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Abstract: A new bifurcation from simple eigenvalue theorem is proved for general nonlinear func-
tional equations. It is shown that in this bifurcation scenario, the bifurcating solutions are on a curve
which is tangent to the line of trivial solutions, while in typical bifurcations the curve of bifurcating so-
lutions is transversal to the line of trivial ones. The stability of bifurcating solutions can be determined,
and examples from partial differential equations are shown to demonstrate such bifurcations.
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1. Introduction

In many mathematical models, it is required to finding the solutions of a stationary problem, which
can be formulated as an equation

F(A,u) =0, (1.1)

where F is a nonlinear smooth mapping defined on (4, #) € R X X and mapped to Y, A is a parameter,
and X, Y are Banach spaces. Often the system Eq (1.1) has a trivial state u = u, for all parameter
values A, and it may have other nontrivial solutions near (4, uy) for some 4y. Such A is called a
bifurcation point for Eq (1.1), and the bifurcating nontrivial solutions near a bifurcation point are often
with significance for the models as they represent states breaking from the symmetric or uniform ones.

If the Fréchet derivative F,(Ay, up) of F at (1o, up) is invertible, then (Ao, 1) is not a bifurcation point
from the Implicit Function Theorem [1-3]. Hence a necessary condition for the bifurcation to occur is
that F', (4o, up) is not invertible. The most useful bifurcation occurs when that 0 is a simple eigenvalue
of the linearized operator F, (Ao, 1), that is

(F1) dim N(F,(Ag, up)) = codim R(F (g, up)) = 1, and N(F (Ao, up)) = span{wy},
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where N(F,) and R(F,) are the null space and the range of linear operator F,. Crandall and Rabi-
nowitz [2] prove the following celebrated “bifurcation from a simple eigenvalue” theorem (see [2,
Theorem 1.7]). Here is an expanded version of the theorem for our purpose:

Theorem 1.1. Let U be a neighborhood of (g, up) in Rx X, and let F : U — Y be a twice continuously
differentiable mapping. Assume that F(A, uy) = 0 for (4, uy) € U. At (Ao, uy), F satisfies (F1) and

(F3) Fu (Ao, up)wol ¢ R(F (Ao, up)).

Let Z be any complement of span{w,} in X. Then the solution set of (1.1) near (Ay, uy) consists precisely
of the curves Ty = {(A,up)} and Ty = {(A(s), u(s)) : s € |s| < 6}, where A : I - R, z:1 — Z are C!
functions such that u(s) = uy + swo + sz(s), A(0) = Ay, 2(0) = 0, and

{1, F (Ao, uo)[wol*)
2(1, F (Ao, up)[wol)’

where | € Y* satisfying N(I) = R(F (Ao, up)). If F also satisfies

(F4) F,.(Ao, uo)[wol* ¢ R(F (Ao, uo)),

then we have A'(0) # 0, and it is called a transcritical bifurcation; If F satisfies
(F4') F,u(Ao, uo)[wol* € R(F (Ao, uo)),

and in addition F € C3, then X’(0) = 0 and

(L, Fue( Ao, up)wol?) + 3¢1, Fuu(Ao, uo)[wo, 611)
3¢L, F (Ao, up)[wol) ’

X(0) = — (1.2)

/1//(0) - _

(1.3)

where 0, satisfies
F (Ao, u)wol” + Fu(o, uo)[61] = 0. (1.4)

If X(0) = 0 and A”(0) # O, then it is called a pitchfork bifurcation.

Note that the classification of transcritical and pitchfork bifurcations using (F4) and (F4') was first
used in reference [4], although this has been widely used in finite dimensional dynamical systems [5].

The transversality condition (F3) holds in most practical situations, but there are also important
exceptional cases for which (F3) fail. In reference [6], we considered a degenerate bifurcation scenario
in which (F3) is not satisfied. In this case, we prove that, under some higher order transversality
conditions on F, the local solution set of Eq (1.1) near the bifurcation point (A, uy) consists of the line
of trivial solutions, and two other solution curves. First we recall a degenerate version of Theorem 1.1,
which can be used to obtain more than two intersecting solution curves near the bifurcation point.

