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Abstract—With the paradigm shift to cloud-based operations,
reliable and secure access to and transfer of data between
differing security domains has never been more essential. A Cross
Domain Solution (CDS) is a guarded interface which serves to
execute the secure access and/or transfer of data between isolated
and/or differing security domains defined by an administrative
security policy. Cross domain security requires trustworthiness
at the confluence of the hardware and software components
which implement a security policy. Security components must
be relied upon to defend against widely encompassing threats
— consider insider threats and nation state threat actors which
can be both onsite and offsite threat actors — to information
assurance. Current implementations of CDS systems use sub-
optimal Trusted Computing Bases (TCB) without any formal
verification proofs, confirming the gap between blind trust and
trustworthiness. Moreover, most CDSs are exclusively operated
by Department of Defense agencies and are not readily available
to the commercial sectors, nor are they available for independent
security verification. Still, more CDSs are only usable in phys-
ically isolated environments such as Sensitive Compartmented
Information Facilities and are inconsistent with the paradigm
shift to cloud environments. Qur purpose is to address the ques-
tion of how trustworthiness can be implemented in a remotely
deployable CDS that also supports availability and accessibility
to all sectors. In this paper, we present a novel CDS system
architecture which is the first to use a formally verified TCB.
Additionally, our CDS model is the first of its kind to utilize
a computation-isolation approach which allows our CDS to be
remotely deployable for use in cloud-based solutions.

I. INTRODUCTION

In the context of military information systems, a domain
is an environment which contains a set of computer-based
systems, processes, data, controls, and security policies defined
by a classification label, which serves in isolation from other
systems and can only be accessed using a defined set of rules.
Similarly, a security domain is a system or set of systems
separated from other domains by a boundary defined by an
administrative security policy. The objective of the security
policy is to uphold classification level, information access
and transfer regulations, and data ownership within a domain.
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Creating a secure connection between security domains neces-
sitates the implementation of multifaceted security policies for
information flow management in a CDS. Cross domain refers
to the access to and/or transport of data across domains of
isolated and/or differing classification levels. A CDS enforces
a security policy on an interface between the discrete security
domains. The terms high and low are used herein, to describe
domains of higher and lower security classification levels.
Problem Statement. The DoD and the Intelligence Com-
munity (IC) manage CDS services, devices, and the stan-
dards which CDSs must abide by, almost exclusively, through
the Unified Cross Domain Management Office (UCDMO),
and the National Cross Domain Strategy Management Office
(NCDSMO) [14]. Furthermore, [13] details the CDS needs
outlined by the UCDMO that are exclusively written for DoD
agencies, which is also the case for the security policies
outlined by the National Security Agency (NSA) NCDSMO.
While there are a few CDS solutions available outside the
DoD/IC such as [47, 48], this community manages the CDS
standards and technologies which are leveraged by these
systems. This not only creates the problem of general CDS
availability outside the DoD, but also means these systems are
expensive and must be redesigned for specific environments
[14].

Further challenges with the current status quo of CDS
designs include reliability and assurance (trustworthiness),
remote deployability, and accessibility [14, 18]. [22] also
states that current CDS products are available only as secure
appliance or “strong box” implementations meaning they
reside in a physically isolated environment and are unfit
for cloud environments as they are not remotely deployable.
As a consequence, existing solutions are either highly spe-
cialized systems which cannot be applied to other use-case
environments without incurring unreasonable modification and
maintenance costs, or they are ad hoc solutions built upon
technologies which lack assured security [13, 31, 32, 37].

