0, 1g) = 0. Then b + de 07 + he™ 20" =0, and
aF
o5 0. 20) = —dte T —2hTe T = 1 (2b + de 7).

Assume that 2b + de 7 = (. Then x = ¢~ *07 satisfies both b +dx + hx% =0 and 2b +dx = 0,
which only occurs when d* — 4hb = 0. Hence when d* — 4hb # 0, we have 2b 4+ de ™ # 0 and
%—J; (0, ) # 0. Then the conclusion is a direct consequence of the implicit function theorem. O
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We have the following relation between a root of E (7, A) =0 and roots of E(n, t,A,) =0
with large n.

Corollary 2.7. Suppose that T > 0, b, d, h € R satisfying d*> — 4hb # 0, and Lo is a root of (2.8),
i.e., Exo(t, o) =0. Then there exist N € N and {\,},>n C C such that

En,t,h) =0, lim A, = Ao.
n—0o0

Proof. Define E(n, T,A)=E(n,r, )»)//L%. Then, E(n, 7,A) =0 if and only if ]—'(u;l, A) =0,
where F is defined in (2.17) with

fi=Di1+Dy, for=—fu—8, [=—Digv—Dofu, fa=fugv— fo&u:
f5 = D21 fuv + Di2guit — Di1gyit — Do fu0, fe=c.

Since F(0, A) = Exo (7, ), the result follows from Lemma 2.6 as lim /,L;l =0. O
n—oQ

From Corollary 2.7, the elements with positive real parts in o, (t) for large n on the complex
plane are completely determined by the roots for (2.8). Combining Proposition 2.5 and Corol-
lary 2.7, we have the following instability result for (i, v) with respect to (1.4).

Theorem 2.8. Assume that (H1) and (H2) are satisfied, and in addition d? — 4hb # 0, then the
constant steady state (u, v) is unstable with respect to (1.4) for any t > 0.

Proof. It follows from Proposition 2.5 that when (H1) and (H2) are satisfied, (2.8) has a com-
plex root Ay with strictly positive real parts. Thus, by Corollary 2.7, we can conclude that o (7)
possesses an infinite number of complex elements with strictly positive real parts, which implies
the instability of (z,v). O

We remark that the instability result in Theorem 2.8 requires a non-degeneracy condition
d? — 4hb # 0 which holds generically. Fig. | shows the curve d?> — 4hb = 0 on the (h, d)-plane.

On the other hand, when (H3) holds, Proposition 2.5 implies that all roots of the limiting
equation (2.8) have negative real parts, and hence from Corollary 2.7 all the elements in o, (7)
have strictly negative real parts for n > N. So (u, v) could be stable in the parameter region de-
fined by (H3). In what follows, we examine how the stability of (i, v) changes as the memory
delay t varies under the condition (H3), especially when (2.4) have roots with purely imag-
inary part. Suppose that +iw, w > 0, are a pair of purely imaginary roots of (2.4) for some
nef{l,2,---,N}. Then

b, — »* + d, coswt + c,wsinwt + h,, cos2wt =0,
(2.18)
a,w — dy sinwt + c,wcoswt — hy, sin2wt =0,

which implies
(b, — w® + hy)coswt — aywsinwt +d, =0,
a,wcoswt + (b, — w? — hy)sinwt + ¢, =0.
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Therefore,
dy (b, — wZ —hy) + ancnw2
(by — 0?)? — h% + a2w?

cho (b, — w?* + hy) — apd,w
(by — 0*)? — h} + a2w?

COSwT = —

3

(2.19)

sinwt = —

From (2.19), we know that w satisfies the following equation

Fu(@) i=[(by — 0®)? — h2 + a2 — [dyp(by — @ — hy) + ancn*]?
— [epw(bp — @* + hp) — apdyo)? (2.20)
=%+ p,0® + gt + ryw* 45, =0,

where

pn=2a% —4b, — 2,

Gn = 6b> —2h% —4a’b, — d? +a} — a>c + 2byct + 2¢2hy,

rp = 2byd? — a2d> — 4b3 +2a2b? — b2c — 2b,c2h, (2:21)
+ daycndnhy — 2d2hy + 4byh2 — 2a’h: — c2ha,

sn = (bp = hn)*[(bn + ha)* = d31,

2

or equivalently, z = w* is a positive root of

Gn(2) =2 + puz’ + qnz’ + raz 45, =0. (2.22)

We remark that (2.20) derived here is the same as the one in [5], except that the coefficients now
depend on n. We present it in a different way in order to deduce another transversality condition,
which seems to be easier to check in geometric way, given by Theorem 2.9 below. If (2.20) has

a positive root, say w,, for some n, then there exists a sequence of r,{ ,j=0,1,---, given by
o1 by — w? + hy) — and,
= — |:arctan (ann( u C;)" +hn) = an n621)n> + jJT] , (2.23)
wp dy (by — wy — hyp) + anpCpwy,

such that (2.4) has a purely imaginary root when 7 = 7,/

Proposition 2.9. Let A(1) = a(t) + iw(t) be a root of (2.4) for T € (v — .51 +¢) and € > 0,
such that a(t;)) = 0 and w (1)) = wy. Then,

