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Abstract

We address the prediction of the number of new cases and deaths for the coro-
navirus disease 2019 (COVID-19) over a future horizon from historical data
(forecasting). We use a model-based approach based on a stochastic Susceptible-
Infections-Removed (SIR) model with time-varying parameters, which captures
the evolution of the disease dynamics in response to changes in social behav-
ior, non-pharmaceutical interventions, and testing rates. We show that, in the
presence of asymptomatic cases, such model includes internal parameters and
states that cannot be uniquely identified solely on the basis of measurements
of new cases and deaths, but this does not preclude the construction of reliable
forecasts for future values of these measurements. Such forecasts and associ-
ated confidence intervals can be computed using an iterative algorithm based
on nonlinear optimization solvers, without the need for Monte Carlo sampling.
Our results have been validated on an extensive COVID-19 dataset covering the
period from March through December 2020 on 144 regions around the globe.
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1. Introduction

The recent global epidemics of SARS first reported in 2003, Swine flu in 2009,
MERS in 2012, Western African Ebola in 2013, Zika in 2015, and COVID-19 in
2019, identified building epidemic models specifically aimed at forecasting the
propagation of contagious diseases as a key need to guide epidemic response
[33, 37]. Motivated by this need, the main goal of this paper is to compute fore-
casts for the number of new cases and deaths due to the COVID-19 outbreak
to aid decision makers in provisioning healthcare resources or imposing non-
pharmaceutical interventions. In this context, forecasts must reliably provide

*Corresponding author
Email addresses: hespanha@ece.ucsb.edu (Jodo P. Hespanha),
raphaelchinchilla@ucsb.edu (Raphael Chinchilla), ramon@coep.ufrj.br (Ramon R.
Costa), m_erdal@ucsb.edu (Murat K. Erdal), guosongyang@ucsb.edu (Guosong Yang)

Preprint submitted to Annual Reviews in Control May 5, 2021



measures of confidence to enable decision makers to plan for worst-case scenar-
ios. We construct such forecasts using a time-varying stochastic Susceptible-
Infected-Removed (SIR) epidemic model, that is fitted to daily measurements
of new cases and deaths.

SIR epidemic models are based on the assumption that each individual of
a population is in one of three basic states: susceptible to infection, but not
yet infected by the virus; infective and thus contagious; and removed from
the infective state either because the individual developed antibodies and is no
longer susceptible to the infection or because the individual passed away. In this
paper, we consider compartmental SIR models that are focused on counting the
number of individuals in each of the states (also known as compartments). The
estimation of the state and parameters of an SIR models is typically based on a
measurement model that maps the model’s state to time series of measurements
that typically include daily counts of newly discovered infected patients and
deaths.

The SIR dynamics and measurements depend on a number of key parame-
ters that include the infection rate that can be interpreted as the probability
that a susceptible individual will become infected due to interactions with in-
fected individuals; the removal rate that can be regarded as the probability that
an individual leaves the infective state; the deaths reporting rate that can be
regarded as the probability that a new death is reported; and the new-cases
reporting rate that can be regarded as the probability that a new infection is
reported. These parameters are strongly influenced by biological properties of
the pathogen that causes the disease, such as its ability to travel from individual
to individual, the body’s natural ability to fight it, and whether or not the dis-
ease exhibits noticeable symptoms when an individual is infected. However, all
these parameters are also strongly influenced by external sources, which from
the perspective of an SIR model, often dominate in determining their values:

1. The infection rate is greatly modulated by the degree to which the pop-
ulation is engaging in social distancing, which in turn depends on media
coverage of the epidemic and nonpharmaceutical interventions.

2. The removal rate expresses the rate by which patients leave the state in
which they can pass the disease to susceptible patients, which may be
quite different from the rate at which they get cured (or die). This rate is
thus strongly effected by social behavior and policies regarding quarantine,
contact tracing and testing, since a patient can stop infecting others much
earlier than cure/death.

3. In the absence of testing of asymptomatic individuals, the reporting rate is
essentially the fraction of symptomatic patients; otherwise it will depend
strongly on the policies in effect regarding the testing of asymptomatic
individuals.

The strong dependence of the SIR parameters on social factors prevents extrap-
olating their values across time and space: one cannot estimate the value of a
parameter in one region/time and expect it to remain the same in a different



region or even in the same region at a later time. These observations motivate
two key choices behind this work: All SIR parameters need to be learned from
data collected on a relatively homogeneous region of space and the parameter
values must be allowed to drift over time.

Motivated by the observations above, we introduce in Section 2 a stochastic
SIR model with three sources of stochasticity: First, we introduce a stochastic
component to the number of individuals that transition between states; second,
we assume that daily measurements for the number of new cases and deaths are
corrupted by (stochastic) noise; and finally, we take the key model parameters
as random walks that drift over time. The variances associated with all these
stochastic components need to be learned from data and, for the reasons outlined
above, we do not extrapolate their values across different countries/regions.

From a methodological perspective, we regard forecasting as computing the
a posteriori distribution of the random variables that we want to estimate, and
subsequently extracting from those distributions point estimates and associated
confidence intervals. The a posteriori distributions depend on unknown param-
eters that are estimated using maximum likelihood. The key challenge of this
approach is that, because the SIR model is nonlinear, it is not possible to com-
pute in closed form the likelihood function and the corresponding a posteriori
distributions for the variables that we want to forecast. We overcome this by
essentially using Laplace’s method to approximate the integral that appears in
the formula of the likelihood function. We show in Section 3 that this approach
enables the computation of the maximum likelihood values for the unknown pa-
rameters and the a posteriori point estimates and associated error covariances
through a single deterministic optimization that can be solved numerically. For
large datasets this optimization may be computationally difficult, so we pro-
pose an iterative algorithm that alternates between two smaller optimizations
for which the computation required by a 2nd order numerical solver scales lin-
early with the length of the dataset and the forecasting horizon. This approach
is quite general and can be used for much more general estimation/forecasting
problems.

Our modeling and forecasting approaches were validated on an extensive col-
lection of COVID-19 datasets. For 144 regions around the world, we computed
weekly 7, 14, and 21 days-ahead forecasts from March to December of 2020 for
the number of new cases and deaths due to COVID-19. These forecasts and all
the associated initial conditions and parameter estimates were computed solely
using past data and then compared with the actual (future) data. We started
to produce forecasts with as little as 21 days of data, but it generally took 4-5
weeks of data to start getting confidence intervals that are somewhat tight.

We show formally in Section 2.3 and observe numerically through the results
in Section 4, that an SIR model that includes an unknown reporting rate is
unidentifiable, in the sense that multiple sets of parameters can explain the
same observed data with equal likelihood (in the sense of maximum likelihood).
This means that there is a fundamental ambiguity in estimating SIR model



parameters from measurements of new cases and deaths; an observation that is
often ignored but had been made in prior work [13]. However, this ambiguity
does not prevent the computation of reliable forecasts for the daily number of
news cases and deaths. This is because the ambiguity exists in parameter space
but not on the space of the variables that we are trying to forecast. In essence,
while multiple sets of parameters may have the same likelihood, they result in
consistent forecasts.

