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Abstract— We address the model identification and the com-
putation of optimal vaccination policies for the coronavirus
disease 2019 (COVID-19). We consider a stochastic Susceptible—
Infected—-Removed (SIR) model that captures the effect of
multiple vaccine treatments, each requiring a different number
of doses and providing different levels of protection against
the disease. We show that the inclusion of vaccination data
enables the estimation of the state of the model and key
model parameters that are otherwise not identifiable. This
estimates can, in turn, be used to design strategic approaches
to vaccination that aim at minimizing the number of deaths
and the economic cost of the disease. We illustrate these results
with numerical examples.

I. INTRODUCTION

The COVID-19 pandemic has resulted in one of the
fastest vaccine development efforts and largest vaccination
programs in history [1]. As of the writing of this paper, three
vaccines have received emergency authorization in the US
[2], [3], [4]. Two of these require two doses for maximum
efficacy, each dose providing some marginal effectiveness
[5]; whereas the third one requires a single dose. More
candidate vaccines are still in development or in the ap-
proval process worldwide [6], [7]. A huge vaccination effort
by national governments and international organizations is
currently underway [8], [9].

In this paper, we study two distinct but related topics
emerging from this massive effort. Vaccination data pro-
vides information that we can use to better understand the
epidemic. As it affects the behavior of the disease, we
can take advantage of it to (uniquely) identify unknown
parameters of a Susceptible—Infected—Removed (SIR) model
and determine the current state of the pandemic for a given
region/county/city. In turn, we can use this information to
design optimal vaccination strategies that could lead to an
earlier end to the pandemic.

The main contribution of this paper is to show the role that
vaccination has both for model identification and for control.
We consider an SIR model with time varying parameters. We
adopt the approach in our previous work and simultaneously
estimate the states and parameters of the SIR model [10] to
account for the fact that the daily infection rate, the removal
rate, the fraction of reported case and the mortality rate
cannot be transferred from one region to the other. This is
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because these parameters depend not only on intrinsic biolog-
ical properties of the virus, but also on societal behaviors that
change both in time and space; including whether lockdown
measures are being enforced, how willing the population is
to wear masks and engage in social distancing, the quality
of the treatment dispensed, the efficacy of contact tracing
measures, and how often the population is being tested.

In contrast with the epidemic parameters above, the ef-
ficacy of a particular vaccine is intrinsically a biological
parameter, and can be determined through controlled studies.
Knowledge of vaccines efficacy parameters, along with the
daily number of vaccinations, can be used to uniquely
identify an SIR model, overcoming the lack of identifiablility
noted in [10], [11]. As a consequence, we can compute
a relatively precise estimate of the current state of the
pandemic, which enables the design optimal vaccination.

Having available distinct vaccines that differ in efficacy
and number of doses, we want to decide when to use
each vaccine. We model this as an optimization problem in
which we minimize the sum of the daily number of infected
people over an interval of time. Using this optimization
criteria turns out to minimize the total number of people
who will die of COVID-19. This criteria also minimizes
the economic impact of the pandemic as people who are
infected are unable to work. This optimization problem is
nontrivial because of the multiple constraints involved in a
large-scale vaccination effort: a finite daily supply of the
different vaccines dues to manufacturing limitations, a finite
daily number of administered vaccines due to limitations of
the healthcare system, and the waiting time between vaccine
doses for multi-dose vaccines.

The rest of the paper is organized as follows. In Section 1II,
we extend the SIR model in [10] to incorporate vaccination
with multiple doses. In Section III, we show that when a
certain number of parameters are unknown (which include
the infection rate, fraction of infected people reported as new
cases, etc.), the model is only identifiable if we have a known
(and strictly positive) number of daily vaccinations. In Sec-
tion IV, we present the optimal vaccination problem and the
multiple constraints related to it. In Section V we illustrate
the identifiability results and the optimal vaccination problem
in two scenarios that are particularly relevant as of the writing
of this article: when to give the first and the second dose of
a two-dose vaccine and how to optimally balance between
vaccines with different types of efficacy.