Signe!' (1)) = Sign( Gy (2)/ Hy ()]l .02 (2.24)
where G, (2) is defined in (2.22) and
H,(2) = 2% + (a? — 2by)z + b2 — h2. (2.25)
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Proof. By the Implicit Function Theorem, we have

dt 20+ ap + cne T — t(cah + dy)e T — 2Thye T

dx —A(cph +dy)e T — 20 h,e—2t
@r+ap)e’™ + ¢, T

T Aokt dp) + 20 et A

From (2.18) and (2.19), we get

. i . dt
Signa!/(t;]) = Sign (Red_k> |)\:’.wn’rzr,-
= Sign[(a, cos wt — 2w sinwt + ¢,) 2wh, sinwt — anz)

+ (a, sinwt + 2w cos wt)(wd,, + 2wh,, cos a)t)]|w=w eyl

= Sign[2a,h,o sin2wt + 4hna)2 cos2wt + w2(2dn — a,Cy) COSWT

— c,%a)2 + a)(2c,,a)2 + 2h, ¢, + aydy) sin a)t]|w:wn eyl

= Sign[(Za,% —4b, + 4o? — cﬁ)a)2 + a)z(ancn —2d,) coswt

2 : )
w2cyw” — 2hy, ¢, + ayd,) sinwt] |w=wn’r=t’{

a)2(4a)6 + 3p,,a)4 + 2qnw2 +ry) |
ot + (a2 —2b)w? + b2 —hZ T

= Slgn[G; (Z)/Hn (Z)] |z=w% ’

= Sign

where H,(z) is given by (2.25). O

From Proposition 2.9, we arrive at the following result on Hopf bifurcations for (1.4) when
the time delay t in the memory-based diffusion changes.

Theorem 2.10. Assume that _(Hl) and (H3) hold. If there exists 1 <n < N such that (2.20) admi(s
a positive root w, > 0, o' (1)) # 0 and c1(0) # 0, then (1.4) undergoes a Hopf bifurcation at !,
j=0,1,---, which generates a spatially inhomogeneous periodic solution near the bifurcation
point.

We remark that the procedure for computing the first Lyapunov coefficient c;(0) can follow
from the one for partial neutral functional differential equations [37]. However, it is rather com-
plicated when all of the memory-based diffusions in (1.4) are considered, and lots of symbolic
manipulations are required which leads to a long expression of ¢1(0). Hence the general case
calculation is omitted here, but it will be done for examples in next section under some particular
choices of memory-based diffusions.

It is expected from Theorem 2.10 that the bifurcating spatially inhomogeneous periodic so-
lution is stable at T := min{r,?, 1 <n < N}, as long as (u, v) is locally asymptotically stable for
T = 0. In this case, more assumptions are required to ensure the local stability of (i, v) when
T =0, as suggested in [38]. For T =0, (2.4) becomes
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A2+ (@p + e + (by +dy + hy) = 0. (2.26)

Assume
(H4) D1+ Dy +c=0and Dy fu0 + D128yt — D118yt — D2 fyv — D1gy — D fiy = 0.

It then follows from (H1), (H3) and (H4) that a,, + ¢, >0and b, +d,, + h,, >0 foralln € N,
and all the roots of (2.26) have negative real parts for any n. This, together with Theorem 2.10
implies the following conclusion.

Corollary 2.11. Assume that (H1), (H3) and (H4) hold.

(1) If (2.20) has no positive root for any n € N, then (u, v) is linearly stable for all T > 0;

(2) If there exists 1 <n < N such that (2.20) admits a positive root w, > 0, then (i, V) is
linearly stable for t € [0, T); Furthermore, if o' (T) # 0 and c1(0) # 0, then there exists a
periodic solution for T > T (t < T resp.), bifurcated from (u, v) through a Hopf bifurcation,
provided that Sign(a’(7)/c1(0)) < 0 (Sign(a’(7)/c1(0)) > 0 resp.). In addition, if ¢1(0) <0
(c1(0) > 0 resp.), then the bifurcating periodic solution is stable (unstable resp.).

3. Lotka-Volterra competition model

In this section, we apply results in Section 2 to the following diffusive Lotka-Volterra compe-
tition model with memory-based self-diffusion and cross-diffusion:

0

a—': =DiAu+ D11V -uVu,)+ DoV - (uVvo,) +u(l —u —av), x €0, t>0,

d

a—j =DyAv+ D71V - (vVu,)+ DnV - (wVy)+yv(l —v—Bu), xed, t>0,

ou av

—:0, —:0, xE§Q,t>0,

on on

u(x, 1) =¢1(x,1), v(x,1)=e(x,1), xeQ, —1<t<0.

(3.D
Here «, B, y > 0. It is easy to see that (HO0) is satisfied, then from Theorem 2.1, a unique positive
classical solution of (3.1) exists globally.
The kinetic system associated with (3.1) is

w=u(l—u—av),

vV =yv(l —v — Bu). (3:2)
It is well-known that (3.2) has three equilibria Eg = (0,0), E1 = (1,0) and E; = (0, 1), and Ey
is always unstable. The stabilities of £ and E, are determined by the competition coefficients o
and B, respectively, that is, E is stable (unstable) when 8 > 1 (8 < 1), and Ej is stable (unstable)
when « > 1 (o < 1). Moreover, under the weak competition condition («, 8 < 1), it is known
that (3.2) has a coexistence equilibrium E* = (u*, v*), which is globally asymptotically stable.