To study the importance of parameter drift, we compare our proposed stochas-
tic SIR model with a hierarchy of simpler models for which we take the infec-
tion, new-cases and/or deaths reporting rates to be constant, rather than time-
varying; and also consider a more complex model with a time-varying removal
rate. Across a large number of countries/regions, we conclude that taking all of
these parameters, or even just the infection rate, to be constant leads to poor
results; either resulting in gross violations of the confidence intervals or to overly
wide confidence intervals for the forecasts. This is especially noticeable (and not
surprising) in regions that show multiple waves of infection, which could never
be explained by a constant parameter SIR model. The numerical results also
show that, in general, taking all parameters to be time varying does not result in
forecasts that are significantly better than those obtained by assuming that the
death rate is constant. In fact, for most countries/regions assuming constant
removal and death rates result in more accurate forecast.

Related work

The basic SIR epidemic model with the number of new cases proportional to
the product of the numbers of susceptible and infected individuals can be traced
as far back as the work of Hamer [20]. Since then, SIR models have evolved
in multiple directions, including incorporating stochastic effects [3-7, 24, 26,
40], the addition of new compartments corresponding to different states of the
disease [11, 17, 19, 23, 25, 27, 34, 41], and considering a network of interacting
populations [16, 31, 39, 42, 43]. The reader is referred to [22] for an historical
perspective on deterministic SIR-like epidemic models and their analysis and to
the monograph [9] for the application of such models to several diseases.

A common feature to many recent models is the addition of states to address
the existence of individuals that are infected and can transmit the disease, but
are asymptomatic and thus are not accounted for as infected in official reports
[11, 19, 23, 27, 28, 41, 44]. The addition of states has also been used to ac-
count for individuals under quarantine [28, 34], infected but not yet infective
[17, 23, 27, 28, 34], asymptomatic but diagnosed through testing [19, 27], and
hospitalized [28, 41]. The inclusion of more states and the associated param-
eters that determine the rates of transfer between states, facilitates matching
measurements with the model outputs. However, it also makes the model iden-
tification problem more formidable, especially because most of these parameters
may change as the epidemic evolves. In fact, it was shown in [36] that adding an
“exposed” (E) state (i.e., infected but not yet infective) to a basic SIR model,
actually results in a worse value for the Akaike Information Criterion. This



essentially means that, while an SEIR model can better represent the data, this
improvement does not suffice to justify the additional model complexity.

It is widely accepted that beyond the initial outbreak, the parameters of
an SIR model vary in response to changes in social behavior and medical ad-
vances. A common approach to address this consists of breaking the epidemic
into stages and identifying a different set of model parameters for each stage
[19, 41], with the times of the transitions between stages typically selected to
coincide with the introduction of nonpharmaceutical measures. The model used
in [38] assumes piecewise constant infection rates that remain constant over an
intervals of length J, that is learned from data. The model in [10] expresses
the time-varying parameters through a linear combination of pre-specified time
functions, with the coefficients of these linear combinations identified from data.
This permits more realistic smooth variations of the parameters, but makes the
forecast highly dependent on the choice of the basis functions, which must be
pre-specified and not learned from data. In [2], the infection rate is assumed
to be monotone decreasing, evolving according to a deterministic differential
equation that depends on 3 parameters that can be adjusted. The model [23]
considers a time-varying infection rate that is assumed to be a linear combina-
tion of a set of explanatory covariates that include seasonality, mobility, testing
rates, and mask use. The coefficients of this linear combination are estimated
from data.

Stochastic SIR models appeared in many flavors: [5, 6] considered stochas-
ticity in the delay from the time an individual gets infected until he/she becomes
infective, leading to an integral differential equation with delays; [24] introduced
stochasticity in the form of an additive stochastic perturbation, resulting in a
stochastic differential equation; and both these sources of stochasticity appear
combined in [7, 40]. A fundamentally different stochastic model was proposed
in [4], where individuals enter and exit the infective state at points on Poisson
processes. It considers different rates for the Poisson processes regarding on
whether individuals share the same household, workplace, etc. A more con-
ventional SEIR model in the form of a continuous-time Markov process was
considered in [26]. As in [7, 24, 40], our paper considers additive stochastic per-
turbations, whose variances are estimated from data. However, we shall see that
our numerical results for COVID-19 indicate that this stochastic effect rapidly
becomes negligible as the epidemic progresses. The key stochastic component
to our model will turn out to be the SIR model parameters, which we regard
as realizations of Gaussian random walks with unknown variances that must be
learned from data.

The identification of SIR models based on fitting cumulative data of the total
number of cases and recoveries since the start of the epidemic has been widely
used in the literature [10, 13, 17, 19, 27, 34, 39, 41, 44]. However, it was shown
in [26] that the use of cumulative data can lead to non-independent successive
errors, resulting in confidence intervals that suggest a degree of precision that is
not consistent with the data. In view of this, and as in [36, 38], our identification



procedure is based on daily counts of new patients and deaths, rather than
cumulative counts of infected, removed, and dead patients.

An additional aspect in which our work differs from a large number of previ-
ous works on epidemic forecast is that we learn all model parameters from data,
whereas much of the prior work relies on a combination of fitted parameters
with “clinical information” [19, 27, 28, 34, 41]. As noted above, we opted to
avoid relying on external data as all SIR parameters are strongly dependent on
social behavior that is hard to extrapolate over time and space. Notable works
that are mostly data driven include [10, 13, 23]. However, [23] brings to the
epidemic model a large corpus of external data in the form of covariates which
are assumed to “explain” the future evolution of model parameters.

2. SIR Stochastic Modeling

Denoting by v(t) the number of patients that were infected during day t and
by p(t) the number of removed patients on day ¢ (i.e., patients that exited the
infective state either through death or recovery), we have that

S(t+1)=5(t) —v(t), (la)
I(t+1)=1(t) +v(t) —pt), (1b)
R(t+1) = R(t) + p(t), (1c)

where S(t), I(t), and R(t) denote the cumulative numbers of individuals sus-
ceptible to the infection, infective patients, and removed patients, respectively,
at the start of day ¢. A classical SIR model postulates that

plt) = 7101, vty = 2 9s0), 2

0

where v denotes the remowval rate, which corresponds to the fraction of patients
that leave the infective state on a particular day; Ny the total population; and
BI(t)/Ny the fraction of susceptible individuals that become infected on day ¢.
This model assumes that this fraction is proportional to the fraction I(t)/Ny of
the population that is infective and the proportionality constant g is known as
the infection rate.

We consider two key deviations from this classical SIR model

(i) We add stochasticity, by regarding the daily number of new infective patients
v(t) and the daily number of removed patients p(t) as random variables
whose means are given by (2) but exhibit day-to-day stochastic variability.

