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Abstract. State estimation aims at approximately reconstructing the solution w to a parametrized partial

differential equation from m linear measurements when the parameter vector y is unknown. Fast nu-
merical recovery methods have been proposed in Maday et al. [Internat. J. Numer. Methods Engrg.,
102 (2015), pp. 933-965] based on reduced models which are linear spaces of moderate dimension n
that are tailored to approximate the solution manifold M where the solution sits. These methods
can be viewed as deterministic counterparts to Bayesian estimation approaches and are proved to be
optimal when the prior is expressed by approximability of the solution with respect to the reduced
model [P. Binev et al., STAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 1-29]. However, they are
inherently limited by their linear nature, which bounds from below their best possible performance
by the Kolmogorov width d, (M) of the solution manifold. In this paper, we propose to break this
barrier by using simple nonlinear reduced models that consist of a finite union of linear spaces Vi,
each having dimension at most m and leading to different estimators uf. A model selection mech-
anism based on minimizing the PDE residual over the parameter space is used to select from this
collection the final estimator «*. Our analysis shows that u* meets optimal recovery benchmarks
that are inherent to the solution manifold and not tied to its Kolmogorov width. The residual min-
imization procedure is computationally simple in the relevant case of affine parameter dependence
in the PDE. In addition, it results in an estimator y* for the unknown parameter vector. In this
setting, we also discuss an alternating minimization (coordinate descent) algorithm for joint state
and parameter estimation that potentially improves the quality of both estimators.

Key words. state estimation, parameter estimation, reduced order modeling, optimal recovery

AMS subject classifications. 65M32, 65M12

DOI. 10.1137/20M1380818

1.

Introduction.

1.1. Parametrized PDEs and inverse problems. Parametrized partial differential equa-
tions are of common use to model complex physical systems. Such equations can generally be
written in abstract form as

(1.1)

P(u,y) =0,
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where y = (y1,...,yq) is a vector of scalar parameters ranging in some domain ¥ < R?. We
assume well-posedness; that is, for any y € Y the problem admits a unique solution u = u(y)
in some Hilbert space V. We may therefore consider the parameter-to-solution map

(1.2) y = u(y),

from Y to V, which is typically nonlinear, as well as the solution manifold
(1.3) M:={uly) : yeY}cV

that describes the collection of all admissible solutions. Throughout this paper, we assume
that Y is compact in R? and that the map (1.2) is continuous. Therefore, M is a compact
set of V. We sometimes refer to the solution u(y) as the state of the system for the given
parameter vector y.

The parameters are used to represent physical quantities such as diffusivity, viscosity,
velocity, source terms, or the geometry of the physical domain in which the PDE is posed.
In several relevant instances, y may be high or even countably infinite dimensional, that is,
d>»1ord= 0.

In this paper, we are interested in inverse problems which occur when only a vector of
linear measurements

(1.4) z2=(21,...,2m) €ER™  z;=Li(u), i=1,...,m,

is observed, where each ¢; € V' is a known continuous linear functional on V. We also
sometimes use the notation

(1.5) =), L= (l1,... ).

One wishes to recover from z the unknown state u € M or even the underlying parameter
vector y € Y for which u = u(y). Therefore, in an idealized setting, one partially observes the
result of the composition map

(1.6) yeY »ue M- zeR™
for the unknown y. More realistically, the measurements may be affected by additive noise
(1.7) 2 = Ez(u) + n;,

and the model itself might be biased, meaning that the true state u deviates from the solution
manifold M by some amount. Thus, two types of inverse problems may be considered:
(i) State estimation: recover an approximation u* of the state u from the observation
z = {(u). This is a linear inverse problem, in which the prior information on u is given
by the manifold M which has a complex geometry and is not explicitly known.
(ii) Parameter estimation: recover an approximation y* of the parameter y from the ob-
servation z = ¢(u) when v = u(y). This is a nonlinear inverse problem, for which the
prior information available on y is given by the domain Y.
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These problems become severely ill posed when Y has dimension d > m. For this reason,
they are often addressed through Bayesian approaches [31, 39]: a prior probability distribution
P, being assumed on y € Y (thus inducing a push forward distribution P, for u € M), the
objective is to understand the posterior distributions of ¢ or u conditioned by the observations
z in order to compute plausible solutions y* or «* under such probabilistic priors. The accuracy
of these solutions should therefore be assessed in some average sense.

In this paper, we do not follow this avenue: the only priors made on y and w are their
membership to Y and M. We are interested in developing practical estimation methods that
offer uniform recovery guarantees under such deterministic priors in the form of upper bounds
on the worst case error for the estimators over all y € Y or u € M. We also aim to understand
whether our error bounds are optimal in some sense. Our primary focus will actually be on
state estimation (i). Nevertheless, we present in section 4 several implications on parameter
estimation (ii), which to our knowledge are new. For state estimation, error bounds have
recently been established for a class of methods based on linear reduced modeling, as we recall
next.

1.2. Reduced models: The PBDW method. In several relevant instances, the particular
parametrized PDE structure allows one to construct linear spaces V,, of moderate dimension
n that are specifically tailored to the approximation of the solution manifold M, in the sense
that

(1.8) dist(M, V,,) = maxmin |u — v| < ey,
ueEM veV,

where ¢, is a certified bound that decays with n significantly faster than when using for V,,
classical approximation spaces of dimension n such as finite elements, algebraic or trigono-
metric polynomials, or spline functions. Throughout this paper,

1/2
(L9) = =1 v
denotes the norm of the Hilbert space V. The natural benchmark for such approximation
spaces is the Kolmogorov n-width
(1.10) dp(M) = min dist(M, E).
dim(E)=n

The space E, that achieves the above minimum is thus the best possible reduced model for
approximating all of M; however, it is computationally out of reach.

One instance of computational reduced model spaces is generated by sparse polynomial
approzimations of the form

(1.11) un(y) = >, wy’, v =17,
veA, j=1

where A, is a conveniently chosen set of multi-indices such that #(A,,) = n. Such approxima-
tions can be derived, for example, by best n-term truncations of infinite Taylor or orthogonal
polynomial expansions. We refer the reader to [13, 14], where convergence estimates of the
form

(1.12) sup [u(y) — un ()] < Cn™
yeY
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are established for some s > 0 even when d = c0. Therefore, the space V;, := spanf{u, : v € A,}
approximates the solution manifold with accuracy &, = Cn™*. In the particular approximation
un(y) of u(y) for a given y, the parametric monomials y* are the scalar coefficients associated
to the generators u, € V.

Another instance, known as reduced basis approximation, consists in using spaces of the
form

(1.13) Vp, i=spanf{u, ..., up},

where u; = u(y’) € M are instances of solutions corresponding to a particular selection of
parameter values 3 € Y (see [33, 37, 38]). One typical selection procedure is based on a greedy
algorithm: one picks y* such that uy, = u(y") is furthest away from the previously constructed
space Vi_1, in the sense of maximizing a computable and tight a posteriori bound of the
projection error |u(y) — Py, _,u(y)| over a sufficiently fine discrete training set ¥ < Y. In
turn, this method also delivers a computable upper estimate ¢ for dist(M, V}). It was proved
in [3, 30] that the reduced basis spaces resulting from this greedy algorithm have near-optimal
approximation property, in the sense that if d,,(M) has a certain polynomial or exponential
rate of decay as n — 00, then the same rate is achieved by dist(M, V},).

In both cases, these reduced models come in the form of a hierarchy (V},)n>1, with com-
putable decreasing error bounds (&,,),>1, where n corresponds to the level of truncation in the
first case and the step of the greedy algorithm in the second case. Given a reduced model V,,,
one way of tackling the state estimation problem is to replace the complex solution manifold
M by the simpler prior class described by the cylinder

(1.14) K=K(Vhen) ={veV : dist(v,V,) <en}

that contains M. The set IC therefore reflects the approximability of M by V,,. This point of
view leads to the parametrized background data weak (PBDW) method introduced in [1], also
called the one space method and further analyzed in [2], that we recall below in a nutshell.

In the noiseless case, the knowledge of z = (2;)i=1,...m is equivalent to that of the orthog-
onal projection w = Py u, where

(1.15) W := span{wi, ..., wn}
and w; € V are the Riesz representers of the linear functionals ¢;, that is,
(1.16) li(v) = {wj,vy, wveV.

Thus, the data indicates that u belongs to the affine space w + W=.
Combining this information with the prior class IC, the unknown state thus belongs to the
ellipsoid

(1.17) Kp:=Knw+Wh) ={vek : Pyv=uw).

For this posterior class K, the optimal recovery estimator v* that minimizes the worst case
error maxyerc,, |[u — u*| is therefore the center of the ellipsoid. It is proven in [2] that this
center is equivalently given by

(1.18) u* = u*(w) := argmin{|v — Py, v| : Pyv = w}.
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It can be computed from the data w in an elementary manner by solving a finite set of linear
equations. The worst case performance for this estimator, both over K and K, for any w, is
thus given by the half-diameter of the ellipsoid which is the product of the width ¢, of K and
the quantity

(1.19) pn, = w(Vy, W) := max

Note that pu, is the inverse of the cosine of the angle between V,, and W. For n > 1, this
quantity can be computed as the inverse of the smallest singular value of the n x m cross-
Gramian matrix with entries (¢;, ;) between any pair of orthonormal bases (¢;)i—1,...,, and
(zpj) j=1,....,m of V;, and W, respectively. It is readily seen that one also has

o]
1.20 — max — 0
(120 i = S TRl

allowing us to extend the above definition to the case of the zero-dimensional space V;, = {0}
for which p({0}, W) = 1.
Since M c K, the worst case error bound over M of the estimator, defined as

(1.21) Eye := max ||u — u*(Pyu)|,
ueEM
satisfies the error bound

(1.22) Eye < max |u — u*(Pwu)| = pnén.
uell

Remark 1.1. The estimation map w — u*(w) is linear with norm w, and does not depend
on en. It thus satisfies, for any individual w eV and ne W,

(1.23) Ju—u*(Pwu+n)| < pn(dist(u, V) + |n])-

We may therefore account for an additional measurement noise and model bias: if the obser-
vation is w = Pyu + n with |n|| < eneise, and if the true states do not lie in M but satisfy
dist(u, M) < emodet, the guaranteed error bound (1.22) should be modified into

(124) Hu —u* (U})H < Mn(gn + Enoise + 6model)~

In practice, the noise component n € W typically results from a noise vector 7 € R™ affecting
the observation z according to z = £(u) + 7. Assuming a bound |7|2 < Eneise where || - |2 is
the Euclidean norm in R™, we thus receive the above error bound with €ppise := |M||Enoise,
where M € R™*™ s the matriz that transforms the representer basis w = {w1, . ..,wm} into an
orthonormal basis ¥ = {1, ..., Um} of W. Here estimation accuracy benefits from decreas-
ing noise without increasing computational cost. This is in contrast to Bayesian methods,
for which small noise level induces computational difficulties due to the concentration of the
posterior distribution.
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Remark 1.2. To bring out the essential mechanisms, we have idealized (and technically
simplified) the description of the PBDW method by omitting certain discretization aspects
that are unavoidable in computational practice and should be accounted for. To start with, the
snapshots u; (or the polynomial coefficients u, ) that span the reduced basis spaces V, cannot
be computed exactly but only up to some tolerance by a numerical solver. One typical instance
is the finite element method, which yields an approximate parameter-to-solution map

(1.25) y = up(y) € V,

where Vi, is a reference finite element space ensuring a prescribed accuracy

(1.26) luly) —un(y)| <en, yeY.