<1 and v* =
— —
fori, j =1,2),(3.1) becomes the classical reaction-diffusion Lotka-Volterra competition model,

Here, u* = 1 < 1. Without the memory-based diffusion (D;; =0
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and it is well known [3] that the asymptotic dynamical behavior of (3.1) is almost the same as the
one of (3.2). This implies the diffusion terms have essentially no other effects than smoothing
and averaging.

Now, we investigate the effect of memory-based diffusion on the dynamics of (3.1). Suppose
that (u, v) is a constant steady state for (3.1). Then,

fu=1=2u—av, f,=—-au, g,=-—-ypv, gy=y({ —20—Bu). (3.3)
The stability of boundary steady states Eg, E1 and E; can be easily obtained.
Proposition 3.1. Assume that D1, D, >0, D;j e R (i, j =1,2), and a, B,y > 0. Then for (3.1),

(1) Eg=(0,0) is unstable;
(2) If B > 1 and |D11| < Dy, then E1 = (1, 0) is locally asymptotically stable;
(3) If o > 1 and |D23| < D», then Ey = (0, 1) is locally asymptotically stable.

Proof. Using (3.3), it is easy to check that (2.4) with u = v =0, n = 0 has two positive eigen-
values 1 and r, which implies E( is always unstable. At E1, (2.4) reduces to

[+ D1ty + Ditptne ™ + 1k + Dapy — y(1 — B)1 =0, n € Ny.

Consider

A+ Dipty + Dijpne™ +1=0 (3.4)

It follows from [30, Corollary 3.9] that all the roots of (3.4) have strictly negative real parts when
|D11] < Djp. On the other hand, the root of A + Do, —y(1—B) =0is A =—Dou,, + v (1 — ),
which is negative for all n € Ny if 8 > 1. This proves the local stability of E; in (2). The stability
of E can be shown by a similar argument. O

Remark 3.2. If |Dy| > Dy, it is also known from [30, Corollary 3.9] that there are infinitely
many roots of (3.4) concentrated on the vertical line {z € C : Re(z) =In(|D11|/ D)} in the com-
plex plane, and hence E; is always unstable. This, together with Proposition 3.1, indicates that
the linear stability of boundary steady state E; (or E;) depends not only on the competition
coefficient B (or «), but also on the memory-based self-diffusion rate D11 (or Djy) of itself,
and the memory-based cross-diffusion rates D1y and Dj; do not affect the stabilities of E
and E;.

For 0 < «, B < 1, we consider the stability of the constant coexistence state E*. At E*, f, +
gv=—W"+yv*) <0and f,g, — fogu = yu*v*(1 —apB) > 0, so (H1) is satisfied and op(t) C
C~. For 0,(7) for n € N, we notice that the coefficients in (2.5) become

an = (D1 + D) py +u™ +yv* >0,
by =bu? + (Dayu* + Dyyv*)u, + y(1 — af)u*v* > 0, (3.5)
dy =dp> + (y D1y + Dy — aDyy — yBD12)u* v 1y
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In general the distribution of the elements in ¢, (7) is rather complicated. In the remaining part,
we shall study (3.1) for the following two special cases:

(D1) Dy = D31 = Dy =0and Dy #0.
(D2) Dy =Dy =D =0and D> #0.

The effect of memory-based self-diffusion rate D{; and memory-based cross-diffusion rate
D1, are shown in the following results.

Theorem 3.3. Assume that 0 < «, 8 < 1 and (D1) holds. Then the constant coexistence steady
state (u*, v*) is linearly stable provided that |D11|u* < Dy, and it is unstable if | Dy |u* > D.

Proof. For Djy = D>; = Dy =0, we have
dp = D2D11M*M5 +yDyu*v*u,, cp=Dnutpn,, h,=0,
and in (2.21), we have

pn=2(a2 —2b,) — 2 >0, qn =(a? — 2by) (a2 —2b, — c2) + (2b% — d2),
ra = (a2 —2b,)(2b% — d>) — b3c? su =bZ(b2 —d2).

n-n’

If |Di1|u* < Dy, then (H4) holds and we further have

by+dy >0, by—dy, >0, a>—2b, —c2>0,

and (H3) is also satisfied. This, together with a,% — 2b, > 0, implies that
ra = (a2 = 2b,) (b2 — d?) + (a% — 2b,)b? — b2c2 > b2 (a> — 2b, — c2) > 0.