(ii) We take the infection rate B(t) to be time-varying and the realization of a
random process that reflects the changes in population behavior over time.

These modifications lead to a stochastic SIR model that replaces (2) by

I(t)

p(t) = 7I(t) + dp(D), v(t) = Bt) 7~ S(0) + du (0),



where d,(t) and d,(t) are zero-mean independent Gaussian random variables
that account for the daily stochastic variability of v(t) and p(t); and the infection
rate B(t) is also a random process. In Section 4.4, we also consider a variation
of this model with a stochastic time-varying removal rate +(t), but we shall see
that this does not appear to introduce significant improvements to the quality
of our forecasts.

2.1. Measurement Model

To identify the dynamics (3) and produce forecasts we use (noisy) measure-
ment of daily new cases, of the form

yo(t) = o()r(t) + wy (t),

where the w, (t) denote zero-mean independent random variables that account
for stochastic errors in the daily counts of new reported cases and ¢(t) € (0,1]
the fraction of infected patients that are reported as new cases on day ¢t. The
need to consider values ¢(t) < 1 arises from the observation that a significant
fraction of the newly infected patients may not be reported because they are
asymptomatic, they have not been tested, or simply because their disease has
not been reported to the entity that is keeping track of new cases. It is important
to model ¢(t) as a time-varying parameter because, as a pandemic progresses,
one should expect significant variations in the number of asymptotic people
that get tested and reported. In the sequel, we refer to ¢(t) as the new-cases
reporting rate, with the understanding that this parameter actually depends on
a large number of factors aside from the actual reporting rate of the population.

The use of a measurement model based on daily new cases, rather than on the
cumulative number of cases, is strongly supported by the results in [26] showing
that identification based on cumulative measurements with uncorrelated noise
leads to an underestimate of uncertainty.

In addition to daily counts of new cases, we also assume that we have avail-
able measurements that are roughly proportional to the number of infections,
such as the daily number of deaths, the number of hospitalized patients, or the
number of patients in intensive care units (ICU). The results presented here
use only the number of deaths, which is available for a very large number of
countries and regions. This measurement model takes the form:

yp(t) = w()I(t) + wp(t),

where w(t) denotes the deaths reporting rate, which corresponds to the expected
value of the fraction of infective patients that is likely to be reported as dead
due to the epidemic on day t; and where the wp(t) are zero-mean independent
random variables that account for stochastic errors. In practice, a fraction of the
pandemic-related deaths may not be reported as such because of asymptomatic
cases, so the deaths reporting rate w(t) must actually reflect the fraction of
infected patients that died and whose death was associated with the pandemic.
Variability in w(t) thus arises from a combination of factors that include medical



advances in treating the disease, load on the healthcare system that may limit
the patients’ access to healthcare resources, as well as testing and the policy
used to determine which deaths are attributed to the pandemic.

2.2. Full Time-Varying Model

The conservation law
St)+I(t)+ R(t)=S1)+1(1)+ R(1) = Np.

enable us to eliminate one of the three state variables in (1) and write the full
model presented above in terms of the numbers of removed R(t) and unsuscep-
tible U(t) == R(t) + I(t), Vt individuals, leading to

R(t+1) = R(t) + v(U(t) — R(t)) + d,(t), (3a)
U+ 1) =00+ 5000 - RO) (1- 52) + 4.0 (31)
wl®) = o0 (500 - ) (1 - B2) 4, 0) +wle), (30
yolt) = wO(U (1) ~ R + wn(t), (34)

where we used the facts that I(t) = U(t) — R(t), S(t) = No — U(t), Vt. This
selection of states has the benefit that the dynamics in (3a)—(3b) have indepen-
dent disturbances d,(t) and d, (t), which would not be the case, e.g., if we were
to work with the states R(t) and I(¢).

The key problem under consideration is to use measurements y,(t), yp(t)
taken over a window of time ¢ € {1,2,..., T} to produce forecasts for the values
of the same measurements on a future horizon t € {T +1,T+1,..., T+ P}. To
solve this problem we use the model (3) to compute the a posteriori distribution
of the forecasts given the available measurements, with all model parameters
in (3) learned from the available measurements. These parameters include the
removal rate 7, the original population Ny, the infection rate 5(t), the deaths
reporting rate w(t), and the new-cases reporting rate ¢(t). We take the time-
varying parameters to be Gaussian random walks of the form

Bt +1) = B(t) +ds(t), (4a)
Pt +1) = ¢(t) + dy(t), (4b)
w(t+1) = w(t) + do(t), (4c)

where the dg(t), d,,(t), dy(t) are independent zero-mean Gaussian processes with
unknown variances, which are independent of the disturbances and measurement
noise in (3). In practice, the specific realizations of these random processes
will depend on a multitude of events, including the population’s behavior, the
enforcement of non-pharmaceutical interventions, the availability and policies
regarding testing of symptomatic and asymptomatic individuals, quarantine
policies and practice, etc.



Under the model (4a) with zero-mean Gaussian increments, given a specific
value for the parameter 3 at day t, the most likely value of 8 at day ¢+ 1 is still
B(t), in the absence of any additional information. However, given numerical
values for future measurements (3c)—(3d), the a posteriori distribution of 5(t)
will change and 5(t) will generally not be the most likely value for (¢ +1). It is
thus important to emphasize that the random walk model in (4) simply encodes
an a priori assumption on the evolution of the time-varying parameters. We
shall see in the numerical results shown in Section 4 that the estimates for these
parameters derived from their a posteriori distributions will not have zero-mean
increments.

Zero-mean independent increments for the parameters can be viewed as a
very weak model that makes no a priori assumptions on how each parameter
will vary from one day to the next. This assumption reflects the desire expressed
in the introduction to make as few assumptions as possible on the evolution of
the epidemic parameters.

In terms of forecasting, the use of zero-mean increments in (4) that are inde-
pendent across time means that the past measurements collected up to time T'
provide no information about the value of future increments dg(t), dy(t), duw(t),
t > T and thus their most likely a posteriori value is still zero. Consequently,
the mean a posteriori values of 5(t), ¢(t), and w(t) will remain constant after
time T'. However, the past data does provide information about the (unknown)
variances of these increments and therefore the future forecasts will take into
account that the a posteriori variance of the parameters grows linearly with
time at a rate determined by the estimated increments’ variances, which will be
directly reflected in the confidence intervals associated with the forecasts.