Theorem 1.2. ( [6, Theorem 2.3]) Let U be a neighborhood of (Ao, up) in R x X, and let F € C3(U, Y).
Assume that F(A,uy) = 0 for (A, up) € U and at (A, uy), F satisfies (F1), (F4'), and

(F3) Fau(do, uo)wol € R(Fu(Ao, uo)).

Let X = N(F,(Ay,up)) ® Z be a fixed splitting of X, and let | € Y* such that R(F (Ao, up)) = {veY:
(l,v) = 0}. Denote by 0, € Z the unique solution of

F (Ao, ug)wol + Fu (Ao, uo)[62] = 0, (L.5)
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and recall 0, to be the unique solution of Eq (1.4). We assume that the matrix (all derivatives are
evaluated at (A, ug))

H = H(lg, o) = (ZE Z) (16)
is non-degenerate, i.e., det(H) # 0, where H;; is given by
Hyy = (I, Faaulwol + 2F ,[60:]), (1.7)
Hy, = %(l, Frulwol” + Ful61] + 2F u[wo, 6:)), (1.8)
Hos = 540 Fulorol + 3F w0, 0,1, (19)
1) If H is definite, i.e., det(H) > 0, then the solution set of Eq (1.1) near (A, u) = (Ao, up) is the line

Lo = {(4, up)}.

2) If H is indefinite, i.e., det(H) < 0, then the solution set of Eq (1.1) near (1,u) = (g, up) is the
union of C' curves intersecting at (Ao, uo), including the line of trivial solutions Ty = {(A, uy)} and
two other curves I'; = {(A;(5), ui(s)) : |s| < 8} (i = 1,2) for some 6 > 0, with

Ai(s) = Ao + s + sai(s), ui(s) = uo + niswo + sBi(s),
where (uy,m1) and (1o, 172) are non-zero linear independent solutions of the equation
Hy i1 + 2Hppn + Hon = 0, (1.10)

@,(0) = a/(0) = 0, Bi(s) € Z, and B(0) = B/(0) = 0, i = 1,2.

In this paper, we prove another bifurcation result when the transversality condition (F3) fails. In
this case, under the complement (F3’) of (F3), and as well as (F4), we show that the solution set of
Eq (1.1) near the bifurcation point (Ao, uy) consists of the line of trivial solution, and another curve of
nontrivial solutions which is tangent to the line of trivial ones.

Theorem 1.3. Let U be a neighborhood of (g, ug) in R x X, and let F € C*(U,Y). Assume that
F(A,up) = 0 for any A € R. At (Ao, up), F satisfies (F1), (F3') and (F4). Then the solution set of Eq
(1.1) near (A, u) = (Ao, up) is the union of two C? curves which are tangent to each other at (g, up),
including the line of trivial solutions Ty = {(A,up)} and I'y = {(A, u(A)) : A € I} for some 6 > 0, where
I =(y—06,40+9), u(d) = uy + t(wy + g, t(1), t : I - Vand g : I XV — Z are continuously
differentiable functions, t(1y) = t'(dy) = 0, and g(1,0) = g1(1p,0) = g/(10,0) = 0, where V C Ris a
neighborhood of t = 0. Moreover if F € C*(U,Y), then t(2) is C* and

(L, F (Ao, ug)[wol + 2F 3,(Ao, uo)[6-1)
(I, Fu(Ao, up)[wo1?) ’

(1) = -2 (1.11)

where 0, is defined by Eq (1.5).

If F satisfies F (Ao, uo)[wol + 3F 1.(Ao, up)[62] € R(F, (Ao, up), then the solution set of Eq (1.1) near
(Ao, up) in Theorem 1.3 is the union of a line and a parabola-like curve which is tangent to the line. The
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simplest example for Theorem 1.3 is the function f : R? — R defined by f(4,u) = u(u — A%), and its
solution set of f(4,u) = 0 near (4, u) = (0,0) is the union of the line # = 0 and the curve of nontrivial
solutions u = A% which are tangent to each other at (0, 0) (see the lower left panel of Figure 1).