Related Work: ldentifiability and state estimation for
epidemiological models have been well studied in the liter-
ature. It is known that an SIR model with constant rates is



not structurally identifiable [12] and this problem continues
to hold for time-varying models [10], [11]. However, many
models capturing the ever-changing course of the COVID-
19 pandemic have been developed despite this identifiability
problem [13]. Some of these models deal with the lack
of identifiability by using external data such as mobility
and mask use [14]. While others use weighted regression
models [15], [16], or introduce nonlinearities to capture
subtle dependencies in data to help in projection [17].

Inclusion of vaccination in epidemiological models has
become a necessity in the face of the afore-mentioned
vaccination efforts and can take many different forms. For
example, it has been modeled as a percentage of the suscepti-
ble population [18], [19] and as a percentage of the newborn
population [20].

Availability of the vaccination statistics can also help
in identification of the pandemic dynamics. However, this
impact largely depends on how the vaccination is modeled.
For example, it was shown that the addition of birth-targeted
vaccination does not make the model structurally identifiable
for unknown vaccine efficacy [20].

The number of vaccines administered can be viewed as
a control input to optimize an epidemiological model. The
total number of infected and susceptible people is a common
choice for the criteria used to develop optimal vaccination
strategies. In addition, quadratic penalties have also been
included in such criteria to account for side-effects [18], [19].

II. SIR MODEL WITH VACCINATION

Our stochastic SIR model with vaccinations takes the form

S(t+1)=5()—v(t)—¥(t), (la)
It+1)=1(t)+v(t)—pt), (1b)
R(t+1)=R(t) + p(t) + ¥(¢), (1c)

where S(t) denotes the number of susceptible individuals
on day t, I(t) the number of infected individuals, and R(t)
the number of removed individuals either through cure or
death. These update equations involve three key variables
that account for the transitions between states: v(t) denotes
the number of new infections on day ¢, p(t) the number of
patients that transitioned on day ¢ from the infected to the
removed state by either cure or death, and W(¢) the number
of people that transitioned on day ¢ from the susceptible to
the removed state through vaccination. The daily numbers of
infections and removed patients take the form

() = 2050

p(t) = 7I(t) + dy(t)

where Ny is the total population, 3(t) the daily infection
rate, and v the removal rate. Both numbers include inde-
pendent identically distributed zero-mean Gaussian random
perturbations d, (t) and d,(t), with standard deviations o,
and o,, respectively, to account for stochastic variability.
We assume available a set of M distinct vaccines and
that each of them can be applied multiple times to improve

+ d, (1), )

immunity. Specifically, we denote by 0;; the fraction of
people that develop enough antibodies with the jth dose
of vaccine 7 to become immune, but had not yet developed
enough antibodies with the (j — 1)th dose of this. For a
vaccine ¢ that can be applied up to m; times, we should thus
have Z;ﬂ:l 0;; < 1, with equality if and only if the vaccine
is 100% effective after the m; doses. The definition of 6;; is
more clear with a numerical example: if for a given vaccine
0;1 = 50% and 0,5 = 40% than the total efficacy of the
vaccine after two shots will be 90%.

Denoting by 1;;(t) the number of people that got the jth
dose of the vaccine i on day ¢, we thus have that

M my

W(t) = Y > 0t (1),

i=1j=1

where 0;;1;;(t) denotes the number of people that moved
from the susceptible to the removed compartment after
receiving the jth dose of vaccine of type ¢ on day ¢, meaning
that they will not spread the disease. For simplicity, we
neglect any stochastic component to ¥(¢) since it would
simply add to the stochastic components that already appear
in (1) through v(¢) and p(t).

The measurement model is the same as in [10]: in most
regions of the globe, we have access to the daily number of
new cases yc(t) and the daily number of new deaths yp (¢),
modeled as

yo(t) = o(t)v(t) +we(t)
yD(ﬁ) = w[(t) + wD(t)

(3a)
(3b)

where wc(t) and wp(t) are independent identically dis-
tributed zero-mean Gaussian random variables with standard
deviations o¢ and op; ¢(t) is the fraction of newly infected
patients that are reported as new cases on day ¢; and w
is the fraction of infected people who died on day ¢. The
fraction ¢(t) is typically strictly smaller than one because
evidences suggest that COVID-19 has a substantial number
of asymptomatic patients and because some people may not
report cases to the agencies responsible for collecting the
data.