Remark 1 (Hospitalization and ICU use). When we have available daily mea-
surements of the number of hospitalized patients yy () and/or the number of
patients in ICU units yicu(t), the model (3) can be expanded to include mea-
surements of the form

yu(t) = wu (t)(U(t) — R(t) +wu(t),
yrcu(t) = wicu (t) (U(t) — R(t)) + wicu(t),

and all the results in this paper extend trivially to this enlarged set of measure-
ments. ]

2.8. Identifiability and Forecastability

For every value of the constants Ny, ¢(1) > 0, making the change of variables

: ()N,

No — N, B ~ S PO (52)
(1) i o)

o) ~ 59, t) = S (5D)



Rt) - Ko — Dvy—rey), v -5 - Wv —vw), 50

o(1) ¢(1)

in the model (3) results in precisely the same measurements y,,(t), yp(t) for the
same measurement noise w, (t), wp(t) and disturbances

o) o a
dP(t) %(1) df (t)7 dl/ (t) % 1) du (t)a ) (6 )
da(t) = ool do(t) > Aol () > S, (o)

which means that the joint distribution of the outputs of the model (3) would
not change under the given transformation, if we were to adjust the (unknown)
variances of the disturbances to match (6). It turns out that (5)—(6) corresponds
to the only time-invariant affine transformation of U(¢) and R(t) that preserves
the structure of the SIR model (3) without changing the outputs.

A key consequence of the above observation is that, in the absence of ad-
ditional information, the model outputs do not permit the identification of the
original population Ny nor the initial new-cases reporting rate ¢(1); as the
true values of these parameters could be replaced by arbitrary values Ng, ¢(1)
without changing the outputs distribution. Moreover, any estimates of the re-
maining parameters can only be known up to the transformation in (5)—(6).
In spite of this, and precisely because this transformation does not affect the
output’s probability distribution, it remains possible to produce forecasts of fu-
ture outputs, even if states estimates will have fundamental ambiguities. This
argument shows that the model (3) is not identifiable, in the sense that the
measurements available do not suffice to identify unique values for the states
and parameters [13, 32].

The lack of state/parameter identifiability of (3), enable us to simplify this
model by setting arbitrary values for Ny and ¢(1), without compromising the
quality of the forecasts. We shall see in our numerical results that, once this
ambiguity has been resolved, we obtain a posteriori probability density function
of future outputs with finite error covariances, which means that the outputs of
(3) are forecastable.

Remark 2. It should be noted that the transformation in (5) can result in (not
physically meaningful) negative values for R(t) and U(t) if we pick Ny too small.
It may also result in rates ¢ larger than 1, if the initial rate ¢(1) was smaller
than 1 and it increased to values above that initial one. However, regardless
of whether or not these estimates are “physically meaningful” the forecasts will
remain unchanged. O]
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3. Nonlinear System Identification and Forecasting

We are interested in predicting the future states and outputs of a general
stochastic nonlinear system of the form?

Ti41 = f(xt,H) -‘rdt, Vt e {1,2,...}, (7&)
based on a finite set of measurements
yr = g(x4;0) + w, Vte{1,2,...}, (7b)

where x; € R™ denotes the state of the system, y; € R™ the measured output,
d; € R™ a stochastic disturbance, and w; € R™ a stochastic measurement
noise. The system dynamics in (7a), the measurements equation in (7b), and
the probability distributions of d; and w; depend on an unknown parameter
vector 0 taking value in a given set © < R"™?.

Measurements are available for (past) times ¢ € {1,...,T} for some integer
T > 0 and our goal is to forecast the state and output for future times ¢t €
{T+1,...,T + P} for some integer P > 0. Towards this goal, we need to
compute a maximum likelihood estimate 6 for 0

6 = arg maxlogp,(y1, .. -, yr;0), (8)
0O
where p, (-) denotes the likelihood function, and then use this estimate to com-
pute the a posteriori conditional distributions of the past and future states and
future outputs, given the measurements:

pz,y‘*’\y(xh e s XTHPy YT 4150 - - ayT+P‘y17 e ayT79) (9)

This could be accomplished by first computing the estimate 6 that minimizes (8)
and subsequently using an extended Kalman filter (or a variation of it, like an
unscented Kalman filter) to compute the conditional distribution of the future
states and outputs in (9). The procedure proposed here jointly computes (8) and
(9), without explicitly computing the output likelihood function that appears
in (8).

3.1. Maximum Likelihood Estimation

For nonlinear systems, it is generally hard to compute the probability dis-
tribution of the measured outputs that appears in the maximum likelihood
optimization in (8). However, even though the dynamics in (7) are nonlinear, it
is straightforward to compute the joint distribution of the state and output for
this model under mild Markovian assumptions, as noted in the following result,
which will be proved in Section 3.3.

1To shorten the formulas, in this section we denote time dependence through a subscript,
as in x¢ rather than z(t).
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Lemma 1. Assume that the disturbances and noise at each time t are condi-
tionally independent of all past disturbances and noise, given the state at time
t, specifically:

pdt,wt(dtawt‘xtvdtfla'"adlthflv"'awl;e)
= pa,w, (de, wi|ze;0),  Vte{l,2,...} (10)

where pa, w, (-|-) denotes the joint conditional probability density function (pdf)
of dy and wy. In this case, the logarithm of the joint probability density function
of the output and state sequences for the model (7) is given by

10g oy (Y1, - YT4+Ps T1, - - o, T4 P15 0)
T+P
= Z log pd, w, ($t+1 = [(@:0), e — g(z4;0) \th§9)~ (11)
t=1

O

The marginal distribution of the measurements needed for maximum likeli-
hood estimation in (8) can be obtained from the state and output joint distri-
bution in (11), using

py(yla ce YTy 6) = me’y(ylu ey Y74+ Py X1y s TTH P15 9)
dyT+1 e dyT+Pd£E1 e d$T+1, (12)

which requires an integration of the joint distribution with respect to all the
state variables and future outputs; an operation that generally cannot be done
in closed form for nonlinear systems. However, the following result (proved in
Section 3.3) provides a procedure to avoid this integration based on Laplace’s
method to approximate integrals [29]: Consider a measurement vector Y with
a probability density function of the form

py(Y;6) = JPY,Z(Ya Z;0)dZ,

where 0 is a vector of unknown parameters taking values in some set © and
py.z(Y, Z;0) is the joint distribution of ¥ and a latent random variable Z € R"#
that needs to be integrated out.

Lemma 2. Assume that, for every 8 and Y, the conditional distribution of Z
given Y is a multivariable Gaussian. Then the Hessian matriz
~ Plogpy,z(Y, Z;0)

H(Y,Z:0) = = (13)

does not depend on Z,

E[Z|Y] = arg maxlogpy z(Y, Z;0), CoV[Z|Y]=—H(Y,Z;0)"", (14)
ZeR"z
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and

nzlog(2m) logdet (—H(Y,Z;0))
2 2

logpy (Y 0) = + max logpy,z (Y, Z;0).