These problems can be made manifest by the three CDS
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architectures of current CDS systems. The first architecture
uses physically isolated domains to maintain one classification
level per domain. This separation ensures that an authorized
operator must maintain multiple physical infrastructures. One
implementation is sometimes referred to as a “swivel-chair
setup” because the operator could effectively swivel his or her
chair to access each workstation while other implementations
use a keyboard, video monitor, and mouse (KVM) switch
to access different domains from a single workstation [25].
Oftentimes this architecture employs air gaps to transfer data
using removable devices. The second architecture uses parti-
tioned workstations, which relies on domain virtualization on
top of a single host. The host regulates the separation between
domains by running a corresponding virtual machine (VM) for
each domain. The third architecture uses data diodes, which
are analogous to electrical diodes, to restrict the flow of data
in one direction (e.g. a domain of low classification may be
permitted to transfer data to a domain of high classification but
not the opposite) [25]. These tailored designs may explain why
the Committee on National Security Systems (CNSS) called
the current CDS architectures niche CDSs because they lack
accessibility to commercial sectors outside of military/DoD
designations [22, 42].

A critical observation regarding security systems, in general,
is that many descriptions bundle the well-understood security
objectives of confidentiality, integrity, availability, authenticity,
and accountability (CIAAA) together. In practice, this not
only forces impractical redesign, but enforcing each of these
objectives is simply not necessary if the threat model does
not require it. Furthermore, each security objective requires
the addition of more technologies which may incur risk
beyond the defined threat model. Our system focuses on data
confidentiality — ensuring that data spillage does not occur.

Summarizing the problem, the facts presented above pose an
elevated risk to data confidentiality for multiple reasons. First,
a system that has not been mathematically proven trustworthy
should not be trusted to securely maintain data. Second,
the status quo in both commercial and DoD-specific CDS
technology is inconsistent with the paradigm shift to cloud
computing and does not allow for secure remote deployability.
Third, security through obscurity is exposed as a failed security
technique, and the need for independent validation of security
properties is revealed.

Our Contributions. In this paper, we systematically examine
and aim to correct the challenges of trustworthiness, remote
deployablility, and accessibility, identified in the papers above.
We present a novel architecture, called virfual CDS (vCDS),
which overcomes the weaknesses of current CDS systems with
three key contributions: (i) Trustworthiness through execution
on top of a formally verified, TCB; (ii) Accessibility to
commercial sectors using commodity software and hardware;
and (iii) Secure remote deployability for offsite computing
(e.g. cloud). Additionally, we propose a prototype instantiation
of the vCDS architecture. To the best of our knowledge,
we are the first to develop a general purpose CDS system,
which leverages a TCB that is provably secure and has

been comprehensively verified for functional correctness and
security guarantees, that can be deployed in a variety of use-
cases and environments.

II. RELATED WORK

CDS systems are offered by a few technology companies
[47, 48] but are managed and tested by the DoD/IC. These
systems seem to conform to security through obscurity as
their specifications and evaluation results are not available for
independent verification. As a consequence, the specifications
and evaluations of such systems may not be sound. This can
be justified by the fact that evaluations based on the Common
Criteria are problematic because: (i) “usability is ignored”;
(ii) the paperwork, not the product, is the test subject; and
(iii) these schemes are known to “squeeze a very volatile
and competitive industry into a bureaucratic straightjacket, in
order to provide purchasers with the illusion of stability” [10].
From a technical perspective, we design vCDS by leveraging
the state-of-the-art microkernel, seL.4, which has a number of
formally verified properties [20, 26, 44].