We model the time-varying parameters §(t) and ¢(¢) as
random walks of the form

Bt +1) = B(t) + dp(t)
Gt +1) = o(t) + dy(t)

where dg(t) and dy(t) are independent identically distributed
zero-mean Gaussian random variables with standard devia-
tions og and o,. It is important to emphasize that (4) is
not meant to represent the actual dynamics of 5 and ¢ but
rather a priori distributions consistent with the observations
that, in the absence of measurements, the most likely values
for 8(t + 1) and ¢(¢t + 1) are B(t) and ¢(t), respectively.
The specific realizations of 3 and ¢ depend on a multitude of
parameters and will be estimated based on the measurements
in (3). Time varying parameters w and -y were also considered
in [10], but do not appear to significantly improve estimation.

(4a)
(4b)



III. IDENTIFICATION

The SIR model enforces the conservation of the total
number of individuals S(t) + I(t) + R(t) = Ny, Vt > 1
and therefore its state can be unambiguously represented by
just two state variables:

Ut+1)=U(t)+v(t) + ¥()
R(t+1)=R(t)+ p(t) + ¥(¢)

where U(t) = No — S(t) = I(t) + R(t) corresponds to the
number of “unsusceptible” individuals.

(&)

A. Deterministic Identifiability

In this subsection, we study conditions under which the
initial state of the SIR model (5) and the unknown parameters
in (2)—(5) can be uniquely identified from the measurements
in (3). For this analysis, we ignore all stochastic fluctuations
due to disturbances and measurement noise, and ask the
question of whether the initial state and the SIR parameters
could be uniquely determined from noise-free measurements
collected over a given small interval of time, so all the
parameters can be considered constant over the same interval.

We denote by © == (v, 8, ¢,w) € IR* a constant vector of
unknown parameters in (2)—(5), and by £(¢; Ry, U1,0, ) €
IR? the tuple of outputs (yc,yp) in (3) at time t € N
associated with the solution to (5) for the initial state R(1) =
Ry € R and U(1) = U; € R, parameters O, and input
sequence ¥ : N — IR.

Definition 1: A tuple of initial state and parameters
(R*, U, ©*) e R® is said to be locally identifiable on an
interval {1, ..., T} for an input sequence ¥ : N — IR when
there exists a neighborhood W <= IR® of (R}, U, ©*) such
that, for all (Ry,U;,®) € W, if the outputs satisfy

g(t;RhUla@a\Ij) = E(thika{ka®*5\I/)a
Vte{l,....,T}, (6)

then (Ry,U;,0) = (R¥, U, 0%). O
We first provide a negative result showing that the SIR
model is not locally identifiable in the absence of vaccination.
Lemma 1: Forall T € N,if U(¢) =0,Vte {1,...,T—1},
then no tuple of initial states and parameters (Ry,U;,0) €
IR is locally identifiable on the interval {1,...,T}. O

Proof of Lemma 1. This result follows from the identifiabil-
ity result in [10, Sec. 2.3], where it is essentially shown that
when U(t) =0, Ve € {1,...,T — 1}, then (6) holds for all
tuples (R¥, U, ©%), (Ry,U;,0) € R® with

Ry :CRT+(1—C)N0, Uy :CU{k-i-(l—C)No,
y=9%  B=pB%e  b=9¢%/c

for every ¢ € (0,1), and by noticing that (Ry,U;,®) can
be made arbitrarily close to (R}, U;",0%) by selecting a ¢
close enough to 1. [ ]

w=w*/c

Next, we provide mild conditions for local identifiability
while vaccination is taking place.

