
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Does OpenBSD and Firefox’s Security Improve
with Time?

Jian Shi, Deqing Zou, Shouhuai Xu, Xianjun Deng, and Hai Jin, Fellow, IEEE

Abstract—Ozment and Schechter (Usenix Security’2006) analyzed the evolution of OpenBSD vulnerabilities over the span of 7 years
(1998-2005) and concluded that its security increases with age. In this paper, we extend their study by analyzing the evolution of
OpenBSD vulnerabilities over the span of 22 years (1998-2020) and Firefox vulnerabilities over the span of 9 years (2011-2020). Our
empirical study leads to a number of insights, including the following: both OpenBSD and Firefox get more secure (i.e., less vulnerable)
with time, but today’s developers do not necessarily produce more secure code; OpenBSD and Firefox developers tend to make similar
security mistakes, but Firefox vulnerabilities are easier to exploit; finally, Firefox’s vulnerability density is almost one order of magnitude
higher than OpenBSD’s, meaning Firefox is more vulnerable.

Index Terms—Security, Vulnerability, Vulnerability metric, Dependability.

F

1 INTRODUCTION

Software systems evolve over time for a number of reasons,
such as when developers fix bugs, patch vulnerabilities,
tune performance, or add new features. Unfortunately, these
changes are often accompanied by new vulnerabilities in
the software. It is important to understand the evolution of
vulnerabilities in a software system because vulnerabilities
are directly related to the security of a software system.
This importance has motivated many studies from various
perspectives of software security, including: analyzing op-
erating system kernels via global static analysis [1], bug
detection [2], [3], [4], and vulnerability detection [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14].

In particular, Ozment and Schechter investigated the
evolution of OpenBSD vulnerabilities over the span of 7
years (1998-2005) [15]. They concluded that OpenBSD was
getting increasingly secure with age. Given that 15 years
have passed, we wonder whether their finding is still valid
or not, and whether their finding is true for other large
software systems. To compare these fairly, we must carefully
consider the security of each software system with respect
to its size. Specifically, we conduct an empirical study by

Corresponding author: Deqing Zou.

• J. Shi, D. Zou is with the National Engineering Research Center for Big
Data Technology and System, Services Computing Technology and System
Lab, Cluster and Grid Computing Lab, Big Data Security Engineering
Research Center, School of Cyber Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074, China. E-mail:
{shijianwh, deqingzou} @hust.edu.cn

• S. Xu is with the Department of Computer Science, University of Colorado
Colorado Springs, Colorado, USA 80918. This work was partly done when
he was at University of Texas at San Antonio. E-mail: sxu@uccs.edu

• X. Deng is with School of Cyber Science and Engineering, Huazhong
University of Science and Technology, Wuhan 430074, China. E-mail:
dengxj615@hust.edu.cn

• H. Jin is with the National Engineering Research Center for Big Data
Technology and System, Services Computing Technology and System
Lab, Cluster and Grid Computing Lab, Big Data Security Engineering
Research Center, School of Computer Science and Technology, Huazhong
University of Science and Technology, Wuhan 430074, China. E-mail:
hjin@hust.edu.cn

collecting and analyzing vulnerabilities in OpenBSD and Fire-
fox over a span of many years; we select these two software
systems because they are representative of large, widely-
employed systems.
Our contributions. Our first contribution is a methodology
for collecting and pre-processing a software’s vulnerabilities
from multiple sources and for using the collected data to
address a range of research questions we define in this
paper. In the course of pre-processing, we observe that the
vulnerability introduction time is rarely documented. We
address this problem by tracing the vulnerable lines of code
(LOC) back to the software release that introduced them. For
addressing the research questions, we introduce a number
of metrics, such as: vulnerability lifetime, residual vulnerability,
and software age for comparing the security of software
systems. The methodology (including the new metrics) can
be adopted as is or adapted to study the evolution of any
software system’s vulnerabilities.