Accordingly G, (z) = 0 has no positive roots for z whenever |D1;|u* < D1, and thus (u*, v*) is
locally asymptotically stable from Corollary 2.11. On the other hand, if |Dq;|u* > D, (H2) is
also satisfied, it follows from Theorem 2.8 that (u*, v*) is unstable in the sense that the associated
characteristic equation (2.4) has infinitely many complex roots with positive real parts. O

If we assume D11 = D12 = D21 = 0 and Dy # 0, then analogous results as Theorem 3.3
on the stability of (u*, v*) hold in terms of Dj;. Under the condition (D2), we have ¢ =d =
h=c,=h,=0and d, = —yBDpu*v*u,. Therefore, h < b and b+ h — |d| > 0, i.e., (H3) is
satisfied. In addition, (2.4) reduces to

A2+ aph + by + dye M =0, (3.6)
where a,, b, are given by (3.5). First, we show that (1™, v*) loses its stability if D15 is positive
and Dj; increases, and steady state bifurcations occur when Dj; increases. In this case, (3.1)

possesses non-constant steady state solutions.
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Theorem 3.4. Assume that 0 < «, 8 < 1, and (D2) holds. Then (3.1) undergoes a mode-n steady
state bifurcation near (u*,v*) at D1, = DY, > 0 for n € N given that , is a simple eigenvalue
of (2.3), where

b 2 Dou* D * 1— * o0k
Dl = My + (Dau™ + Diyv)pn +y (1 —af)u™v  neN. 3.7)
yBurv* y

Precisely, near (DY,, u*,v*), (3.1) has a line of trivial steady state solutions 'y = {(D12, u™, v*) :

D1y > 0} and a family of nontrivial solutions bifurcating from T'g at D12 = D{,:

L= {(D;’z(s), u(s,x), vn(S,x)) =d<s< 8},

where § >0, A1, A2 € R, up(s,x) =u* + A15¢n(x) + 581 (5, X), Va (s, X) = v* + A2sgn(x) +
sgan (s, x) and Di’z(s), gin(s, ) (i =1, 2) are smooth functions defined for s € (—38, §) such that
D1,(0) = DY,, and gin(0, -) = 0; and there are no other steady state solutions of (3.1) than the

ones on I'g and T, near (D12, u, v) = (D}, u*, v*).

Proof. Recall that b, is independent of Dy>. For 1 <n <N, b, +d, =0 when D, = Di’2,
which implies A = 0 is a root of (3.6). Suppose that A(D13) is the root of (3.6) such that A(D{,) =
0. Then

d)t(DIZ) Vﬂu*v*ﬂn

= > 0.
dDy1y |Dp=D}, ay+ryBDlu*v*u,

Then one can apply the bifurcation from simple eigenvalue theorem [6, Theorem 1.7] to conclude
that spatially nonhomogeneous steady state solutions of (3.1) bifurcate from (u*, v*) at D1 =
DY,. Details of bifurcation proof are omitted here, see for example, the proof of Theorem 3 in
[32]. O

The generation of spatial patterns in Theorem 3.4 with large positive cross-diffusion is known,
see for example [26]. Next we show that under the condition (D2), the constant coexistence
steady state (u*, v*) could lose its stability for negative D1, through Hopf bifurcations, when the
time delay r increases.

Lemma 3.5. Assume that 0 < «, 8 < 1, and (D2) holds. If D13 < 0 such that b, < d,, for some
n > 1, then (3.6) with such n has a pair of purely imaginary roots xiw, when

1 d, —-b
— [arccos nCn 5 n)2 +2j7T] , alb, —d? >0,
- Wy (bn—zz) +a;zzn j=0,1,---. (3.8)
. apdpWp . 2 2
— | arcsin +2jm |, azb,—d? <0,
wn[ (by —zn)? +a2zn | 7 ] e

Furthermore Signo/(r,{) > 0, where ot(r,{) is defined in Theorem 2.9.
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Proof. Note that

pn=2(a —2by), qn=(a2 —2by)*+ Q2b% —dD),
o= (a2 —2b,)2b% —d>), s, =b[b> —d?].

Then G, (z) defined in (2.22) can be expressed as
Gu(2) = fi2) + by (b, — ),
with
f1(2) = zlz + (a2 = 2b)]1[2* + (@2 — 2b,)z 4 (2b2 — d2)].
It can be verified that
a,zl —4b, =[(D1 — D) juy, + (u™ — yv*)]2 +4dyaBu*v* > 0.

If b, < dy, for some n > 1, then (a2 — 2b,)?> — (2b2 —d?) > 0 for such n. Thus fi(z) is increasing
for z > 0, and consequently G, (z) = 0 has a unique positive root, denoted by z,. Note that

G (bn) = aybu(ayby —dy).

It then follows that z, < by (z, > by, resp.) if and only if a2b, — d? > 0 (a2b, — d? < 0 resp.).
Let w, = /z,. From (2.19), we have

dy(zn — by) andywy

, Sinw,r = > 0.
by — Zn)2 + ayzlzn

coSw,r =
(b, — Zn)2 + G%Zn

Furthermore, if a,%bn — d,% >0 (a,%b,, — d,% < 0 resp.), then cos w,r < 0 (cos w,r > 0 resp.). This

gives the critical values r;, given by (3.8), for (3.6) having a pair of purely imaginary roots.
In order to check the transversality condition, we first compute

G/ (zn) =42 +6(a? — 2b,)z> +2[(a> — 2b,)? + 2b2 — d?)1zn + (a? — 2b,)(2b% — d?)
= [z, + (ay — 2by)zn + (2b; — d)[42, + 2(a; — 2b,)]
—202b% —d>)z, — (a2 — 2b,)(2b% — d>).