III. BACKGROUND

This section introduces the technological components com-

monly found in secure computing systems, the functions and
objectives these components aim to meet, and the distinction
between the concepts of trust and trustworthiness as they
pertain to secure computing systems.
Trusted Execution Environment. A Trusted Execution En-
vironment (TEE) “is a secure, integrity-protected processing
environment, consisting of processing, memory, and storage
capabilities” [19]. The goal of a TEE is to improve security
through runtime-state protection and data restriction to ensure
no sensitive data leaves the TEE. This can be achieved through
the implementation of a dedicated VM [6] or an environment
that runs alongside but is isolated from the main OS [23],
such as a hardware-based enclave supported by security co-
processors. A TEE must define mechanisms to “securely
attest its trustworthiness”, not allowing untrusted code or
operations to cause, enable, or prevent any code execution,
traps, exceptions, or interruptions [24]. [24] introduces five
building blocks of TEEs: (i) Secure Boot: assure that only the
correct, unmodified code can be loaded; (ii) Secure Scheduling:
assure a balanced and efficient coordination between the
TEE and the rest of the system so that tasks running in
the TEE do not affect the responsiveness of the main OS;
(iii) Inter-Environment Communication: interface for assuring
authenticity in the communication between the TEE and other
system components; (iv) Secure Storage: data confidentiality
and integrity is preserved in storage; and (v) Trusted 1/O Path:
protect authenticity and confidentiality of the communication
between the TEE and peripheral devices. TEEs are used to
protect complex and interconnected systems that require a
high level of security with protection against both physical
and software-based attacks.

There has been an emergence of TEE technology in com-
modity systems. The most common of which includes Intel’s



Software Guard Extensions (SGX), AMD’s Secure Encrypted
Virtualization/Secure Memory Encryption (SEV/SME), and
ARM’s TrustZone. TEE systems have evolved greatly from
proprietary solutions to a standards-based approach for use
in PC’s, mobile devices, and other Internet-connected devices
[29]. Furthermore, the push for a viable TEE solution for use
in cloud computing environments has begun.

Trusted Computing Base. The core element for any security
solution is the TCB. Historically, a TCB has referred to several
types of computing bases including, but not limited to: a
security kernel, a trusted operating system, a security filter or
individual access control validation mechanism, or an entire
trusted computing system [3, 4]. The integral components
included in modern TCBs are the reference monitor and secu-
rity kernel. The reference monitor serves to provide complete
mediation of access, validating access to all objects by autho-
rized subjects. The security kernel provides the lowest level
of software to hardware abstraction and employs mechanisms
to enforce security at differing trust boundaries.

In order for a TCB solution to be robust, its components
must be sound. While TCB implementations have changed
over the years, the objectives which determine a sound TCB
have remained: the system should provide access controls and
self-protecting mechanisms such that no system modification
or interference can take place and it should be designed
and functional correctness verified using formal and/or semi-
formal methods [3]. The TCB is responsible for isolating
security-bound components and upholding the security policy
which describes “the conditions under which information and
system resources can be made available to the users of the
system” [3].

Therefore, a TCB, commonly implemented with a combi-
nation of hardware, firmware, and software, is the totality of
protection mechanisms responsible for enforcing a security
policy [4]. These protection mechanisms ensure that any
system components which are not included in the TCB should
not need to be trusted for the whole system to remain fully
protected [4]. Emphasis in TCB design, as of late, is on
assurance and trustworthiness through formal verification of
trusted computing systems [1, 3, 9].

Trust vs Trustworthy. The DoD Trusted Computer System
Evaluation Criteria (TCSEC), first released in 1983, states
that the “assurance of correct and complete design and imple-
mentation for these systems is gained mostly through testing
of the security-relevant portions of the system” where the
security-relevant portion refers to the TCB [4]. Assurance
is measured as confidence in the TCB to meet explicitly
identified security expectations [12]. The Common Criteria,
which replaced the aforementioned evaluation criteria in 2005,
introduces the Evaluation Assurance Level (EAL) which goes
beyond security testing to introduce formal specifications and
formal verification of computing bases [12]. The goal of an
EAL measurement is to exercise the distinction between trust
and trustworthiness, where a trusted system is a system that
is believed to be capable of handling a security event and a
trustworthy system is proven to be able to handle a security

event. In other words, trust can be broken but trustworthiness
has been formally proven and cannot be broken. However, as
we know from [10], vendors often find loopholes to game the
evaluation system, rendering the “illusion of stability” without
actually proving trustworthiness.