(15)

Consequently, the maximum likelihood estimator for 8 can be obtained by solving

1
ar%ergax ( ~3 logdet (— H(Y, Z;0)) + Jnax log py,z(Y, Z; 9)), (16)

and, in view of (14), the associated minimum variance estimator of Z is

7 = arg max logpy z(Y, Z;0)
ZeR"z

with associated error covariance equal to

E[(Z - Z)(Z - 2)|Y] = —H(Y, Z;0)"". (17)

Making the following associations

Y = (y1,...,yr) € RwT,

Z = (yT+1?"'7yT+P7:L‘17"'axT+P+1) Eanv nz = nyP+nw(T+P))

with the joint probability density function of these variables given by (11) in
Lemma 1, the formula (16) in Lemma 2 provides a method to compute the max-
imum likelihood estimate for 6. As a side product, we also obtain the mean and
covariance matrix of the a posteriori distribution in (9). This enable us to simul-
taneously obtain the maximum likelihood estimate of 6 and the corresponding
a posteriori distribution of the state and future output.

When the functions f and g in (7) are nonlinear and/or the disturbance
and noise distributions in (10) are not multivariable Gaussian, the conditional
distribution of the state given the output measurements will likely also not be
Gaussian and therefore (15) should be taken as an approximation of the true
marginal distribution. We shall see in the proof of Lemma 2 that the Gaussian
assumption is used to justify truncating the Taylor series of Z — log p.|,(Z]Y; 0)
at its second term since this function is quadratic for Gaussian distributions.
For non-Gaussian distributions, this truncation will introduce an error, but it
is possible to establish a bound on this error. This is due to the fact that the
Taylor series of the joint distribution Z — log py,z(Y, Z) and the conditional
distribution Z ~ logp.|,(Z]Y) have exactly the same terms and we have an
explicit formula (11) for the joint distribution (see Remark 4 in Section 3.3.).

Remark 3 (Numerical issues due to the lack of identifiability). When trying to
apply Lemma 2 to models that are not identifiable, in the sense that multiple re-
alizations for Z lead to the same value of the joint distribution py, z(Y, Z;6), the
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Hessian matrix H(Y, Z; ) may be singular, leading to “infinite” error covariance
in (17).

For poorly identifiable models, the matrix H(Y, Z;6) may be nonsingular,
but with very small singular values, making the log-determinant in (16) strongly
negative and often causing numerical issues. To avoid this, one can replace the
optimization in (16) by

1
arg max ( — ~logdet (eI — H(Y, Z;0)) + max logpy,z(Y, Z; 9)), (18)
0O 2 ZeR"™z
for a small constant € > 0. The addition of the constant term el will have little

affect on the estimate of 6, as long as this variable does not affect significantly
the kernel of H(Y, Z;0), which can be numerically verified. O

3.2. A Scalable Iterative Algorithm

For the problem at hand, (16) involves a joint optimization with respect
to ng parameters and ny = n, P + n, (T + P) state variables. For large time
horizons T+ P, the computation complexity of such optimization can be greatly
reduced by using an iterative block coordinate ascent algorithm:

Algorithm 1. Given a measurement vector Y and a tolerance €1, the following
algorithm returns estimates 0y, and Zj,:

1. Pick initial values for éo, Zo and set k = 1.
2. Update estimates using:

Zy, = arg maxlog py z(Y, Z; 0y_1) (19)
ZeRnz
. 1 5 7
0} == arg max ( —3 log det ( — H(Y, Zy; 9)) + logpy,z (Y, Z; 9)) (20)
0c©

3. Increment k and go back to step 2 until ||ék — ék,1|\ < €tol-

In general, block coordinate ascent/descent algorithms are not guaranteed
to terminate [8]. However, upon a successful termination, the pair (Zg,0x_1)
satisfies the first order optimality conditions of the optimization in (19) and the
pair (Zk, ék) satisfies the first order optimality conditions of the optimization
in (20). Since the first order optimality conditions of (16) are precisely the
union of the first order optimality condition of (19) and (20), we conclude that
the pair (Zk, ék) satisfies the first order optimality conditions of (16) up to the
€101 discrepancy between ék,l and ék. In general, this does not guarantee that
Algorithm 1 will find a global maximum of the likelihood function, but it does
guarantees that termination can only take place at a local maximum (up to the
€to1 error). In practice, we have observed that constraining the parameter values
0 and states/outputs Z to physically meaningful sets consistently leads to the
same optimum regardless of how we initialize the numerical solvers.

14



The key advantage of the iterative approach in Algorithm 1 with respect to
solving the single-shot full optimization in (16) is that (i) the number nz of
optimization variables in (19) scales linearly with the number of time instants
of interest and (ii) the number of optimization variables in (20) is equal to the
number ng of parameters, regardless of the horizon length. Furthermore, while
the total number of entries of the Hessian matrix (13) scales quadratically with
nz, the number of non-zero entries of this matrix only scales linearly with ny.
This is because, the structure of (11) leads to

% logpy,z(Y, Z;05—1)
0% 0T 4k

=0,

for every k ¢ {—1,1,0}. In practice, this means that we can use second order
Newton methods to solve (19) with computation times that only grow linearly
with nyz, provided that we compute the Newton direction using sparse solvers
for linear equations [15, 21]. Regarding the optimization in (20), while the
number of optimization variables is typically small and independent of the time
horizon length, one still needs to compute the log-determinant of a large ma-
trix. Also here, we can explore the sparsity of (13) by performing a sparse
LDL factorization and obtain the determinant by simply multiplying the en-
tries of the diagonal matrix, or adding their logarithms to directly obtain the
log-determinant of the matrix, which is numerically much more stable.

3.3. Proof of Lemmas 1 and 2
Proof of Lemma 1. For each ¢t > 1, we can expand the joint probability density
function of the state up to time ¢ + 1 and measurements up to time ¢ as

p(yla e Yt L1y 7xt+1) = p(xH—layt ‘xla e Ty Y1, 7yt—1)

p(y17'"ayt—hxl)"'amt)a Vt207

where, for simplicity of notation, we omitted all dependencies on the parameter
vector . In view of (7) and the independence assumption (10), we have that

p($t+17yt|1’17~ ces Tty YLy ks aytfl)
= Pdyow, (Tey1 — f(230), 90 — g(w50) [0, 20,415+, Y1)
= Pdy,we ($t+1 — f(x4;0),yt — g(w450) |$t)7 (21)

and therefore

p(yla s Yty Ty e ?xtﬁ-l)
= Pd;,wy (l’t+1 — [(24;0),y: — g(;0) |1L‘t)P(y1, oY1, Ty, T,
Iterating this from ¢t =1 to t =T + P leads to

T+P

p(:yla e Yr4+pP, T1, - .- ,:L'T-‘!—P-‘rl) = 1_[ Pd; w, (xH-l - f(xt; 9)7yt - g(xtv 9) | xt)v
t=1

from which (11) follows by taking logarithms. ]
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Proof of Lemma 2. Denoting the conditional distribution of Z given Y by

py,z(Y,Z;0)
Z|V:0) = 227 22
pay (217:0) = LS (22
we have that
logpy (Y:0) +logpz)y (Z|Y;0) = logpy,z(Y, Z;0) (23)

and therefore
*logpzy (Z]Y;0) 0% logpyz(Y, Z;0)
022 a 072 ’
logpy (Y 0) + maxlog pzjy (Z|Y;6) = maxlogpy,z(Y, Z; 6). (24b)

vZ, (24a)

