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Abstract. State estimation aims at approximately reconstructing the solution u to a parametrized partial
di↵erential equation from m linear measurements when the parameter vector y is unknown. Fast nu-
merical recovery methods have been proposed in Maday et al. [Internat. J. Numer. Methods Engrg.,
102 (2015), pp. 933–965] based on reduced models which are linear spaces of moderate dimension n
that are tailored to approximate the solution manifold M where the solution sits. These methods
can be viewed as deterministic counterparts to Bayesian estimation approaches and are proved to be
optimal when the prior is expressed by approximability of the solution with respect to the reduced
model [P. Binev et al., SIAM/ASA J. Uncertain. Quantif., 5 (2017), pp. 1–29]. However, they are
inherently limited by their linear nature, which bounds from below their best possible performance
by the Kolmogorov width dmpMq of the solution manifold. In this paper, we propose to break this
barrier by using simple nonlinear reduced models that consist of a finite union of linear spaces Vk,
each having dimension at most m and leading to di↵erent estimators u˚

k . A model selection mech-
anism based on minimizing the PDE residual over the parameter space is used to select from this
collection the final estimator u˚. Our analysis shows that u˚ meets optimal recovery benchmarks
that are inherent to the solution manifold and not tied to its Kolmogorov width. The residual min-
imization procedure is computationally simple in the relevant case of a�ne parameter dependence
in the PDE. In addition, it results in an estimator y˚ for the unknown parameter vector. In this
setting, we also discuss an alternating minimization (coordinate descent) algorithm for joint state
and parameter estimation that potentially improves the quality of both estimators.
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1. Introduction.

1.1. Parametrized PDEs and inverse problems. Parametrized partial di↵erential equa-
tions are of common use to model complex physical systems. Such equations can generally be
written in abstract form as

(1.1) Ppu, yq “ 0,

˚
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228 A. COHEN, W. DAHMEN, O. MULA, AND J. NICHOLS

where y “ py1, . . . , ydq is a vector of scalar parameters ranging in some domain Y Ä Rd. We
assume well-posedness; that is, for any y P Y the problem admits a unique solution u “ upyq

in some Hilbert space V . We may therefore consider the parameter-to-solution map

(1.2) y fiÑ upyq,

from Y to V , which is typically nonlinear, as well as the solution manifold

(1.3) M :“ tupyq : y P Y u Ä V

that describes the collection of all admissible solutions. Throughout this paper, we assume
that Y is compact in Rd and that the map (1.2) is continuous. Therefore, M is a compact
set of V . We sometimes refer to the solution upyq as the state of the system for the given
parameter vector y.

The parameters are used to represent physical quantities such as di↵usivity, viscosity,
velocity, source terms, or the geometry of the physical domain in which the PDE is posed.
In several relevant instances, y may be high or even countably infinite dimensional, that is,
d " 1 or d “ 8.

In this paper, we are interested in inverse problems which occur when only a vector of
linear measurements

(1.4) z “ pz1, . . . , zmq P Rm
, zi “ `ipuq, i “ 1, . . . ,m,

is observed, where each `i P V
1 is a known continuous linear functional on V . We also

sometimes use the notation

(1.5) z “ `puq, ` “ p`1, . . . , `mq.

One wishes to recover from z the unknown state u P M or even the underlying parameter
vector y P Y for which u “ upyq. Therefore, in an idealized setting, one partially observes the
result of the composition map

(1.6) y P Y fiÑ u P M fiÑ z P Rm

for the unknown y. More realistically, the measurements may be a↵ected by additive noise

(1.7) zi “ `ipuq ` ⌘i,

and the model itself might be biased, meaning that the true state u deviates from the solution
manifold M by some amount. Thus, two types of inverse problems may be considered:

(i) State estimation: recover an approximation u
˚ of the state u from the observation

z “ `puq. This is a linear inverse problem, in which the prior information on u is given
by the manifold M which has a complex geometry and is not explicitly known.

(ii) Parameter estimation: recover an approximation y
˚ of the parameter y from the ob-

servation z “ `puq when u “ upyq. This is a nonlinear inverse problem, for which the
prior information available on y is given by the domain Y .
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NONLINEAR ROM FOR STATE AND PARAMETER ESTIMATION 229

These problems become severely ill posed when Y has dimension d ° m. For this reason,
they are often addressed through Bayesian approaches [31, 39]: a prior probability distribution
Py being assumed on y P Y (thus inducing a push forward distribution Pu for u P M), the
objective is to understand the posterior distributions of y or u conditioned by the observations
z in order to compute plausible solutions y˚ or u˚ under such probabilistic priors. The accuracy
of these solutions should therefore be assessed in some average sense.

In this paper, we do not follow this avenue: the only priors made on y and u are their
membership to Y and M. We are interested in developing practical estimation methods that
o↵er uniform recovery guarantees under such deterministic priors in the form of upper bounds
on the worst case error for the estimators over all y P Y or u P M. We also aim to understand
whether our error bounds are optimal in some sense. Our primary focus will actually be on
state estimation (i). Nevertheless, we present in section 4 several implications on parameter
estimation (ii), which to our knowledge are new. For state estimation, error bounds have
recently been established for a class of methods based on linear reduced modeling, as we recall
next.

1.2. Reduced models: The PBDW method. In several relevant instances, the particular
parametrized PDE structure allows one to construct linear spaces Vn of moderate dimension
n that are specifically tailored to the approximation of the solution manifold M, in the sense
that

(1.8) distpM, Vnq “ max
uPM

min
vPVn

}u ´ v} § "n,

where "n is a certified bound that decays with n significantly faster than when using for Vn

classical approximation spaces of dimension n such as finite elements, algebraic or trigono-
metric polynomials, or spline functions. Throughout this paper,

(1.9) x¨, ¨y
1{2
V “: } ¨ } “ } ¨ }V

denotes the norm of the Hilbert space V . The natural benchmark for such approximation
spaces is the Kolmogorov n-width

(1.10) dnpMq :“ min
dimpEq“n

distpM, Eq.

The space En that achieves the above minimum is thus the best possible reduced model for
approximating all of M; however, it is computationally out of reach.

One instance of computational reduced model spaces is generated by sparse polynomial
approximations of the form

(1.11) unpyq “

ÿ

⌫P⇤n

u⌫y
⌫
, y

⌫ :“
π

j•1

y
⌫j
j ,

where ⇤n is a conveniently chosen set of multi-indices such that #p⇤nq “ n. Such approxima-
tions can be derived, for example, by best n-term truncations of infinite Taylor or orthogonal
polynomial expansions. We refer the reader to [13, 14], where convergence estimates of the
form

(1.12) sup
yPY

}upyq ´ unpyq} § Cn
´s
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230 A. COHEN, W. DAHMEN, O. MULA, AND J. NICHOLS

are established for some s ° 0 even when d “ 8. Therefore, the space Vn :“ spantu⌫ : ⌫ P ⇤nu

approximates the solution manifold with accuracy "n “ Cn
´s. In the particular approximation

unpyq of upyq for a given y, the parametric monomials y⌫ are the scalar coe�cients associated
to the generators u⌫ P V .

Another instance, known as reduced basis approximation, consists in using spaces of the
form

(1.13) Vn :“ spantu1, . . . , unu,

where ui “ upy
i
q P M are instances of solutions corresponding to a particular selection of

parameter values yi P Y (see [33, 37, 38]). One typical selection procedure is based on a greedy
algorithm: one picks yk such that uk “ upy

k
q is furthest away from the previously constructed

space Vk´1, in the sense of maximizing a computable and tight a posteriori bound of the
projection error }upyq ´ PVk´1upyq} over a su�ciently fine discrete training set Ỹ Ä Y . In
turn, this method also delivers a computable upper estimate "k for distpM, Vkq. It was proved
in [3, 30] that the reduced basis spaces resulting from this greedy algorithm have near-optimal
approximation property, in the sense that if dnpMq has a certain polynomial or exponential
rate of decay as n Ñ 8, then the same rate is achieved by distpM, Vnq.

In both cases, these reduced models come in the form of a hierarchy pVnqn•1, with com-
putable decreasing error bounds p"nqn•1, where n corresponds to the level of truncation in the
first case and the step of the greedy algorithm in the second case. Given a reduced model Vn,
one way of tackling the state estimation problem is to replace the complex solution manifold
M by the simpler prior class described by the cylinder

(1.14) K “ KpVn, "nq “ tv P V : distpv, Vnq § "nu

that contains M. The set K therefore reflects the approximability of M by Vn. This point of
view leads to the parametrized background data weak (PBDW) method introduced in [1], also
called the one space method and further analyzed in [2], that we recall below in a nutshell.

In the noiseless case, the knowledge of z “ pziqi“1,...,m is equivalent to that of the orthog-
onal projection w “ PWu, where

(1.15) W :“ spant!1, . . . ,!mu

and !i P V are the Riesz representers of the linear functionals `i, that is,

(1.16) `ipvq “ x!i, vy, v P V.

Thus, the data indicates that u belongs to the a�ne space w ` W
K.

Combining this information with the prior class K, the unknown state thus belongs to the
ellipsoid

(1.17) Kw :“ K X pw ` W
K

q “ tv P K : PW v “ wu.

For this posterior class Kw, the optimal recovery estimator u˚ that minimizes the worst case
error maxuPKw }u ´ u

˚
} is therefore the center of the ellipsoid. It is proven in [2] that this

center is equivalently given by

(1.18) u
˚

“ u
˚
pwq :“ argmint}v ´ PVnv} : PW v “ wu.
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NONLINEAR ROM FOR STATE AND PARAMETER ESTIMATION 231

It can be computed from the data w in an elementary manner by solving a finite set of linear
equations. The worst case performance for this estimator, both over K and Kw, for any w, is
thus given by the half-diameter of the ellipsoid which is the product of the width "n of K and
the quantity

(1.19) µn “ µpVn,W q :“ max
vPVn

}v}

}PW v}
.

Note that µn is the inverse of the cosine of the angle between Vn and W . For n • 1, this
quantity can be computed as the inverse of the smallest singular value of the n ˆ m cross-
Gramian matrix with entries x�i, jy between any pair of orthonormal bases p�iqi“1,...,n and
p jqj“1,...,m of Vn and W , respectively. It is readily seen that one also has

(1.20) µn “ max
wPWK

}w}

}PV K
n
w}

,

allowing us to extend the above definition to the case of the zero-dimensional space Vn “ t0u

for which µpt0u,W q “ 1.
Since M Ä K, the worst case error bound over M of the estimator, defined as

(1.21) Ewc :“ max
uPM

}u ´ u
˚
pPWuq},

satisfies the error bound

(1.22) Ewc § max
uPK

}u ´ u
˚
pPWuq} “ µn"n.

Remark 1.1. The estimation map w fiÑ u
˚
pwq is linear with norm µn and does not depend

on "n. It thus satisfies, for any individual u P V and ⌘ P W ,

(1.23) }u ´ u
˚
pPWu ` ⌘q} § µnpdistpu, Vnq ` }⌘}q.

We may therefore account for an additional measurement noise and model bias: if the obser-
vation is w “ PWu ` ⌘ with }⌘} § "noise, and if the true states do not lie in M but satisfy
distpu,Mq § "model, the guaranteed error bound (1.22) should be modified into

(1.24) }u ´ u
˚
pwq} § µnp"n ` "noise ` "modelq.