The computable states are therefore elements of the perturbed manifold

(1.27) My = {un(y) : ye Y}

The reduced model spaces V,, are low-dimensional subspaces of Vy, and with certified accuracy
(1.28) dist(Mp, V;,) < ep.

The true states do not belong to My, and this deviation can therefore be interpreted as a model
bias in the sense of the previous remark with €,0d4e1 = €n- The application of the PDBW also
requires the introduction of the Riesz lifts w; in order to define the measurement space W.
Since we operate in the space Vi, these can be defined as elements of this space satisfying

(1.29) <wi,v>v = Ki(v), v E Vh,

thus resulting in a measurement space W < Vy,. For example, if V is the Sobolev spaces H&(D)
for some domain D and Vy, is a finite element subspace, the Riesz lifts are the unique solutions
to the Galerkin problem

(1.30) JVinv =/l;i(v), veV,
D

and can be identified by solving ny x ny linear systems. Measuring accuracy in V, i.e., in
a metric dictated by the continuous PDE model, the idealization, to be largely maintained in
what follows, also helps understanding how to properly adapt the background-discretization Vy,
to the overall achievable estimation accuracy. Other computational issues involving the space
Vi, will be discussed in section 3.4.

Note that u, = 1 increases with n and that its finiteness imposes that dim(V},) < dim(W),
that is, m = n. Therefore, one natural way to decide which space V,, to use is to take the
value of n € {0, ..., m} that minimizes the bound p,&,. This choice is somehow crude since it
might not be the value of n that minimizes the true reconstruction error for a given u € M,
and for this reason it was referred to as a poor man algorithm in [3].

The PBDW approach to state estimation can be improved in various ways:
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e One variant that is relevant to the present work is studied in [12] and consists in using
reduced models of affine form

(1.31) Vi = Tn + Vo,

where V,, is a linear space and @ is a given offset. The optimal recovery estimator
is again defined by the minimization property (1.18). Its computation amounts to
the same type of linear systems, and the reconstruction map w — u*(w) is now
affine. The error bound (1.22) remains valid with u, = u(V,, W) and &, a bound
for dist(M,V,,). Note that &, is also a bound for the distance of M to the linear

space V41 := V,, @ Ra, of dimension n + 1. However, using instead this linear space
could result in a stability constant g1 = pu(Vy,i1, W) that is much larger than s,
in particular when the offset %, is close to W.

e Another variant proposed in [12] consists in using a large set Ty = {u; = u(y’)
i=1,...,N} of precomputed solutions in order to train the reconstruction map w —
u*(w) by minimizing the least-squares fit Zfi 1l —u* (Pyu;) | over all linear or affine
maps, which amounts to optimizing the choice of the space V,, in the PBDW method.

e Conversely, for a given reduced basis space V,,, it is also possible to optimize the choice
of linear functionals (¢1,...,¥¢,,) giving rise to the data, among a dictionary D, that
represent a set of admissible measurement devices. The objective is to minimize the
stability constant pu(V,, W) for the resulting space W; see, in particular, [4], where
a greedy algorithm is proposed for selecting the ¢;. We do not take this view in the
present paper and think of the space W as fixed once and for all: the measurement
devices are given to us and cannot be modified.

1.3. Objective and outline. The simplicity of the PBDW method and its above variants
come together with a fundamental limitation of its performance: since the map w — u*(w)
is linear or affine, the reconstruction necessarily belongs to an m- or (m + 1)-dimensional
space, and therefore the worst case performance is necessarily bounded from below by the
Kolmogorov width d,,,(M) or dy,4+1(M). In view of this limitation, one principal objective of
the present work is to develop nonlinear state estimation techniques which provably overcome
the bottleneck of the Kolmogorov width d,,,(M).

In section 2, we introduce various benchmark quantities that describe the best possible
performance of a recovery map in a worst case sense. We first consider an idealized setting
where the state u is assumed to exactly satisfy the theoretical model described by the para-
metric PDE, that is, u € M. Then we introduce similar benchmarks quantities in the presence
of model bias and measurement noise. All these quantities can be substantially smaller than
dm(M).

In section 2, we discuss a nonlinear recovery method, based on a family of affine reduced
models (Vj)g=1... i, where each V}, has dimension nj < m and serves as a local approximation
to a portion My, of the solution manifold. Applying the PBDW method with each such space
results in a collection of state estimators uj. The value k for which the true state u belongs
to M, being unknown, we introduce a model selection procedure in order to pick a value k*
and define the resulting estimator u* = uj,. We show that this estimator has performance
comparable to the benchmark introduced in section 2. Such performances cannot be achieved
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by the standard PBDW method due to the above described limitations.

Model selection is a classical topic of mathematical statistics [35], with representative
techniques such as complexity penalization or cross-validation in which the data are used to
select a proper model. Our approach differs from these techniques in that it exploits (in the
spirit of data assimilation) the PDE model which is available to us by evaluating the distance
to the manifold

(1.32) dist(v, M) = min v — u(y)||
yeY
of the different estimators v = uj for £ = 1,..., K and picking the value k* that minimizes

it. In practice, the quantity (1.32) cannot be exactly computed, and we instead rely on a
computable surrogate quantity S(v, M) expressed in terms of the residual to the PDE; see
section 3.4.

One typical instance where such a surrogate is available is when (1.1) has the form of a
linear operator equation

(1.33) Ay)u = f(y),

where A(y) is boundedly invertible from V' to V', or more generally from V' — Z’, for a test
space Z different from V| uniformly over y € Y. Then S(v, M) is obtained by minimizing the
residual

(1.34) R(v,y) = [A(y)v = f(y)]z

over y € Y. This task itself is greatly facilitated in the case where the operators A(y) and
source terms f(y) have affine dependence in y and when the parameter domain Y is convex.
One relevant example that has been often considered in the literature is the second order
homogeneous boundary value problem with affine diffusion coefficient,

d
(1.35) —div(aVu) = f(y) in D, ulgp =0, a=aly)=a+ Z Yy,
j=1

where in this case V = Z = H}(D).

In section 4, we discuss the more direct approach for both state and parameter estimation
based on minimizing R(v,y) over both y € Y and v € w + W. The associated alternating
minimization algorithm amounts to a simple succession of quadratic problems in the particular
case of linear PDEs with affine parameter dependence. Such an algorithm is not guaranteed to
converge to a global minimum (since the residual is not globally convex), and for this reason
its limit may miss the optimality benchmark. On the other hand, using the estimator derived
in section 3 as a “good initialization point” to this minimization algorithm leads to a limit
state that has at least the same order of accuracy.

These various approaches are numerically tested in section 5 for the elliptic equation (1.35)
for both the overdetermined regime m > d and the underdetermined regime m < d.
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1.4. Connections of the present work with other inverse problem approaches and
model order reduction. One of the main results of the present paper is the development of
a state estimation algorithm which has close to optimal reconstruction properties over the
solution manifold, in the sense that we introduce in section 2. Reduced order models V,, play
a prominent role since they are the main vehicle for making our strategy implementable in
practice. We should note that the idea of using reduced models to solve inverse problems
is actually not new in the literature, though. It can be traced back at least to the gappy
POD method, first introduced in [17] by Everson and Sirovich. There, the authors address
the problem of restoring a full image from partial pixel observations by using a least-squares
strategy involving a reconstruction on linear spaces obtained by PCA. The same strategy
was then brought to other fields, such as fluid and structural applications; see [18]. The
introduction of a reduced model can be seen as an improvement with respect to working
with one single background function, as is done in methods such as 3D-VAR; see [15, 16]. In
contrast to the present work and the PBDW method in general, the gappy POD method is
formulated on the Euclidean space V = RV, with A" € N typically much larger than m and
n. It uses linear reduced models V,, obtained by PCA, and measurement observations are
typically pointwise vector entries, that is, w; = e;, with e; € RV being the ith unit vector. For
that particular choice of ambient space and reduced models, the linear PBDW method is very
close to gappy POD. It is, however, not entirely equivalent since PBDW presents a certain
component in W n V1 which is missing in gappy POD. For the case of a general Hilbert
space, linear PBDW is equivalent to the generalized empirical interpolation method when
m = n; see [20, 21, 22]. Tt is also interesting to note that the reconstruction algorithm (1.18)
corresponding to what we call linear PBDW in this paper has also been developed in [19]
as an extension of compressed sensing to Hilbert spaces. There, the envisaged spaces V,, are
related to Fourier and wavelet spaces rather than reduced models of parametric PDEs. Finally,
reduced models are commonly used in order to significantly speed up forward simulations that
could be needed in inversion tasks; see, e.g., [42], where a central issue is to judiciously switch
between the high fidelity model, given in terms of a fine scale discretization, and the low
fidelity reduced model.

In the above landscape of methods, our proposed piecewise affine extension of PBDW
can be interpreted as a further generalization step which comes with optimal reconstruction
guarantees. Our strategy is based on an offline partitioning of the manifold M in which, for
each element of the partition, we compute reduced models. We then decide with a data-driven
approach which reduced model is the most appropriate for the reconstruction. The idea of
partitioning the manifold and working with different reduced order models for each partition
is not new, but it has mostly been explored in works that focus on the forward problem of
approximating the parameter-to-solution mapping y € Y — u € M; see, e.g., [24, 25, 26, 27].
This strategy enters into the general topic of nonlinear forward model reduction for which
little is known in terms of the performance guarantees. A first step towards a cohesive theory
for nonlinear forward model reduction has recently been proposed in [23], in relation with the
general concept of library widths [41].
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2. Optimal recovery benchmarks. In this section, we describe the performance of the
best possible recovery map

(2.1) w — u*(w)

in terms of its worst case error. We consider first the case of noiseless data and no model bias.
In a subsequent step, we take such perturbations into account. While these best recovery maps
cannot be implemented by a simple algorithm, their performance serves as the benchmark for
the nonlinear state estimation algorithms discussed in the next section.