Our second contribution is to demonstrate the useful-
ness of the methodology by using it to conduct a case
study on the evolution of OpenBSD and Firefox’ vulner-
abilities. For OpenBSD, we collect 263 vulnerabilities be-
tween release 2.3 (1998) and release 6.7 (2020); for Fire-
fox, we collect 1,630 vulnerabilities between release 4.0
(2011) and release 75.0 (2020). We have made our vul-
nerability datasets anonymously available on GitHub (at
https://github.com/VulnSet/BetterOrWorse). By
analyzing the collected dataset, we draw a number of in-
sights: (i) OpenBSD and Firefox developers tend to make
similar security mistakes, especially with respect to memory
management. (ii) Although OpenBSD and Firefox vulnera-
bilities cause a similar spectrum of damage, Firefox vulner-
abilities are easier to exploit because they inherently allow
remote exploitation without authentication. (iii) Firefox vul-
nerabilities have a shorter average lifetime than those found
in OpenBSD, perhaps because Firefox has a much larger
developer community, publishes multiple beta versions, and
includes a mature bug tracking system via Bugzilla [16].
(iv) The OpenBSD module that has the most vulnerabilities

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

is sys/kern, and the Firefox module that has the most
vulnerabilities is js/src. (v) Both OpenBSD and Firefox
get more secure over time, but today’s developers do not
necessarily produce more secure code. For OpenBSD, our
22-year findings (1998-2020) reinforce those of Ozment and
Schechter, which spanned only 7 years (1998-2005) [15].
(vi) Residual vulnerabilities for both OpenBSD and Firefox
are decreasing, but Firefox has many more in general. (vii)
Firefox’s vulnerability density is almost one order of magni-
tude higher than OpenBSD’s, despite Firefox having shorter
vulnerability lifetimes on average.
Related work. We divide related prior studies into five
perspectives: software quality; software evolution; bug and
vulnerability characterization; vulnerability lifecycle; and
vulnerability detection.

From the perspective of software quality, Behnamghader
et al. [17] investigated software commits and found that
different commits have different impacts on software qual-
ity; Clark et al. [18] showed that Firefox’s rapid-release
methodology does not necessarily cause more vulnerabili-
ties; Vassallo et al. [19] investigated the practice of continu-
ous code quality. In contrast to these studies, we focus on the
overall evolution of a software as well as its vulnerabilities,
rather than a particular aspect of software development
(e.g., commit activities or release methodology).

From the perspective of software evolution, D’Ambros
et al. [20] investigated software evolution in terms of de-
veloper effort, change coupling, and trend and hotspot;
Ganpati et al. [21] investigated the maintainability of open-
source software and found that Firefox has a high maintain-
ability; Feng et al. [22] studied the evolution of open source
projects and found that a project’s active hotspots can reveal
architecture problems. In contrast to these studies, we focus
on analyzing the evolution of software vulnerabilities over
time.

From the perspective of characterizing software bugs
[23], [24] and vulnerabilities [15], [25], [26], [27], [28], Li et
al. [29] and Tan et al. [24] showed that security-related bugs
and vulnerabilities in open-source software are increasing;
Jimenez et al. [26] characterized vulnerabilities in Linux
kernel and OpenSSL; Wu et al. [30] investigated how to
determine a bug’s security impact; Mu et al. [31] investi-
gated how to improve the reproducibility of crowdsourced
vulnerabilities; Dong et al. [32] showed that vulnerability
databases are often inconsistent with each other; Shen et
al. [33] studied the evolution of exploits; Feng et al. [34]
investigated vulnerabilities through the lens of bug reports.
In contrast, we study the evolution of OpenBSD and Firefox
vulnerabilities.