Moreover, since pzjy (Z]Y’;0) is a multivariable Gaussian, we must have
nz
IngZ\Y(ZD/;e) -y log(27)

1 _ 1 _
+ B} log det Ez\ly - 5(2 - ﬂZ|Y)lzz|1y(Z - MZ|Y)a (25)

where fi1z)y and Yzy denote its mean and covariance matrix. This allows us
to conclude that

arg max logpzyy (Z1Y50) = pzyy, (26a)

*logpyy (Z]Y;0) o
072 - Az

. . Nyg 1 1
mgxlogpz|y(Z|Y,9) =7 log(27) + A log det X

0? 10gpz|Y(Z|Y§9))
072 ’

(26b)

ny 1
= ——2 log(27r) + 3 log det (—
(26(:)

We conclude from (24a) and (26b) that

(72 logpy,Z(Y,Z;G) . 62 Ingz‘y(ZD/;g) _ 72_1 V7
072 - 072 - Z|Y> )

does not depend on Z, and then from (24b) and (26¢) that

logpy (Y:0) = —maxlogpzy (Z]Y;6) + maxlogpy,z(Y, Z;6)

*logpy,z(Y, Z; 9))
072
+ mgXlngY,Z(Ya Z;0),

ny 1
EX log(2m) — 3 log det ( -

from which the result follows. |
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Remark 4 (Non-Gaussian a posteriori). When the a posteriori distribution is not
a multivariable Gaussian, one can view (25) as a second order truncation of the
Taylor series of Z +— logpz|y (Z|Y';6), which means that this formula will have
an error due to higher order terms in the series. In fact, such a truncation of
this Taylor series is at the basis for the Laplace method to approximate integrals
[29]. In view of (23), when Z + logpzy (Z]Y;0) and Z + log py,z(Y, Z;0) are
analytic, both functions have the same Taylor series terms of order higher than
0 and therefore one can estimate the error in the truncation (25) by computing
the terms in the Taylor series of Z — logpy,z(Y, Z;0) of order higher than
2. ]

4. Numerical Results

We now summarize the results obtained by applying the identification/forecasting
procedure outlined in Section 3 to the SIR stochastic model in Section 2. The
measurements used include time series of COVID-19 daily cases and daily deaths
obtained from the following sources:

1. the European Center for Disease Prevention and Control (ECDPC) [18]
for worldwide data outside the United States of America, Brazil, and
Portugal;

2. the COVID-19 Data Repository by the Center for Systems Science and
Engineering (CSSE) at Johns Hopkins University [12] for State and City
data within the United States of America;

3. the Portuguese Dire¢ao-Geral de Satde for data in Portugal [35].

4. Brasil.IO based on data collected from the Secretarias Estaduais de Satude
for State and City data within Brazil [14].

We produced forecasts for every country represented in the ECDPC dataset
that, at some point in time, reported more than 10 new COVID-19 cases in one
day. For a few countries, including the United States of America and Brazil,
we had available data at the state/province/city level and produced forecasts
at finer regional levels. The ECDPC and CSSE time series go as far back as
February 2020 and contain daily results up to the present. Our full set of results
is available at [1] and includes 144 countries and regions around the world, but
here we only show a subset of results for Italy, United Kingdom, Germany Por-
tugal, Japan, India, and the US states of New York, California, Texas, Illinois,
and Montana. This selection covers a representative set of countries/regions in
terms of population size and density, timing and scope of nonpharmaceutical
measures, population behavior, etc.

For a very large number of countries/regions, the time series with the daily
number of cases exhibit large weekly variations, typically with a smaller number
of cases reported during the weekends. In fact, for a few countries/time-periods
no new cases/deaths are reported in the weekend and a very large number of
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cases are reported every Monday?, leading to a larger delay between the time a
patient becomes infective and the case is reported. To remove this day-of-the-
week effect, all our forecasts were computed weekly with data up to the latest
Wednesday. In addition, all time series were pre-filtered with a 7-day mov-
ing average filter that tries to equalize the delay between infectiveness/death
and reporting. For consistency, we have done this for every country/region,
regardless of whether or not the data showed day-of-the-week effects. For coun-
tries/regions where the weekend effect is negligible or where this effect only
appeared during a fairly brief period of time, the introduction of 7-day averag-
ing makes little difference in terms of the forecasts. But for countries where this
effect has been persistent, removing the averaging inflates the estimates of the
noise/disturbances since this effect has to be explained through the stochastic
elements of the model.

4.1. Methodology

All estimates and forecasts reported in this section were obtained using the
Algorithm 1 with the vector Y containing daily measurements of new cases y,, (t)
and deaths yp(t) over a given time range ¢t € {1,2,...,T}. The latent random
variable Z contains the full state R(t),U(t), 8(t), ¢(t),w(t) of the model (3)-
(4) over an extended time range t € {1,2,...,7 + P} that includes forecasts
up to P = 21 days into the future; the removal rate ; and measurements
forecasts for new cases y, (t) and deaths yp(t) over t € {T +1,...,T + P}. The
parameter vector § includes the variances of the state disturbances d,(t), d.(t);
the variances of the parameter increments dg(t), du,(t), d(t); and the variances
of the noises w, (t) and wp(t). All 95% confidence intervals reported are based
on the a posteriori covariance matrix computed using (17), which we marginalize
for the different variables to obtain a posteriori standard deviations.

For essentially all datasets, we observed that Algorithm 1 converged to es-
timates corresponding to zero variances for the disturbances d,(t), d,(t) (or to
negligible values) so we eventually removed those parameters from 6 and set
them to fixed values that were sufficiently low not to affect any of the other es-
timates. This improved numerical conditioning, because very small disturbance
variances result in poorly conditioned Hessian matrices H (Y, Zy;6) in (20).

The optimizations in (19)-(20) were carried out by primal-dual interior-
point solvers built using the TensCalc toolbox [21]. The solvers generated by
TensCalc explore sparsity of the Hessian matrix, resulting in computation times
that scale linearly with the horizon length (see Section 3.2). Algorithm 1 was
initialized with a rough state estimated obtained as follows:

1. The new-cases reporting rate was initialized at ¢(t) = 1, V¢ > 1. Since
@(1) is not identifiable (see Section 3), the initial rate ¢(1) was fixed at 1
and only subsequent ¢(t), t > 1 were optimized.

2See, e.g., ECDPC dataset for France during the month of July 2020.
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Figure 1: State estimates and forecasts for the daily numbers of new cases and deaths for the
model (3)—(4), based on data available up to mid-to-late December (depending on the source
of data). The forecasts extend for 3 weeks past the available data. In all plots, the dots
correspond to the daily measurements of new cases and deaths, the solid lines to a posteriori
state estimates, and the dashed lines to 95% confidence intervals.
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Figure 2: Continuation from Figure 1.
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Figure 3: Estimates of the time-varying parameters for the model (3)—(4), based on data
available up to mid December. The forecasts extend for 3 weeks past the available data.