If b, < dy < ~/2by, then G, (z,) > 0. If dy, > ~/2b,, it follows from z2 + (a2 — 2b,)z, + (2b2 —
d?) > 0 for z, > 0 that

G, (zn) > 22, + 3(ay — 2by)zn + (ay —2b,)* > 0.
Thus, Signa’ (r,{ ) > 0 follows directly from the fact that H,(z) > 0 forany z > 0. O

Under (D2), it is straightforward that (H4) is also satisfied for D> < 0. Therefore, we can
arrive at the following Hopf bifurcation theorem for (3.1) from Corollary 2.11 and Lemma 3.5.
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Fig. 2. Left: The roots of (3.6) with n =1, 2, 3,4, 5 and parameters given by (3.9), in Example 3.8. The figure is plotted
with the aid of a Matlab package DDE-BIFTOOL [9]. Right: A solution of (3.1) tends to a spatially inhomogeneous

steady state. Here parameters are as in (3.9), D12 = 8.5 > 0 and r = 1. (For interpretation of the colors in the figures, the
reader is referred to the web version of this article.)
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Theorem 3.6. Assume that 0 < «, B < 1, and (D2) holds. Suppose that D1> < 0 is fixed such
that b, < d, for some 1 <n < N. Then, (u*,v*) is linearly stable for r € [0,Fr), where
r= min{r,?, 1 <n <N} Ifc1(0) <0 (c1(0) > 0 resp.), then there exists a stable (unstable
resp.) spatially inhomogeneous periodic solution of (3.1) for r > F (r <7 resp.), bifurcated from
(u*, v*) through Hopf bifurcation, where r; is given by (3.8) and the first Lyapunov coefficient
¢1(0) at the Hopf bifurcation point is given in the Appendix.

Remark 3.7.

(1) In the condition (D2), one can also substitute Dy; =0 and D> % 0by D1 #0and D, =0,

and similar steady state bifurcations for Dy; > 0 and Hopf bifurcations for Dy; < 0 and
T > 0 can be obtained.

(2) Note that the necessary condition b,, < d, for instability and Hopf bifurcations can be ex-
panded as

0> by — dy = D1 Daju + (Dau* + Diyv* + By Diau* v, + y (1 — af)u*v*.

Hence it is necessary that D1y < —(Dou™ + D1y v*)/(Byu*v*) so that the result of Theo-
rem 3.6 holds.

Example 3.8. Suppose Dj| = D21 = Dy =0, and let

Q=(0,1), D=1, D;=0.1, a=p=05, y =1. (3.9)

Then, ut, = (n)*. If Dy > 0, it then follows from (3.7) that D}, ~ 7.9833, D, ~ 21.1033, - - -.
Therefore, DY, = 7.9833. Set Dj» = 8.5 and r = 1. From Theorem 3.4, we can conclude that
there is a positive root of (3.6) for n = 1, and all the roots of (3.6) with n > 2 have strictly
negative real parts, see Fig. 2 (Left) for numerical illustrations. Moreover, a stable spatially in-
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Fig. 3. Periodic solutions of (3.1) for r =2.5 > r? (left) and r = 10 (right). Here parameters are as in (3.9), and Dy =
—12.

homogeneous steady state could be observed, see Fig. 2 (Right). Note that D> > 0 means that
the species u stays away from locations with high density of its competitor v. Therefore the
two species do not distribute uniformly in the habitat, and the two species u and v achieve a
segregated steady state.

On the other hand if we choose Djp = —12, then only when n =1, G,(z) = 0 has a
unique root z1 & 3.3497. This implies w; &~ 1.8302. In addition, it can be also verified that
a%bl — d12 > 0. Therefore, by (2.23), we have r = r? ~ 1.1638. From Lemma 3.5, we can con-
clude that a pair of conjugate complex roots of (2.4) cross the imaginary axis, as r passes through
r?. Furthermore, it can be computed (using the method in the Appendix) that Signa’ (r?) > 0 and
c1(0) ~ —1.6488. It then follows from Theorem 3.6 that there exists a stable spatially inhomo-
geneous time-periodic solution for r > 7 = r?, see Fig. 3. For D1y < 0, the species u moves
up along the gradient of its competitor v, and the memory-based diffusion plays a key role on
the oscillatory dynamics. As seen in Fig. 3, spatiotemporal oscillations could take place, as the
memory delay crosses a critical value. In addition, the period also increases when r becomes
large.

From Theorems 3.3, 3.4 and 3.6, we can see both the memory-induced self-diffusion and
the memory-induced cross-diffusion could destabilize the constant steady state (u*, v*) of the
diffusive Lotka-Volterra competition system (3.1) in the weak competition regime, but in a
very different way. With a repulsive memory-induced diffusion cross-diffusion (D7 > 0), the
system reaches a spatially inhomogeneous steady state that the two species coexist in segre-
gated state (Fig. 2). On the other hand, an attractive memory-induced diffusion cross-diffusion
(D12 <0 and t > 0 large) produces a spatially inhomogeneous time-periodic solution (Fig. 3).
These spatial and spatiotemporal patterns are generated through Turing and Hopf bifurcations
respectively. For the memory-induced self-diffusion (D11 # 0), when |Dq1| exceeds a critical
value Dj/u*, infinitely many complex roots will cross the imaginary axis as 7 increases, so that
(u*, v*) becomes unstable, see Fig. 4 (left). However, the dynamics of (3.1) is still unclear in
this situation. In Fig. 4 (right), we numerically found the “checkerboard” pattern for large Dy,
which has already been observed in [30] for a scalar population model with memory-induced
self-diffusion.
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4. Lotka-Volterra cooperative model