From the perspective of vulnerability lifecycle, Shahzad
et al. [35], [36] investigated hackers’ exploitation behaviors
as well as vendors’ patching behaviors and found that exe-
cutable code, denial-of-service, and buffer overflow are the
most exploited vulnerabilities; Bilge et al. [37] investigated
zero-day attacks and zero-day vulnerability lifecycles; Li et
al. [25] showed that security patches are more localized than
non-security patches. In contrast, we analyze the evolution
of OpenBSD and Firefox vulnerabilities.

From the perspective of vulnerability detection, there
have been many studies on using fuzzing to detect vul-
nerabilities [38], [39], [40], using code-similarity to detect

vulnerabilities [5], [6], [7], and using deep learning to detect
vulnerabilities [8], [9], [10], [11]. These studies are comple-
mentary to the present study.
Paper outline. Section 2 presents the methodology. Section
3 applies the methodology to conduct a case study on
OpenBSD and Firefox. Section 4 discusses the limitations
of the present study. Section 5 concludes the paper.

2 METHODOLOGY

In order to analyze the evolution of vulnerabilities in a
software system and compare the security of different soft-
ware systems over time, we propose a methodology with
three modules: (i) defining vulnerability attributes, (ii) collect-
ing vulnerability data, (iii) defining research questions. Fig. 1
highlights these components, which are elaborated below.

Collecting
vulnerability data

Identifying
vulnerability patches

Vulnerability
Databases

Vendor
Advisories

Software
repository

Defining
vulnerability lifecycle

Determining
vulnerability lifecycle

Defining
research questions

Defining vulnerability attributes

Determining vulnerability lifecycle attributes

Determining the other attributes

Defining and answering research questions

Collecting vulnerability data

Vendor
advisories

Vulnerability
databases

Software
repository

Fig. 1: Methodology overview.

2.1 Defining Vulnerability Attributes
We propose defining 15 attributes to describe vulnerabilities.
Among them, 6 attributes describe the vulnerability lifecycle
and 9 attributes characterize other aspects.

2.1.1 Defining Vulnerability Lifecycle Attributes
A vulnerability’s lifecycle includes several specific points in
time, which are highlighted in Fig. 2 and elaborated below.

time
T。 T 1 T3 几 T 5

Vulnerability exploitation (T2) window

Fig. 2: Vulnerability lifecycle, where T1 is indicated by a
dashed arrow because it may not be known to the ven-
dor/defender (e.g., when discovered by attackers), and T2
is indicated by a time window because T2 can happen at
any point in the time window of [T1, T5) or will never be
exploited.

Vulnerability introduction time (T0). This is the point in
time at which the software containing a vulnerability is
published for the first time. Suppose software release 1.0
is published on March 1, 2010 and release 2.0 is published
on May 1, 2012, with no releases between the two. For

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

a vulnerability that is introduced into the code base after
release 1.0 but before release 2.0, T0 is May 1, 2012 because
it is the time at which both the attacker and defender may
start to detect vulnerabilities in the software.
Vulnerability discovery time (T1). This is the time at which
a vulnerability is discovered by the vendor, defender, or
attacker. In the case where the vulnerability is discovered
by an attacker, the existence of the vulnerability may not be
known to the vendor until after it has been exploited. This
means that the precise T1 may not be known to the vendor.
Conversely, T1 is known for the vulnerabilities that are
discovered by the vendor or researchers. Note that T1−T0 is
the period of time that is spent discovering a vulnerability.
Vulnerability exploitation time (T2). This is the time at
which a vulnerability is exploited by an attacker. The ex-
ploitation of a vulnerability may not be known to the vendor
until after the exploitation is detected by a defender. Given
that attacks are often detected with significant delay, the
precise T2 may not be known to the vendor or defender.
Vulnerability disclosure time (T3). This is the time at
which a vulnerability is disclosed by the vendor or a public
vulnerability database. T3 is well documented in practice.
Vulnerability patch release time (T4). This is the time
at which a patch is published. T4 is well documented in
practice. Note that T4 − T0 is a vulnerability’s lifetime, the
period of time between its introduction and its patch is
released.
Vulnerability patch deployment time (T5). This is the time
at which a specific end user deploys the patch to a particular
software vulnerability. T5 may not be well documented in
practice. Note that T5 − T0 is a vulnerability’s exploitable
lifetime, namely the period of time between its introduction
and it is patched in a specific system. This means that a
single vulnerability may have different exploitable lifetimes
in different environments. It is possible that T5 >> T4,
meaning T5 − T0 >> T4 − T0, because some users may
delay the patching of a vulnerability for a long period of
time.