2.1. Optimal recovery for the solution manifold. In the absence of model bias and when
a noiseless measurement w = Pyyu is given, our knowledge of u is that it belongs to the set

(2.2) Moy = M A (w+ W),

The best possible recovery map can be described through the following general notion.

Definition 2.1. The Chebyshev ball of a bounded set S € V is the closed ball B(v,r) of
minimal radius that contains S. One denotes by v = cen(S) the Chebyshev center of S and
r =rad(S) its Chebyshev radius.

In particular, by Theorem 9 in [36], one has
1 1
(2.3) idiam(S) <rad(S) < ﬁdiam(S),

where diam(S) := sup{|u — v|| : u,v € S} is the diameter of S. Therefore, the recovery map
that minimizes the worst case error over M,, for any given w, and therefore over M, is defined
by

(2.4) u*(w) = cen(My,).

Its worst case error is

(2.5) E}. = sup{rad(M,) : we W}.

In view of the equivalence (2.3), we can relate E?_ to the quantity

(2.6) 89 = do(M, W) := sup{diam(M,,) : we W} =sup{|u—v| : v,ve M, u—ve W}

by the equivalence

1 1
2.7 —6 < El. < —=dp.
( ) 9 0 wce \/5 0
Note that injectivity of the measurement map Py over M is equivalent to dg = 0. We provide
in Figure 2.1a an illustration of the above benchmark concepts.

If w = Pyu for some u € M, then any u* € M such that Piyu® = w meets the ideal
benchmark [|u — u*| < d§p. Therefore, one way for finding such a u* would be to minimize the
distance to the manifold over all functions such that Pyv = w, that is, solve
(2.8) min dist(v, M) = min min |u(y) — v|.

vew+WL vew+W-L yeYy
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This problem is computationally out of reach since it amounts to the nested minimization of
two nonconvex functions in high dimension.

Computationally feasible algorithms such as the PBDW methods are based on a sim-
plification of the manifold M which induces an approximation error. We introduce next a
somewhat relaxed benchmark that takes this error into account.

A% (w) = cen(My,) A% (w) = cen(M, 4,)
Mw/ Mo,w' M
Mw o,w A
M A
5o 0o
Y
- . W . . Y %4
w'’ w w’ w
(a) Perfect model (b) Model bias

Figure 2.1. [llustration of the optimal recovery benchmark on a manifold in the two-dimensional Fuclidean
space.

2.2. Optimal recovery under perturbations. In order to account for manifold simpli-
fication as well as model bias, for any given accuracy ¢ > 0, we introduce the o-offset of

M,

(2.9) My :={veV : dist(v, M) <o} = U B(u, o).
ueM

Likewise, we introduce the perturbed set

(2.10) Mow = Mg 0 (w+ W),

which, however, still excludes uncertainties in w. Our benchmark for the worst case error is
now defined as (see Figure 2.1b for an illustration)

(2.11) 0y 1= mz%g/cdiam(./\/la,w) = max{|lu —v|| : u,ve My, u—ve W}
we

The map o — 6, satisfies some elementary properties:
e Monotonicity and continuity. It is obviously nondecreasing:

(2.12) 0L = 6, < J5.
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Simple finite-dimensional examples show that this map may have jump discontinuities.
Take, for example, a compact set M < R? consisting of the two points (0,0) and
(1/2,1), and W = Rey, where e; = (1,0). Then §, = 20 for 0 < o < %, while
5% (M, W) = 1. Using the compactness of M, it is possible to check that o +— 4, is
continuous from the right and in particular lim,_,g 0, (M, W) = dy.

¢ Bounds from below and above: for any u,v € Mg, and for any ¢ > 0, let « = u+ g
and © = v — g with g = (u—v)/|u—v|. Then |@—5| = |u—v|+26 and @ —o € W+,
which shows that u, v € M5 ., and

(2.13) dot5 = 0g + 20.
In particular,
(2.14) 05 = 60 + 20 = 20.

On the other hand, we obviously have the upper bound ¢, < diam(M,) < diam(M)+
20.
e The quantity

(2.15) p(M, W) = 1s.up % = %

2 >0 o
may be viewed as a general stability constant inherent to the recovery problem, similar
to u(Vy,, W), which is more specific to the particular PBDW method: in the special
case where M = V,, and V;, n W+ = {0}, one has 6y = 0 and g—; = u(Vy,, W) for all
o > 0. Note that u(M, W) =1 in view of (2.14).

Regarding measurement noise, it suggests to introduce the quantity

(2.16) by := max{|u—v| : u,veM, |Ppu— Pyov| <o}

Thus, 8, accounts for a noise level ¢ in the measurement space W, which, by Remark 1.1,
relates to the noise in the data measured in the Euclidean norm on R™.
The two quantities d, and J, are not equivalent; however, one has the framing

(2.17) Jo — 20 < b5 < 65 + 20

To prove (2.17), we note that for any u, v € M, such that u —v € W+, there exist 4,7 € M at
distance o from u, v, respectively. Hence, |u—v| < |@—0|+20 while | Py (a—7)| < 20, which
gives the first inequality in (2.17). To prove the second inequality in (2.17), let @y, 4o € M
such that |Pyu; — Pwisl < 20. To construct nearby elements u; € M, sharing the same
measurements, we write @; = Pyi; and Wi = Py1iy, @ = 1,2, so that |@; — 2| < 20. For
i = 1,2, the function u; := (w; + w9)/2 + ﬁ)f is at distance o from @;. Therefore, u; € M,
Py (u; —ug) =0, and

a1 — da[? = @1 — @o|? + |01 — @y |* < (20)* + |[Pyrur — Pyrua|® < (20)° + 62,
which yields a stronger form of the upper inequality in (2.17). Finally, note that we have

S0y < 205, &= 0.
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This is derived by inserting the inequality 20 < §, from (2.14) in the second inequality of
(2.17).

In the following analysis of reconstruction methods, we use the quantity J, as a bench-
mark which, in view of this last observation, also accounts for the lack of accuracy in the
measurement of Pyru. Our objective is therefore to design an algorithm that, for a given
tolerance o > 0, recovers from the measurement w = Pyyu an approximation to u with accu-
racy comparable to d,. Such an algorithm requires that we are able to capture the solution
manifold up to some tolerance € < o by some reduced model.

3. Nonlinear recovery by reduced model selection.

3.1. Piecewise affine reduced models. Linear or affine reduced models, as used in the
PBDW algorithm, are not suitable for approximating the solution manifold when the required
tolerance ¢ is too small. In particular, when ¢ < d,,(M) one would then need to use a linear
space V,, of dimension n > m, therefore making p(V;,, W) infinite.

One way out is to replace the single space V,, by a family of affine spaces

(3.1) Vk:ﬂk—i-vk, k=1,..., K,
each of them having dimension
(3.2) dim(Vy) = ng < m,

such that the manifold is well captured by the union of these spaces, in the sense that

K
(3.3) dist (M, U Vk> <e
k=1

for some prescribed tolerance € > 0. This is equivalent to saying that there exists a partition
of the solution manifold

K
(3.4) M= M,
k=1

such that we have local certified bounds
(3.5) diSt(./\/lk,Vk) <e,<e, k=1,....K.

We may thus think of the family (Vi)r—1,. k as a piecewise affine approximation to M. We
stress that, in contrast to the hierarchies (V},)n—o,...m of reduced models discussed in section
5, the spaces Vi do not have dimension k and are not nested. Most importantly, K is not
limited by m while each ny is.

The objective of using a piecewise reduced model in the context of state estimation is to
have a joint control on the local accuracy e as expressed by (3.5) and on the stability of the
PBDW when using any individual V. This means that, for some prescribed p > 1, we ask
that
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According to (1.22), the worst case error bound over My when using the PBDW method
with a space V4 is given by the product prer. This suggests to alternatively require from the
collection (Vj)i=1, .k that for some prescribed o > 0, one has

(3.7) op = uper <o, k=1,..., K.

This leads us to the following definition.

Definition 3.1. The family (Vi)k=1,... .k is o-admissible if (3.7) holds. It is (e, u)-admissible
if (3.5) and (3.6) are jointly satisfied.

Obviously, any (e, u)-admissible family is o-admissible with o := pe. In this sense, the
notion of (e, u)-admissibility is thus more restrictive than that of o-admissibility. The benefit
of the first notion is in the uniform control on the size of y which is critical in the presence of
noise, as hinted at by Remark 1.1.

If w € M is our unknown state and w = Ppyu is its observation, we may apply the
PBDW method for the different Vi in the given family, which yields a corresponding family
of estimators

(3.8) uf = uf(w) = argmin{dist(v, V3) : vew+ W}, k=1,... K.
If (Vi)k=1,..K is o-admissible, we find that the accuracy bound
(3.9) lu — ui|l < pdist(u, Vi) < prer = o <o

holds whenever u € Mjy,.

Therefore, if in addition to the observed data w one had an oracle giving the information
on which portion My, of the manifold the unknown state sits, we could derive an estimator
with worst case error

(310) Ewc < 0.

This information is, however, not available, and such a worst case error estimate cannot be
hoped for, even with an additional multiplicative constant. Indeed, as we shall see below, o
can be fixed arbitrarily small by the user when building the family (Vi )x—1, . x, while we know
from section 2.1 that the worst case error is bounded from below by E¥. > 3o, which could
be nonzero. We will thus need to replace the ideal choice of k& by a model selection procedure
only based on the data w, that is, a map

(3.11) w — k¥ (w),

leading to a choice of estimator u* = uj,. We shall prove further that such an estimator is
able to achieve the accuracy

(3.12) Eye < b4,

that is, the benchmark introduced in section 2.2. Before discussing this model selection, we
discuss the existence and construction of o-admissible or (e, ;1)-admissible families.
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3.2. Constructing admissible reduced model families. For any arbitrary choice of € > 0
and p > 1, the existence of an (g, p)-admissible family results from the following observation:
since the manifold M is a compact set of V', there exists a finite e-cover of M, that is, a
family w1, ...,ux € V, such that

K
(3.13) M | ) B(uy,e),
k=1

or equivalently, for all v € M, there exists a k such that |v — u| < e. With such an e cover,
we consider the family of trivial affine spaces defined by

(3.14) Vi =A{ur} =w + Vi, Vi =1{0},

thus with nj = 0 for all k. The covering property implies that (3.5) holds. On the other hand,
for the zero-dimensional space, one has

(3.15) n({0}, W) =1,

and therefore (3.6) also holds. The family (Vj)g—1,. x is therefore (e, u)-admissible, and also
o-admissible with o = €.