Theorem 1.1, Theorem 1.2 and Theorem 1.3 together provide a complete classification of bifurca-
tion scenarios for Eq (1.1) under the conditions (F3) or (F3’), and (F4) or (F4'), while F (4, uy) = 0 and
(F1) are assumed:

(a) Transcritical: (F3) and (F4), a crossing curve of nontrivial solutions (Theorem 1.1);

(b) Pitchfork: (F3) and (F4'), a crossing curve of nontrivial solutions bending leftward or rightward
(Theorem 1.1);

(c) Tangential: (F3’) and (F4), a tangential curve of nontrivial solutions bending upward or down-
ward (Theorem 1.3); and

(d) Double transcritical: (F3’) and (F4’), two crossing curves of nontrivial solutions (Theorem 1.2).

Because of the condition (F3’), the tangential and the double transcritical bifurcations are called
degenerate ones. Figure 1 shows examples of each types of bifurcations using simple mappings F; :
R xR — R, and these mappings can be regarded as normal forms of these bifurcations.

_ . . . . . . _ . . . . . . .
-2 -15 -1 -0.5 0 0.5 1 1.5 2 -2 -15 -1 -0.5 0 0.5 1 15 2
lambda lambda

f

T2 15 A 05 0 05 1 15 2 2 a5 A -05 0 0.5 1 15 2
lambda lambda

Figure 1. Bifurcation diagrams for Eq (1.1) with a simple eigenvalue. (Upper left): (F3) and
(F4), F1(A,u) = Au — u*; (Upper Right): (F3) and (F4), F5(A,u) = Au — u’; (Lower left):
(F3') and (F4), F3(A, u) = u> — 2>u; (Lower right): (F3) and (F4'), F4(A,u) = 2*u — u®.

Another bifurcation result with solution set being two tangential curves was proved in reference [7]
but it is under the assumption that the kernel N(F, (A, ug)) is of two-dimensional and it is of saddle-
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node bifurcation type. It is applied to a nonlinear Schrodinger system with quadratic nonlinearity [8],
where one of the two tangential curves is indeed vertical in a form {(Ao, k¢;) : k € R}. Here one of the
two tangential curves is horizontal in a form {(4, uy) : 1 € R}.

We also remark that transversality conditions like (F3) or (F4) are not needed for global bifurcation
theorems concerning the topological structure of the solution continuum. Indeed in the celebrated
Rabinowitz global bifurcation theorem [9] (see also extensions in [10, 11]), only the odd algebraic
multiplicity was assumed, thus all four scenarios shown in Figure 1 can occur as local pictures for the
global bifurcation diagrams in reference [9-11].

We prove Theorem 1.3 in Section 2, and we consider the stability of the bifurcating solutions ob-
tained in Theorem 1.3 in Section 3. Finally in Section 4 we show some examples to apply Theorem
1.3. Throughout the paper, we use the same labeling of conditions such as (F1) and (F2) on F as in
our previous work [4, 6, 12], and we use the convention that (Fi’) stands for the negation of (Fi) for
i€ N. We use || - || as the norm of Banach space X, (:,-) as the duality pair of a Banach space X and
its dual space X*. For a linear operator L, we use N(L) as the null space of L and R(L) as the range
space of L, and we use L[w] to denote the image of w under the linear mapping L. For a multilin-
ear operator L, we use L[wy, wy, -+ ,wy] to denote the image of (wy,w,, -+ ,wy) under L, and when
Wi = Wy = -+ = wy, we use L[w;]¥ instead of L[w,wy,---,w;]. For a nonlinear operator F, we use
F, as the partial derivative of F' with respect to argument u.

2. Proof of Theorem 1.3

First we recall an important lemma from our previous work [12]. First is the well-known Lyapunov-
Schmidt reduction under the condition (F1) which is standard from many textbooks in nonlinear anal-
ysis (see for example [1,3,13]).