Guards. A guard is a trusted “application which is respon-
sible for analyzing the content of the communication and
determining whether this communication is in accordance with
the system security policy” and is often implemented in CDS
systems [8]. Typically, guard components are implemented as
filters which can modify or delete messages, verifiers which
can check data integrity, and isolation mechanisms to separate
the data. Guards are located at the border of a component’s
ingress and egress data channels.

IV. THE vCDS ARCHITECTURE

A. System Model

The vCDS system model is based on the Bell-LaPadula
(BLP) model whose primary concern is data confidentiality
[5]. BLP ensures that subjects can only read objects at or below
their own security level, subjects can only create objects at or
above their own security level, and all access requests must be
authorized based on an access control matrix that characterizes
the security level and rights of each subject. Furthermore,
BLP preserves the principle of least privilege assuring that a
subject may only access the minimum resources necessary for
a particular operation. In fact, the BLP model is a CDS model
in that is was designed to confront the “operational needs to
move information between networks of different classifications
and sensitivity levels” [7]. vCDS faithfully implements this
model because it has been rigorously studied to ensure that
confidentiality of data is protected, despite compromises to
other security objectives such as integrity, availability, authen-
ticity, and/or accountability, and it allows data to flow safely
between certain isolated security domains.

B. Applications

The above model abstracts a family of systems which can
support a range of applications such as those listed below:

1) Stream Processor: The discussion in [22] aims to ad-
dress the problem of using classified data and technology
for a security task on an unclassified host without revealing
any information about the classified resources to the host.
Our system is adaptable to implement an Intrusion Detection
System/Intrusion Prevention System (IDS/IPS) and/or firewall
technologies which use highly classified tools, or Indicators of
Compromise, such as cryptographic signatures and analytics
tools, to defend a host that is either unclassified or resides at a
low security boundary. For example, one implementation is a
network sensor that is composed of classified technology but
is required to examine traffic on an unclassified system. The
sensor employs IDS/IPS technology which must not leak any
information, including covert channel information such as time
or power, about itself while operating in a low environment.



2) Data Sharing: Secure information sharing must be re-
alized between compliant parties in systems such as Fusion
Centers, Real Time Tactical Information Centers, and Real
Time Crime Centers where threat intelligence sharing (TIS) is
required. One application of our CDS is in a blockchain-based
TIS environment for robust and automated cyber security
management (CSM). Our solution can be adapted to a system
architecture based upon the B2CSM architecture, described
in [43], with the goal of achieving secure intelligence col-
laboration through data collection, aggregation, analysis, and
threat-related information dissemination to critical parties.

3) Big Data/High Performance Computing: Today’s infor-
mation processing workload on cloud/big data infrastructure
makes apparent the need for scalable, remotely deployable,
and high performance CDS systems. The current funnelling
approach to data manipulation across classification boundaries
in Big Data/Cloud environments degrades system performance
to the point of ineffectiveness. These platforms require too
much data to move efficiently as current approaches do which
is inconsistent with MapReduce — the distributed computing
paradigm for big data where the computation is moved to
the data nodes as opposed to the data being moved to the
computation [21]. Our CDS system is adaptable to big data and
high performance computing environments where distributed
parallel processing, including the access and transfer, of large
data sets is commonplace. In the case of a big data platform,
our solution is consistent with MapReduce in that it moves the
computation to the data. In the case of a high performance
computing platform, our solution can move the data to the
compute nodes. vCDS is a versatile solution that provides
the needed scalability and low cost implementations in a field
ruled only by highly specialized systems [13, 18]. Our solution
can achieve high performance/BDP goals as a general purpose,
security baseline solution with very little cost, and is adaptable
to the particular use case.

C. Threat Model

The threat model focus is to prevent the compromise of
data confidentiality through various information disclosure
attacks, specifically focusing on attempts to leak data from the
high side to the low side entities. Common vectors by which
attackers are able to create data spillage in sensitive computer
systems include covert channels, unauthorized access to re-
sources, and disrupting the flow of data by forcing movement
against the intent [42]. Furthermore, the threat model includes
powerful adversaries who are given insider access and, there-
fore, are granted privileges that an outsider would not possess
[24]. The attack surface includes all communications between
the secure enclave and the high side target [22]. For example,
powerful attackers who are able to spoof the secure enclave to
intercept high-trust communications are a grave threat to data
confidentiality. The model also “includes all software attacks
and the physical attacks performed on the main memory and
its non-volatile memory” [24] and, also, physical bus attacks.