An ideal vulnerability repository maintained by a soft-
ware vendor should document T0, . . . , T4, while noting that
T1 and T2 may not be known. An ideal end-user vulnerabil-
ity management system should document T0, . . . , T5, where
T0, . . . , T4 are inherited from the software vendor and T5 is
specific to the end-user and/or a specific instance of the
vulnerable software.

2.1.2 Defining Other Attributes
We propose 9 attributes to describe the other aspects of
vulnerabilities. We divided these 9 attributes into three
categories.
Category 1: Attributes related to a vulnerability’s Common
Vulnerability Scoring System (CVSS) [41]. The CVSS base
metrics describe a vulnerability’s time- and environment-
independent properties in two sub-categories. One sub-
category describes the exploitability metrics reflecting the
degree of difficulty in exploiting a vulnerability. This sub-
category has three attributes: (i) AccessVector (what kind
of access is required in order for an attacker to exploit a
vulnerability?); (ii) AccessComplexity (what is the com-
plexity that is required in order for an attacker to exploit

a vulnerability?); and (iii) Authentication (how many
times an attacker must authenticate to a target system in
order to exploit a vulnerability?). In this sub-category, a
higher value means it’s easier to exploit.

The other sub-category describes the impact metrics re-
flecting the confidentiality, integrity, and availability conse-
quences when a vulnerability is exploited. This sub-category
also has three attributes: (iv) ConfImpact (what is the
impact of a successful exploitation on confidentiality?); (v)
IntegImpact (what is the impact of a successful exploita-
tion on integrity?); and (vi) AvailImpact (what is the
impact of a successful exploitation on availability?). In this
sub-category, a higher value means a bigger damage.
Category 2: Attribute related to the Common Weakness
Enumeration (CWE) [42]. This catgory has one attribute:
(vii) vulnerability type according to the standard
CWE classification. For example, CWE type 119 represents
buffer overflows.
Category 3: Attributes describing the software releases
that contain the vulnerability in question. This category
has two attributes: (viii) vulnerability introduction
release (what is the first or “birth” release of a software that
contains the vulnerability in question, namely the time T0
mentioned above?); and (ix) vulnerability patch re-
lease (what is the last release of a software that contains the
vulnerability in question, namely the the time T4 mentioned
above?).

2.2 Collecting Vulnerability Data
It would be ideal to have a database that documents all of
the vulnerabilities in a software over time, with all of the
vulnerability details. However, vulnerability information is
often scattered among multiple sources and lacks any stan-
dardized format. This is true despite the existence of several
public vulnerability databases, such as NVD [43] and BID
[44]. Unfortunately, these databases do not always provide
all of the relevant information, perhaps because software
vendors have been maintaining their own vulnerability
repositories and security advisories (e.g., OpenBSD’s errata
bulletin [45], Mozilla Foundation’s security advisories [46],
and Ubuntu’s security notices [47]). From these sources, one
can extract a list of vulnerabilities corresponding to a given
software system. In particular, every vulnerability listed in
NVD has a Common Vulnerabilities and Exposures (CVE)
identifier. Given this list of vulnerabilities, one can proceed
to determine (i) vulnerability lifecycle attributes and (ii)
other attributes.