2. The removal rate was initialized at the (somewhat arbitrary) value v =
1/21 (21 days time constant).

3. The initialization for the state U(t) was obtained by neglecting noise and
disturbances from (3b)—(3c), which leads

Ut+1) =U@t) +y@t) = Ult)=> w().

T<t

4. The number of infections at day ¢ = 1 was initialized to be equal to the
total number of infections reported before that date:

1) = Y ().

T<1

Subsequent values for the initialization of I(¢) can be obtained by neglect-
ing noise and disturbances from (3a)—(3c), which leads to

I(t+ 1) = —vI(t) + v, (t).

The initialization for R(t) can then be obtained from R(t) = U(t) — I(t),
vVt > 1.

5. Assuming a constant value for the infection rate 5 and ignoring distur-
bances, (3b) can be written as

Ut +1) = U(t) + BI() — - 1(0OU(), V=1,

from which initializations for 8 and 8/Ny can be obtained through a least-
squares linear fit. Since the precise value for Ny is not identifiable (see
Section 3), we took this value to be “correct.”

6. The deaths reporting rate was initialized with a constant value w deter-
mined from (3d) through a least-squares linear fit.
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The same initialization process described above was applied to all countries/regions
and time intervals in our dataset, including the alternative models discussed in
Section 4.4. This initialization resulted in very few failures of the nonlinear
solver across the whole dataset.

As noted in Remark 3, to avoid numerical issues we replaced (16) in Algo-
rithm 1 by (18) with e = 107%. In the interest of time, we have also limited the
number of iterations to 30.

4.2. Forecasts Based on the Entire Datasets

Figures 1-2 show state estimates and forecasts based on the largest window
of daily data available at the writing of this paper for Italy, Portugal, Japan and
the US states of New York, California, and Montana. At this time, most of these
regions are experiencing a strong resurgence in the number of cases but with
fairly distinct progressions since early March: In Italy, the United Kingdom,
Germany, Portugal, the state of Sao Paulo, and the US states of New York,
California, Texas, and Illinois we see two clearly defined waves; Japan seems to
be in the middle of a third wave; Montana’s number of cases seems to evolve
in a step-like fashion; and India is not (yet?) showing a clearly defined second
wave.

In several countries we see that the second wave exceeds the magnitude of
the first wave in terms of the number of new cases, but not in terms of daily
deaths. The discrepancy between the number of new cases and deaths, which is
particularly extreme in Italy, the United Kingdom, Germany, Portugal, Japan,
New York, and Illinois is “explained” by the model through changes in the new-
cases and deaths reporting rates. This can be confirmed by the plots in Figure 3,
which shows the estimates of the different time-varying parameters. However,
as noted in Section 2.3, these parameters are fundamentally not identifiable and
can, at most be estimated up to the state/input transformation in (5). The plots
presented here were obtained by resolving the model ambiguity as discussed in
Section 4.1. As noted in Remark 2, by setting the initial new-cases reporting
rate ¢ to 100%, an increase in the rate results in values for ¢ larger than 100%,
which obviously means that the original rate really started at some value below
100%, but the data available does not permit estimating the precise value of the
rate in absolute terms.

Because the time series exhibit large variation, the number of cases in the y-
axis are plotted in a logarithmic scale. While this permits a better visualization
of the data at multiple scales, it somewhat distorts the confidence intervals,
which visually appear much larger when the number of cases is smaller. For
example in Italy, the confidence interval for the daily number of deaths in August
is roughly [1,40] and in early December it is roughly [695-770], while the latter
is twice as wide as the former, it appears far smaller with the logarithmic scale
used in Figure 1.
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Figure 4: Running forecasts for the daily numbers of new cases and deaths for the model
(3)—(4), based on data available up to 7, 14, and 21 days prior to the forecast. The solid lines
depict the forecasts, whereas the dashed lines of the same color depict the corresponding 95%
confidence intervals. To keep the plots less cluttered, only the upper bound of the confidence
interval is plotted.
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4.3. Running Forecasts

A large effort was devoted to validate the methodology used to create fore-
casts for the daily numbers of new cases and deaths: Starting from the first
Wednesday for which we had 21 days of past data, we performed system iden-
tification for the stochastic SIR model and computed forecasts for 7, 14, and
21 days ahead; which can eventually be compared with the actual values. We
repeated this procedure for every subsequent Wednesday, resulting in updated
forecasts. To obtain true validation, the model identified with data up to a par-
ticular Wednesday, does not use any subsequent data, either as measurements or
to help initialize the numerical solver. This procedure was carried out for every
country/region in our datasets and for every week for which we had, at least,
21 days of data, resulting in over 4,500 identification/forecasting experiments.

Figures 4-5 shows the results obtained for the same countries/states shown
in Figures 1-2. It is important to emphasize that in Figures 1-2, forecasts only
appear in the 3-weeks at the right-hand side of the plots. Prior to that, the
solid and dash lines correspond to estimates and confidence intervals for (past)
state/measurements that were computed using the entire datasets. In contrast,
every point in the solid lines in Figures 4-5 corresponds to a forecast that was
compute 1, 2, or 3 weeks before. The corresponding dashed lines show the
upper bounds of the associated 95% confidence intervals. Several important
conclusions can be drawn from these plots:

1. The initial forecasts (computed just with 21 days of measurements) vary
greatly in accuracy and often come associated with very wide confidence
intervals, reflecting the fact that 21 days of measurements do not provide
enough information to obtain reliable estimates. However, by the time 4-5
weeks of data are available, the confidence intervals start to become much
tighter.

2. The actual numbers of daily deaths, generally fall inside the 95% con-
fidence intervals computed 7, 14, and 21 days before, showing that the
model is especially reliable in predicting disease-related casualties. For
the countries/states shown, the main exception can bee seen in California
in late May, India in mid-June, Texas in mid-July, and Sao Paulo in late
November.

3. Most of the actual numbers of new cases also fall inside the 95% confi-

dence intervals computed 7, 14, and 21 days before, but we can see more
exceptions to this “rule.” For example, this can be seen in Italy and the
United Kingdom in late April and mid-October; as well as in California
and Texas in late May and through most of June.
The larger difficulty in predicting the daily number of new cases rather
than predicting the number of daily deaths is not surprising in view of
the fact that the former is highly dependent on the infection and new-
cases reporting rates, which can exhibit abrupt changes due to the so-
called super-spreader events [30] or changes in testing policies and/or test
availability.
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4. The estimates produced are fairly robust to outliers that appear in es-
sentially all datasets. Due to the use of a 7-day moving average filter,
each single-day outlier results in 7 consecutive measurements that stand
out from the adjacent data points. Notable examples of such outliers ap-
pear in the number of deaths in Italy in August 15-21 and in New York
in June 29-July 5 (among others). Typically, such outliers are caused
by an agency adding to their daily report a number of past deaths/cases
that had occurred over some past period of time, but had been neglected
in previous daily reports [35, Nov. 4, 2020]. Even though some outlier
are clearly noticeable, we opted not to discard any of these data points
because they could potentially be caused by super-spreader events.