In this section, we apply results in Section 2 to the following diffusive Lotka-Volterra cooper-
ative model with memory-based self-diffusion and cross-diffusion:

d

8—1: =DiAu+ D1V -@Vu,)~+ D;pV - uVv,) +u(l —u+ av), x€ed, t>0,

0

8—': — DyAv+ DoV - (Vity) + DV - 0V0,) + yo(l — v+ Bu), x€dQ, >0,

d 0

—Mzo, —UZO, xeBQ,t>0,

on on

u(xat)=¢l(x5t)9 v(xvt)=¢2(xat)7 )CESL _Titio‘

@4.1n
Here, the notations are the same as the ones in (3.1) except «, 8 > 0 are the cooperative coeffi-
cients. The dynamic behavior of (4.1) without self-diffusion and cross-diffusion was considered
in [22]. For (4.1), there always exist three equilibria Eg = (0,0), E; = (1,0) and E; = (0, 1),
+ o N B
and v* = .
1—oap 1 —af
For the boundary steady states, we can prove that they are all unstable for any choice of parame-
ters, since og(r) always consists of y (1 + 8) > 0. For example, at E, the characteristic equation
is

and if @8 < 1, there is a positive steady state E* = (u*, v*) with u* =

[A+ Dijtn + Diijpne™ + 1%+ Doy — y(1+ B)1 =0, n € No.
Obviously, y (1 + B) € op(r), so it is unstable.
For the constant coexistence steady state E*, the conclusion is slightly different from Theo-
rems 3.4 and 3.6. When 1 — a8 > 0, the coefficient d,, of the characteristic equation associated

with E* is given by

dy=dp, + (y D11 + Day + oDy + yBD1)u*v* iy > 0, 42)
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while a,, b, are the same as the ones in (3.5), and ¢, h, are still given by (2.5) (since
they are independent of reaction terms). Furthermore, under the condition (D2), we have
dy, = yBDpu*v* . Therefore, using the similar argument for discussing competition model
in previous section, we can also get the Turing and Hopf bifurcations for (4.1) as follows.

Theorem 4.1. Assume that 1 — o8 > 0, and (D2) holds.

(1) If D12 <0, (4.1) undergoes a mode-n steady state bifurcation near (u*, v*) at D13 = D}, <
0 for n € N, given that , is a simple eigenvalue of (2.3), where

bu2 + (Dyu* + D1y vy + y (1 — ap)u*v*

D, =
12 —yBu*v*uy

4.3)

(2) Suppose D12 > 0 is fixed such that b, < d,, for some n > 1. Then, (u*, v*) is linearly sta-
ble for r € [0,7), where r := min{r,?, 1 <n <N}, and r,,] is given by (3.8) in which d, is
replaced by (4.2). If ¢1(0) < 0 (c1(0) > O resp.), then there exists a stable (unstable resp.)
spatially inhomogeneous periodic solution of (4.1) for r > r (r < resp.). Here, the first
Lyapunov coefficient c1(0) can be also derived, by simply replacing o with —« in all the
formula from (6.1) to (6.17) in the Appendix.

Notice that the conditions for occurrence of Turing and Hopf bifurcations for the cooperative
system (4.1) are opposite to the ones for competition model. That is, for cooperative system,
an attractive memory-based cross-diffusion (D> < 0) generates spatially inhomogeneous steady
states through Turing bifurcations, while a repulsive memory-based cross-diffusion (D1, > 0)
yields spatially inhomogeneous time-periodic solutions through Hopf bifurcations. This is bi-
ologically reasonable since competition and mutualism are opposite biological process, and
therefore the memory-based movement with different directions, with all the other factors un-
changed, should play the same role on their dynamics.

Example 4.2. Suppose the parameters of (4.1) are given in Example 3.8. If D1y < 0, it then
follows from (4.3) that D’l"2 ~ —1.7455. Set Dj = —2 and r = 1. From (1) of Theorem 4.1,
we can conclude that there is a positive root of (3.6) for n = 1, and all the roots of (3.6) with
n > 2 have strictly negative real parts. Moreover, a stable spatially inhomogeneous steady state
could be observed, see Fig. 5. However, the steady state is not segregated for u and v as in
the competition model (3.1). If we choose D1y = 2.5, then only when n =1, G,(z) =0 has a
unique root z; & 7.8189. Again, it can be verified that alzbl — d12 > 0. Therefore, by (2.23), we
have ¥ = r{ ~ 0.7657. In addition, ¢;(0) ~ —0.4166. It then follows from (2) of Theorem 4.1
that a stable spatially inhomogeneous time-periodic solution will be bifurcated from E*, when r

Crosses r?, see Fig. 6.