Fig. 1 provides insight into the hardware and software
vulnerabilities defined in our threat model as well as refer-
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Fig. 1. Threat Model Matrix

ences to the various mitigations employed by each technology
component (including an optional guard) of our system which
are further discussed later in Security Analysis.

D. Security Requirements

There are three essential property measurements expressed
in a comprehensive CDS protection plan, as detailed by [15,
22]: (i) defensive effectiveness: timely and accurate preven-
tion and response, system flexibility; (ii) confidentiality: data
content protection from unauthorized parties; and (iii) oper-
ational relevance: usable and accessible in multiple opera-
tional environments. These three measurements re-enforce our
primary security objective to protect confidentiality of data.
While our system is equipped to protect and enforce other
objectives in the CIAAA, these are orthogonal to our main
objective. In order to achieve data confidentiality and enforce
our protection plan in the presence of the threats mentioned
above, the security design needs to ensure the following which
are discussed in Security Analysis: Hardware Protections
and Memory Encryption, Trustworthy Components, Decidable
Object Security and Staticity, Computation Isolation, and Data
Flow Restriction.

E. Architectural Design

High Side
Management Network

Layer 3 Low Side I
A

Layer 2
&7
Trusted Execution
P
Layer 1| Hardware || CPU I o ror o e [|NIC

Fig. 2. General purpose vCDS architecture

In order to achieve the security objectives mentioned above,
we propose the following CDS security architecture, depicted
in Fig. 2, with three layers which include the (i) Hardware,
(i) Computing Base, and (iii) Software Components.

1) Hardware: Found in Layer 1, the hardware-based TEE
capability corresponds to all High Side (Layer 3) data and
computations while the Low Side (Layer 3) leverages the



basic hardware capabilities. Within the hardware level there is
also a central processing unit (CPU) and a network interface
card (NIC). The CPU manages all processing of data for the
components residing in Layers 2 and 3. The NIC functions
only with the High Side and guard on Layer 3.
2) Computing Base: In Layer 2, on top of the TEE, is
a formally verified, TCB which serves as the fundamental
component in this system and allows our solution to be easily
adapted to different implementation requirements and CDS
architectures. The TCB ensures integrity and confidentiality
through a trustworthy codebase and access controls providing
isolation and staticity — further discussed in Security Analysis.
3) Software Components: In Layer 3, there are two separate
processes running on top of the formally verified TCB: one
that represents the High Side and one that represents the Low
Side. The Low Side component manages the low classified
data while the High Side manages the higher classified data.
The High Side leverages one device and driver in order
to communicate with a high side management network (C2):
a NIC. The High Side tunneling strategy allows the isolated
high enclave to communicate with components of the same
classification which, in our case, is an optional guard and
the C2. Functions of the latter are relative to the system,
for example, the C2 in a CDS with the primary purpose of
analyzing and filtering network traffic would need to regu-
larly push signature updates and blocking actions to sensitive
intelligence sensors and traffic analyzers as well as receive
alerts should a malicious packet be discovered. In a distributed
computing CDS system, the C2 would regularly push code
to each computing node which would then run an operation
defined by the code and send the results back to the C2.
Before data passes from high to low, there is an optional
guard that functions as a filter to ensure that no high sensitive
data are passed to low. The guard is not required in implemen-
tations where the high does not pass data back to low. This
guard can have several additional functions like sending alerts
back to the High Side, but in any case, it has bi-directional
communication with the High Side as it resides at the same
classification level. This is an important distinction from the
rest of the data flow model because the direction of data flow is
restricted with a data diode as depicted with a diode symbol in
Fig. 2. We further discuss the data diode in Security Analysis.