In practice, the noise component ⌘ P W typically results from a noise vector ⌘ P Rm a↵ecting
the observation z according to z “ `puq ` ⌘. Assuming a bound }⌘}2 § "noise where } ¨ }2 is
the Euclidean norm in Rm, we thus receive the above error bound with "noise :“ }M}"noise,
where M P Rmˆm is the matrix that transforms the representer basis ! “ t!1, . . . ,!mu into an
orthonormal basis  “ t 1, . . . , mu of W . Here estimation accuracy benefits from decreas-
ing noise without increasing computational cost. This is in contrast to Bayesian methods,
for which small noise level induces computational di�culties due to the concentration of the
posterior distribution.
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Remark 1.2. To bring out the essential mechanisms, we have idealized (and technically
simplified) the description of the PBDW method by omitting certain discretization aspects
that are unavoidable in computational practice and should be accounted for. To start with, the
snapshots ui (or the polynomial coe�cients u⌫) that span the reduced basis spaces Vn cannot
be computed exactly but only up to some tolerance by a numerical solver. One typical instance
is the finite element method, which yields an approximate parameter-to-solution map

(1.25) y fiÑ uhpyq P Vh,

where Vh is a reference finite element space ensuring a prescribed accuracy

(1.26) }upyq ´ uhpyq} § "h, y P Y.

The computable states are therefore elements of the perturbed manifold

(1.27) Mh :“ tuhpyq : y P Y u.

The reduced model spaces Vn are low-dimensional subspaces of Vh and with certified accuracy

(1.28) distpMh, Vnq § "n.

The true states do not belong to Mh, and this deviation can therefore be interpreted as a model
bias in the sense of the previous remark with "model “ "h. The application of the PDBW also
requires the introduction of the Riesz lifts !i in order to define the measurement space W .
Since we operate in the space Vh, these can be defined as elements of this space satisfying

(1.29) x!i, vyV “ `ipvq, v P Vh,

thus resulting in a measurement space W Ä Vh. For example, if V is the Sobolev spaces H1
0 pDq

for some domain D and Vh is a finite element subspace, the Riesz lifts are the unique solutions
to the Galerkin problem

(1.30)

ª

D

r!irv “ `ipvq, v P Vh,

and can be identified by solving nh ˆ nh linear systems. Measuring accuracy in V , i.e., in
a metric dictated by the continuous PDE model, the idealization, to be largely maintained in
what follows, also helps understanding how to properly adapt the background-discretization Vh

to the overall achievable estimation accuracy. Other computational issues involving the space
Vh will be discussed in section 3.4.

Note that µn • 1 increases with n and that its finiteness imposes that dimpVnq § dimpW q,
that is, m • n. Therefore, one natural way to decide which space Vn to use is to take the
value of n P t0, . . . ,mu that minimizes the bound µn"n. This choice is somehow crude since it
might not be the value of n that minimizes the true reconstruction error for a given u P M,
and for this reason it was referred to as a poor man algorithm in [3].

The PBDW approach to state estimation can be improved in various ways:
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‚ One variant that is relevant to the present work is studied in [12] and consists in using
reduced models of a�ne form

(1.31) Vn “ un ` V n,

where V n is a linear space and u is a given o↵set. The optimal recovery estimator
is again defined by the minimization property (1.18). Its computation amounts to
the same type of linear systems, and the reconstruction map w fiÑ u

˚
pwq is now

a�ne. The error bound (1.22) remains valid with µn “ µpV n,W q and "n a bound
for distpM, Vnq. Note that "n is also a bound for the distance of M to the linear
space V n`1 :“ V n ‘ Run of dimension n`1. However, using instead this linear space
could result in a stability constant µn`1 “ µpV n`1,W q that is much larger than µn,
in particular when the o↵set un is close to W

K.
‚ Another variant proposed in [12] consists in using a large set TN “ tui “ upy

i
q :

i “ 1, . . . , Nu of precomputed solutions in order to train the reconstruction map w fiÑ

u
˚
pwq by minimizing the least-squares fit

∞N
i“1 }ui´u

˚
pPWuiq}

2 over all linear or a�ne
maps, which amounts to optimizing the choice of the space Vn in the PBDW method.

‚ Conversely, for a given reduced basis space Vn, it is also possible to optimize the choice
of linear functionals p`1, . . . , `mq giving rise to the data, among a dictionary D, that
represent a set of admissible measurement devices. The objective is to minimize the
stability constant µpVn,W q for the resulting space W ; see, in particular, [4], where
a greedy algorithm is proposed for selecting the `i. We do not take this view in the
present paper and think of the space W as fixed once and for all: the measurement
devices are given to us and cannot be modified.

1.3. Objective and outline. The simplicity of the PBDW method and its above variants
come together with a fundamental limitation of its performance: since the map w fiÑ u

˚
pwq

is linear or a�ne, the reconstruction necessarily belongs to an m- or pm ` 1q-dimensional
space, and therefore the worst case performance is necessarily bounded from below by the
Kolmogorov width dmpMq or dm`1pMq. In view of this limitation, one principal objective of
the present work is to develop nonlinear state estimation techniques which provably overcome
the bottleneck of the Kolmogorov width dmpMq.

In section 2, we introduce various benchmark quantities that describe the best possible
performance of a recovery map in a worst case sense. We first consider an idealized setting
where the state u is assumed to exactly satisfy the theoretical model described by the para-
metric PDE, that is, u P M. Then we introduce similar benchmarks quantities in the presence
of model bias and measurement noise. All these quantities can be substantially smaller than
dmpMq.

In section 2, we discuss a nonlinear recovery method, based on a family of a�ne reduced
models pVkqk“1,...,K , where each Vk has dimension nk § m and serves as a local approximation
to a portion Mk of the solution manifold. Applying the PBDW method with each such space
results in a collection of state estimators u˚

k. The value k for which the true state u belongs
to Mk being unknown, we introduce a model selection procedure in order to pick a value k

˚

and define the resulting estimator u
˚

“ u
˚
k˚ . We show that this estimator has performance

comparable to the benchmark introduced in section 2. Such performances cannot be achieved
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by the standard PBDW method due to the above described limitations.
Model selection is a classical topic of mathematical statistics [35], with representative

techniques such as complexity penalization or cross-validation in which the data are used to
select a proper model. Our approach di↵ers from these techniques in that it exploits (in the
spirit of data assimilation) the PDE model which is available to us by evaluating the distance
to the manifold

(1.32) distpv,Mq “ min
yPY

}v ´ upyq}

of the di↵erent estimators v “ u
˚
k for k “ 1, . . . ,K and picking the value k

˚ that minimizes
it. In practice, the quantity (1.32) cannot be exactly computed, and we instead rely on a
computable surrogate quantity Spv,Mq expressed in terms of the residual to the PDE; see
section 3.4.

One typical instance where such a surrogate is available is when (1.1) has the form of a
linear operator equation

(1.33) Apyqu “ fpyq,

where Apyq is boundedly invertible from V to V
1, or more generally from V Ñ Z

1, for a test
space Z di↵erent from V , uniformly over y P Y . Then Spv,Mq is obtained by minimizing the
residual

(1.34) Rpv, yq “ }Apyqv ´ fpyq}Z1

over y P Y . This task itself is greatly facilitated in the case where the operators Apyq and
source terms fpyq have a�ne dependence in y and when the parameter domain Y is convex.
One relevant example that has been often considered in the literature is the second order
homogeneous boundary value problem with a�ne di↵usion coe�cient,

(1.35) ´ divparuq “ fpyq in D, u|BD “ 0, a “ apyq “ a `

dÿ

j“1

yj j ,

where in this case V “ Z “ H
1
0 pDq.

In section 4, we discuss the more direct approach for both state and parameter estimation
based on minimizing Rpv, yq over both y P Y and v P w ` W

K. The associated alternating
minimization algorithm amounts to a simple succession of quadratic problems in the particular
case of linear PDEs with a�ne parameter dependence. Such an algorithm is not guaranteed to
converge to a global minimum (since the residual is not globally convex), and for this reason
its limit may miss the optimality benchmark. On the other hand, using the estimator derived
in section 3 as a “good initialization point” to this minimization algorithm leads to a limit
state that has at least the same order of accuracy.

These various approaches are numerically tested in section 5 for the elliptic equation (1.35)
for both the overdetermined regime m • d and the underdetermined regime m † d.
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1.4. Connections of the present work with other inverse problem approaches and
model order reduction. One of the main results of the present paper is the development of
a state estimation algorithm which has close to optimal reconstruction properties over the
solution manifold, in the sense that we introduce in section 2. Reduced order models Vn play
a prominent role since they are the main vehicle for making our strategy implementable in
practice. We should note that the idea of using reduced models to solve inverse problems
is actually not new in the literature, though. It can be traced back at least to the gappy
POD method, first introduced in [17] by Everson and Sirovich. There, the authors address
the problem of restoring a full image from partial pixel observations by using a least-squares
strategy involving a reconstruction on linear spaces obtained by PCA. The same strategy
was then brought to other fields, such as fluid and structural applications; see [18]. The
introduction of a reduced model can be seen as an improvement with respect to working
with one single background function, as is done in methods such as 3D-VAR; see [15, 16]. In
contrast to the present work and the PBDW method in general, the gappy POD method is
formulated on the Euclidean space V “ RN , with N P N typically much larger than m and
n. It uses linear reduced models Vn obtained by PCA, and measurement observations are
typically pointwise vector entries, that is, !i “ ei, with ei P RN being the ith unit vector. For
that particular choice of ambient space and reduced models, the linear PBDW method is very
close to gappy POD. It is, however, not entirely equivalent since PBDW presents a certain
component in W X V

K
n which is missing in gappy POD. For the case of a general Hilbert

space, linear PBDW is equivalent to the generalized empirical interpolation method when
m “ n; see [20, 21, 22]. It is also interesting to note that the reconstruction algorithm (1.18)
corresponding to what we call linear PBDW in this paper has also been developed in [19]
as an extension of compressed sensing to Hilbert spaces. There, the envisaged spaces Vn are
related to Fourier and wavelet spaces rather than reduced models of parametric PDEs. Finally,
reduced models are commonly used in order to significantly speed up forward simulations that
could be needed in inversion tasks; see, e.g., [42], where a central issue is to judiciously switch
between the high fidelity model, given in terms of a fine scale discretization, and the low
fidelity reduced model.

In the above landscape of methods, our proposed piecewise a�ne extension of PBDW
can be interpreted as a further generalization step which comes with optimal reconstruction
guarantees. Our strategy is based on an o✏ine partitioning of the manifold M in which, for
each element of the partition, we compute reduced models. We then decide with a data-driven
approach which reduced model is the most appropriate for the reconstruction. The idea of
partitioning the manifold and working with di↵erent reduced order models for each partition
is not new, but it has mostly been explored in works that focus on the forward problem of
approximating the parameter-to-solution mapping y P Y fiÑ u P M; see, e.g., [24, 25, 26, 27].
This strategy enters into the general topic of nonlinear forward model reduction for which
little is known in terms of the performance guarantees. A first step towards a cohesive theory
for nonlinear forward model reduction has recently been proposed in [23], in relation with the
general concept of library widths [41].
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2. Optimal recovery benchmarks. In this section, we describe the performance of the
best possible recovery map

(2.1) w fiÑ u
˚
pwq

in terms of its worst case error. We consider first the case of noiseless data and no model bias.
In a subsequent step, we take such perturbations into account. While these best recovery maps
cannot be implemented by a simple algorithm, their performance serves as the benchmark for
the nonlinear state estimation algorithms discussed in the next section.