Lemma 2.1. Suppose that F : RX X — Y isa CP (p > 1) mapping such that F(Ay,uy) = 0, and F
satisfies (F1) at (A, ug). Then the equation F(A,u) = 0 for (4, u) near (Ao, uy) can be reduced to

(L, F(A,up + two + g(1,1))) = 0,

where t € (=0,0), A € (dg — 6, Ay + O) where ¢ is a small constant, | € Y* such that {l,v) = 0 if and
only if v e R(F,(Ay, up)), and g is a C? function into Z such that g(1y,0) = 0 and Z is a complement of
N(F, (Ao, up)) in X.

Proof of Theorem 1.3. We denote the projection from Y into R(F,(Ay, up)) by Q. Applying Lemma
2.1 to F in Theorem 1.3 at (A, up), we have that the function g(4, ¢) in Lemma 2.1 is obtained from
(see [12]),

fil, 1) = Qo F(A,up + twy + g(4,1) = 0. 2.1

Since uy is a trivial solution for all A near Ay, that is, F(4,uy) = 0, then by Lemma 2.1 we have
g(4,0) = 0, hence g,(4y,0) = g11(4p,0) = 0. Differentiating f; and evaluating at (4,7) = (A, 0), we
obtain

0=Vfi =(Qo(Fy+ FulgaD), Q o Fulwo + ). (2.2)

Since F,[wy] =0 and g, € Z, and F, (Ao, cou.)|z is an isomorphism, then g,(1y, 0) = 0.
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Next we calculate the second derivatives of f:
9’ fi
040t
=0 o (Fu (Ao, ug)lwo + 8/(A0, 0)] + F (Ao, uo)[wo + &:(Ao, 0), g1(Ao, 0)]
+ Fu (Ao, uo)[g1:(A0, 0)])
=F (Ao, uo)[wol + Fu(Ao, uo)[ga (0, 0)] = 0,
thus g,,(40,0) = 6, from (F3’), where 6, is defined as in Eq (1.5). We define the bifurcation function

S0 =L, F(Ad, up + twy + g(4,1))). (2.3)

(10,0)

From the assumptions, f is C? in U and f(4,0) = 0. Next we apply the Implicit Function Theorem
to the equation h(4, t) = 0 where the function A(4, ) is defined by

(L 1) = LEQ,n, ifr#0,
| f(2,0), ift=0.
Then h(4,0) = 0 from the assumption that F(4, up) = 0, and from (F4), we have

hi(Ao, 0) = lim %(h(/lo, 1) = (40, 0)) = lim % (%f (Ao, 1) = fi(A0, 0)

(2.4)

1 1
= 1}_{% t_z(f(/lo, 1) — f(A0,0) = fi(Ap, 0)1) = Eftt(/lm 0)
1
:§<l’ F (Ao, o) [wo + g:(o, 0)]* + F(o, uo)[g:( Ao, 0)])

1
ZEU’ Fouu( Ao, ug)[wol*) # 0.

By the Implicit Function Theorem, there exists a unique continuously differentiable function ¢ =
t(1) € R satisfying h(4, (1)) = 0 and #(4y) = 0, and

F(A, up + t(Dwg + g(4, (1)) = 0. (2.5)
Now we assume that F € C*(U, Y). Let u(1) = uy + t()wy + g(4, #(1)). Then we have
FA,u1) =0. (2.6)

Differentiating Eq (2.6) with respect to A twice and evaluating at 4 = Ay, we obtain that
Fau+ 2F y[u] + Fulual® + Fuluy,] = 0. (2.7)

Here all partial derivatives are evaluated as 4 = Ay. By applying / € Y* to Eq (2.7), we have
t'(1g) = 0 from (F3’) and (F4), and we also have u, = 0 and u,, = t"”"(1y)w,. Differentiating Eq (2.6)
with respect to A three times and evaluating at 4 = A,, we obtain that

3Fwlual + Fuluaal = 0, (2.8)

which implies that u,,, = 3¢"(1y)6,. Finally differentiating Eq (2.6) with respect to A four times and
evaluating at 4 = A, we obtain that