This family is, however, not satisfactory for algorithmic purposes for two main reasons.
First, the manifold is not explicitly given to us and the construction of the centers uy is
by no means trivial. Second, asking for an e-cover would typically require that K becomes
extremely large as € goes to 0. For example, assuming that the parameter to solution y — u(y)
has Lipschitz constant L,

(3.16) luty) —uw@| < Lly -9l y,9€Y,

for some norm | - | of RY, then an ¢ cover for M would be induced by an L~'e cover for Y
which has cardinality K growing like e~ as ¢ — 0. Having a family of moderate size K is
important for the estimation procedure since we intend to apply the PBDW method for all
k=1,...,K.

In order to construct (e, u)-admissible or o-admissible families of better controlled size,
we need to split the manifold in a more economical manner than through an e-cover and use
spaces Vi of general dimensions ny € {0,...,m} for the various manifold portions My. To
this end, we combine standard constructions of linear reduced model spaces with an iterative
splitting procedure operating on the parameter domain Y. Let us mention that various ways
of splitting the parameter domain have already been considered in order to produce local
reduced bases having both controlled cardinality and prescribed accuracy [32, 34, 6]. Here
our goal is slightly different since we want to control both the accuracy € and the stability p
with respect to the measurement space W.

We describe the greedy algorithm for constructing o-admissible families and explain how
it should be modified for (e, u)-admissible families. For simplicity, we consider the case where
Y is a rectangular domain with sides parallel to the main axes, the extension to a more general
bounded domain Y being done by embedding it in such a hyper-rectangle. We are given a
prescribed target value o > 0, and the splitting procedure starts from Y.
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At step j, a disjoint partition of Y into rectangles (Yk)k=17,_.7Kj with sides parallel to the
main axes has been generated. It induces a partition of M given by

(3.17) My ={uly) :yeYs}, k=1,... K.
To each k € {1,..., K;} we associate a hierarchy of affine reduced basis spaces
(3.18) mG = Uup + mG, n=20,...,m,

where T, = u(y;,) with 7, the vector defined as the center of the rectangle Y;. The nested
linear spaces

(3.19) Vor CVigC - Vg, dim(Vap) =n

are meant to approximate the translated portion of the manifold M — w;. For example,
they could be reduced basis spaces obtained by applying the greedy algorithm to Mj — @y
or spaces resulting from local n-term polynomial approximations of u(y) on the rectangle Y.
Each space V;, j, has a given accuracy bound and stability constant

(3‘20) diSt(Mkza Vn,k) < Enpk and Hnk = :U’(Vn,kv W)
We define the test quantity

(3.21) T = M fly En k-

n=0,....m
If 7. < o, the rectangle Y} is not split and becomes a member of the final partition. The affine
space associated to My is

(3.22) Vi = g + Vi,

where Vj, = V,, ;. for the value of n that minimizes p, yc, . The rectangles Y with 7, > o
are, on the other hand, split into a finite number of subrectangles in a way that we discuss
below. This results in the new larger partition (Y)r=1,...x;,, after relabelling the Yj. The
algorithm terminates at the step j assoonas 7, <o forallk =1,..., K; = K, and the family
(Vi)k=1,...,k is o-admissible. In order to obtain an (e, u)-admissible family, we simply modify
the test quantity 7, by defining it instead as

(3.23) Tk := min max{ , ——
n=0,...,m

and splitting the cells for which 7, > 1.

The splitting of one single rectangle Yj, can be performed in various ways. When the pa-
rameter dimension d is moderate, we may subdivide each sidelength at the midpoint, resulting
in 2¢ subrectangles of equal size. This splitting becomes too costly as d gets large, in which

case it is preferable to make a choice of i € {1,...,d} and subdivide Y} at the midpoint of the
sidelength in the i-coordinate, resulting in only two subrectangles. In order to decide which
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coordinate to pick, we consider the d possibilities and take the value of i that minimizes the
quantity

(3.24) Thki = maX{Tk_,i7 Tl:,z'}v

where (7',; o ka ;) are the values of 73, for the two subrectangles obtained by splitting along the
i-coordinate. In other words, we split in the direction that decreases 7, most effectively. In
order to be certain that all sidelengths are eventually split, we can mitigate the greedy choice
of ¢ in the following way: if Y3 has been generated by I consecutive refinements, and therefore
has volume |Y| = 27!|Y|, and if [ is even, we choose i = (I/2mod d). This means that at each
even level we split in a cyclic manner in the coordinates i € {1,...,d}.

Using such elementary splitting rules, we are ensured that the algorithm must terminate.
Indeed, we are guaranteed that for any n > 0, there exists a level [ = [(n) such that any
rectangle Yj generated by [ consecutive refinements has sidelengths smaller than 27 in each
direction. Since the parameter-to-solution map is continuous, for any € > 0, we can pick n > 0
such that

(3.25) ly = gler <n = July) —u(@| <& y,yey.
Applying this to y € Y, and § = 7, we find that for u, = u(y;)
(3.26) ||u—ﬂk|| <e, u€e M.

Therefore, for any rectangle Y; of generation [, we find that the trivial affine space Vj, = uy
has local accuracy ¢, < € and pp = p({0}, W) = 1 < p, which implies that such a rectangle
would no longer be refined by the algorithm.

3.3. Reduced model selection and recovery bounds. We return to the problem of se-
lecting an estimator within the family (u})r—1,. x defined by (3.8). In an idealized version,
the selection procedure picks the value £* that minimizes the distance of uj to the solution
manifold, that is,

(3.27) k* = argmin{dist(u;, M) : k=1,..., K},
and takes for the final estimator
(3.28) u* = u*(w) = upx (w).

Note that k* also depends on the observed data w. This estimation procedure is not realistic
since the computation of the distance of a known function v to the manifold

(3.29) dist(v, M) = min |u(y) — v|
yeyY

is a high-dimensional nonconvex problem, which requires that we explore the solution man-
ifold. A more realistic procedure is based on replacing this distance by a surrogate quantity
S(v, M) that is easily computable and satisfies a uniform equivalence

(3.30) rdist(v, M) < S(v, M) < Rdist(v, M), veV,
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for some constants 0 < r < R. We then instead take for k* the value that minimizes this
surrogate, that is,

(3.31) k* = argmin{S(uj, M) : k=1,...,K}.

Before discussing the derivation of S(v, M) and the relation of the constants r, R to the
parametric model (1.1) in concrete cases, we establish a recovery bound in the absence of
model bias and noise.

Theorem 3.2. Assume that the family (Vi)k=1,. K is o-admissible for some o > 0. Then

the idealized estimator based on (3.27), (3.28) satisfies the worst case error estimate

(3.32) Eye = max |u — u*(Pyu)| < 04,
ueM

where 0, 1is the benchmark quantity defined in (2.11). When using the estimator based on
(3.31), the worst case error estimate is modified into

(3.33) Fue < 0ngy # = § o1,
Proof. Let w € M be an unknown state, and let w = Pyu. There exists | = [(u) €
1,..., K, such that u € M;, and for this value, we know that
(3.34) lu—uf|| < e = oy < o
Since u € M, it follows that
(3.35) dist(uj, M) < 0.
On the other hand, for the value k* selected by (3.31) and u* = ujs, we have
(3.36) dist(u*, M) < r ' S(u*, M) < r7 ' S(uf, M) < wdist(uf, M) < ko.

It follows that u* belongs to the offset M,,. Since u e M c M, € M,, and u — u* € W+,
we find that

(337) HU - U*H < 5/@07

which establishes the recovery estimate (3.33). The estimate (3.32) for the idealized estimator
follows since it corresponds to having r = R = 1. |

Remark 3.3. One possible variant of the selection mechanism, which is actually adopted
in our numerical experiments, consists in picking the value k* that minimizes the distance of
uj to the corresponding local portion My, of the solution manifold or a surrogate S(uf, My)
with equivalence properties analogous to (3.30). It is readily checked that Theorem 3.2 remains
valid for the resulting estimator u* with the same type of proof.

In the above result, we do not obtain the best possible accuracy satisfied by the different
uj. since we do not have an oracle providing the information on the best choice of k. We next
show that this order of accuracy is attained in the particular case where the measurement
map Py is injective on M and the stability constant of the recovery problem defined in (2.15)
is finite.
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Theorem 3.4. Assume that 69 = 0 and that
(3.38) w(M, W) = = sup — < oo.

Then, for any given state u € M with observation w = Py u, the estimator u* obtained by the
model selection procedure (3.31) satisfies the oracle bound

(3.39) u—u*| < Ck_r{ﬂnK |lu—uill, C:=2u(M,W)s.

PR

In particular, if (Vi)k=1,.. K is c-admissible, it satisfies
(3.40) [u—u*| < Co.

Proof. Let l € {1,..., K} be the value for which ||u—u| = ming_; __x |u—uj|. Reasoning
as in the proof of Theorem 3.2, we find that

(3.41) dist(u*, M) < kB, B := dist(u;, M),
and therefore
(3.42) lu —u*|| < dpp < 2p(M, W)k dist(u;, M),

which is (3.39). We then obtain (3.40) using the fact that ||u —u}| < o for the value of k£ such
that u € My,. [ |

We next discuss how to incorporate model bias and noise in the recovery bound, provided
that we have a control on the stability of the PBDW method, through a uniform bound on
tk, which holds when we use (g, u)-admissible families.

Theorem 3.5. Assume that the family (Vi)k=1,.. K is (€, p)-admissible for some € > 0 and
w = 1. If the observation is w = Pyu+mn with |n| < enoise, and if the true state does not lie in
M but satisfies dist(u, M) < €model, then the estimator based on (3.31) satisfies the estimate

R
(343) HU - U*(w)” < 5/@p + Enoises p = M(€ + gnoise) + (N + 1)5modela R = ?

)

and the idealized estimator based on (3.27) satisfies a similar estimate with k = 1.

Proof. There exists | = [(u) € {1,..., K} such that
(3.44) dist(u, M;) < €model,
and therefore
(3.45) dist(u, V) < €1 + Emodel-

As already noted in Remark 1.1, we know that the PBDW method for this value of k has
accuracy

(346) H'LL - ’U,?:H < :U’l(gl + Enoise + gmodel) < ,Uf(E + Enoise + Emodel)~
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Therefore,

(3.47) dist(u]', M) < pu(€ + €noise + Emodet) + Emodel = P,
and in turn

(3.48) dist(u*, M) < kp.