2.1. Optimal recovery for the solution manifold. In the absence of model bias and when
a noiseless measurement w “ PWu is given, our knowledge of u is that it belongs to the set

(2.2) Mw :“ M X pw ` W
K

q.

The best possible recovery map can be described through the following general notion.

Definition 2.1. The Chebyshev ball of a bounded set S P V is the closed ball Bpv, rq of
minimal radius that contains S. One denotes by v “ cenpSq the Chebyshev center of S and
r “ radpSq its Chebyshev radius.

In particular, by Theorem 9 in [36], one has

(2.3)
1

2
diampSq § radpSq §

1
?
2
diampSq,

where diampSq :“ supt}u ´ v} : u, v P Su is the diameter of S. Therefore, the recovery map
that minimizes the worst case error over Mw for any given w, and therefore over M, is defined
by

(2.4) u
˚
pwq “ cenpMwq.

Its worst case error is

(2.5) E
˚
wc “ suptradpMwq : w P W u.

In view of the equivalence (2.3), we can relate E
˚
wc to the quantity

(2.6) �0 “ �0pM,W q :“ suptdiampMwq : w P W u “ supt}u ´ v} : u, v P M, u ´ v P W
K

u

by the equivalence

(2.7)
1

2
�0 § E

˚
wc §

1
?
2
�0.

Note that injectivity of the measurement map PW over M is equivalent to �0 “ 0. We provide
in Figure 2.1a an illustration of the above benchmark concepts.

If w “ PWu for some u P M, then any u
˚

P M such that PWu
˚

“ w meets the ideal
benchmark }u´ u

˚
} § �0. Therefore, one way for finding such a u

˚ would be to minimize the
distance to the manifold over all functions such that PW v “ w, that is, solve

(2.8) min
vPw`WK

distpv,Mq “ min
vPw`WK

min
yPY

}upyq ´ v}.
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NONLINEAR ROM FOR STATE AND PARAMETER ESTIMATION 237

This problem is computationally out of reach since it amounts to the nested minimization of
two nonconvex functions in high dimension.

Computationally feasible algorithms such as the PBDW methods are based on a sim-
plification of the manifold M which induces an approximation error. We introduce next a
somewhat relaxed benchmark that takes this error into account.

(a) Perfect model (b) Model bias

Figure 2.1. Illustration of the optimal recovery benchmark on a manifold in the two-dimensional Euclidean
space.

2.2. Optimal recovery under perturbations. In order to account for manifold simpli-
fication as well as model bias, for any given accuracy � ° 0, we introduce the �-o↵set of
M,

(2.9) M� :“ tv P V : distpv,Mq § �u “

§

uPM
Bpu,�q.

Likewise, we introduce the perturbed set

(2.10) M�,w “ M� X pw ` W
K

q,

which, however, still excludes uncertainties in w. Our benchmark for the worst case error is
now defined as (see Figure 2.1b for an illustration)

(2.11) �� :“ max
wPW

diampM�,wq “ maxt}u ´ v} : u, v P M�, u ´ v P W
K

u.

The map � fiÑ �� satisfies some elementary properties:
‚ Monotonicity and continuity. It is obviously nondecreasing:

(2.12) � § �̃ ùñ �� § ��̃.D
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Simple finite-dimensional examples show that this map may have jump discontinuities.
Take, for example, a compact set M Ä R2 consisting of the two points p0, 0q and
p1{2, 1q, and W “ Re1, where e1 “ p1, 0q. Then �� “ 2� for 0 § � †

1
4 , while

� 1
4
pM,W q “ 1. Using the compactness of M, it is possible to check that � fiÑ �� is

continuous from the right and in particular lim�Ñ0 ��pM,W q “ �0.
‚ Bounds from below and above: for any u, v P M�,w, and for any �̃ • 0, let ũ “ u` �̃g

and ṽ “ v´ �̃g with g “ pu´vq{}u´v}. Then }ũ´ ṽ} “ }u´v} `2�̃ and ũ´ ṽ P W
K,

which shows that ũ, ṽ P M�`�̃,w, and

(2.13) ��`�̃ • �� ` 2�̃.

In particular,

(2.14) �� • �0 ` 2� • 2�.

On the other hand, we obviously have the upper bound �� § diampM�q § diampMq`

2�.
‚ The quantity

(2.15) µpM,W q :“
1

2
sup
�°0

�� ´ �0

�

may be viewed as a general stability constant inherent to the recovery problem, similar
to µpVn,W q, which is more specific to the particular PBDW method: in the special
case where M “ Vn and Vn X W

K
“ t0u, one has �0 “ 0 and ��

2� “ µpVn,W q for all
� ° 0. Note that µpM,W q • 1 in view of (2.14).

Regarding measurement noise, it suggests to introduce the quantity

(2.16) �̃� :“ maxt}u ´ v} : u, v P M, }PWu ´ PW v} § �u.

Thus, �̃� accounts for a noise level � in the measurement space W , which, by Remark 1.1,
relates to the noise in the data measured in the Euclidean norm on Rm.

The two quantities �� and �̃� are not equivalent; however, one has the framing

(2.17) �� ´ 2� § �̃2� § �� ` 2�.

To prove (2.17), we note that for any u, v P M� such that u´v P W
K, there exist ũ, ṽ P M at

distance � from u, v, respectively. Hence, }u´v} § }ũ´ ṽ}`2� while }PW pũ´ ṽq} § 2�, which
gives the first inequality in (2.17). To prove the second inequality in (2.17), let ũ1, ũ2 P M
such that }PW ũ1 ´ PW ũ2} § 2�. To construct nearby elements ui P M� sharing the same
measurements, we write w̃i “ PW ũi and w̃

K
i “ PWK ũi, i “ 1, 2, so that }w̃1 ´ w̃2} § 2�. For

i “ 1, 2, the function ui :“ pw̃1 ` w̃2q{2 ` w̃
K
i is at distance � from ũi. Therefore, ui P M�,

PW pu1 ´ u2q “ 0, and

}ũ1 ´ ũ2}
2

“ }w̃1 ´ w̃2}
2

` }w̃
K
1 ´ w̃

K
2 }

2
§ p2�q

2
` }PWKu1 ´ PWKu2}

2
§ p2�q

2
` �

2
�,

which yields a stronger form of the upper inequality in (2.17). Finally, note that we have

�̃2� § 2��, � • 0.
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This is derived by inserting the inequality 2� § �� from (2.14) in the second inequality of
(2.17).

In the following analysis of reconstruction methods, we use the quantity �� as a bench-
mark which, in view of this last observation, also accounts for the lack of accuracy in the
measurement of PWu. Our objective is therefore to design an algorithm that, for a given
tolerance � ° 0, recovers from the measurement w “ PWu an approximation to u with accu-
racy comparable to ��. Such an algorithm requires that we are able to capture the solution
manifold up to some tolerance " § � by some reduced model.

3. Nonlinear recovery by reduced model selection.

3.1. Piecewise a�ne reduced models. Linear or a�ne reduced models, as used in the
PBDW algorithm, are not suitable for approximating the solution manifold when the required
tolerance " is too small. In particular, when " † dmpMq one would then need to use a linear
space Vn of dimension n ° m, therefore making µpVn,W q infinite.

One way out is to replace the single space Vn by a family of a�ne spaces

(3.1) Vk “ uk ` V k, k “ 1, . . . ,K,

each of them having dimension

(3.2) dimpVkq “ nk § m,

such that the manifold is well captured by the union of these spaces, in the sense that

(3.3) dist

˜
M,

K§

k“1

Vk

¸
§ "

for some prescribed tolerance " ° 0. This is equivalent to saying that there exists a partition
of the solution manifold

(3.4) M “

K§

k“1

Mk,

such that we have local certified bounds

(3.5) distpMk, Vkq § "k § ", k “ 1, . . . ,K.

We may thus think of the family pVkqk“1,...,K as a piecewise a�ne approximation to M. We
stress that, in contrast to the hierarchies pVnqn“0,...,m of reduced models discussed in section
5, the spaces Vk do not have dimension k and are not nested. Most importantly, K is not
limited by m while each nk is.

The objective of using a piecewise reduced model in the context of state estimation is to
have a joint control on the local accuracy "k as expressed by (3.5) and on the stability of the
PBDW when using any individual Vk. This means that, for some prescribed µ ° 1, we ask
that

(3.6) µk “ µpV k,W q § µ, k “ 1, . . . ,K.
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According to (1.22), the worst case error bound over Mk when using the PBDW method
with a space Vk is given by the product µk"k. This suggests to alternatively require from the
collection pVkqk“1,...,K that for some prescribed � ° 0, one has

(3.7) �k :“ µk"k § �, k “ 1, . . . ,K.

This leads us to the following definition.

Definition 3.1. The family pVkqk“1,...,K is �-admissible if (3.7) holds. It is p", µq-admissible
if (3.5) and (3.6) are jointly satisfied.

Obviously, any p", µq-admissible family is �-admissible with � :“ µ". In this sense, the
notion of p", µq-admissibility is thus more restrictive than that of �-admissibility. The benefit
of the first notion is in the uniform control on the size of µ which is critical in the presence of
noise, as hinted at by Remark 1.1.

If u P M is our unknown state and w “ PWu is its observation, we may apply the
PBDW method for the di↵erent Vk in the given family, which yields a corresponding family
of estimators

(3.8) u
˚
k “ u

˚
kpwq “ argmintdistpv, Vkq : v P w ` W

K
u, k “ 1, . . . ,K.

If pVkqk“1,...,K is �-admissible, we find that the accuracy bound

(3.9) }u ´ u
˚
k} § µkdistpu, Vkq § µk"k “ �k § �

holds whenever u P Mk.
Therefore, if in addition to the observed data w one had an oracle giving the information

on which portion Mk of the manifold the unknown state sits, we could derive an estimator
with worst case error

(3.10) Ewc § �.

This information is, however, not available, and such a worst case error estimate cannot be
hoped for, even with an additional multiplicative constant. Indeed, as we shall see below, �
can be fixed arbitrarily small by the user when building the family pVkqk“1,...,K , while we know
from section 2.1 that the worst case error is bounded from below by E

˚
wc •

1
2�0, which could

be nonzero. We will thus need to replace the ideal choice of k by a model selection procedure
only based on the data w, that is, a map

(3.11) w fiÑ k
˚
pwq,

leading to a choice of estimator u
˚

“ u
˚
k˚ . We shall prove further that such an estimator is

able to achieve the accuracy

(3.12) Ewc § ��,

that is, the benchmark introduced in section 2.2. Before discussing this model selection, we
discuss the existence and construction of �-admissible or p", µq-admissible families.
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3.2. Constructing admissible reduced model families. For any arbitrary choice of " ° 0
and µ • 1, the existence of an p", µq-admissible family results from the following observation:
since the manifold M is a compact set of V , there exists a finite "-cover of M, that is, a
family u1, . . . , uK P V , such that

(3.13) M Ä

K§

k“1

Bpuk, "q,

or equivalently, for all v P M, there exists a k such that }v ´ uk} § ". With such an " cover,
we consider the family of trivial a�ne spaces defined by

(3.14) Vk “ tuku “ uk ` V k, V k “ t0u,

thus with nk “ 0 for all k. The covering property implies that (3.5) holds. On the other hand,
for the zero-dimensional space, one has

(3.15) µpt0u,W q “ 1,

and therefore (3.6) also holds. The family pVkqk“1,...,K is therefore p", µq-admissible, and also
�-admissible with � “ ".