F. Security Analysis

Now we analyze how the security architecture achieves the
security objectives and requirements mentioned above.

1) Hardware Protections and Memory Encryption: Relative
to the High Side, the TEE is used to mitigate attacks from
more privileged software and physical attacks with transparent
memory encryption as well as protection of memory at rest,
memory in transit, and memory in use which helps mitigate
our threat model. Additionally, we add padding mechanisms
to increase execution time of data processing to mitigate data
leakage through timing analysis. Note that [36] presents a
method to eliminate timing channels and cross-domain tempo-
ral interference in a formally verified microkernel, discussed in

the following paragraph, though it has not yet been integrated
as of this writing. It is important to note here that without the
TEE, our solution provides complete formal verification but
lacks the security measures required for a secure, remotely
deployable system. With the TEE, our system achieves our
objective of secure remote deployability, however, at the time
of this writing, no effort has been made to formally verify
the enhancement of our solution. The formal proofs for the
enhancement are intended for future development.

2) Trustworthy Components: The formally verified code
base assures that no software vulnerabilities exist in its op-
eration and that the system is proven trustworthy.

3) Decidable Object Security and Staticity: A capability-
based access control model governs all kernel services so that
any applications wanting to perform an operation must invoke
a capability that has sufficient access rights for the service
making object security decidable [2, 11, 40]. There is no
implicit memory allocation within the kernel, only explicit re-
quest via capability invocation [11]. Furthermore, all hardware
resource partitioning is governed by capability distribution,
that is, authority distribution. The component architecture
model combines with the capability model to enforce szaticity
— a property which ensures that configurations occur before
compile time so that all channels and privileges are pre-
allocated and that no channels or added privileges can exist
outside of what is predefined. Therefore, the threat vectors
involving attacks stemming from dynamic creation of channels
and propagation of privileges are mitigated. The access control
model also allows the system to grant specific communication
capabilities which enable authorized and controlled communi-
cation between components, thus enabling, with a high degree
of assurance, component isolation [40]. Component isolation
and communication authenticity further mitigate threat vectors
outlined in our threat model by ensuring that no user or process
can access resources without authorization.

4) Computation Isolation: In addition to kernel and kernel-
enforced component isolation, we have component and com-
putation isolation within the High and Low Side domains.
On the Low Side, the necessary drivers and data management
services and computation are isolated from the High Side. In
contrast, the High Side hides all sensitive intelligence used to
analyze the low data from the Low Side.

5) Data Flow Restriction: The data diode ensures that data
can only travel from low to high and never back to low, thus
mitigating the confidentiality threat model. If the data must
travel from high to low through a corresponding data diode,
the data will first pass through the guard which ensures that
no sensitive data are passed to the low, again mitigating threat
vectors in our threat model.

For whichever use case vCDS is implemented, secure
communication between components of the same classification
level helps to mitigate the threat vectors in our threat model,
while providing a secure path of remote deployability.
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V. THE vCDS IMPLEMENTATION

The following section details the resilient, cross-layer im-
plementation of vCDS and each system component, shown in
Fig. 3, from our selection of hardware TEE to our use and
development of software applications used by the high and
low components. Note here that the described implementation
is tailored to our stream processor application, which we
call a network sensor (IPS/IDS), for the purposes of better
understanding the architecture.