Theorem 1: A tuple of initial states and parameters
(R1,U1,0) € RY, is locally identifiable on the interval
{1, 2,3} for an input sequence ¥ : N — IR if

B,¢,w >0, (7a)

S(1) > 0, (7b)

I(t) >0 vt e {1,2,3}, (7¢)

U(2) # m\m), (7d)

where S(t) = No — U(t) and I(t) = U(t) — R(t) are the
susceptible and infected state variables at ¢ € N. OJ

To prove Theorem 1, we study the observability of an
augmented system with state z = (S,1,v,4,¢,@) € IR®
that includes the state of (5) and the unknown parameters in
(2)-(5), transformed by

- U - U-R -

S=1 NO, 1= NQ s (b'_ (bNOa
with input u :== ¥/Ny € IR and with output y == (yc,yp) €
IR2. The correspondence between the augmented system’s
state = and (R, U, O) is bijective and the transformation (8)
is only used to simplify derivation. Ignoring all the stochastic
disturbances and noise, the dynamics of this augmented
system are given by

z(t +1) = f((t), u(t)),
y(t) = h(z(1)),

where h(z) = [q@ﬁfg,@ﬂ/ and

fla,u) = [1—BDS —u,I(1 -y + 88),7,8,6,5] .

Consistent with the previous terminology, we denote by
E(tyzr,u) = (Ec(t;xy,u),Ep(t;zy,u)) the output y € RR?
in (9b) at time ¢t € N associated with the solution to (9a)
for the initial state (1) = z; € IR and the input sequence
u:N—R.

The notion of identifiability introduced in Definition 1
can be equivalently restated as local observability for the
augmented system as follows.

Definition 2: An initial state z} € R® of (9) is said to
be locally observable on an interval {1, ..., T} for an input
sequence u : N — IR when there exists a neighborhood
W < RS of x¥ such that, for all z; € W, if the outputs
satisfy

§(t; 1, u) = (627, u)

then z; = z¥. O

Definition 2 is strongly inspired by the definition of local
weak observability from [21, Def. 2.3]. However, while [21,
Def. 2.3] considers a notion of local weak observability
for which there is no neighborhood such that (10) holds
for all input sequences that take values in an open set,
here we consider a stronger property for which there is no
neighborhood such that (10) holds for a fixed input sequence.
Our choice is motivated by the fact that, in our numerical
results, the input is obtained from known vaccination data.

@ = wNp (8)

(9a)
(9b)

vte{l,...,T}, (10)



In the following, we provide a sufficient condition for
local observability, and then use it to prove Theorem 1.
For a fixed time 7" > 1 and input sequence u : N —
IR, we define the following set of C* functions =, 7 =
{&c(t;-,u),€p(t;-,u) : 1 <t < T}, and denote by d=, 1
the codistribution spanned by the differentials of all functions
in 2, 7 [22, p. 19]. The next result is established along the
same lines as [21, Th. 3.1].

Lemma 2: If dimd=, r(x¥) = 6 at an initial state =¥ €
R® of (9), then z¥ is locally weakly observable on the
interval {1,..., T} for the input sequence v : N - IR. []

Proof of Lemma 2. If dimd=, r(z5) = 6, then the func-
tions in =, 7 define a map from R’ to R?" that is an
immersion [23, p. 96] at z¥. Hence there exists a neigh-
borhood W < IR of x¥ such that this map, restricted to W,
is injective. Consequently, for all x; € W, if (10) holds then
1 = af. u

Sketch of Proof of Theorem I. Consider a tuple of initial
states and parameters (Ri,U;,©) € RS, and an input
sequence ¥ : N — IR for (2)—(5) such that the assump-
tions in (7) hold. Let z; = (S1,1,v, 5, ¢, @) € RS >0 and
u : N — IR>( be the corresponding initial state and input
sequence for the augmented system (9).

Suppose dim d=, 3(z1) < 6. Then there exists a vector
v # 0 € IR® such that

Dhc(:cl)v 0, (11a)

Dhp(x1)v =0, (11b)
Dhe(x2)Df(x1)v =0, (11¢)
Dhp(z2)Df(z1)v =0, (11d)
Dhe(23)D f(x2)D f(x1)v =0, (11e)
Dhp(x3)Df(x2)Df(z1)v =0, (111)

where h(z) =: (ho(x), hp(x)) and, for brevity, we denote

by x2 and z3 the state of (9) at time ¢ = 2 and ¢ = 3,

respectively, with the initial state 21 and input sequence u.