This family is, however, not satisfactory for algorithmic purposes for two main reasons.
First, the manifold is not explicitly given to us and the construction of the centers uk is
by no means trivial. Second, asking for an "-cover would typically require that K becomes
extremely large as " goes to 0. For example, assuming that the parameter to solution y fiÑ upyq

has Lipschitz constant L,

(3.16) }upyq ´ upỹq} § L|y ´ ỹ|, y, ỹ P Y,

for some norm | ¨ | of Rd, then an " cover for M would be induced by an L
´1
" cover for Y

which has cardinality K growing like "´d as " Ñ 0. Having a family of moderate size K is
important for the estimation procedure since we intend to apply the PBDW method for all
k “ 1, . . . ,K.

In order to construct p", µq-admissible or �-admissible families of better controlled size,
we need to split the manifold in a more economical manner than through an "-cover and use
spaces Vk of general dimensions nk P t0, . . . ,mu for the various manifold portions Mk. To
this end, we combine standard constructions of linear reduced model spaces with an iterative
splitting procedure operating on the parameter domain Y . Let us mention that various ways
of splitting the parameter domain have already been considered in order to produce local
reduced bases having both controlled cardinality and prescribed accuracy [32, 34, 6]. Here
our goal is slightly di↵erent since we want to control both the accuracy " and the stability µ

with respect to the measurement space W .
We describe the greedy algorithm for constructing �-admissible families and explain how

it should be modified for p", µq-admissible families. For simplicity, we consider the case where
Y is a rectangular domain with sides parallel to the main axes, the extension to a more general
bounded domain Y being done by embedding it in such a hyper-rectangle. We are given a
prescribed target value � ° 0, and the splitting procedure starts from Y .
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At step j, a disjoint partition of Y into rectangles pYkqk“1,...,Kj with sides parallel to the
main axes has been generated. It induces a partition of M given by

(3.17) Mk :“ tupyq : y P Yku, k “ 1, . . . ,Kj .

To each k P t1, . . . ,Kju we associate a hierarchy of a�ne reduced basis spaces

(3.18) Vn,k “ uk ` V n,k, n “ 0, . . . ,m,

where uk “ upykq with yk the vector defined as the center of the rectangle Yk. The nested
linear spaces

(3.19) V 0,k Ä V 1,k Ä ¨ ¨ ¨ Ä V m,k, dimpV n,kq “ n

are meant to approximate the translated portion of the manifold Mk ´ uk. For example,
they could be reduced basis spaces obtained by applying the greedy algorithm to Mk ´ uk

or spaces resulting from local n-term polynomial approximations of upyq on the rectangle Yk.
Each space Vn,k has a given accuracy bound and stability constant

(3.20) distpMk, Vn,kq § "n,k and µn,k :“ µpV n,k,W q.

We define the test quantity

(3.21) ⌧k “ min
n“0,...,m

µn,k"n,k.

If ⌧k § �, the rectangle Yk is not split and becomes a member of the final partition. The a�ne
space associated to Mk is

(3.22) Vk “ uk ` V k,

where Vk “ Vn,k for the value of n that minimizes µn,k"n,k. The rectangles Yk with ⌧k ° �

are, on the other hand, split into a finite number of subrectangles in a way that we discuss
below. This results in the new larger partition pYkqk“1,...,Kj`1 after relabelling the Yk. The
algorithm terminates at the step j as soon as ⌧k § � for all k “ 1, . . . ,Kj “ K, and the family
pVkqk“1,...,K is �-admissible. In order to obtain an p", µq-admissible family, we simply modify
the test quantity ⌧k by defining it instead as

(3.23) ⌧k :“ min
n“0,...,m

max
!
µn,k

µ
,
"n,k

"

)

and splitting the cells for which ⌧k ° 1.
The splitting of one single rectangle Yk can be performed in various ways. When the pa-

rameter dimension d is moderate, we may subdivide each sidelength at the midpoint, resulting
in 2d subrectangles of equal size. This splitting becomes too costly as d gets large, in which
case it is preferable to make a choice of i P t1, . . . , du and subdivide Yk at the midpoint of the
sidelength in the i-coordinate, resulting in only two subrectangles. In order to decide which
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coordinate to pick, we consider the d possibilities and take the value of i that minimizes the
quantity

(3.24) ⌧k,i “ maxt⌧
´
k,i, ⌧

`
k,iu,

where p⌧
´
k,i, ⌧

`
k,iq are the values of ⌧k for the two subrectangles obtained by splitting along the

i-coordinate. In other words, we split in the direction that decreases ⌧k most e↵ectively. In
order to be certain that all sidelengths are eventually split, we can mitigate the greedy choice
of i in the following way: if Yk has been generated by l consecutive refinements, and therefore
has volume |Yk| “ 2´l

|Y |, and if l is even, we choose i “ pl{2mod dq. This means that at each
even level we split in a cyclic manner in the coordinates i P t1, . . . , du.

Using such elementary splitting rules, we are ensured that the algorithm must terminate.
Indeed, we are guaranteed that for any ⌘ ° 0, there exists a level l “ lp⌘q such that any
rectangle Yk generated by l consecutive refinements has sidelengths smaller than 2⌘ in each
direction. Since the parameter-to-solution map is continuous, for any " ° 0, we can pick ⌘ ° 0
such that

(3.25) }y ´ ỹ}`8 § ⌘ ùñ }upyq ´ upỹq} § ", y, ỹ P Y.

Applying this to y P Yk and ỹ “ yk, we find that for uk “ upykq

(3.26) }u ´ uk} § ", u P Mk.

Therefore, for any rectangle Yk of generation l, we find that the trivial a�ne space Vk “ uk

has local accuracy "k § " and µk “ µpt0u,W q “ 1 § µ, which implies that such a rectangle
would no longer be refined by the algorithm.

3.3. Reduced model selection and recovery bounds. We return to the problem of se-
lecting an estimator within the family pu

˚
kqk“1,...,K defined by (3.8). In an idealized version,

the selection procedure picks the value k
˚ that minimizes the distance of u˚

k to the solution
manifold, that is,

(3.27) k
˚

“ argmintdistpu˚
k,Mq : k “ 1, . . . ,Ku,

and takes for the final estimator

(3.28) u
˚

“ u
˚
pwq :“ u

˚
k˚pwq.

Note that k˚ also depends on the observed data w. This estimation procedure is not realistic
since the computation of the distance of a known function v to the manifold

(3.29) distpv,Mq “ min
yPY

}upyq ´ v}

is a high-dimensional nonconvex problem, which requires that we explore the solution man-
ifold. A more realistic procedure is based on replacing this distance by a surrogate quantity
Spv,Mq that is easily computable and satisfies a uniform equivalence

(3.30) r distpv,Mq § Spv,Mq § R distpv,Mq, v P V,
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for some constants 0 † r § R. We then instead take for k
˚ the value that minimizes this

surrogate, that is,

(3.31) k
˚

“ argmintSpu
˚
k,Mq : k “ 1, . . . ,Ku.

Before discussing the derivation of Spv,Mq and the relation of the constants r,R to the
parametric model (1.1) in concrete cases, we establish a recovery bound in the absence of
model bias and noise.

Theorem 3.2. Assume that the family pVkqk“1,...,K is �-admissible for some � ° 0. Then
the idealized estimator based on (3.27), (3.28) satisfies the worst case error estimate

(3.32) Ewc “ max
uPM

}u ´ u
˚
pPWuq} § ��,

where �� is the benchmark quantity defined in (2.11). When using the estimator based on
(3.31), the worst case error estimate is modified into

(3.33) Ewc § ��,  “
R

r
° 1.

Proof. Let u P M be an unknown state, and let w “ PWu. There exists l “ lpuq P

1, . . . ,K, such that u P Ml, and for this value, we know that

(3.34) }u ´ u
˚
l } § µl"l “ �l § �.

Since u P M, it follows that

(3.35) distpu˚
l ,Mq § �.

On the other hand, for the value k
˚ selected by (3.31) and u

˚
“ u

˚
k˚ , we have

(3.36) distpu˚
,Mq § r

´1 Spu
˚
,Mq § r

´1 Spu
˚
l ,Mq §  distpu˚

l ,Mq § �.

It follows that u˚ belongs to the o↵set M�. Since u P M Ä M� Ñ M� and u ´ u
˚

P W
K,

we find that

(3.37) }u ´ u
˚
} § ��,

which establishes the recovery estimate (3.33). The estimate (3.32) for the idealized estimator
follows since it corresponds to having r “ R “ 1.

Remark 3.3. One possible variant of the selection mechanism, which is actually adopted
in our numerical experiments, consists in picking the value k

˚ that minimizes the distance of
u

˚
k to the corresponding local portion Mk of the solution manifold or a surrogate Spu

˚
k,Mkq

with equivalence properties analogous to (3.30). It is readily checked that Theorem 3.2 remains
valid for the resulting estimator u

˚ with the same type of proof.

In the above result, we do not obtain the best possible accuracy satisfied by the di↵erent
u

˚
k since we do not have an oracle providing the information on the best choice of k. We next

show that this order of accuracy is attained in the particular case where the measurement
map PW is injective on M and the stability constant of the recovery problem defined in (2.15)
is finite.
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Theorem 3.4. Assume that �0 “ 0 and that

(3.38) µpM,W q “
1

2
sup
�°0

��

�
† 8.

Then, for any given state u P M with observation w “ PWu, the estimator u˚ obtained by the
model selection procedure (3.31) satisfies the oracle bound

(3.39) }u ´ u
˚
} § C min

k“1,...,K
}u ´ u

˚
k}, C :“ 2µpM,W q.

In particular, if pVkqk“1,...,K is �-admissible, it satisfies

(3.40) }u ´ u
˚
} § C�.

Proof. Let l P t1, . . . ,Ku be the value for which }u´u
˚
l } “ mink“1,...,K }u´u

˚
k}. Reasoning

as in the proof of Theorem 3.2, we find that

(3.41) distpu˚
,Mq § �, � :“ distpu˚

l ,Mq,

and therefore

(3.42) }u ´ u
˚
} § �� § 2µpM,W q distpu˚

l ,Mq,

which is (3.39). We then obtain (3.40) using the fact that }u´u
˚
k} § � for the value of k such

that u P Mk.

We next discuss how to incorporate model bias and noise in the recovery bound, provided
that we have a control on the stability of the PBDW method, through a uniform bound on
µk, which holds when we use p", µq-admissible families.

Theorem 3.5. Assume that the family pVkqk“1,...,K is p", µq-admissible for some " ° 0 and
µ • 1. If the observation is w “ PWu`⌘ with }⌘} § "noise, and if the true state does not lie in
M but satisfies distpu,Mq § "model, then the estimator based on (3.31) satisfies the estimate

(3.43) }u ´ u
˚
pwq} § �⇢ ` "noise, ⇢ :“ µp"` "noiseq ` pµ ` 1q"model,  “

R

r
,

and the idealized estimator based on (3.27) satisfies a similar estimate with  “ 1.