5. Conclusion

In this paper, we proposed a memory-based diffusive model for two interactive species, by
using a modified Fick’s law involving a direct movement toward the gradient of the density func-
tion at a past time. The stability of constant steady states is extensively studied, by examining the
impact of memory-based self-diffusion and cross-diffusion. For a positive constant steady state, it
is revealed that eigenvalues of the linearized system accumulate to one or two vertical lines in the
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in Example 3.8.

equation, since the “difference structures” are all involved in these two types of equations, which
play a key role on their dynamics. It is expected that such distribution of eigenvalues is also valid
for n-species reaction-diffusion systems with memory-based self-diffusion and cross-diffusion.
The spectral set o (1) of the linearized equation of two-variable reaction-diffusion systems
with memory-based self-diffusion and cross-diffusion is completely determined in a general set-
ting. It is shown that o (7) is the union of o, (7) forn =0, 1,2, --- and each o (7) depends on
the n-th eigenvalue X, of Laplacian operator. For scalar reaction-diffusion model with memory-
based diffusion, it was found that the curve o, (7) is always on the left hand side of complex
plane of o,,_1 (7). But for the two-variable reaction-diffusion systems with memory-based self-
diffusion and cross-diffusion, different o, (t) curves can interweave in some situations. As a
result, a pair of complex eigenvalues in the set o, (t) for some n > 1 may cross the imaginary axis
of complex plane when the average memory period t increases, with all other eigenvalues having
strictly negative real parts. In this case, a stable spatially inhomogeneous time-periodic solution
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could be generated through Hopf bifurcation. This shows that time-periodic spatial-temporal
patterns can be generated in two-variable reaction-diffusion systems with memory-based self-
diffusion and cross-diffusion, but it cannot happen for scalar reaction-diffusion model with
memory-based diffusion.

Diffusive Lotka-Volterra competition and cooperation models memory-based self-diffusion
and cross-diffusion are studied as examples of the above general instability principle, for some
particular choice of memory-based diffusion rates. For the competition model in the weak com-
petition regime, if u is a timid competitor who moves away from the past of its competitor v
(i.e., D12 > 0), then the constant coexistence steady state will be destabilized and a spatially in-
homogeneous steady state pattern appears through Turing type bifurcation, as the memory-based
diffusion rate D1, increases; on the other hand if u is an aggressive competitor who moves to-
wards the past of its competitor v (i.e., D12 < 0), then Hopf bifurcation occurs at the constant
coexistence steady state when the memory period t increases. After computing the first Lya-
punov coefficient in the normal form, a stable spatially inhomogeneous time-periodic solution
appears when the memory period 7 is larger than a critical value. This indicates the memory-
based cross-diffusion indeed alters the dynamics of classic Lotka-Volterra competition model in
different ways from those in the literature. For the cooperative model, there is a similar scenario,
with the conditions being reversed from the ones for the competition model.

6. Appendix

Here we compute the Hopf bifurcation properties in Theorem 3.6 for D1y < 0, following the
algorithm in [37]. Let Q = (0,!). Then, u, = (%)2 and ¢, (x) = cosv,x with v, = /u, are
the solution of eigenvalue problem (2.3). Suppose that +iw, are the roots of (2.4) for some
fixed n > 1 when r = r,/, , j=0,1,---, that is, the infinitesimal generator Ay of the linearized
equation (2.2) has a pair of purely imaginary roots. Then, iw, are also the eigenvalues of the
formal adjoint operator Aj;. Furthermore, the eigenfunctions of Ay and Aj; with respect to i,
are given by

) . ce I g, (x)v
®(0) = (€' gy (X)ug, e 9, (x)ikg), W(s) = < 0) ,

ce' S gy (x) g

where ug and vg are nonzero solutions of I1,, (iw,)ug = 0 and voI1, (iw,) = O respectively, given
by

T
wo=(1,- vV = (1e)7,
iw, + Doy + yv*

. D 3
vo— (1,_M) —(L.ey),
*
yBv

If we choose ¢ as

2

[+ c2c1) — unry{Dlzu*qe*"“’""{] ’

CcC =

then, (¥, ®) = I, where

264



J. Shi, C. Wang and H. Wang Journal of Differential Equations 305 (2021) 242-269

0
O *
(o, @) = (x(0), 9(0)) + /(a(%‘ + 1), AMr@(£))dE, Ay = ( Diou ) '

0 0
Now, let

D p,VuVu(t —r)+ DipulAv(t —r) — u(u + av)

F = . 6.1)
—yv(v+ Bu)

.. u (0) X1 yiry .
Substituting =®(0) + into (6.1), we have
v (6) X2 2
fo= frox} + fiixix + fooxs + (D1yF2)yx1 + (D2y F2)yx2, (6.2)

where fa0 = (. f3o)"» fi1 = () DT for = (foh, )T, (DiyFa)y = ((nyFz)y,
(D, F)Y)T, (D2y F2)y = (D3, F2)y, (D3, F2)y)T with

1 1 1 2 2 2

Jo0 = 1201 €082v,x + fo00,  fa0 = fo01 €OS20px + f30,
1 | 1 2 2 2

fir = fincos2vnx + fiip, St = fi11€082vnx + fila, 63)
1 1 2 2

foo = a0 foa = fao»

and

o)
f2101 =- |:2D12,1Ln016 fentn 4 (1 —i—OlC]):I ) le()z =—(1+acy),
f2201 =—yci(c1 + B), f2202=f2201,

s J _ J _ _
fhi == [2Diapaere™ ™ £ @) £t ate +é)]. fha=-2+ater+én)

fi=—vRlalP+ B+, fha= i

Moreover,

(D, F)y =2D1 [0 ¢4 (74, V 31 (0) + Ay y1 0)) + (Vu Vya (=) + da Az (=)
= 2¢u[2 +ac)y1(0) + ay2(0)],

(D}, F2)y =2Dp2 [ &1 (Vy V31 0) + A1 0)) + (Y, Vya(—ri) +  Aya (=) ]
~ 264l +aZ1)y1(0) + ay2(0)].