On the other hand, we define

(3.49) vi=u+n=u+w— Pyu=u+ Pyu* —u),

so that

(3.50) dist(v, M) < v — ul| + Emodel < Enoise + Emodel < p-

Since v — u* € W+, we conclude that |v — u*| < d,,, from which (3.43) follows. [ ]

While the reduced model selection approach provides us with an estimator w — u*(w) of
a single plausible state, the estimated distance of some of the other estimates u(w) may be of
comparable size. Therefore, one could be interested in recovering a more complete estimate on
a plausible set that may contain the true state u or even several states in M sharing the same
measurement. This more ambitious goal can be viewed as a deterministic counterpart to the
search for the entire posterior probability distribution of the state in a Bayesian estimation
framework, instead of only searching for a single estimated state, for instance the expectation
of this distribution. For simplicity, we discuss this problem in the absence of model bias and
noise. Our goal is therefore to approximate the set

(3.51) My = M (w+ W),
Given the family (V})r—1,.. .k, we consider the ellipsoids
(3.52) En={vew+ Wt dist(v, Vi) <er}, k=1,...,K,

which have center v} and diameter at most pger. We already know that M, is contained
inside the union of the &, which could serve as a first estimator. In order to refine this
estimator, we would like to discard the &£, that do not intersect the associated portion My of
the solution manifold.

For this purpose, we define our estimator of M,, as the union

(3.53) M= &,

where S is the set of those k such that
(3.54) S(uf, My) < Rugey.

It is readily seen that k ¢ S implies that & n M = . The following result shows that this
set approximates M,, with an accuracy of the same order as the recovery bound established
for the estimator u*(w).
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Theorem 3.6. For any state uw € M with observation w = Pyu, one has the inclusion
(3.55) My, € M.

If the family (Vi)g=1,. K is o-admissible for some o > 0, the Hausdorff distance between the
two sets satisfies the bound

(3.56) dr( M, M) = max min [v—u] < Ssnpr K=

veME uEMy r

Proof. Any u € M,, is a state from M that gives the observation Pyyu. This state belongs
to M, for some particular [ = [(u), for which we know that u belongs to the ellipsoid & and
that

(3.57) lu —uf| < e

This implies that dist(u;", M;) < e, and therefore S(u), M;) < Ryye;. Hence, | € S, which
proves the inclusion (3.55). In order to prove the estimate on the Hausdorff distance, we take
any k € S, and notice that

(3.58) dist (uj, My) < kuger < Ko,
and therefore, for all such k£ and all v € &, we have

(3.59) dist(v, M) < (K + 1) pgeg.
Since u — v € W, it follows that

(3.60) lv—ul < dgus1)0

which proves (3.56). [ ]

Remark 3.7. If we could take S to be exactly the set of those k such that &, N My, # &, the
resulting M would still contain M,, but with a sharper error bound. Indeed, any v € M?
belongs to a set & that intersects My, at some u € My, so that

(3.61) dy (M, M,,) < 20.

In order to identify whether a k belongs to this smaller S, we need to solve the minimization
problem

(3.62) min S(v, M)

vegk
and check whether the minimum is zero. As explained next, the quantity S(v, My) is itself
obtained by a minimization problem over y € Yi. The resulting double minimization problem
1s globally nonconvex, but it is convex separately in v and y, which allows one to apply simple

alternating minimization techniques. These procedures (which are not guaranteed to converge
to the global minimum) are discussed in section 4.2.
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3.4. Residual based surrogates. The computational realization of the above concepts
hinges on two main constituents, namely (i) the ability to evaluate bounds &,, for dist(M, V},)
as well as (ii) to have at hand computationally affordable surrogates S(v, M) for dist(v, M) =
mingepq [v—ull. In both cases, one exploits the fact that errors in V' are equivalent to residuals
in a suitable dual norm. Regarding (i), the derivation of bounds &, has been discussed exten-
sively in the context of reduced basis methods [37]; see also [29] for the more general framework
discussed below. Substantial computational effort in an offline phase provides residual based
surrogates for ||u — u(y)| permitting frequent parameter queries at an online stage needed, in
particular, to construct reduced bases. This strategy becomes challenging, though, for high
parameter dimensionality, and we refer the reader to [11] for remedies based on trading de-
terministic certificates against probabilistic ones at significantly reduced computational cost.
Therefore, we focus here on task (ii).

One typical setting where a computable surrogate S(v, M) can be derived is when u(y) is
the solution to a parametrized operator equation of the general form

(3.63) Ay)uly) = f(y),

ie., P(u,y) = f(y) — A(y)u. Here we assume that for the given trial Hilbert space V we
have identified a test Hilbert space Z such that f(y) belongs to its dual Z’ of Z and the
operators A(y) are boundedly invertible as mappings from V to the dual Z’, uniformly in
y € Y. Moreover, we assume continuous dependence of A(y) and f(y) with respect to y € Y.

It is well known that bounded invertibility is conveniently characterized in terms of a weak
formulation of (3.63)

(3.64) Ay(u(y),v) = Fy(v), veZ,

with the parametrized bilinear form A, (w,v) = (A(y)w,v)z 7 and the linear form Fy(v) =
{(f(y),v)z z. Uniform bounded invertibility is then equivalent to the validity of continuity
and inf-sup-conditions on the bilinear form A, (w, v) for some inf-sup and continuity constants
0 < r < R < o0, respectively, for which one then has (see, e.g., [7])

(3.65) [A@)lv—z < R and  [A(y) " z—y <7 yeY.

This setting covers a wide range of problems, such as classical elliptic problems with
Z =V, as well as saddle-point problems, other indefinite problems, and unsymmetric problems
such as convection-diffusion problems, or space-time formulations of parabolic problems and
wave equations, where in some cases Z has to be chosen different from V' in order to ensure a
moderate bound k = R/r of the condition of (3.64); see, e.g., [8, 9, 10, 28, 29, 40]. Specifically,
(3.65) holds for perhaps the simplest instance of an elliptic operator A(y) = —div(a(y)V) when
the parametric field a(y) is uniformly bounded away from 0 and oo, as considered in section
5 below. The constants r, R then relate directly to minyey a(y), maxyey a(y), respectively.

It follows from (3.65) that for any v € V, one has the equivalence

(3.66) rllv —u(y)|v < R(v,y) < R|v —u(y)|v,
where
(3.67) R(v,y) := |A(y)v — f(y)] z
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is the residual of the PDE for a state v and parameter y.

Therefore, the quantity

(3.68) S(v, M) := min R(v, y)

yey
provides us with a surrogate of dist(v, M) that satisfies the required framing (3.30). Note
that the bound x = R/r of the condition of (3.64) determines the tightness of the surrogate
and thus enters all recovery estimates in the previous section.

One first advantage of this surrogate quantity is that for each given y € Y, the evaluation
of the residual |A(y)v — f(y)| 2z does not require one to compute the solution u(y). Its second
advantage is that the minimization in y is facilitated in the relevant case where A(y) and f(y)
have affine dependence on y, that is,

d d
(3.69) Aly) = Ao+ Y yiA; and  f(y) = fo+ D, yf

j=1 j=1
Indeed, S(v, M) then amounts to the minimization over y € Y of the function

2

Y

d
(3.70) R@wﬁﬁﬂpw—4b+§hmAﬂ—fﬁZ

j=1

which is a convex quadratic polynomial in y. Hence, a minimizer y(v) € Y of the corresponding
constrained linear least-squares problem exists, rendering the surrogate S(v, M) = R(v,y(v))
well-defined.

In all the above mentioned examples, the norm |- |z = ¢, >1Z/2 can be efficiently computed.
For instance, in the simplest case of an H}(2)-elliptic problem one has Z = V = H}(Q) with

(3.71) (v,zyz = | Vv - Vzdz.
|

The obvious obstacle is then, however, the computation of the dual norm | - |z which in
the particular example above is the H~'(Q)-norm. A viable strategy is to use the Riesz lift
ry 2 Z' — Z, defined by

(3.72) (ryg,2yz =49, 2072 =9(2), geZ', z¢€Z,

which implies that |r;g]z = |gllz. Thus, R(v,y)? is computed for a given (v,y) € V x Y by
introducing the lifted elements

(373) €j = T‘Z(Ajv—fj), j = 0,...,d,

so that, by linearity,

2

d
(3.74) R(v,y)* = |leo + D, yje;

=1

Z
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Note that the above derivation is still idealized as the d + 1 variational problems (3.73) are
posed in the infinite-dimensional space Z. As already stressed in Remark 1.2, all computations
take place in reference finite element spaces Vj < V and Z, < Z. We thus approximate the
ej by ejn € Zy, for v € Vj,, using the Galerkin approximation of (3.72). This gives rise to a
computable least-squares functional

2

; Yyey.
Z

d
€o,n t Z Yj€j,h
j=1

(375) Rh(v,y)2 =

The practical distance surrogate is then defined through the corresponding constrained least-
squares problem
(3.76) Sp(v, Mp) := min Ry (v,y),

yeY
which can be solved by standard optimization methods. As indicated earlier, the recovery
schemes can be interpreted as taking place in a fixed discrete setting, with M replaced by
My, comprised of approximate solutions in a large finite element space V}, < V', and measuring
accuracy only in this finite-dimensional setting. One should note, though, that the approach
allows one to disentangle discretization errors from recovery estimates, even with regard to the
underlying continuous PDE model. In fact, given any target tolerance €, using a posteriori
error control in Z, the spaces V},, Z), can be chosen large enough to guarantee that

(377) |R(U7 y) - Rh(’l), y)| < 5’1“””7 v € Vp.

Accordingly, one has |Sp, (v, M) —S(v, M)| < e3]v], so that recovery estimates remain mean-
ingful with respect to the continuous setting as long as €5, remains sufficiently dominated by the
thresholds ey, 0, enoise appearing in the above results. For notational simplicity, we therefore
continue working in the continuous setting.

4. Joint parameter and state estimation.

4.1. An estimate for y. Searching for a parameter y € Y, which explains an observation
w = Pyu(y), is a nonlinear inverse problem. As shown next, a quantifiable estimate for y can
be obtained from a state estimate u*(w) combined with a residual minimization.