6 F yuluaa] + 4F wluaal + 3Fuu[u/l/l]2 + Fylupaal = 0. (2.9)
By applying [ € Y* to Eq (2.9), we can obtain Eq (1.11). O
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3. Stability

In this section, we consider the stability of the bifurcating solutions obtained in Theorem 1.3. First
similar to [14, Corollary 1.13], we have the

Proposition 3.1. Let X, Y, U, F, Z, Ay, wo, 0, be the same as in Theorem 1.3, and let all assumptions in
Theorem 1.3 on F be satisfied. In addition we assume that X C Y, and the inclusion mappingi: X — Y
is continuous. Let I'y = {(4,u(d)) : |4 — Ay| < 8} be the solution curve in Theorem 1.3. Then there exist
e> 0, C?functionsy : (g —&,p+&) >R u: - g+ >R v:WU—edy+e) — X and
w: (g — &, Ay + &) — Xsuch that

F, (4, up)[v(D] = y(Dv(1) for A€ (dy—¢g, A+ &), (3.1
F,(4L,u()[w)] = u(DHwd) for A€ (Ay—e&, g+ &), (3.2)
where y(dy) = u(do) = 0, v(dy) = w(dy) = wy, V(1) —wy € Z and w(d) —wy € Z.

We have the following result on the stabilities of the bifurcating solution (A4, u(1)) obtained in The-
orem 1.3.

Proposition 3.2. Let the assumptions of Proposition 3.1 hold, and let y(1) and u(Q) be the functions
defined in Proposition 3.1. In addition, we assume that

wo € R(F,(Ag, up)), where wo(# 0) € N(F,(Ay, up)). 3.3)
Then y'(dy) = ('(Ao) = 0 and
(, Fanu(Ag, uo)[wol + 2F 4,(Ao, up)[621)

v (Ay) = , (3.4)
L, wo)
W) = — (L, Fau(Ao, uo)[wol + 2F 1, (Ao, Mo)[92]>_ (3.5)
(L, wo)
Proof. We differentiate Eq (3.1) to obtain
Fu(4, ug) V(D] + Fu(4, up)[V' (D] = ¥ (Dv() + y()V' (D). (3.6)

Setting 4 = Ay and applying / to the equation, we get y'(4dy) = 0 and v'(4y) = 6, by (F3’). Differen-
tiating Eq (3.6) again, we have

F i, ug) V()] + 2F 3, (A, uo) [V (D] + Fou(A, up)[v"’' (V)] (3.7)
=y" (D) + 2y (V' (D) + y () (D). .
Setting A4 = Ay, we get
F0u( 0, uo)[wol + 2F 1,(Ag, u9)[02] + Fou(Ag, uo)[v"'(A0)] = ¥"(Ap)v(Ap). (3.8)

Thus by applying [ to Eq (3.8), we obtain Eq (3.4).
On the other hand, we differentiate Eq (3.2) to obtain

Fuu(4, u(D)[w(D)] + Fu(A, u(D) [ (D), (D] + Fu (4, u(D)) [’ (D]

/ / (3.9)
= (Dw() + p(Dw' ().
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Setting A = Ay, we have
F (Ao, uo)[wol + F (Ao, up)[w’(Ao)] = ' (Ao)wo, (3.10)
we get (' (dp) = 0 and ' (o) = 6,. We differentiate Eq (3.9) again and set A = A, and we have

F (Ao, o) [wol + 2F 1,(Ao, uo)[62] + 1 (A0) F (Ao, o) [Wo ]*

., . G.11)
+F, (Ao, up)[w” (Ag)] = u”" (Ao)wo,

by u’(Ag) = 0 and u”'(4dy) = t”’"(Ao)wo. Thus by applying [ to Eq (3.11) and using Eq (1.11), we obtain
Eq (3.9). O

Proposition 3.2 implies that the trivial solution u = uy on Iy and the non-trivial solution u(A1) on I'y
in Theorem 1.3 both have the same stability before and after the bifurcation point. Thus there is no
exchange of stability occurring in the tangential bifurcation described in Theorem 1.3. Furthermore,
the stability of the trivial solution u, on I'y and the one of the non-trivial solution (1) on I'; in Theorem
1.3 are always opposite: while one is stable, the other is unstable, or vice versa, if y(1y) = u(dp) = 0 is
the principal eigenvalue of F', (Ao, uy).