2.2.1 Determining Vulnerability Lifecycle Attributes
It is often difficult to determine the vulnerability introduc-
tion time T0, even for vendors or developers, because doing
this requires one to understand the semantics of the source
code. Nevertheless, the fact that a patch modifies certain
portion(s) of source code can serve as a clue for identifying
the vulnerable piece of code. These are the lines of code
that are changed between (i) the committed revision that
contains the patch and (ii) the immediate preceding revi-
sion. In order to determine the vulnerability introduction
time T0, one often needs to track the time at which the
vulnerable lines of code are introduced. For this purpose,

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

one first needs to identify the patch(es) corresponding to
the vulnerability. Since software repositories often store the
complete history of code changes, one can identify vul-
nerability patches as follows: (i) automatically extract the
metadata of commits, including commit message and commit
time; and (ii) traverse commit message to locate vulnerability
patches according to vulnerability identifier pattern, such as
“CVE-\d+-\d+” or “Bug \d+”.

It is possible that the preceding process may identify
multiple software revisions where the vulnerable lines of
code are introduced. In this case, we consider two extreme
choices. One choice is to use the latest (i.e., most recent) revi-
sion as T0 for introducing the vulnerability in question. This
is the conservative estimation because the earlier revisions
that do not contain all of the changed lines of code may
also be vulnerable (i.e., the vulnerability introduction time
is actually earlier). The other choice is to use the other end of
the same spectrum, namely the earliest revision as the time
for T0, denoted by T ′0 because it is the radical estimation.
Although there are other choices (e.g., considering revisions
in between the earliest and the latest revisions), we only
consider the two extremes because they would be sufficient
for us to draw conclusion on the robustness of the results
that are respectively derived from these two choices.

The preceding discussion leads to Algorithm 1, which
takes as input the patches that are related to the vulner-
ability in question and outputs the two choices of vul-
nerability introduction time as mentioned above. In Al-
gorithm 1, parentRevision represents the immediate pre-
ceding revision of the committed revision that applies the
patch; diffHunk is the lines of code corresponding to the
patch; changedF ile and lineNumbers are respectively the
file and the line numbers of the lines of code that are
changed according to the diffHunk; EXTRACT is a func-
tion that parses diffHunk and extracts parentRevision,
changedF ile, and lineNumbers from the diffHunk; for
the purpose of determining the revision that introduced a
vulnerability, the ANNOTATE function annotates each line
of code in a given program file by leveraging the revision in
which the line of code is modified for the last time, while
noting that ANNOTATE is readily available in a version
control system. DETERMINE RELEASE is a function that
determines the software release corresponding to a given
revision; RELEASE TIME is a function that determines the
release time of a given software release.

In order to determine the vulnerability discovery time
T1, one needs to know when the the vulnerability was
detected. Unfortunately, it is often impossible to know when
a vulnerability is detected by the attacker. In order to de-
termine the vulnerability exploitation time T2, one needs
to obtain the publication time of the exploit in the wild or
the time when the defender detects the attack exploiting
the vulnerability for the first time. Generally speaking,
this information is not available. Still, we should strive to
extract such information whenever feasible because such
information, even if only available for some vulnerabilities,
would allow us to conduct further analysis. The vulnera-
bility disclosure time T3 and the vulnerability patch release
time T4 are often available. However, the patch deployment
time T5 often varies with the end users, depending on how
quickly they patch known vulnerabilities. This information

Algorithm 1: Determining vulnerability introduc-
tion time T0

Input: patches related to a given vulnerability
Output: vulnerability introduction time T0 (the conservative

estimation) and T ′
0 (the radical estimation)

1 latestRevision← 0;
2 earliestRevision← INF ;
3 for each diffHunk in patches do
4 (parentRevision, changedF ile, lineNumbers)←

EXTRACT(diffHunk);
5 result← ANNOTATE(parentRevision, changedF ile);
6 for each l in lineNumbers do
7 latestRevision← max(latestRevision, result[l]);
8 earliestRevision← min(latestRevision, result[l]);
9 end

10 end
11 release← DETERMINE RELEASE(latestRevision);
12 release′ ← DETERMINE RELEASE(earlistRevision);
13 T0 ← RELEASE TIME(release);
14 T ′

0 ← RELEASE TIME(release′);
15 returnT0, T ′

0

is only known to the end users and will not be analyzed in
the present paper because of the lack of data. Nevertheless,
some interesting research questions will be formulated in
regards to T5 so that a user with such information can
analyze it to draw useful insights.