Proof. There exists l “ lpuq P t1, . . . ,Ku such that

(3.44) distpu,Mlq § "model,

and therefore

(3.45) distpu, Vlq § "l ` "model.

As already noted in Remark 1.1, we know that the PBDW method for this value of k has
accuracy

(3.46) }u ´ u
˚
l } § µlp"l ` "noise ` "modelq § µp"` "noise ` "modelq.D
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Therefore,

(3.47) distpu˚
l ,Mq § µp"` "noise ` "modelq ` "model “ ⇢,

and in turn

(3.48) distpu˚
,Mq § ⇢.

On the other hand, we define

(3.49) v :“ u ` ⌘ “ u ` w ´ PWu “ u ` PW pu
˚

´ uq,

so that

(3.50) distpv,Mq § }v ´ u} ` "model § "noise ` "model § ⇢.

Since v ´ u
˚

P W
K, we conclude that }v ´ u

˚
} § �⇢, from which (3.43) follows.

While the reduced model selection approach provides us with an estimator w fiÑ u
˚
pwq of

a single plausible state, the estimated distance of some of the other estimates ukpwq may be of
comparable size. Therefore, one could be interested in recovering a more complete estimate on
a plausible set that may contain the true state u or even several states in M sharing the same
measurement. This more ambitious goal can be viewed as a deterministic counterpart to the
search for the entire posterior probability distribution of the state in a Bayesian estimation
framework, instead of only searching for a single estimated state, for instance the expectation
of this distribution. For simplicity, we discuss this problem in the absence of model bias and
noise. Our goal is therefore to approximate the set

(3.51) Mw “ M X pw ` W
K

q.

Given the family pVkqk“1,...,K , we consider the ellipsoids

(3.52) Ek :“ tv P w ` W
K distpv, Vkq § "ku, k “ 1, . . . ,K,

which have center u
˚
k and diameter at most µk"k. We already know that Mw is contained

inside the union of the Ek which could serve as a first estimator. In order to refine this
estimator, we would like to discard the Ek that do not intersect the associated portion Mk of
the solution manifold.

For this purpose, we define our estimator of Mw as the union

(3.53) M˚
w :“

§

kPS
Ek,

where S is the set of those k such that

(3.54) Spu
˚
k,Mkq § Rµk"k.

It is readily seen that k R S implies that Ek X Mk “ H. The following result shows that this
set approximates Mw with an accuracy of the same order as the recovery bound established
for the estimator u˚

pwq.
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Theorem 3.6. For any state u P M with observation w “ PWu, one has the inclusion

(3.55) Mw Ä M˚
w.

If the family pVkqk“1,...,K is �-admissible for some � ° 0, the Hausdor↵ distance between the
two sets satisfies the bound

(3.56) dHpM˚
w,Mwq “ max

vPMẘ

min
uPMw

}v ´ u} § �p`1q�,  “
R

r
.

Proof. Any u P Mw is a state from M that gives the observation PWu. This state belongs
to Ml for some particular l “ lpuq, for which we know that u belongs to the ellipsoid El and
that

(3.57) }u ´ u
˚
l } § µl"l.

This implies that distpu˚
l ,Mlq § µl"l, and therefore Spu

˚
l ,Mlq § Rµl"l. Hence, l P S, which

proves the inclusion (3.55). In order to prove the estimate on the Hausdor↵ distance, we take
any k P S, and notice that

(3.58) distpu˚
k,Mkq § µk"k § �,

and therefore, for all such k and all v P Ek, we have

(3.59) distpv,Mkq § p` 1qµk"k.

Since u ´ v P W
K, it follows that

(3.60) }v ´ u} § �p`1q�,

which proves (3.56).

Remark 3.7. If we could take S to be exactly the set of those k such that Ek XMk ‰ H, the
resulting M˚

w would still contain Mw but with a sharper error bound. Indeed, any v P M˚
w

belongs to a set Ek that intersects Mk at some u P Mw, so that

(3.61) dHpM˚
w,Mwq § 2�.

In order to identify whether a k belongs to this smaller S, we need to solve the minimization
problem

(3.62) min
vPEk

Spv,Mkq

and check whether the minimum is zero. As explained next, the quantity Spv,Mkq is itself
obtained by a minimization problem over y P Yk. The resulting double minimization problem
is globally nonconvex, but it is convex separately in v and y, which allows one to apply simple
alternating minimization techniques. These procedures (which are not guaranteed to converge
to the global minimum) are discussed in section 4.2.
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3.4. Residual based surrogates. The computational realization of the above concepts
hinges on two main constituents, namely (i) the ability to evaluate bounds "n for distpM, Vnq

as well as (ii) to have at hand computationally a↵ordable surrogates Spv,Mq for distpv,Mq “

minuPM }v´u}. In both cases, one exploits the fact that errors in V are equivalent to residuals
in a suitable dual norm. Regarding (i), the derivation of bounds "n has been discussed exten-
sively in the context of reduced basis methods [37]; see also [29] for the more general framework
discussed below. Substantial computational e↵ort in an o✏ine phase provides residual based
surrogates for }u ´ upyq} permitting frequent parameter queries at an online stage needed, in
particular, to construct reduced bases. This strategy becomes challenging, though, for high
parameter dimensionality, and we refer the reader to [11] for remedies based on trading de-
terministic certificates against probabilistic ones at significantly reduced computational cost.
Therefore, we focus here on task (ii).

One typical setting where a computable surrogate Spv,Mq can be derived is when upyq is
the solution to a parametrized operator equation of the general form

(3.63) Apyqupyq “ fpyq,

i.e., Ppu, yq “ fpyq ´ Apyqu. Here we assume that for the given trial Hilbert space V we
have identified a test Hilbert space Z such that fpyq belongs to its dual Z 1 of Z and the
operators Apyq are boundedly invertible as mappings from V to the dual Z 1, uniformly in
y P Y . Moreover, we assume continuous dependence of Apyq and fpyq with respect to y P Y .

It is well known that bounded invertibility is conveniently characterized in terms of a weak
formulation of (3.63)

(3.64) Aypupyq, vq “ Fypvq, v P Z,

with the parametrized bilinear form Aypw, vq “ xApyqw, vyZ1,Z and the linear form Fypvq “

xfpyq, vyZ1,Z . Uniform bounded invertibility is then equivalent to the validity of continuity
and inf-sup-conditions on the bilinear form Aypw, vq for some inf-sup and continuity constants
0 † r § R † 8, respectively, for which one then has (see, e.g., [7])

(3.65) }Apyq}V ÑZ1 § R and }Apyq
´1

}Z1ÑV § r
´1

, y P Y.

This setting covers a wide range of problems, such as classical elliptic problems with
Z “ V , as well as saddle-point problems, other indefinite problems, and unsymmetric problems
such as convection-di↵usion problems, or space-time formulations of parabolic problems and
wave equations, where in some cases Z has to be chosen di↵erent from V in order to ensure a
moderate bound  “ R{r of the condition of (3.64); see, e.g., [8, 9, 10, 28, 29, 40]. Specifically,
(3.65) holds for perhaps the simplest instance of an elliptic operator Apyq “ ´divpapyqrq when
the parametric field apyq is uniformly bounded away from 0 and 8, as considered in section
5 below. The constants r,R then relate directly to minyPY apyq, maxyPY apyq, respectively.

It follows from (3.65) that for any v P V , one has the equivalence

(3.66) r}v ´ upyq}V § Rpv, yq § R}v ´ upyq}V ,

where

(3.67) Rpv, yq :“ }Apyqv ´ fpyq}Z1
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is the residual of the PDE for a state v and parameter y.
Therefore, the quantity

(3.68) Spv,Mq :“ min
yPY

Rpv, yq

provides us with a surrogate of distpv,Mq that satisfies the required framing (3.30). Note
that the bound  “ R{r of the condition of (3.64) determines the tightness of the surrogate
and thus enters all recovery estimates in the previous section.

One first advantage of this surrogate quantity is that for each given y P Y , the evaluation
of the residual }Apyqv´fpyq}Z1 does not require one to compute the solution upyq. Its second
advantage is that the minimization in y is facilitated in the relevant case where Apyq and fpyq

have a�ne dependence on y, that is,

(3.69) Apyq “ A0 `

dÿ

j“1

yjAj and fpyq “ f0 `

dÿ

j“1

yjfj .

Indeed, Spv,Mq then amounts to the minimization over y P Y of the function

(3.70) Rpv, yq
2 :“

››››A0v ´ f0 `

dÿ

j“1

yjpAjv ´ fjq

››››
2

Z1
,

which is a convex quadratic polynomial in y. Hence, a minimizer ypvq P Y of the corresponding
constrained linear least-squares problem exists, rendering the surrogate Spv,Mq “ Rpv, ypvqq

well-defined.
In all the above mentioned examples, the norm }¨}Z “ x¨, ¨y

1{2
Z can be e�ciently computed.

For instance, in the simplest case of an H
1
0 p⌦q-elliptic problem one has Z “ V “ H

1
0 p⌦q with

(3.71) xv, zyZ “

ª

⌦

rv ¨ rzdx.

The obvious obstacle is then, however, the computation of the dual norm } ¨ }Z1 which in
the particular example above is the H

´1
p⌦q-norm. A viable strategy is to use the Riesz lift

rZ : Z 1
Ñ Z, defined by

(3.72) xrZg, zyZ “ xg, zyZ1,Z “ gpzq, g P Z
1
, z P Z,

which implies that }rZg}Z “ }g}Z1 . Thus, Rpv, yq
2 is computed for a given pv, yq P V ˆ Y by

introducing the lifted elements

(3.73) ej :“ rZpAjv ´ fjq, j “ 0, . . . , d,

so that, by linearity,

(3.74) Rpv, yq
2

“

››››e0 `

dÿ

j“1

yjej

››››
2

Z

.
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Note that the above derivation is still idealized as the d`1 variational problems (3.73) are
posed in the infinite-dimensional space Z. As already stressed in Remark 1.2, all computations
take place in reference finite element spaces Vh Ä V and Zh Ä Z. We thus approximate the
ej by ej,h P Zh, for v P Vh, using the Galerkin approximation of (3.72). This gives rise to a
computable least-squares functional

(3.75) Rhpv, yq
2

“

››››e0,h `

dÿ

j“1

yjej,h

››››
2

Z

, y P Y.

The practical distance surrogate is then defined through the corresponding constrained least-
squares problem

(3.76) Shpv,Mhq :“ min
yPY

Rhpv, yq,

which can be solved by standard optimization methods. As indicated earlier, the recovery
schemes can be interpreted as taking place in a fixed discrete setting, with M replaced by
Mh, comprised of approximate solutions in a large finite element space Vh Ä V , and measuring
accuracy only in this finite-dimensional setting. One should note, though, that the approach
allows one to disentangle discretization errors from recovery estimates, even with regard to the
underlying continuous PDE model. In fact, given any target tolerance "h, using a posteriori
error control in Z, the spaces Vh, Zh can be chosen large enough to guarantee that

(3.77)
ˇ̌
Rpv, yq ´ Rhpv, yq

ˇ̌
§ "h}v}, v P Vh.