For any state estimate u*(w) which we compute from w, the most plausible parameter is
the one associated to the metric projection of u*(w) into M, that is,

y* € argmin |u(y) — u*(w)].
yeY
Note that y* depends on w but we omit the dependence in the notation in what follows.
Finding y* is a difficult task since it requires solving a nonconvex optimization problem.
However, as we have already noticed, a near metric projection of u* to M can be computed
through a simple convex problem in the case of affine parameter dependence (3.69), minimizing
the residual R(v,y) given by (3.70). Our estimate for the parameter is therefore

(4.1) y* € argmin R(u*, y),
yeY

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 06/15/22 to 129.252.139.141 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NONLINEAR ROM FOR STATE AND PARAMETER ESTIMATION 251

and it satisfies, in view of (3.66),
(4.2) Ju* —u(y*)| < r ' R(u*,y*) < wdist(u*, M), k= R/r.

Hence, if we use, for instance, the state estimate u*(w) from (3.28), we conclude by Theorem
3.2 that u(y*) deviates from the true state u(y) by

luy) = w(y®)| < lluly) — v (w)| + [u*(w) — uly®)]
< (1+H)Hu( ) = u*(w)]
<(1

/‘i) KO

(4.3)

where 0, is the benchmark quantity defined in (2.11). If, in addition, Py : M — W is also
injective so that g = 0, and if W and M are favorably oriented, as detailed in the assumptions
of Theorem 3.4, one even obtains

(4.4) Ju(y) — w(y™)| < @M, W) + 1)ro

To derive from such bounds estimates for the deviation of y* from y, more information on
the underlying PDE model is needed. For instance, for the second order parametric family
of elliptic PDEs (1.35) and strictly positive right-hand side f, it is shown in [5] that the
parameter-to-solution map is injective. If, in addition. the parameter dependent diffusion
coefficient a(y) belongs to H'(£2), one has a quantitative inverse stability estimate of the form

(4.5) la(y) = a(y)|z2) < Cluly) — u(y)]"°.

Combining this, for instance, with (4.3) yields

(4.6) la(y) = a(y*) ) < C(1 + r)/550.

Under the favorable assumptions of Theorem 3.4, one obtains a bound of the form

(4.7) la(y) = aly*)r2) < 0.

Finally, in relevant situations (Karhunen-Loeve expansions) the functions #; in the expansion
of a(y) form an L2-orthogonal system. The above estimates translate then into estimates for
a weighted fo-norm,

12
(48) (Sow-ur) <o

j=1

where ¢; = H%H%Q.

4.2. Alternating residual minimization. The state estimate u*(w) is defined by selecting
among the potential estimates u} (w) the one that sits closest to the solution manifold, in the
sense of the surrogate distance S(v, M). Finding the element in w + W' that is closest to M
would provide a possibly improved state estimate and as pointed out in the previous section
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also an improved parameter estimate. As explained earlier, it would help in addition with
improved set estimators for M,,.

Adhering to the definition of the residual R(v,y) from (3.67), we are thus led to consider
the double minimization problem
(4.9) (u,y)e(glfvlvi)xyR(v’ v) = vews L 5, M).

We first show that a global minimizing pair (u*, y*) meets the optimal benchmarks intro-
duced in section 2. In the unbiased and noiseless case, the value of the global minimum is 0,
attained by the exact parameter y and state u(y). Any global minimizing pair (u*,y*) will
thus satisfy Pyu* = w and v* = u(y*) € M. In other words, the state estimate u* belongs
to My, and therefore meets the optimal benchmark

(4.10) u —u*| < dp.
In the case of model bias and noise of amplitude €,,;s¢, the state u satisfies
(411) diSt(’U,, M) < €model  and Hw - PWUH < Enoise-

It follows that there exists a parameter y such that |u—u(y)| < €moder and a state @ € w+ W+
such that [|u — @|| < epoise. For this state and parameter, one thus has

(412) R(ﬂ,y) < RHU(y) - ﬂ” < R(gmodel + 8noise)-

Any global minimizing pair (u*,y*) will thus satisfy

% % 1 %% R
(4‘13) ”u - u(y )” < ;R(u Y ) < ’i(emodel + 5noise), K= 7
Therefore, u* belongs to the set M., as defined by (2.10), with € := Kk(emoder + Enoise), and
so does @ since [t — u(y)| < €model + Envise < €. In turn, the state estimate u* meets the
perturbed benchmark

- 36
(414) HU* - UH < €noise T HU* - UH < €noise T 56 < =

since eppise < € < /2, having used (2.14) in the last step.

From a numerical perspective, the search for a global minimizing pair is a difficult task
due to the fact that (v,y) — R(v,y) is generally not a convex function. However, it should
be noted that in the case of affine parameter dependence (3.69), the residual R(v,y) given
by (3.70) is a convex function in each of the two variables v,y separately, keeping the other
one fixed. More precisely, (v,y) — R(v,y)? is a quadratic convex function in each variable.
This suggests the following alternating minimization procedure. Starting with an initial guess

ud € w + W, we iteratively compute for j = 0,1,2, ...,

(4.15) y' e argmin R(u!, y),
yeyY
(4.16) w1 e argmin R(v,yj+1).
vew+W-L
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Fach problem has a simply computable minimizer, as discussed in the next section, and the
residuals are nonincreasing;:

Of course, one cannot guarantee in general that (u’,4’) converges to a global minimizer, and
the procedure may stagnate at a local minimum.

The above improvement property still tells us that if we initialize the algorithm by taking
u® = u* = u*(w) to be the state estimate from (3.28) and 3° € argmin ey R(u*,y), then we
are ensured at step k that

(4.18) R(w,y7) < R(u*,y*),
and therefore, by the same arguments as in the proof of Theorem 3.5, one finds that
(419) HU — ! ” < 5np + Enoise;

with x and p as in (3.43). In other words, the new estimate u’/ satisfies at least the same
accuracy bound as u*. The numerical tests performed in section 5.3 reveal that it can be
significantly more accurate.

4.3. Computational issues. We now explain how to efficiently compute the steps in (4.15)
and (4.16). We continue to consider a family of linear parametric PDEs with affine parameter
dependence (3.69), admitting a uniformly stable variational formulation over the pair trial
and test spaces V, Z; see (3.64)—(3.65).

Minimization of (4.15). Problem (4.9) requires minimizing R(v,y) for a fixed v € w +
W over y € Y. According to (3.74), it amounts to solving a linear least-squares problem
constrained to y € Y,

d 2

eg + Z Yj€;
Z

(4.20) min ‘
7j=1

ye

9

where the e; € Z are the Riesz lifts 7,(Ajv — f;), j =0, ...,d, defined in (3.73). As indicated
earlier, the numerical solution of (4.20) (for e; = e;, € Z, < Z) is standard when Y is convex.
Minimization of (4.16). Problem (4.16) is of the form

(4.21) min R(v,y)* = min [A(y)e = fy)l7

for a fixed y € Y. A naive approach for solving (4.21) would consist in working in a closed
subspace of Wi c wt of sufficiently large dimension. We would then optimize over v €
w+ W However, this would lead to a large quadratic problem of size dim W+ which would
involve dim W+ Riesz representer computations. We next propose an alternative strategy
involving the solution of only m + 3 variational problems. To that end, we assume in what
follows that V is continuously embedded in Z’, which is the case for all the examples of
interest, mentioned earlier in the paper.
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The proposed strategy is based on two isomorphisms from V to Z that preserve inner
products in a sense to be explained next. We make again heavy use of the Riesz isometry
defined in (3.72) and consider the two isomorphisms

(4.22) T=T(~y) :=rA{y):V -2, S=8@y):=A@y) *ry':V - 2,

where rz : Z/ — Z and ry : V! — V are the previously introduced Riesz lifts. One then
observes that, by standard duality arguments, they preserve inner products, in the sense that
for u,v eV,

(4'23) <Tu7 SU>Z = <TZA(y)u7 A(y)_*r;1v>z = <u7 U>V7

where we have used self-adjointness of Riesz isometries. In these terms, the objective functional
R (v, y)? takes the form

(4.24) [A(y)o = F)IZ = ITv = r2f()]Z-

We can use (4.23) to reformulate (4.21) as

(4.25) min R(v,y)* = min [To—r.f(y)|Z = ep i e = raf W%,
where we have used that T(W+) = S(W)* to obtain the last equality. Note that the unique
solution z* € Z to the right-hand side gives a solution v* € V' to the original problem through
the relationship Tv* = z*. The minimizer z* can be obtained by an appropriate orthogonal
projection onto S(W). This indeed amounts to solving a fixed number of m + 3 variational
problems without compromising accuracy by choosing a perhaps too moderate dimension for
a subspace Wt of W,

More precisely, we have 2* = Tw + Z, where Z € S(W)* minimizes |Z + Tw — r,f(y)|%,
and therefore

(4.26) Z = Py (r2f(y) — Tw) = r5f(y) — Tw — Psaw (r.f (y) — Tw).
This shows that
(4.27) 2% =2%(y) := f(y) — Psw)(r2f(y) — Tw).

Thus, a single iteration of the type (4.21) requires assembling z* followed by solving the
variational problem

(4.28) (Tv*,2)7 = (A(y)v*)(2) = (2%, 2)z, z€Z,

that gives v*. Assembling z* involves
(i) evaluating T'w, which means solving the Riesz lift (T'w, z)z = (A(y)w)(2), z € Z,;
(ii) computing the Riesz lift r, f(y) by solving {r,f(v),2)z = (f(v))(2), z € Z;
(iii) computing the projection Pgyy(r2f(y) — Tw), which requires computing the trans-
formed basis functions Sw; = A(y) *ry w;, which are solutions to the variational
problems

(4.29) (A(y)*Sw;)(v) =wi, o)y, veV, i=1,...,m.
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Of course, these variational problems are solved only approximately in appropriate large
but finite-dimensional spaces Vj, < V, Z), < Z along the remarks at the end of the previous
section. While approximate Riesz lifts involve symmetric variational formulations which are
well-treated by Galerkin schemes, the problems involving the operator A(y) or A(y)* may in
general require an unsymmetric variational formulation where Z # V and Petrov-Galerkin
schemes on the discrete level. For each of the examples (such as a time-space variational
formulation of parabolic or convection diffusion equations), stable discretizations are known;
see, e.g., [8, 10, 28, 29, 40].

A particularly important strategy for unsymmetric problems is to write the PDE first as
an equivalent system of first order PDEs permitting a so-called ultraweak formulation where
the (infinite-dimensional) trial space V' is actually an Lo-space and the required continuous
embedding V' < Z’ holds. The mapping ry is then just the identity, and so-called discontinuous
Petrov—Galerkin methods offer a way of systematically finding appropriate test spaces in the
discrete case with uniform inf-sup stability [9]. In this context, the mapping T from (4.22)
plays a pivotal role in the identification of “optimal test spaces” and is referred to as the
“trial-to-test-map.”