In practice, the existence of these outliers causes some bias in the esti-
mates, but they generally do not leads to data points outside the 95%
confidence intervals.

5. For a few regions/periods we see large fluctuations in the forecasts from
one week to the next. This is especially noticeable in the United Kingdom
in September and October, in Germany since early July until December,
in Portugal in early December, in India in August, in New York from
mid-July until mid-December, and in Illinois from mid-September until
December. We shall return to these fluctuation in Section 4.4.

4.4. Alternative models

The general model in (3)—(4) allows the infection rate B(t), the new-cases
reporting rate ¢(t), and the deaths reporting rate w(t) to be time varying with
increments determined by the zero-mean random processes dg(t), d. (), dy(t)
in (4). A special instance of this model includes the case in which the zero-
mean increment processes have zero variance and it is instructive to see how the
forecasts would change if we were to consider constant rather than time-varying
values for these parameters. In addition, we could also question the assumption
of keeping the removal rate v constant, rather than a time varying parameter,
also with increments determined by a zero-mean random process.

Different combinations are possible for which parameters are allowed to vary
and which should remain constant. Figures 67 show a comparison of forecasts
for Ttaly and the US state of California for the following 6 possibilities:

(a) all parameters constant;

(b) a variable infection rate (t), but constant removal -y, new-cases reporting
rate ¢ and deaths reporting rates w;

(c) variable infection rate B(t), new-cases reporting rate ¢(t), deaths reporting
rate w(t), but constant removal rate ;

(d) variable infection rate 5(t) and new-cases reporting rate ¢(t), but constant
removal rate v and deaths reporting rate w;
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Figure 6: Italy running forecasts for the daily numbers of new cases and deaths based on
data available up to 7, 14, and 21 days prior to the forecast. The different plots corresponds
to distinct assumptions regarding which parameters of the model (3)—(4) are allowed to vary
with time.
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Figure 7: California, USA running forecasts for the daily numbers of new cases and deaths
based on data available up to 7, 14, and 21 days prior to the forecast. The different plots
corresponds to distinct assumptions regarding which parameters of the model (3)—(4) are
allowed to vary with time.
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(e) variable infection rate 3(t), removal rate +(t), new-cases reporting rate ¢(t),
but constant deaths reporting rate w; and

(f) all parameters time varying.

The selection of the combinations above is motivated by the widely accepted
observation that the infection rate has varied greatly over time, and therefore
we take it as time-varying in all but the first option. In addition, it is also well
known that the testing rate for asymptomatic patients has varied greatly, so we
only take the new-cases reporting rate as constant in the first 2 options. Vari-
ability on the remaining parameters is likely, but almost certainly of a smaller
magnitude.

A comparison of plots like the ones in Figures 6-7 for a large number of
countries/regions yields the following observations:

1. In general, assuming that all parameters are constant or that all but the
infection rate B(t) are constant severally compromises the models’ ability
to produce useful forecasts.

For the constant parameters model, in every dataset that exhibits a sec-
ond wave, the numbers of new cases during the second wave fall grossly
outside the confidence intervals associated with the forecasts. This is not
surprising in view of the fact that a constant-parameter SIR model cannot
exhibit multiple waves.

When only the infection rate is allowed to be time-varying, it is possible to
“explain” the measurements, but this typically requires large levels of noise
and/or a highly variable infection rate, which typically result in confidence
intervals that are larger than those obtained with richer models.

2. For a large number of countries/regions, the results obtained assuming
that all parameters are time varying differ little from those assuming that
the infection rate 5(t) and the new-cases reporting rate ¢(t) are the only
time-varying parameters. This is generally true both for the point fore-
casts and the confidence intervals.

For a more detailed comparison of the original model (3)—(4), with the
simplified model that considers a constant removal rate v and deaths re-
porting rate w, but time varying infection §(¢) and new-cases reporting
@(t) rates, we present in Figures 8-9 the same running forecasts we have
seen in Figures 4-5. While for many countries/regions the results are in-
deed similar, by and large, assuming a constant death rate results in more
accurate estimates and tighter confidence intervals, without significantly
increase the number of forecasts outside the confidence intervals. In fact,
the large fluctuations in the forecasts from one week to the next that we
had noticed in Section 4.3, are mostly absent in Figures 8-9. This indi-
cates that a stochastic SIR model with just two time-varying parameters
B(t) and ¢(t) is still sufficiently rich to represent the data available and
that a time-varying death rate introduces unnecessary model uncertainty.
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Figure 8: Running forecasts for the daily numbers of new cases and deaths for the model
(3)—(4), based on data available up to 7, 14, and 21 days prior to the forecast. The solid lines
depict the forecasts, whereas the dashed lines of the same color depict the corresponding 95%
confidence intervals. To keep the plots less cluttered, only the upper bound of the confidence
interval is plotted. These plots differ from those in Figure 4 in that here the death rate w was
assume constant.
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Figure 9: Continuation from Figure 8.
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5. Conclusions and Future Work

We have shown that it is possible to construct reliable forecasts for the evo-
lution of an epidemic purely from time series of new cases and deaths. This is
particularly important in scenarios where social behavior and nonpharmaceuti-
cal interventions cause a continuous change in epidemic parameters such as the
infection and reporting rates.

Because of inherent model ambiguities, the a posteriori forecasts are not
always accurate; see for example the estimates in Figure 8 for the number of
deaths in Germany in June or for the United Kingdom in August. However,
those inaccurate estimates are typically associated with large 95% confidence
intervals that still contain the actual future measurements. From the perspective
of epidemic management, the magnitude of the forecast confidence intervals, and
in particular the “pessimistic” upper bounds of these intervals, is probably more
important than the estimates themselves, as it should inform decision makers
of the expected worst-case stress on the healthcare system.

We have used a Gaussian random walk stochastic model for parameter drift
that is completely agnostic to external factors. It should be possible to improve
forecasting when we have available a set of “covariates” that can be used to
estimate parameter variations, as in [23]. Introducing such covariates is the
subject of future research.

We have seen that there are fundamental limitations in identifying the in-
ternal state and parameters of an SIR model based on daily counts of new cases
and deaths. However, this lack of identifiability can be lifted through the use
of additional measurements, such as how many new cases are asymptomatic
and/or how many individuals were tested and received a negative result. Incor-
porating such measurements is also the subject of future research, as well as a
more systematic study of the identifiability of SIR models [32].

Our SIR model is focused on a specific region and the transfer of infected in-
dividuals from other regions was only accounted for through stochastic additive
terms. This could be improved by considering more sophisticated models that
explicitly take into account external effects. However, we foreseen significant
challenges in identifying the associated parameters.
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