First, the conditions (11a)—(11d) and (11f), together with the

assumptions (7a), (7b), and (7c) for ¢t = 1,2, imply that
BI151

T BI151
v = C[mShIla ' B8 tul 1)6a ¢a_ ] (12)

for some scalar ¢ # 0. Second, (12) together with the
assumptions (7c) for ¢ = 3 and (7d), implies that (11e)
cannot hold for a nonzero vector v. Consequently, we have
dim d=, 3(z1) = 6. Then Lemma 2 implies that x; is locally
weakly observable on the interval {1,2,3} for the input
sequence u, and thus (Ry,Up, ©) is locally identifiable on
the interval {1, 2,3} for the input sequence . [}

B. Estimating the States and Parameters

Using the assumption that the disturbances and mea-
surement noises are independent with standard deviations
V = (04,0,,0¢,0p,08,04), the joint probability density
function of the state-parameters vector

,U(T), R(1),...,R(T),
B, ..., B(T), o(1), ...,

Z:=<U(1),... )
(1), w,y

and the measurement vector

Y = (yo(1),- - ye(T),yp(1), . ..

is given by

7yD(T)>7

pzy(Z,Y;V) = pr(yp —wI())
Py (U(t 1)~ U(t) — (t) - \Il(t)> pa(B(t+1) = 8(1))
po(Rlt-+ 1)~ RO = p(0) - Wi >)p¢ (6t + 1) — (1)

where 7(t) = (1) (U(t) — R(t)) (No — U(£))/No. p(t) =
Y (U ) = R(#)) and p, (). p,(). pc(). po(-). ps(-) and
pe(-) are the probability den31ty functlons of dy, d,, we,
wp, dg and dg, respectively.

It was shown in [10] that if the conditional distribution
pz|y(-) is a multivariable Gaussian, then the maximum
likelihood estimator for V' can be obtained using

5
pc <yc (U —U@®) - @(t))) (13)
) —
(-

N 1 d?
V = arg max [ - 21ogdet<

2 172 logpz,y(Z,Y; V))

+ mZaXIngZ,Y(ZY; V)]

and the associated minimum variance estimator for Z is
given by Z == maxz log pz y (Z,Y; V). This motivates the
use of Algorithm 1 which alternates between computing the
minimum variance estimate for the state Z and the maximum
likelihood estimate for the standard deviations on V, to
obtain the estimate Z.

Algorithm 1 Alternating descent

Require: Initial estimates Z© v g tolerance ¢
1: while |[V®) — v (k- 1)H <edo
2: Z*k+) = arg maxylogpz y(Z,Y; V(k))
3: VEHD = arg maxy, [logpz’y(z(k“),Y; V)

4: —%logdet(dd;logpz,y(Z(k+1),Y;V)>]
5. end while

IV. OPTIMAL VACCINATION
Our goal is to determine optimal vaccination strategies to
minimize a cost of the form
T+P

Ji= > I(t),

t=T+1

(14)

where {1,...,T} is a past time interval for which we
have measurements available statisfying the identifiability
assumptions in Theorem 1, and {T'+1,...,T+ P} is a future
time interval over which we want to optimize the vaccination
input U(t). The criterion (14) is evaluated along solutions to



(1)—(4), with future values for the zero-mean disturbances
replaced by their most likely values of zero.

Minimizing J is equivalent to minimizing w J which is the
total number of people who will die of COVID-19. Denoting
by p the average economic cost associated with one infected
individual not being able to work for one day, minimizing
J also minimizes the total economic cost of the pandemic
which is given by puJ.