Of course, in the case of problems that admit a symmetric variational formulation, i.e.,
V = Z, things simplify even further. To exemplify this, consider a parametric family of
elliptic PDEs (1.35). In this case, one has (assuming homogeneous boundary conditions)
V = Z = H}(D) so that r, = ry = A™L. Due to the self-adjointness of the underlying elliptic
operators A(y) in this case, the problems (4.29) are of the same form as in (4.28), which can
be treated on the discrete level by standard Galerkin discretizations.

5. Numerical illustration. In this section, we illustrate the construction of nonlinear re-
duced models and demonstrate the mechanism of model selection using the residual surrogate
methods outlined in section 3.4.

In our tests, we consider the elliptic problem mentioned in section 1.3 on the unit square
D =]0,1[? with homogeneous Dirichlet boundary conditions and a parameter dependence in
the diffusivity field a. Specifically, we consider the problem

(5.1) —div(a(y)Vu) = f,

with f =1 on D, with ugp = 0. The classical variational formulation uses the same trial and
test space V = Z = H}(D). We perform space discretization by the Galerkin method using
[P, finite elements to produce solutions wup(y), with a triangulation on a regular grid of mesh
size h = 277,

5.1. Test 1: Predetermined splittings. In this first test, we examine the reconstruction
performance with localized reduced bases on a manifold having a predetermined splitting.
Specifically, we consider two partitions of the unit square into subdomains {Dl’g}z}zl and
{Ds¢}}_,, with
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X2 )
D12 D14
D3 Do
D11 D13
Do 4 D5 5
x1 T
0 0

Figure 5.1. Left: the partition of the unit square used in a1. Right: the partition used in as.

The partitions are symmetric along the line x1 + 22 = 1 as illustrated in Figure 5.1. This
will play a role in the understanding of the results below. We next define two parametric
diffusivity fields

4 4
(5.2) a1(y) =a+c Z Xp,,ye and az(y)=a+c Z XDy Yt s

=1 =1
where the vector of parameters y = (yi,...,y4) ranges in Y = [—1,1]* and Xp,, is the

indicator function of Dy, (similarly for Xp,,). The fields a1(y) and az(y) are mirror images
of each other along x1 4+ x2 = 1. In the numerical tests that follow, we take @ = 1 and ¢ = 0.9.

We denote by u;(y) the solution to the elliptic problem (5.1) with diffusivity field a;(y)
and then label by M := {ui(y) : y € Y} the resulting solution manifold. Strictly speaking,
we should write My, 1, as our solutions are finite-dimensional approximations; however, we
suppress the h, as there should be little ambiguity going forward. Similarly, My is the set
of all solutions us(y) of (5.1) over Y where the diffusivity field is given by as. We take their
union M = M7 u M5 to be our global solution manifold that has the obvious predetermined
splitting available to us.

For our computations, we generate training and test sets. For the training, we draw
Ni = 5000 independent samples )N/tr = (yj )N“r that are uniformly distributed over Y. The

collection of solutions M := {ua (v} )}N_tr and My = {ua(y} )};V"1 are used as training sets

for My and Ms. The training set for the full manifold M is M=M 1V ./\72. Since we use

the same parameter points y;r for both sets, any solution in M; has a corresponding solution

in MZ that is its symmetric image along the line 1 + 2o = 1. To test our reconstruction
methods, we generate Ny = 2000 mdependent points in Y that are distinct from the training
set. The corresponding test solution sets are 71 and T5. All computations are done by solving
(5.1) in the finite element space.

Given an unknown u € M, we want to recover it from its observation w = Py u. For
the measurement space W, we take a collection of m = 8 measurement functionals ¢;(u) =
(wi,uy = |B;|71 {uXp, that are local averages in a small area B; which are boxes of width
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2h = 276, each placed randomly in the unit square. The measurement space is then W =
span{wi, ...,wn}. Note that the sensor locations (as well as their nature) affect the “visibility”
of the observed states and hence the value of the stability constants u(V;,, W). Searching for
a judicious sensor placement in the spirit of [4] could help keeping them small in favor of
a more accurate recovery. However, in many applications the sensor locations are fixed.
Random locations, on the one hand, are to account for this fact and, on the other hand, avoid
“accidentally favorable” symmetries.

Since we are only given w, we do not know whether the function to reconstruct is in My
or Ms, and we consider two possibilities for reconstruction:

o Affine method. We use affine reduced models V;, o = %o + Vn,O generated for the full
manifold M = M; u Ms. In our example, we take 19 = u(y = 0) and Vm() is
computed by the greedy selection algorithm over M- Up. Of course the spaces Vj, o
with n sufficiently large have high potential for approximation of the full manifold M
and obviously also for the subsets M; and My (see Figure 5.3). Yet, we can expect
some bad artefacts in the reconstruction with this space since the true solution will
be approximated by snapshots, some coming from the wrong part of the manifold
and thus associated to the wrong partition of D. In addition, we can only work with
n < m = 8 and this may not be sufficient regarding the approximation power. Our
estimator uf(w) uses the space Vi 0, Where the dimension ng is the one that reaches
7o = MiNj<p<m Mn,0€n,0 as defined in (3.20) and (3.21). Figure 5.3 shows the product
HnoEno for n =1,...,m, and we see that ng = 4.

e Nonlinear method. We generate affine reduced bases spaces V1 = 41 + Vn,l and
Vi = 2 + sz, each one specific for M7 and Ms. Similarly as for the affine method,
we take as offsets @; = u;(y = 0) = @y, for i = 1,2, and we run two separate greedy
algorithms over MV 1 —u1 and Mvg — U9 to build le and Vn’g. We select the dimensions
nj that reach 7, = min,—1, . m fn,kenk for & = 1,2. From Figure 5.3, we deduce that
nf = 3 and n5 = 3. This yields two estimators u} (w) and u3(w). We can expect better
results than the affine approach if we can detect well in which part of the manifold
the target function is located. The main question is thus whether our model selection
strategy outlined in section 3.3 is able to detect well from the observed data w whether
the true u lies in M; or Ms. For this, we compute the surrogate manifold distances

(5.3) S(uf(w), My) = mi}I}Rk(u;(w),y), k=12,
ye

where
R (ui(w), y) = ||div(ag(y) Vug(w)) + flv

is the residual of u}(w) related to the PDE with diffusion field ay(y). To solve problem
(5.3), we follow the steps given in section 3.4. The final estimator is u* = u},, where

k* = argmin S(uf(w), My).
k=1,2

Table 1 quantifies the quality of the model selection approach. It displays how many times
our model selection strategy yields the correct result £* = 1 or incorrect result k* = 2 for
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Table 1
Performance of model selection and oracle selection.

Test function from: Test function from:

tsil:);r()gate selec- | 71 = My T2 = M; Oracle selection T c My To = Mo
* _
k¥ =1 1625 386 k* =1 L2 2
E* =2 375 1614 M=2 38 1991
Success rate 81.2 % 80.7 % Success rate 98.1 % 99.5 %
Test samples u drawn from T.,m=8,c=0.9 25 Test samples u drawn from To,m=8,c=0.9
= Oracle k" = Oracle k"
20 e Surrogate k * 20 e Surrogate k *

Density (# of u)

0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 0.20 0.25
llu = ug-I llu = ug-I

Figure 5.2. Kernel density estimate (KDE) plot of the u¥ and u¥.

the functions from the test set ’7'1 < M; (and vice versa for 7~'2) Recalling that these tests
sets have N = 2000 snapshots, we conclude that the residual gives us the correct manifold
portion roughly 80% of the time. We can compare this performance with the one given by
the oracle estimator (see Table 1)

k:)kracle = argmin Hu - ’U,;: (w) H

)

In this case, we see that the oracle selection is very efficient since it gives us the correct
manifold portion roughly 99% of the time. Figure 5.2 completes the information given in
Table 1 by showing the distribution of the values of the residuals and oracle errors. The
distributions give visual confirmation that both the model and oracle selection tend to pick
the correct model by giving residual /error values which are lower in the right manifold portion.
Figure 5.3 gives information on the value of inf-sup constants and residual errors leading to the
choice of the dimension n* for the reduced models. Last, but not least, Table 2 summarizes
the reconstruction errors.

5.2. Test 2: Constructing o-admissible families. In this example, we examine the be-
havior of the splitting scheme to construct og-admissible families outlined in section 3.2.
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Inf-sup constant 1, « Residual €, ¢ Poor-mans criteria for V,,, i: plot of &5, klp, k

3 —— k=0
— k=1
— k=2

10

En,kHn, k

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
n=dim(V,) n=dim(V,) n=dim(V,)

Figure 5.3. Inf-sup constants pi,  and residual errors en i, leading to the choice of the dimension n* for Vi.

Table 2
Reconstruction errors with the different methods.

Test function from: Test function from:
Average error ’7~—1 c My 7’2 c Mo Worst case error 7~—1 c My 7’2 c M-
Affine method ug 6.047e-02 6.661e-02 Affine method ug 4.203e-01 4.319e-01
Nonlinear with oracle | 5.057e-02 4.855e-02 Nonlinear with oracle | 2.786e-01 2.641e-01
model selection model selection
Nonlinear with surro- | 5.522e-02 5.201e-02 Nonlinear with surro- | 4.798e-01 2.660e-01
gate model selection gate model selection

The manifold M is given by the solutions to (5.1) associated to the diffusivity field

d
(54) a(y) =a+ Z CKXDgyf’ ye Y7
/=1

where a = 1, Xp, is the indicator function on the set Dy, and parameters range uniformly
in Y = [~1,1]%. We study the impact of the intrinsic dimensionality of the manifold by
considering two cases for the partition of the unit square D, a 2 x 2 uniform grid partition
resulting in d = 4 parameters and a 4 x 4 grid partition of D resulting in d = 16 parameters.
We also study the impact of coercivity and anisotropy on our reconstruction algorithm by
examining the different manifolds generated by taking ¢, = ¢1£~" with ¢; = 0.9 or 0.99 and
r =1 or 2. The value ¢; = 0.99 corresponds to a severe degeneration of coercivity, and the
rate r = 2 corresponds to a more pronounced anisotropy.