Accordingly, one has
ˇ̌
Shpv,Mhq´Spv,Mq

ˇ̌
§ "h}v}, so that recovery estimates remain mean-

ingful with respect to the continuous setting as long as "h remains su�ciently dominated by the
thresholds "k,�, "noise appearing in the above results. For notational simplicity, we therefore
continue working in the continuous setting.

4. Joint parameter and state estimation.

4.1. An estimate for y. Searching for a parameter y P Y , which explains an observation
w “ PWupyq, is a nonlinear inverse problem. As shown next, a quantifiable estimate for y can
be obtained from a state estimate u

˚
pwq combined with a residual minimization.

For any state estimate u
˚
pwq which we compute from w, the most plausible parameter is

the one associated to the metric projection of u˚
pwq into M, that is,

y
˚

P argmin
yPY

}upyq ´ u
˚
pwq}.

Note that y
˚ depends on w but we omit the dependence in the notation in what follows.

Finding y
˚ is a di�cult task since it requires solving a nonconvex optimization problem.

However, as we have already noticed, a near metric projection of u˚ toM can be computed
through a simple convex problem in the case of a�ne parameter dependence (3.69), minimizing
the residual Rpv, yq given by (3.70). Our estimate for the parameter is therefore

(4.1) y
˚

P argmin
yPY

Rpu
˚
, yq,
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and it satisfies, in view of (3.66),

(4.2) }u
˚

´ upy
˚
q} § r

´1Rpu
˚
, y

˚
q §  distpu˚

,Mq,  “ R{r.

Hence, if we use, for instance, the state estimate u
˚
pwq from (3.28), we conclude by Theorem

3.2 that upy
˚
q deviates from the true state upyq by

}upyq ´ upy
˚
q} § }upyq ´ u

˚
pwq} ` }u

˚
pwq ´ upy

˚
q}

§ p1 ` q}upyq ´ u
˚
pwq}

§ p1 ` q��,(4.3)

where �� is the benchmark quantity defined in (2.11). If, in addition, PW : M Ñ W is also
injective so that �0 “ 0, and if W and M are favorably oriented, as detailed in the assumptions
of Theorem 3.4, one even obtains

(4.4) }upyq ´ upy
˚
q} § p2µpM,W q ` 1q�.

To derive from such bounds estimates for the deviation of y˚ from y, more information on
the underlying PDE model is needed. For instance, for the second order parametric family
of elliptic PDEs (1.35) and strictly positive right-hand side f , it is shown in [5] that the
parameter-to-solution map is injective. If, in addition. the parameter dependent di↵usion
coe�cient apyq belongs to H

1
p⌦q, one has a quantitative inverse stability estimate of the form

(4.5) }apyq ´ apy
1
q}L2p⌦q § C}upyq ´ upy

1
q}

1{6
.

Combining this, for instance, with (4.3) yields

(4.6) }apyq ´ apy
˚
q}L2p⌦q § Cp1 ` q

1{6
�
1{6
� .

Under the favorable assumptions of Theorem 3.4, one obtains a bound of the form

(4.7) }apyq ´ apy
˚
q}L2p⌦q À �

1{6
.

Finally, in relevant situations (Karhunen–Loève expansions) the functions  j in the expansion
of apyq form an L

2-orthogonal system. The above estimates translate then into estimates for
a weighted `2-norm,

(4.8)

ˆ ÿ

j•1

cjpyj ´ y
˚
j q

2

˙1{2
À �

1{6
,

where cj “ } j}
2
L2 .

4.2. Alternating residual minimization. The state estimate u˚
pwq is defined by selecting

among the potential estimates u˚
kpwq the one that sits closest to the solution manifold, in the

sense of the surrogate distance Spv,Mq. Finding the element in w `W
K that is closest to M

would provide a possibly improved state estimate and as pointed out in the previous section
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also an improved parameter estimate. As explained earlier, it would help in addition with
improved set estimators for Mw.

Adhering to the definition of the residual Rpv, yq from (3.67), we are thus led to consider
the double minimization problem

(4.9) min
pv,yqPpw`WKqˆY

Rpv, yq “ min
vPw`WK

Spv,Mq.

We first show that a global minimizing pair pu
˚
, y

˚
q meets the optimal benchmarks intro-

duced in section 2. In the unbiased and noiseless case, the value of the global minimum is 0,
attained by the exact parameter y and state upyq. Any global minimizing pair pu

˚
, y

˚
q will

thus satisfy PWu
˚

“ w and u
˚

“ upy
˚
q P M. In other words, the state estimate u

˚ belongs
to Mw and therefore meets the optimal benchmark

(4.10) }u ´ u
˚
} § �0.

In the case of model bias and noise of amplitude "noise, the state u satisfies

(4.11) distpu,Mq § "model and }w ´ PWu} § "noise.

It follows that there exists a parameter y such that }u´upyq} § "model and a state ũ P w`W
K

such that }u ´ ũ} § "noise. For this state and parameter, one thus has

(4.12) Rpũ, yq § R}upyq ´ ũ} § Rp"model ` "noiseq.

Any global minimizing pair pu
˚
, y

˚
q will thus satisfy

(4.13) }u
˚

´ upy
˚
q} §

1

r
Rpu

˚
, y

˚
q § p"model ` "noiseq,  :“

R

r
.

Therefore, u˚ belongs to the set M",w, as defined by (2.10), with " :“ p"model ` "noiseq, and
so does ũ since }ũ ´ upyq} § "model ` "noise § ". In turn, the state estimate u

˚ meets the
perturbed benchmark

(4.14) }u
˚

´ u} § "noise ` }u
˚

´ ũ} § "noise ` �" §
3�"
2

since "noise § " § �"{2, having used (2.14) in the last step.
From a numerical perspective, the search for a global minimizing pair is a di�cult task

due to the fact that pv, yq fiÑ Rpv, yq is generally not a convex function. However, it should
be noted that in the case of a�ne parameter dependence (3.69), the residual Rpv, yq given
by (3.70) is a convex function in each of the two variables v, y separately, keeping the other
one fixed. More precisely, pv, yq fiÑ Rpv, yq

2 is a quadratic convex function in each variable.
This suggests the following alternating minimization procedure. Starting with an initial guess
u
0

P w ` W
K, we iteratively compute for j “ 0, 1, 2, . . . ,

y
j`1

P argmin
yPY

Rpu
j
, yq,(4.15)

u
j`1

P argmin
vPw`WK

Rpv, y
j`1

q.(4.16)
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Each problem has a simply computable minimizer, as discussed in the next section, and the
residuals are nonincreasing:

(4.17) Rpu
j
, y

j
q • Rpu

j
, y

j`1
q • Rpu

j`1
, y

j`1
q • ¨ ¨ ¨ .

Of course, one cannot guarantee in general that pu
j
, y

j
q converges to a global minimizer, and

the procedure may stagnate at a local minimum.
The above improvement property still tells us that if we initialize the algorithm by taking

u
0

“ u
˚

“ u
˚
pwq to be the state estimate from (3.28) and y

0
P argminyPY Rpu

˚
, yq, then we

are ensured at step k that

(4.18) Rpu
j
, y

j
q § Rpu

˚
, y

˚
q,

and therefore, by the same arguments as in the proof of Theorem 3.5, one finds that

(4.19) }u ´ u
j
} § �⇢ ` "noise,

with  and ⇢ as in (3.43). In other words, the new estimate u
j satisfies at least the same

accuracy bound as u
˚. The numerical tests performed in section 5.3 reveal that it can be

significantly more accurate.

4.3. Computational issues. We now explain how to e�ciently compute the steps in (4.15)
and (4.16). We continue to consider a family of linear parametric PDEs with a�ne parameter
dependence (3.69), admitting a uniformly stable variational formulation over the pair trial
and test spaces V, Z; see (3.64)–(3.65).

Minimization of (4.15). Problem (4.9) requires minimizing Rpv, yq for a fixed v P w `

W
K over y P Y . According to (3.74), it amounts to solving a linear least-squares problem

constrained to y P Y ,

(4.20) min
yPY

››››e0 `

dÿ

j“1

yjej

››››
2

Z

,

where the ej P Z are the Riesz lifts rZpAjv ´ fjq, j “ 0, . . . , d, defined in (3.73). As indicated
earlier, the numerical solution of (4.20) (for ej “ ej,h P Zh Ä Z) is standard when Y is convex.

Minimization of (4.16). Problem (4.16) is of the form

(4.21) min
vPw`WK

Rpv, yq
2

“ min
vPw`WK

}Apyqv ´ fpyq}
2
Z1

for a fixed y P Y . A naive approach for solving (4.21) would consist in working in a closed

subspace of ÄWK
Ñ W

K of su�ciently large dimension. We would then optimize over v P

w ` ÄWK. However, this would lead to a large quadratic problem of size dim ÄWK which would
involve dim ÄWK Riesz representer computations. We next propose an alternative strategy
involving the solution of only m ` 3 variational problems. To that end, we assume in what
follows that V is continuously embedded in Z

1, which is the case for all the examples of
interest, mentioned earlier in the paper.
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The proposed strategy is based on two isomorphisms from V to Z that preserve inner
products in a sense to be explained next. We make again heavy use of the Riesz isometry
defined in (3.72) and consider the two isomorphisms

(4.22) T “ T pyq :“ rZApyq : V Ñ Z, S “ Spyq :“ Apyq
´˚

r
´1
V : V Ñ Z,

where rZ : Z 1
Ñ Z and rV : V 1

Ñ V are the previously introduced Riesz lifts. One then
observes that, by standard duality arguments, they preserve inner products, in the sense that
for u, v P V ,

(4.23) xTu, SvyZ “ xrZApyqu,Apyq
´˚

r
´1
V vyZ “ xu, vyV ,

where we have used self-adjointness of Riesz isometries. In these terms, the objective functional
Rpv, yq

2 takes the form

(4.24) }Apyqv ´ fpyq}
2
Z1 “ }Tv ´ rZfpyq}

2
Z .

We can use (4.23) to reformulate (4.21) as

(4.25) min
vPw`WK

Rpv, yq
2

“ min
vPw`WK

}Tv ´ rZfpyq}
2
Z “ min

zPTw`SpW qK
}z ´ rZfpyq}

2
Z ,

where we have used that T pW
K

q “ SpW q
K to obtain the last equality. Note that the unique

solution z
˚

P Z to the right-hand side gives a solution v
˚

P V to the original problem through
the relationship Tv

˚
“ z

˚. The minimizer z˚ can be obtained by an appropriate orthogonal
projection onto SpW q. This indeed amounts to solving a fixed number of m ` 3 variational
problems without compromising accuracy by choosing a perhaps too moderate dimension for
a subspace ÄWK of WK.

More precisely, we have z
˚

“ Tw ` z̃, where z̃ P SpW q
K minimizes }z̃ ` Tw ´ rZfpyq}

2
Z ,

and therefore

(4.26) z̃ “ PSpW qKprZfpyq ´ Twq “ rZfpyq ´ Tw ´ PSpW qprZfpyq ´ Twq.

This shows that

(4.27) z
˚

“ z
˚
pyq :“ fpyq ´ PSpW qprZfpyq ´ Twq.