The selection of the vaccination input ¥ to (1)-(4) to
minimize (14) must respect several constraints, including
daily constraints on vaccine availability of the form

t my t
DI wi(s) < DD Ails), Vie{l,... M} t=>T+1,
s=1j=1 s=1

(15)

where A;(t) denotes the number of vaccines of type 7 newly
available on day ¢ and m; is the number of doses of vaccine
1; and daily constraints on vaccine administration of the form

M m;

DX () < B(t), V=T +1;

i=1j=1

(16)

where B(t) denotes the maximum number of vaccinations
supported by the healthcare system on day ¢. For multi-dose
vaccines that require 7;; days between the administration of
doses j and j + 1, we also need to enforce that

t t—mij
D i (s) < D5 (),
s=1 s=1

Vie{l,...,M},jef{l,....mi—1},t =T +1. (17)

Assuming that vaccines are only given to people that have
not been infected, we need to maintain estimates of how
many people that have been vaccinated remain uninfected.
We do this by splitting S(¢) into compartments S;;(t),
ie{l,...,M},je{1,...,m;}, where S;;(t) denotes the
number of people that received the jth dose of vaccine ¢ but
remain susceptible. The dynamics of each compartment are
given by

M
So(t +1) = So(t) — %i(”so(ﬂ =D, Yalt) (8
Syt +1) = Siy(t) L?VI“) Si; (1) (18b)
0
+(1—=0in—...—06;) (wij(t) - 1/Ji(j+1)(75))

For a feasible vaccination policy, the daily vaccination num-
ber must be chosen to keep So(t) and all the S;;(¢) in the
interval [0, No].

V. NUMERICAL EXPERIMENTS

A. Identification of synthetic data

To verify our identification results, we have tested Algo-
rithm 1 in several synthetic scenarios. In this section we
present the results to a particular numerical example.

In Figure la we present simulated data that incorporates
some of the key challenges present in real world data: 5 was
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Fig. 2. Identification from California data of May 2020 to June 2021

chosen to reflect two waves of infection, with the infection
peak separated of about 100 days. We also chose ¢ to be time
varying and generally increasing which would be consistent
with reporting becoming more efficient as the pandemic
evolves. We use only one type of vaccine with two doses
and parameters 617 = 0.50 and 615, = 0.30.

In Figure 1b we see that Algorithm 1 is able to accurately
estimate the states of the SIR model and to capture the
variations of S and ¢. The latter is slightly over estimated
but it still captures the general trends.

B. Identification with real data

We used our algorithm to identify the parameters for
the US state of California. The data on cases, deaths and
vaccination was obtained from the California Department
of Public Health (CDPH). The efficacy of the Johnson and
Johnson (Jansen) vaccine was taken to be 66% based on the
Centers for Disease Control and Prevention (CDC) Grading
of Recommendation [24]. CDPH only provides the combined
number of Moderna and Pfizer doses. As their total efficacy
is similar [24], we assumed both have the same per dose
efficacy of 72% for the first dose and 14% for the second
dose [5]. As the early pandemic data tends to be less reliable,
our estimation window starts in mid May. The estimation
window ends late June because, as the Delta variant started
to dominate the pandemic in the United States, our model
vaccination is less accurate.

The result of the estimation can be seen in Figure 2
which seem to indicate following conclusions. First, from
the values of é, it seems that the majority of cases were
either not reported or asymptomatic. Second, the increased



(3.) 611 = 0.5, 612 = 0.3

Fig. 3. When to apply the first and the second dose for two values 611
and 012 when A;(t) = B(t) =5 x 1073

(b) 611 = 0.39, 615 = 0.41

value of B in the end of the estimation window indicated
some early signs of concern with regard to the new variants.
June 15™ was also California reopening, this might also have
influenced on the increase in cases.

C. When to give the second dose

Different country/state/regions have followed different
vaccination strategies. Some, as the United Kingdom, pri-
oritized giving the first dose to most people before giving
the second dose [25]. Others, such as France, started by pri-
oritizing giving both doses to most people but later modified
their approach [26]. Determining an optimal allocation of
first and second dose for a single type of vaccine can be
obtained by minimizing (14) subject to the constraints (15)—
(18) with M =1 and mq = 2.

We have solved this problem numerically for a variety
of parameters and have observed essentially two vaccination
patterns, illustrated in Figure 3.

The first case, shown in Figure 3a, corresponds to a
scenario in which the first dose of the vaccine is more
efficient than the second dose (i.e., #11 > 6#15), which is the
case for most vaccines currently in the market [5]. In this
case, the optimal strategy is to give the maximum number
of first dose to most people, and only start to give the
second dose after running out of non-vaccinated susceptible
individuals. This results is consistent with what has been
done in the United Kingdom which has seen a dramatically
decrease in new cases [27].