A. For Realizing Layer I in the Architecture: AMD EPYC with
SEV/SME

1) Implementation: We selected the AMD EPYC pro-
cessor with it’s Secure Encrypted Virtualization (SEV) and
Secure Memory Encryption (SME) technologies to use as our
hardware-based TEE to secure the high components as it sup-
ports the protection against the threat vectors outlined in our
threat model. The hardware accelerated memory encryption
mechanism has two components, the AMD Secure Processor
and the AES-128 hardware encryption engine [30]. The Secure
Processor is a dedicated security processor which provides
cryptographic functionality for secure key generation and key
management. The encryption engine encrypts data as it is writ-
ten to main memory and decrypts data as it is read from main
memory when provided with the key. SME employs a single
session-sensitive key, generated by the AMD Secure Processor
at boot, to encrypt all of system memory. The functionality of
SME provides encryption capabilities for data at rest, data
in transit, and data in use. Furthermore, memory encryption
is transparent so it can support any operating system. SEV
leverages one cryptographic key per VM to enforce isolation
between each VM, the host, and the hypervisor.

2) Security Analysis: VM isolation ensures that if an at-
tacker has access to the hypervisor, host, or has control over
one VM, the attacker will not be able to read the memory of
any other VMs as the memory will be encrypted. Our system
takes advantage of the per-VM encryption keys to ensure that
High Side data confidentiality is maintained in the hardware.
Additionally, when the CDS use-case calls for a high side
remote management network (C2), the isolation of the VM

from the host and the hypervisor supports our goal of remote
deployability [27].

B. For Realizing Layer 2 in the Architecture: sel4

1) Implementation: We have chosen to implement the sel.4
operating system microkernel as our TCB, in order to leverage
the trustworthiness provided through its formal verification and
security guarantees.

The access control model components used in selL4 are
capabilities. Capabilities are “access tokens which support
very fine-grained control over which entity can access a
particular resource in a system” [44]. A capability, which is
an immutable object reference, enforces the principle of least
privilege by ensuring that the only way an operation can be
performed on a component is by invoking the capability which
is pointing to that object, thus restricting the granted rights to
the absolute minimum required to perform the operation.

2) Security Analysis: selL4 is the only existing capability-
based microkernel system with a proof of functional cor-
rectness which “guarantees that every behavior of the kernel
is predicted by its formal abstract specification” [44]. The
microkernel is also provably secure — “seL.4 comes with further
proofs of security enforcement” [20], and employs the Take-
Grant protection model such that, “in a correctly configured
seL4-based system, the kernel guarantees the classical security
properties of confidentiality, integrity and availability” [44].
seL4 further ensures safety of time-critical systems by being
the world’s fastest performing microkernel while providing
fine-grained access control [16, 44].

C. For Abstracting Layer 2 and Linking to Layer 3 Compo-
nents: CAmkES

1) Implementation: In order to abstract away the low-
level seL4 components, we have chosen to utilize the com-
ponent architecture for microkernel-based embedded systems
(CAmMKES) framework. This component framework allows
us to build and manipulate our CDS on top of the static
architecture of seL4. CAmKES abstracts over low-level kernel
mechanisms, providing communication primitives and support
for decomposing a system into functional units [33]. CAmkES
components use dataports, which are port interfaces, to enable
one component to pass large amounts of data to another com-
ponent. Dataports are made available to CAmKES components
as shared memory regions at runtime.

2) Security Analysis: CAmKES grants our system the as-
surance that the components, interfaces, and connectors which
have been specified in the architecture description language is
an accurate representation of all possible interactions and that
any interaction beyond what is specified will not materialize
[44]. Additionally, our dataport configuration is an explicit
data diode that allows us to pass data structures through the
protected seL4 kernel via a unidirectional interface without the
possibility of leaking information through the component or
kernel layers.



D. For Realizing Layer 3 in the Architecture: Linux and sel4
Native Process

1) Implementation: To represent the High and Low Side
domains, we elected to use virtual machines to run our custom-
built Linux kernel due to practicality of implementation. The
Low Side handles incoming traffic and transports the appro-
priate data to the High Side for processing. Communication
from high to low within the network sensor application is
a separate channel protected by a guard. The guard or filter
we have developed is an optional guard component which we
specifically elected to use in our stream processor application.