We use two different measurement spaces, one with m = dim(W) = 4 evenly spaced
local averages and the other with m = 16 evenly spaced local averages. The measurement
locations are shown diagrammatically in Figure 5.4. The local averages are exactly as in the
last test, taken in squares of sidelength 276, Note that the two values m = 4 and m = 16
which we consider for the dimension of the measurement space are the same as the parameter
dimensions d = 4 and d = 16 of the manifolds. This allows us to study different regimes:

e When m < d, we have a highly ill-posed problem since the intrinsic dimension of
the manifold is larger than the dimension of the measurement space. In particular,

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 06/15/22 to 129.252.139.141 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

260 A. COHEN, W. DAHMEN, O. MULA, AND J. NICHOLS

Regular spacing, dim(W) = 4 Regular spacing, dim(W) = 16 Random placement, dim(W) = 8

Figure 5.4. Measurement locations for Tests 2 and 3.

we expect that the fundamental barrier §o(M) is strictly positive. Thus, we cannot
expect very accurate reconstructions even with the splitting strategy.

e When m > d, the situation is more favorable and we can expect that the reconstruction
involving manifold splitting brings significant accuracy gains.

As in the previous case, the training set M is generated by a subset fftr = {y}r}j:h_,, Nix
of Ny = 5000 samples taken uniformly on Y. We build the o-admissible families outlined in
section 3.2 using a dyadic splitting, and the splitting rule is given by (3.21). For example, our
first split of ¥ results in two rectangular cells Y7 and Y3, and the corresponding collections of
parameter ] points Y1 c Y; and Yg c Yy, as well as split collections of solutions ./\/l1 and ./\/lz
On each M r we apply the greedy selection procedure, resulting in Vj, with computable values
pr and €. The coordinate direction in which we split Y is precisely the direction that gives
us the smallest resulting o = maxj—_1 2 pxEr, so we need to compute greedy reduced bases
for each possible splitting direction before deciding which results in the lowest . Subsequent
splittings are performed in the same manner, but at each step we first chose cell kgpir =
argmaxy_, g M€k to be split.

After K — 1 splits, the parameter domain is divided into Y = U§:1 Y} disjoint subsets Y}
and we have computed a family of K affine reduced spaces (Vi )g=1,.. k. For a given w e W, we
have K possible reconstructions uj(w), ... uj (w) and we select a value k* with the surrogate
based model selection outlined in section 3.4. The test is done on a test set of Ny, = 1000
snapshots which are different from the ones used for the training set M.

In Figure 5.5 we plot the reconstruction error, averaged over the test set, as a function
of the number of splits K for all the different configurations: we consider the two different
diffusivity fields a(y) with d = 4 and d = 16 parameters, the two measurement spaces of
dimensions m = 4 and m = 16, and the four different ellipticity/coercivity regimes of ¢; in
a(y). We also plot the error when taking for k* the oracle value that corresponds to the value
of k that contains the parameter y which gave rise to the snapshot and measurement.

Our main findings can be summarized as follows:

(i) The error decreases with the number of splits. As anticipated, the splitting strategy

is more effective in the overdetermined regime m > d.

(ii) Degrading coercivity has a negative effect on the estimation error, while anisotropy
has a positive effect. In our computations, a larger r in ¢y corresponds to a higher
degree of anisotropy and in turn to a reduced width of the solution manifold M in
dimensions associated to the less active coordinates. Hence, it is no surprise that
the approximation errors from our algorithm are lower for these higher anisotropy
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dim(Wp,) =16, dim(Y) =4 dim(Wp,) =4, dim(Y)=4

avg [[u}® - u- (wfo)lv
3, 3
g
avg [1}° - u- W)y
S\
s

dim(Wp,) =16, dim(Y) = 16 dim(Wp,) =4, dim(Y) =16

avg [|uf® - u,- (W)l
3
&
avg [Jufe - uy- (W)l
3
LN
} [ )

1 2 4 6 8 10 12 14 16 18 20 1 2 4 6 8 10 12 14 16 18 20
K = Number of local reduced bases in the nonlinear family K = Number of local reduced bases in the nonlinear family
—— ¢;=0.99/71, surrogate k —— ¢;=0.9/71, surrogate k * —— ¢;=0.99/72, surrogate k * —— ¢;=0.9/2, surrogate k *
c;=0.9921, oracle k* c;=0.9271, oracle k* ¢;=0.997/72, oracle k* c;=0.9272 oracle k*

Figure 5.5. Average of errors |u}® — uf, (wi°)| for different choices of k*.
examples.

(iii) Choosing k* by the surrogate based model selection yields error curves that are above
yet close to those obtained with the oracle choice. The largest discrepancy is observed
when coercivity degrades.

Figure 5.6 presents the error bounds og := maxy—1 g prer which are known to be upper
bounds for the estimation error when choosing the oracle value for k* at the given step K
of the splitting procedure. We observe that these worst upper bounds have behavior similar
to that of the averaged error curves depicted in Figure 5.5. In Figure 5.7, for the particular
configuration dim(Y) = dim(W) = 16, we demonstrate that ox indeed acts as an upper
bound for the worst case error of the oracle estimator.

5.3. Test 3: Improving the state estimate by alternating residual minimization. The
goal of this test is to illustrate how the alternating residual minimization outlined in section
4.2 allows one to improve the accuracy of the state estimate. We use the same setting as
Test 2; in particular, we consider the solution manifold M of (5.1) with the random field a(y)
defined as in (5.4). Again we consider the cases where the Dy, from (5.4) are from the 2 x 2
and 4 x 4 grid, resulting in d = dim(Y) = 4 and 16, respectively. Our test uses all three
measurement regimes presented in Figure 5.4, with m = 4 and 16 evenly spaced local average
functions and m = 8 randomly placed local averages confined to the upper half. We use the
coercivity /anisotropy regime ¢, = 0.9 /71,

In this test, we compare three different candidates for u°, the starting point of the alter-
nating minimization procedure:
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dim(Wy,) =16, dim(Y) =4 dim(Wy,) =4, dim(Y) =4
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Figure 5.6. Error bounds of local linear families, given by ox = maxXk—1,....k UkEk-
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Figure 5.7. Comparison between ox (dashed curve), the averaged oracle error (full curve), and the range
from mazimum to minimum oracle error (shaded region).
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dim(W) = 4 (regular spacing), dim(Y) =4, c=0.9

Errors |u — u'| Residuals |A(y')u’ — fly: . Parameter error |y — y'|,
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172 4 6 8 10 12 14 16 18 20 12 4 6 8 10 12 14 16 18 20 172 4 6 8 10 12 14 16 18 20
Alt. min. step i Alt. min. step i Alt. min. step i

dim(W) = 16 (regular spacing), dim(Y) =4, c=0.9

Errors |u — u'| Residuals |A(y/)u’ — fly: Parameter error |y — y'|,

172 4 6 8 10 12 14 16 18 20 172 4 6 8 10 12 14 16 18 20 172 4 6 8 10 12 14 16 18 20
Alt. min. step i Alt. min. step i Alt. min. step i

dim(W) = 8 (random upper-half placement), dim(Y) =4, c=0.9

Errors |u — u'| Residuals |A(y')u’ — fly Parameter error |y — y'|,
107" |
0
10 “‘.\ﬁ -------
= e
10 , — e
10 i
i
=
107
107 -1
10
12 4 6 8 10 12 14 16 18 20 172 4 6 8 10 12 14 16 18 20 172 4 6 8 10 12 14 16 18 20
Alt. min. step i Alt. min. step i Alt. min. step i
—— Geom. mean, U’ =w —— Geom. mean, u®=u"(w) (linear estimate) —— Geom. mean, u® = u,:- (w) (piece-wise linear estimate)
Sample traj., u® =w Sample traj., u® = u” (w) (linear estimate) Sample traj., u® = u,- (w) (piece-wise linear estimate)

Figure 5.8. State error (left plots), residual error (middle plots), and parameter error (right plots) during
the iterations of the joint state-parameter estimation. The dashed lines show individual iterations for a target

snapshot. The full lines are their geometric average. The color greem, blue, or red corresponds to different

starting guesses for u®.

e 4% = w, the measurement vector without any further approximation, or equivalently

the reconstruction of minimal H& norm among all functions that agree with the ob-
servations.

e u’ = u*(w), the PBDW state estimation using the greedy basis over the whole man-
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Figure 5.9. State error (left plots), residual error (middle plots), and parameter error (right plots) during
the iterations of the joint state-parameter estimation. The dashed lines show individual iterations for a target

® U

0

The full lines are their geometric average. The color green, blue, or red corresponds to different

ifold, thus starting the minimization from a “lifted” candidate that we hope is closer
to the manifold M and should thus offer better performance.

0

= uj+(w), the surrogate-chosen local linear reconstruction from the same family of

local linear models from section 5.2 (where k* is the index of the chosen local linear
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model). In this last case, we take K = 20 local linear models, i.e., where Y has been
split 19 times.
Furthermore, in the third case, we restrict our parameter range to be the local parameter
range chosen by the surrogate; that is, we alter the step outlined in (4.15) to be
It — argmin R(u!, y),
YEY

Y

where y/*1 denotes the parameter found at the (j + 1)th step of the procedure. The hope is
that we have correctly chosen the local linear model and restricted parameter range from which
the true solution comes thanks to our local model selection. The alternating minimization will
thus have a better starting position and then a faster convergence rate due to the restricted
parameter range.

In our test, we use the same training set M as in the previous test, with Ny, = 5000
samples, in order to generate the reduced basis spaces. We consider a set of Ny = 10
snapshots, distinct from any snapshots in M, and perform the alternate minimization for
each of the snapshots in the test set.

Figures 5.8 and 5.9 above display the state error trajectories j — |u—u7|| for each snapshot
(dashed lines), as well as their geometric average (full lines), in different colors depending on
the initialization choice. Similarly, we display the residual trajectories j — R(u’,y?) =
|A(y))u/ — f|y+ and parameter error trajectories j — |y — %’|2. Our main findings can be
summarized as follows:

(i) Inall cases, there is a substantial gain in taking u® = u}, (w), the surrogate-chosen local
linear reconstruction, as the starting point. In certain cases, the iterative procedure
initiated from the two other choices w or u*(w) stagnates at an error level that is even
higher than |u — ujs (w)].

(ii) The state error, residual error, and parameter error decrease to zero in the overde-
termined configurations where (dim(W),dim(Y)) is (4,4), (16,16), or (16,4), with
equally spaced measurement sites. In the underdetermined configurations (4, 16), the
state and parameter errors stagnate, while the residual error decreases to zero, which
reflects the fact that there are several (y,u) € Y x w + W+ satisfying R(y,u) = 0,
making the fundamental barrier g strictly positive.

(iii) The state error, residual error, and parameter error do not decrease to zero in the
overdetermined configuration (dim(W),dim(Y")) = (8,4) where the measurement sites
are concentrated on the upper-half of the domain. This case is interesting since, while
we may expect that there is a unique pair (y,u(y)) € Y x w + W+ reaching the global
minimal value R(y,u) = 0, the algorithm seems to get trapped in local minima.
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