The second case, shown in Figure 3b, corresponds to a
scenario in which the second dose is more efficient (i.e.,
012 > 611). The optimal strategy is now to give the first
and the second dose to as many people as possible. The
switching observed in the graph has to do with having to
give the first dose and then waiting for some time before
giving the second.

D. Balacing between availability and efficacy

As more vaccines become available, countries have to
decide which one to administer. The decision is particularly
difficult with two types of vaccines: one that is less effi-
cient but more available, while the other is less available
but more efficient.We will focus on a particular scenario
where decision makers can chose between a vaccine that
requires two doses and another that requires only one dose.

Which corresponds to the minimization in (14) subject to the
constraints (15)—(18) with M = 2, m; = 2 and mo = 1.

Similar to the previous scenario, we have solved this opti-
mization numerically for a variety of parameters and initial
conditions and have observed the four patterns illustrated in
Figure 4.

The first pattern is obtained when 617 > max{612, 621},
and is shown in Figure 4a. In this case, similar to what
happened in Figure 3a, the whole supply of vaccines of type
¢ =1 is used to give the first dose. Because its supply A1 (%)
is smaller than the total healthcare capacity B(t), the rest
of this capacity is used to give the vaccine of type ¢ = 2.
This is consistent with what most medical experts have been
stating: it is better to give a less effective vaccine (in this
case of type ¢ = 2) rather than not giving a vaccine while
waiting for larger supplies of the better vaccine [28].

The second and third types of behavior are obtained when
091 > max{fi1, 612}, and are shown in Figures 4b and
4d. In this case, the optimal strategy is to give as much
vaccine of type ¢ = 2 as possible and distribute the rest of
the daily healthcare capacity B(t) as in the single vaccine
scenario. Notice that we obtain this result even though
021 < 011 + 012, meaning that the efficacy of the single-
dose vaccine is smaller than the efficacy of the two-dose
vaccine with both doses. This is one of the most surprising
results, but it is consistent with the exponential behavior of
the SIR system: it is better to act now and remove just a few
susceptible individuals rather waiting 7; days (in this case,
21 days) before being able to remove a larger fraction of an
ever shrinking number of susceptible people.

Finally, the last type of behavior is obtained when 015 >
max{0;1, 621}, and are shown in Figure 4c (a slightly differ-
ent behavior is obtained if 657 > 611, but it is qualitatively
the same.). This case is also very similar to the single vaccine
type of behavior in the sense that the optimal strategy is to
give priority to the vaccine of type ¢ = 1 and use the rest
of the total daily healthcare capacity B(t) for the vaccine of
type © = 2.

VI. CONCLUSION AND FUTURE WORKS

The colossal vaccination effort in the beginning of 2021
has been the light at the end of the tunnel for the pandemic.
The results in this paper suggest that the vaccination strategy
adopted by some countries such as the United Kingdom is
the most effective at minimizing the pandemic cost. These
results also suggest that the reasoning “a bad (but still safe)
vaccine is better than no vaccine” is correct and that we
should not restrain ourselves to give the maximum number
of vaccines as soon as possible while waiting for potentially
better vaccines.

Future work needs to address some of the limitations of
our model. The first one is that we assume that only the
susceptible individuals are going to be vaccinated. As of
now, most countries are generally giving priority to people
who have not contracted the disease but as the vaccination
efforts progress, the number of removed people who get
vaccinated will eventually increase. The second limitation is
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Fig. 4.

As(t) =4 x 1073,

that people who get infected after the first or the second dose
have lighter symptoms and may be cured faster. This could
be addressed by subdividing I into multiple compartments,
each associated to a specific vaccination status, with different
recovery rates.

Ending of A Tale of Two Cities by Charles Dickens: 1 see
a beautiful city and a brilliant people rising from this abyss,
and, in their struggles to be truly free, in their triumphs and
defeats, through long years to come, I see the evil of this
time and of the previous time of which this is the natural
birth, gradually making expiation for itself and wearing out.
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