2) Security Analysis: One of the processes applied to the
data on the High Side is an IPS/firewall, which, in our case,
is Snort [49]. The filter adheres to the primary objective
of integrity by implementing both an integrity guard and a
firewall which we call a disposition guard. The integrity guard
ensures that upon crossing a trust boundary, the data have
not been modified. Our implementation leverages the speed
and security of the Blake3 cryptographic hashing algorithm in
order to check the integrity of the data. While Blake3 is not
formally verified, we leverage n-version programming in order
to improve the algorithm’s reliability. The disposition guard
filters packets in or out based on a list of source IP addresses,
ports, and other properties to further mitigate threats.

VI. ANALYSIS AND EVALUATION

In this section we demonstrate the performance of vCDS
through carefully selected benchmarks which measure the
throughput transfer of data from the Low Side to the High
Side. Fig. 4 depicts the vCDS pipeline throughput, that is, the
number of bytes which can be processed in one second of
operation, compared to that of a native Linux process which
uses shared memory as a transfer channel. There are two
throughput measurements, a partial transfer where the data
is available to high without any processing taking place, and
a full transfer where high does process the data. Additionally,
we include the performance overhead of vCDS.

Throughput (Bytes/Second)
Pipeline Transfer vCDS Native Linux Process | vCDS Overhead
Partial 326,705,400 403,745,175 19.1%
Full 150,696,450 214,413,750 29.7%

Fig. 4. vCDS vs Native Linux Process Throughput in 1 Second

VII. DISCUSSION

Limitations. The vCDS implementation has three limitations.
First, the vCDS design inherits the limitations of its building-
blocks. Specifically, the verified properties of sel.4 are not
complete in the sense that they do not capture time properties
[34, 38]. This presents the risk of an attacker opening a
covert timing channel which could be exploited to attack sel.4
and thus vCDS. Additionally, the verification of seL4 comes
with three assumptions described in [44]: (i) the hardware
behaves as expected; (ii) the specification is correct; and
(iii) the theorem prover is correct. It remains to be a challenge
to validate these assumptions. Second, although CAmKES,

leveraged on top of selL4, can offer formally verified security
enforcements when correctly configured [20], there is, to the
best of our knowledge, no existing formulation to verify that
a CAmKES configuration is correct. Third, the use of AMD
SEV/SME exposes our system to some potential threats that
are not considered in our threat model [28, 39, 41, 46].
Future Work. In addition to addressing the limitations men-
tioned above, there are three research directions for future
studies. First, in order to further enhance the security of vCDS
systems while reducing their cost and addressing scalability
limitations associated with vendor hardware, it is interesting
to instantiate the abstract TEE used in the vCDS architecture
via RISC-V based Keystone Enclave. This is possible because
Keystone claims to solve many of the limitations surrounding
AMD’s SEV/SME and Intel’s SGX schemes, and it is available
for independent, hardware formal verification [45]. Second,
it is useful to test the scalability and performance of vCDS
in real-world big data and cloud computing environments.
Third, to assure the implementation of proper access control
configuration for any particular use case, it is useful to develop
an auditing tool. The model validator will ensure that a specific
CAmKES assembly guarantees no leak of information from
high to low can occur with our data diode implementation.

VIII. CONCLUSION

In this paper we have examined the state-of-the-art in CDS
technology and detailed the problems and concerns associated
with the systems. As a response, we have presented a solution
to the issues described herein with our system, vCDS. To
the best of our knowledge, vCDS is the first CDS system
built upon a formally verified TCB. The main objectives of
this system are to ensure trustworthiness, promote multi-sector
availability through effective, low-cost technologies and allow
secure deployment of the system remotely. vCDS provides a
new and much improved security baseline tailored to defensive
effectiveness, data confidentiality, and operational relevance,
allowing us to build systems which cater to many different
environments (e.g. cloud), use-cases and functionalities on top
of a security assured system. Furthermore, the inherent risks
and limitations of our system are well understood and do
not conform to the defacto standard of ad hoc solutions and
security through obscurity. Our hope is that these limitations
influence further evaluation and research on this topic.
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