Thus, a single iteration of the type (4.21) requires assembling z
˚ followed by solving the

variational problem

(4.28) xTv
˚
, zyZ “ pApyqv

˚
qpzq “ xz

˚
, zyZ , z P Z,

that gives v˚. Assembling z
˚ involves

(i) evaluating Tw, which means solving the Riesz lift xTw, zyZ “ pApyqwqpzq, z P Z;
(ii) computing the Riesz lift rZfpyq by solving xrZfpyq, zyZ “ pfpyqqpzq, z P Z;
(iii) computing the projection PSpW qprZfpyq ´ Twq, which requires computing the trans-

formed basis functions Swi “ Apyq
´˚

r
´1
V wi, which are solutions to the variational

problems

(4.29) pApyq
˚
Swiqpvq “ xwi, vyV , v P V, i “ 1, . . . ,m.
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Of course, these variational problems are solved only approximately in appropriate large
but finite-dimensional spaces Vh Ä V, Zh Ä Z along the remarks at the end of the previous
section. While approximate Riesz lifts involve symmetric variational formulations which are
well-treated by Galerkin schemes, the problems involving the operator Apyq or Apyq

˚ may in
general require an unsymmetric variational formulation where Z ‰ V and Petrov–Galerkin
schemes on the discrete level. For each of the examples (such as a time-space variational
formulation of parabolic or convection di↵usion equations), stable discretizations are known;
see, e.g., [8, 10, 28, 29, 40].

A particularly important strategy for unsymmetric problems is to write the PDE first as
an equivalent system of first order PDEs permitting a so-called ultraweak formulation where
the (infinite-dimensional) trial space V is actually an L2-space and the required continuous
embedding V Ä Z

1 holds. The mapping rV is then just the identity, and so-called discontinuous
Petrov–Galerkin methods o↵er a way of systematically finding appropriate test spaces in the
discrete case with uniform inf-sup stability [9]. In this context, the mapping T from (4.22)
plays a pivotal role in the identification of “optimal test spaces” and is referred to as the
“trial-to-test-map.”

Of course, in the case of problems that admit a symmetric variational formulation, i.e.,
V “ Z, things simplify even further. To exemplify this, consider a parametric family of
elliptic PDEs (1.35). In this case, one has (assuming homogeneous boundary conditions)
V “ Z “ H

1
0 pDq so that rZ “ rV “ �´1. Due to the self-adjointness of the underlying elliptic

operators Apyq in this case, the problems (4.29) are of the same form as in (4.28), which can
be treated on the discrete level by standard Galerkin discretizations.

5. Numerical illustration. In this section, we illustrate the construction of nonlinear re-
duced models and demonstrate the mechanism of model selection using the residual surrogate
methods outlined in section 3.4.

In our tests, we consider the elliptic problem mentioned in section 1.3 on the unit square
D “s0, 1r

2 with homogeneous Dirichlet boundary conditions and a parameter dependence in
the di↵usivity field a. Specifically, we consider the problem

(5.1) ´ divpapyqruq “ f,

with f “ 1 on D, with u|BD “ 0. The classical variational formulation uses the same trial and
test space V “ Z “ H

1
0 pDq. We perform space discretization by the Galerkin method using

P1 finite elements to produce solutions uhpyq, with a triangulation on a regular grid of mesh
size h “ 2´7.

5.1. Test 1: Predetermined splittings. In this first test, we examine the reconstruction
performance with localized reduced bases on a manifold having a predetermined splitting.
Specifically, we consider two partitions of the unit square into subdomains tD1,`u

4
`“1 and

tD2,`u
4
`“1, with

D1,1 :“
ı
0,

3

4

”
ˆ

ı
0,

3

4

”
D1,2 :“

ı
0,

3

4

”
ˆ

ı3
4
, 1

”
D1,3 :“

ı3
4
, 1

”
ˆ

ı
0,

3

4

”
D1,4 :“

ı3
4
, 1

”
ˆ

ı3
4
, 1

”
,

D2,1 :“
ı1
4
, 1

”
ˆ

”1
4
, 1

”
D2,2 :“

ı1
4
, 1

”
ˆ

ı
0,

1

4

”
D2,3 :“

ı
0,

1

4

”
ˆ

ı1
4
, 1

”
D2,4 :“

ı
0,

1

4

”
ˆ

ı
0,

1

4

”
.
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D1,1

D1,2

D1,3

D1,4

x1

x2

0
x1

x2

0

D2,4

D2,3

D2,2

D2,1

Figure 5.1. Left: the partition of the unit square used in a1. Right: the partition used in a2.

The partitions are symmetric along the line x1 ` x2 “ 1 as illustrated in Figure 5.1. This
will play a role in the understanding of the results below. We next define two parametric
di↵usivity fields

(5.2) a1pyq :“ a ` c

4ÿ

`“1

�D1,`y` and a2pyq :“ a ` c

4ÿ

`“1

�D2,`y` ,

where the vector of parameters y “ py1, . . . , y4q ranges in Y “ r´1, 1s
4 and �D1,` is the

indicator function of D1,` (similarly for �D2,`). The fields a1pyq and a2pyq are mirror images
of each other along x1 `x2 “ 1. In the numerical tests that follow, we take a “ 1 and c “ 0.9.

We denote by u1pyq the solution to the elliptic problem (5.1) with di↵usivity field a1pyq

and then label by M1 :“ tu1pyq : y P Y u the resulting solution manifold. Strictly speaking,
we should write Mh,1, as our solutions are finite-dimensional approximations; however, we
suppress the h, as there should be little ambiguity going forward. Similarly, M2 is the set
of all solutions u2pyq of (5.1) over Y where the di↵usivity field is given by a2. We take their
union M “ M1 YM2 to be our global solution manifold that has the obvious predetermined
splitting available to us.

For our computations, we generate training and test sets. For the training, we draw
Ntr “ 5000 independent samples rYtr “ py

tr
j q

Ntr
j“1 that are uniformly distributed over Y . The

collection of solutions ÄM1 :“ tu1py
tr
j qu

Ntr
j“1 and ÄM2 :“ tu2py

tr
j qu

Ntr
j“1 are used as training sets

for M1 and M2. The training set for the full manifold M is ÄM “ ÄM1 Y ÄM2. Since we use
the same parameter points ytrj for both sets, any solution in ÄM1 has a corresponding solution

in ÄM2 that is its symmetric image along the line x1 ` x2 “ 1. To test our reconstruction
methods, we generate Nte “ 2000 independent points in Y that are distinct from the training
set. The corresponding test solution sets are rT1 and rT2. All computations are done by solving
(5.1) in the finite element space.

Given an unknown u P M, we want to recover it from its observation w “ PWu. For
the measurement space W , we take a collection of m “ 8 measurement functionals `ipuq “

x!i, uy “ |Bi|
´1

≥
u�Bi that are local averages in a small area Bi which are boxes of width
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2h “ 2´6, each placed randomly in the unit square. The measurement space is then W “

spant!1, . . . ,!mu. Note that the sensor locations (as well as their nature) a↵ect the “visibility”
of the observed states and hence the value of the stability constants µpVn,W q. Searching for
a judicious sensor placement in the spirit of [4] could help keeping them small in favor of
a more accurate recovery. However, in many applications the sensor locations are fixed.
Random locations, on the one hand, are to account for this fact and, on the other hand, avoid
“accidentally favorable” symmetries.

Since we are only given w, we do not know whether the function to reconstruct is in M1

or M2, and we consider two possibilities for reconstruction:
‚ A�ne method. We use a�ne reduced models Vn,0 “ ū0 ` V̄n,0 generated for the full
manifold M “ M1 Y M2. In our example, we take ū0 “ upy “ 0q and V̄n,0 is

computed by the greedy selection algorithm over ÄM ´ ū0. Of course the spaces Vn,0

with n su�ciently large have high potential for approximation of the full manifold M
and obviously also for the subsets M1 and M2 (see Figure 5.3). Yet, we can expect
some bad artefacts in the reconstruction with this space since the true solution will
be approximated by snapshots, some coming from the wrong part of the manifold
and thus associated to the wrong partition of D. In addition, we can only work with
n § m “ 8 and this may not be su�cient regarding the approximation power. Our
estimator u˚

0pwq uses the space Vn˚
0 ,0

, where the dimension n
˚
0 is the one that reaches

⌧0 “ min1§n§m µn,0"n,0 as defined in (3.20) and (3.21). Figure 5.3 shows the product
µn,0"n,0 for n “ 1, . . . ,m, and we see that n˚

0 “ 4.
‚ Nonlinear method. We generate a�ne reduced bases spaces Vn,1 “ ū1 ` V̄n,1 and
Vn,2 “ ū2 ` V̄n,2, each one specific for M1 and M2. Similarly as for the a�ne method,
we take as o↵sets ūi “ uipy “ 0q “ ū0, for i “ 1, 2, and we run two separate greedy

algorithms over ÄM1´ ū1 and ÄM2´ ū2 to build V̄n,1 and V̄n,2. We select the dimensions
n

˚
k that reach ⌧k “ minn“1,...,m µn,k"n,k for k “ 1, 2. From Figure 5.3, we deduce that

n
˚
1 “ 3 and n

˚
2 “ 3. This yields two estimators u˚

1pwq and u
˚
2pwq. We can expect better

results than the a�ne approach if we can detect well in which part of the manifold
the target function is located. The main question is thus whether our model selection
strategy outlined in section 3.3 is able to detect well from the observed data w whether
the true u lies in M1 or M2. For this, we compute the surrogate manifold distances

Spu
˚
kpwq,Mkq :“ min

yPY
Rkpu

˚
kpwq, yq, k “ 1, 2,(5.3)

where
Rkpu

˚
kpwq, yq :“ }divpakpyqru

˚
kpwqq ` f}V 1

is the residual of u˚
kpwq related to the PDE with di↵usion field akpyq. To solve problem

(5.3), we follow the steps given in section 3.4. The final estimator is u˚
“ u

˚
k˚ , where

k
˚

“ argmin
k“1,2

Spu
˚
kpwq,Mkq.

Table 1 quantifies the quality of the model selection approach. It displays how many times
our model selection strategy yields the correct result k

˚
“ 1 or incorrect result k

˚
“ 2 for
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Table 1
Performance of model selection and oracle selection.

Test function from:

Surrogate selec-

tion

rT1 Ä M1
rT2 Ä M2

k˚ “ 1 1625 386

k˚ “ 2 375 1614

Success rate 81.2 % 80.7 %

Test function from:

Oracle selection rT1 Ä M1
rT2 Ä M2

k˚ “ 1 1962 9

k˚ “ 2 38 1991

Success rate 98.1 % 99.5 %

Figure 5.2. Kernel density estimate (KDE) plot of the u˚
1 and u˚

2 .

the functions from the test set rT1 Ä M1 (and vice versa for rT2). Recalling that these tests
sets have Nte “ 2000 snapshots, we conclude that the residual gives us the correct manifold
portion roughly 80% of the time. We can compare this performance with the one given by
the oracle estimator (see Table 1)

k
˚
oracle “ argmin

k“1,2
}u ´ u

˚
kpwq}.