4. Examples

We show that the tangential bifurcations described in Theorem 1.3 occurs for the following semi-
linear elliptic equations.

Example 4.1.

du 4.1

Au+uwu—-1>=0, xeQ,
— =0, X € 0Q2,

where A is a positive parameter, Q is a bounded region with smooth boundary in R" forn > 1.

It is easy to see (4, 0) is a trivial solution of Eq (4.1). Define a nonlinear mapping F : RX X — Y
by
F(A,u) = Au+ u(u — 2%), (4.2)

0
where X = {u e W?P(Q) : a—u = O} and Y = LP(Q). It is easy to verify that F,(0,0)[¢] = A¢p, we
n

have N(F,(0,0)) = span{l}, R(F,(0,0)) = {y € Y : nydx = 0}. And F,(0,0)[1] = 0, 6, = 0,
F . (0,0)[1]% = 2, F1,,(0,0)[1] = -2, so (F1), (F3’), (F4) are satisfied. We can apply Theorem 1.3 to
F. Then the solution set of Eq (4.1) near (4, u) = (0, 0) is the union of two C! curves which are tangent
to each other at (0, 0), including the line of trivial solutions I'y = {(1,0)} and I'; = {(4, u(1)) : || < 8} for
some 0 > 0, where u(A) is a continuously differentiable function, u(1) = t(1)+g(4, t(1)), t(0) = #'(0) = 0
and t”(0) = 2. Furthermore from Proposition 3.2, we have y”(0) = —u’(0) = —2. It implies the trivial
solution (4, 0) is stable and the nontrivial solution (4, (1)) is unstable. Note that this example is rather
trivial as u(1) = A% is a constant solution of Eq (4.1).
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Example 4.2.
Au+2/1\/,u_1u—/lzu+/lu220, x€Q, 43)
u=0, x € 0Q, '
where A is a positive parameter, £ is a bounded region with smooth boundary in R" for n > 1, and u,
is the principal eigenvalue of —A on H)(Q).

For any A > 0, u = 0 is a trivial solution of (4.3). Define a nonlinear mapping F : R X X — Y by
F(A,u) = Au+ 22 \Juyu — u + A, (4.4)

where X = W2P(Q) N Wé’p () and Y = LP(L2). We show that A = 4/u; is a bifurcation point for the
trivial solution u = 0. We can verify that F,( /i, 0)[¢] = A+, ¢, we have N(F,(+/ui,0)) = span{y},
R(F,(\u1,0)) ={yeY: fgygoldx = 0}, where ¢; > 0 is the principal eigenfunction of —A on Hé(Q)
corresponding to y;. Moreover we can verify that F,(y/u1,0)[¢1] = 0,6, = 0, F,,(y/u1, O] = 290?,
Fou(11,0)[¢1] = =2¢;. so the conditions (F1), (F3’), (F4) are satisfied. We can apply Theorem 1.3
to F at A = 4/u;. The solution set of Eq (4.3) near (4,u) = (4/u;,0) is the union of two C! curves
which are tangent to each other at (/u, 0), including the line of trivial solutions I'y = {(1,0) : 4 > 0}
and I't = {(4,u() : |41 — ui| < 6} for some 6 > 0, where u(d) = ()¢, + g(4,1(1)) is smooth,
(V) = £'(yi) = 0, 7/(\Jar) = 2A > O where A = [ ¢?/ [ ¢} > 0, and g(4,0) = gi(yr1,0) =
g/(+i1,0) = 0. Thus Eq (4.3) has a positive solution u(1) ~ A(d — \/u_l)chl for any 0 < |4 — ui] < 6.
Furthermore from Proposition 3.2, we have y”(0) = —u”(0) = —2. It implies the trivial solution (4, 0)
is stable and the nontrivial solution (4, u(1)) is unstable when A4 # /u;.
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