(D}, F2)y = =2y $u[Bc1y1(0) + 2c1 + B)y2(0)],

(D3, F2)y = =2y ¢u[Bc1y1(0) + (261 + B)y2(0)].
(6.4)
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Let
1 1, o, 1,
E(Wl O, f2) = 5820%] + guxix2 + 5802%) + 7 821X %2 +-- (6.5)
Note that
i i
/ fn (0)dx = / $2 (6)dx =, (6.6)
0 0

for n > 1. It then follows from (6.2), (6.3), (6.5) and (6.6) that

1
820 = (¥1(0), f20) =0, gi11 = 5(1//1 ), fi1) =0, go2 = (¥1(0), fo2) =0. (6.7)

In addition, suppose that

1 1
y=0nL»n)' = szo(@)xl2 + w1 (@)x1x2 + Ewoz(ﬁ’)xzz,

where wyg = (wéo, w%O)T, wip = (wlll, w%l)T and wgy = (wéz, w%z)T. Then, from (6.4) and
(6.5), we have

1
821 = (¥1(0), (D1y F2)wir) + E(Wl (0), (D2y F2)wao), (6.3)
where (D1y F2)wi1 and (Day F2)wyg can be defined by (6.4). Thus,

l

821 =/G21dx, (6.9)
0

where

Ga =2c {d),,Dlz[e_i‘”””{c] (VéuVwl (0) + Agyw! (0) + (Vo Vw (—rl)
+n Awd (—r) | = @+ aer +ercay BBt 0) — o+ cay er + Bl (0]
+ c{duDiaf[ e E1(T8,Viky(0) + Adwly () + (T, Vawdy(—ri)

60 Awdo(—ri) | = @+ alr + EreayBIBRwh(0) — [ + ey 281 + BIgTwh )]

(6.10)
In order to compute g1, it remains to compute woo(6) and wq1(@). It is known from [37] and
(6.7) that
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w0(6) = iond p, _ Sﬂeiw,leuo _ 302 el = Piond g,
iwy 3iw, ©.11)
811 iw,0 811 _iw6- .
wi(0) = E2 + ——€'“"ug — —e""ig = En,
iwy, iwy,
and E1 = (El, EIZ)T, E, = (El, E%)T are determined by
2iwpnEy — AD(¥ P E1) — L(e* Y E)) = fao,
(6.12)

1
—AD(Ey) — L(E2) = 5 fu.

subject to Neumann boundary condition on (0, /). From the linear equation (2.2), (6.12) is equiv-
alent to

2iwE1 — M{AE| — M3E| = f»,

1 (6.13)
—MrAE; — M3Ey = Ef“’
where
* —2iw,1r,{ D D *
M, = D1 Dipu'e My = 1 12U ’
0 D 0 D,
Ms— —u* —au* .
—yBv*  —yv*
By solving (6.13) subject to Neumann boundary condition on (0, /), we obtain
Ei=Ej1cos2v,x + E1p, E>=E> cos2v,x + En, (6.14)
and Eq1, E1», E21, Ey) are determined by the following linear algebraic equations
Qiwpl +4unMy — M3)E1 = foo1, Qiwnd — M3)E2 = fo,
(6.15)

1 1
AunMp — M3)Ep = Efm, — M3Ey» = Efnz,

respectively. Denote Eiy = (E!, E)T, Epy = (EL, EL)T, Eyy = (EL, E2)T and Ey =
(E),, E3,)T . Then,
wlo(0) = E}; cos2v,xe? @t 4 El,e?enf
w3y (0) = E7, cos 2v,xe” "’ + ET,e* (6.16)
wi1(0) = E3; cos2v,x + Ey, :

w%l(e) = E%l cos2v,x + E%z.
Note that
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I l I
2 l . . 2 l
cos“ vyxdx = 7 Sin v, x cos v, x sin2v,xdx = [ cos” v,x cos2v,xdx = 7
0 0 0

This, together with (6.6) and (6.16), can simplify (6.9) as

1 . o o
g1 = gle {DIZMn [26_“”””{ c1(EY — 2Edy) + "1 (B}, — 2E},) — 4E3; — 2151216_2”')""{]
— 22 +acy +c1c2yB)(Ey +2Ey) + 2+ aéy + E1cayB)(Ef, +2E])]

— 26+ ey ey + B (ER +2ED) + (@ + ey Q&1 + BY(ED, +2ED)1].

(6.17)
and the first Lyapunov coefficient c1(0) now reads ¢ (0) = lRe(gzl).
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