2.2.2 Determining the Other Attributes
In order to determine the other vulnerability attributes,
one may extract them from various sources. In this pro-
cess, one may encounter a consistency problem, namely
that different sources may provide descriptions that do
not include the attributes defined above. For example, one
may encounter inconsistencies between different sources’
vulnerability identifiers, vulnerability disclosing times (T3),
and affected versions. In order to tackle this problem, special
care must be taken. Since the problem is specific to a given
source, we consider it on a case-by-case basis. Details can be
found in the case study.

2.3 Defining and Answering Questions

One application of the methodology is to characterize and
compare the evolution of vulnerabilities in software. This
prompts us to define the following RQ1-RQ6 for individual
software and RQ7 for comparing two software.
RQ1: What are the dominating types of vulnerabilities?
Answering this question will identify common program-
ming mistakes, which in turn can help developers enhance
their skills in secure programming. Vulnerability types may
be based on those defined in the CWE, as discussed above.

RQ2: How severe are the vulnerabilities? The severity of a
vulnerability can be measured by the impact and difficulty
of its exploitation. Answering this question will deepen
our understanding of the severity of vulnerabilities in a
software.

RQ3: What are the vulnerability lifetimes? Analyzing
vulnerability lifetime, T4 − T0, allows us to draw insights
into how long a vulnerability exists in a software, which
may impact the ability of attackers to discover and exploit
it.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

RQ4: Where do the vulnerabilities reside? Answering this
question requires analysis of program source code and ver-
sion control, which in turn may help attribute vulnerabilities
to developers for accountability management.

RQ5: Does a software system get more secure with time?
This question is important because it highlights the intuition
that security is an ongoing contest between attackers and
defenders. In order to answer this question, one may use
the vulnerability density metric, which is the number of
vulnerabilities per a certain number of lines of code (e.g.,
1,000 LOC). In order to answer this RQ, we propose using
the following basic and derived metrics. The basic metrics
include: (i) LOCtotal,r , which is the total number of lines
of non-commented source code in a software release r;
(ii) vulstotal,r , which is the number of vulnerabilities in a
software release; (iii) LOCintroduced,r , which is the number of
lines of newly introduced code in a software release r; (iv)
vulsintroduced,r , which is the number of vulnerabilities that
are newly introduced in a software release r; (v) LOCinherited,r ,
which is the number of lines of code in release r that are
inherited from the immediate preceding software release;
(vi) vulsinherited,r , which is the number of vulnerabilities in
release r that are inherited from the immediate preceding
software release. These basic metrics can be used to derive
more metrics:

• Vulnerability density (D1): This metric can be de-
fined as D1 = vulstotal,r/LOCtotal,r , namely the ratio
of the number of vulnerabilities contained in a soft-
ware release to the total number of lines of code in
the release. D1 reflects the overall security of a new
software release.

• Vulnerability density in new code (D2): This metric
can be defined as D2 = vulsintroduced,r/LOCintroduced,r ,
the ratio of the number of vulnerabilities that are
newly introduced in a software release to the number
of lines of code that are newly introduced into the
release. D2 reflects the security of the code that is
newly introduced into a software release.

• Vulnerability density of inherited code (D3): This
metric, D3 = vulsinherited,r/LOCinherited,r , is the ratio
of the number of the vulnerabilities inherited from
the immediate preceding release to the LOCs in-
herited from the immediate preceding release. D3

reflects the security of the code inherited from the
preceding release.

RQ6: How prevalent are residual vulnerabilities in a
software system?