In this case, we see that the oracle selection is very e�cient since it gives us the correct
manifold portion roughly 99% of the time. Figure 5.2 completes the information given in
Table 1 by showing the distribution of the values of the residuals and oracle errors. The
distributions give visual confirmation that both the model and oracle selection tend to pick
the correct model by giving residual/error values which are lower in the right manifold portion.
Figure 5.3 gives information on the value of inf-sup constants and residual errors leading to the
choice of the dimension n

˚ for the reduced models. Last, but not least, Table 2 summarizes
the reconstruction errors.

5.2. Test 2: Constructing �-admissible families. In this example, we examine the be-
havior of the splitting scheme to construct �-admissible families outlined in section 3.2.
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Figure 5.3. Inf-sup constants µn,k and residual errors "n,k, leading to the choice of the dimension n˚ for Vk.

Table 2
Reconstruction errors with the di↵erent methods.

Test function from:

Average error rT1 Ä M1
rT2 Ä M2

A�ne method u˚
0 6.047e-02 6.661e-02

Nonlinear with oracle
model selection

5.057e-02 4.855e-02

Nonlinear with surro-
gate model selection

5.522e-02 5.201e-02

Test function from:

Worst case error rT1 Ä M1
rT2 Ä M2

A�ne method u˚
0 4.203e-01 4.319e-01

Nonlinear with oracle
model selection

2.786e-01 2.641e-01

Nonlinear with surro-
gate model selection

4.798e-01 2.660e-01

The manifold M is given by the solutions to (5.1) associated to the di↵usivity field

(5.4) apyq “ a `

dÿ

`“1

c`�D`y`, y P Y,

where ā “ 1, �D` is the indicator function on the set D`, and parameters range uniformly
in Y “ r´1, 1s

d. We study the impact of the intrinsic dimensionality of the manifold by
considering two cases for the partition of the unit square D, a 2 ˆ 2 uniform grid partition
resulting in d “ 4 parameters and a 4 ˆ 4 grid partition of D resulting in d “ 16 parameters.
We also study the impact of coercivity and anisotropy on our reconstruction algorithm by
examining the di↵erent manifolds generated by taking c` “ c1`

´r with c1 “ 0.9 or 0.99 and
r “ 1 or 2. The value c1 “ 0.99 corresponds to a severe degeneration of coercivity, and the
rate r “ 2 corresponds to a more pronounced anisotropy.

We use two di↵erent measurement spaces, one with m “ dimpW q “ 4 evenly spaced
local averages and the other with m “ 16 evenly spaced local averages. The measurement
locations are shown diagrammatically in Figure 5.4. The local averages are exactly as in the
last test, taken in squares of sidelength 2´6. Note that the two values m “ 4 and m “ 16
which we consider for the dimension of the measurement space are the same as the parameter
dimensions d “ 4 and d “ 16 of the manifolds. This allows us to study di↵erent regimes:

‚ When m † d, we have a highly ill-posed problem since the intrinsic dimension of
the manifold is larger than the dimension of the measurement space. In particular,
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Figure 5.4. Measurement locations for Tests 2 and 3.

we expect that the fundamental barrier �0pMq is strictly positive. Thus, we cannot
expect very accurate reconstructions even with the splitting strategy.

‚ Whenm • d, the situation is more favorable and we can expect that the reconstruction
involving manifold splitting brings significant accuracy gains.

As in the previous case, the training set ÄM is generated by a subset rYtr “ ty
tr
j uj“1,...,Ntr

of Ntr “ 5000 samples taken uniformly on Y . We build the �-admissible families outlined in
section 3.2 using a dyadic splitting, and the splitting rule is given by (3.21). For example, our
first split of Y results in two rectangular cells Y1 and Y2, and the corresponding collections of
parameter points rY1 Ä Y1 and rY2 Ä Y2, as well as split collections of solutions ÄM1 and ÄM2.
On each ÄMk we apply the greedy selection procedure, resulting in Vk, with computable values
µk and "k. The coordinate direction in which we split Y is precisely the direction that gives
us the smallest resulting � “ maxk“1,2 µk"k, so we need to compute greedy reduced bases
for each possible splitting direction before deciding which results in the lowest �. Subsequent
splittings are performed in the same manner, but at each step we first chose cell ksplit “

argmaxk“1,...,K µk"k to be split.

After K ´ 1 splits, the parameter domain is divided into Y “
îK

k“1 Yk disjoint subsets Yk
and we have computed a family of K a�ne reduced spaces pVkqk“1,...,K . For a given w P W , we
have K possible reconstructions u˚

1pwq, . . . u
˚
Kpwq and we select a value k

˚ with the surrogate
based model selection outlined in section 3.4. The test is done on a test set of Nte “ 1000
snapshots which are di↵erent from the ones used for the training set ÄM.

In Figure 5.5 we plot the reconstruction error, averaged over the test set, as a function
of the number of splits K for all the di↵erent configurations: we consider the two di↵erent
di↵usivity fields apyq with d “ 4 and d “ 16 parameters, the two measurement spaces of
dimensions m “ 4 and m “ 16, and the four di↵erent ellipticity/coercivity regimes of c` in
apyq. We also plot the error when taking for k˚ the oracle value that corresponds to the value
of k that contains the parameter y which gave rise to the snapshot and measurement.

Our main findings can be summarized as follows:
(i) The error decreases with the number of splits. As anticipated, the splitting strategy

is more e↵ective in the overdetermined regime m • d.
(ii) Degrading coercivity has a negative e↵ect on the estimation error, while anisotropy

has a positive e↵ect. In our computations, a larger r in c` corresponds to a higher
degree of anisotropy and in turn to a reduced width of the solution manifold M in
dimensions associated to the less active coordinates. Hence, it is no surprise that
the approximation errors from our algorithm are lower for these higher anisotropy
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Figure 5.5. Average of errors }ute
j ´ u˚

k˚ pwte
j q} for di↵erent choices of k˚.

examples.
(iii) Choosing k

˚ by the surrogate based model selection yields error curves that are above
yet close to those obtained with the oracle choice. The largest discrepancy is observed
when coercivity degrades.

Figure 5.6 presents the error bounds �K :“ maxk“1,...,K µk"k which are known to be upper
bounds for the estimation error when choosing the oracle value for k

˚ at the given step K

of the splitting procedure. We observe that these worst upper bounds have behavior similar
to that of the averaged error curves depicted in Figure 5.5. In Figure 5.7, for the particular
configuration dimpY q “ dimpW q “ 16, we demonstrate that �K indeed acts as an upper
bound for the worst case error of the oracle estimator.

5.3. Test 3: Improving the state estimate by alternating residual minimization. The
goal of this test is to illustrate how the alternating residual minimization outlined in section
4.2 allows one to improve the accuracy of the state estimate. We use the same setting as
Test 2; in particular, we consider the solution manifold M of (5.1) with the random field apyq

defined as in (5.4). Again we consider the cases where the D` from (5.4) are from the 2 ˆ 2
and 4 ˆ 4 grid, resulting in d “ dimpY q “ 4 and 16, respectively. Our test uses all three
measurement regimes presented in Figure 5.4, with m “ 4 and 16 evenly spaced local average
functions and m “ 8 randomly placed local averages confined to the upper half. We use the
coercivity/anisotropy regime c` “ 0.9 `´1.

In this test, we compare three di↵erent candidates for u0, the starting point of the alter-
nating minimization procedure:
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Figure 5.6. Error bounds of local linear families, given by �K “ maxk“1,...,K µk"k.

Figure 5.7. Comparison between �K (dashed curve), the averaged oracle error (full curve), and the range
from maximum to minimum oracle error (shaded region).
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Figure 5.8. State error (left plots), residual error (middle plots), and parameter error (right plots) during
the iterations of the joint state-parameter estimation. The dashed lines show individual iterations for a target
snapshot. The full lines are their geometric average. The color green, blue, or red corresponds to di↵erent
starting guesses for u0.

‚ u
0

“ w, the measurement vector without any further approximation, or equivalently
the reconstruction of minimal H1

0 norm among all functions that agree with the ob-
servations.

‚ u
0

“ u
˚
pwq, the PBDW state estimation using the greedy basis over the whole man-

D
ow

nl
oa

de
d 

06
/1

5/
22

 to
 1

29
.2

52
.1

39
.1

41
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited. 

264 A. COHEN, W. DAHMEN, O. MULA, AND J. NICHOLS

Figure 5.9. State error (left plots), residual error (middle plots), and parameter error (right plots) during
the iterations of the joint state-parameter estimation. The dashed lines show individual iterations for a target
snapshot. The full lines are their geometric average. The color green, blue, or red corresponds to di↵erent
starting guesses for u0.

ifold, thus starting the minimization from a “lifted” candidate that we hope is closer
to the manifold M and should thus o↵er better performance.

‚ u
0

“ u
˚
k˚pwq, the surrogate-chosen local linear reconstruction from the same family of

local linear models from section 5.2 (where k
˚ is the index of the chosen local linear
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model). In this last case, we take K “ 20 local linear models, i.e., where Y has been
split 19 times.

Furthermore, in the third case, we restrict our parameter range to be the local parameter
range chosen by the surrogate; that is, we alter the step outlined in (4.15) to be

y
j`1

“ argmin
yPYk˚

Rpu
j
, yq,

where y
j`1 denotes the parameter found at the pj ` 1qth step of the procedure. The hope is

that we have correctly chosen the local linear model and restricted parameter range from which
the true solution comes thanks to our local model selection. The alternating minimization will
thus have a better starting position and then a faster convergence rate due to the restricted
parameter range.

In our test, we use the same training set ÄM as in the previous test, with Ntr “ 5000
samples, in order to generate the reduced basis spaces. We consider a set of Nte “ 10
snapshots, distinct from any snapshots in ÄM, and perform the alternate minimization for
each of the snapshots in the test set.

Figures 5.8 and 5.9 above display the state error trajectories j fiÑ }u´u
j
} for each snapshot

(dashed lines), as well as their geometric average (full lines), in di↵erent colors depending on
the initialization choice. Similarly, we display the residual trajectories j fiÑ Rpu

j
, y

j
q “

}Apy
j
qu

j
´ f}V 1 and parameter error trajectories j fiÑ |y ´ y

j
|2. Our main findings can be

summarized as follows:
(i) In all cases, there is a substantial gain in taking u0 “ u

˚
k˚pwq, the surrogate-chosen local

linear reconstruction, as the starting point. In certain cases, the iterative procedure
initiated from the two other choices w or u˚

pwq stagnates at an error level that is even
higher than }u ´ u

˚
k˚pwq}.

(ii) The state error, residual error, and parameter error decrease to zero in the overde-
termined configurations where pdimpW q, dimpY qq is p4, 4q, p16, 16q, or p16, 4q, with
equally spaced measurement sites. In the underdetermined configurations p4, 16q, the
state and parameter errors stagnate, while the residual error decreases to zero, which
reflects the fact that there are several py, uq P Y ˆ w ` W

K satisfying Rpy, uq “ 0,
making the fundamental barrier �0 strictly positive.

(iii) The state error, residual error, and parameter error do not decrease to zero in the
overdetermined configuration pdimpW q, dimpY qq “ p8, 4q where the measurement sites
are concentrated on the upper-half of the domain. This case is interesting since, while
we may expect that there is a unique pair py, upyqq P Y ˆw `W

K reaching the global
minimal value Rpy, uq “ 0, the algorithm seems to get trapped in local minima.
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