We use the notion of residual vulnerability density (Dresidual)
to describe the ratio of the number of vulnerabilities that are
currently unknown but discovered later (by the attacker, the
defender, or the vendor) to the total number of lines of code
in the release. One application of this notion is to describe a
software’s unpatched vulnerability density, including zero-
day vulnerabilities. Given a time horizon [0, T], we use a
set αt to denote a software’s set of residual vulnerabilities
with respect to a reference time t ∈ [0, T] (i.e., the point in
time at which residual vulnerabilities are measured). Let
vul.Ti denote the time Ti, where 1 ≤ i ≤ 5, as described
in a vulnerability vul’s lifecycle (cf. Fig. 2). In principle,

we have αt = {vul : vul.T0 < t < vul.T5}. Since T5 is
not known to us in our case study, we propose defining
αt = {vul : vul.T0 < t < vul.T4}; this corresponds to the
ideal case that every patch is immediately applied whenever
becoming available (i.e., the best-case scenario with T4 =
T5). Let LOCtotal,t denote the total number of lines of code in
a software release at the reference time t. Then, we define
residual vulnerability density as Dresidual = |αt| /LOCtotal,t.
RQ7: How should we compare security of two software
systems? When comparing the security of two systems, it
is important to ensure fairness, which is an elusive notion
whose rigorous definition is beyond the scope of the present
paper. Nevertheless, it is clearly not fair to compare the
number of vulnerabilities in two systems unless they have
the same size of code base. It may be tempting to compare
their vulnerability densities. While intuitive, this compari-
son needs to be refined because two software systems may
be developed at different times (e.g., one is first released in
1980’s and the other is first released in 1990’s). This prompts
us to consider the notion of a software system’s age, which is
similar to a human’s age, such that we can compare security
of two software systems at the same age. For this purpose,
we need to define the birth time of a software system. In
practice, this is not straightforward because the release of a
software, especially an open source one, does not have any
widely accepted standard. One possibility, which we will
adopt, is to use the release of the first stable code base as the
birth of a software.

We propose comparing security of two software systems
at the same age through the following metrics: (i) the afore-
defined vulnerability density D1, which also reflects the
secure programming competence of developers in the re-
spective time; (ii) the vulnerability lifetime T4 − T0, which
also reflects the time window during which a software
can be exploited (i.e., overall vulnerability); and (iii) the
patch release time T4 − T3, which also reflects a vendor’s
responsiveness;
Remark. Two potentially important metrics are vulnerability
exposure time windows, which can be measured by T5 − T3
and T5 − T4. The former reflects the time window during
which an attacker may exploit the vulnerability after a
vulnerability is disclosed, whereas the latter reflects the
responsiveness of the end user in applying patches that are
already available. These metrics can only be measured by
practitioners who patch vulnerabilities and know the patch
deployment time T5.

3 CASE STUDY ON OPENBSD AND FIREFOX

Now we apply the methodology to conduct a case study
on OpenBSD and Firefox. We choose OpenBSD and Firefox
for the case study because: (i) they are widely employed
and major targets of attackers; (ii) they use software version
control systems and their source code is publicly available,
which enables us to look back into their source code history;
(iii) the 1998-2005 code base of OpenBSD was analyzed in
[15], making us curious about whether the 2005-2020 code
bases would continue the trend; and (iv) we are curious
which is more secure. Since OpenBSD is completely imple-
mented in C/C++ and Firefox is mainly implemented in
C/C++ but partly implemented in Java, JavaScript or other

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

languages, we focus on C and C/C++ vulnerabilities for fair
comparison purposes.

3.1 Collecting Vulnerability Data
For OpenBSD, we set its birth time as May 19, 1998, when
release 2.3 was made public. This release is deemed as the
first stable code base (as in [15]). For collecting vulnerabil-
ities, we extract its vulnerabilities from OpenBSD’s errata
bulletin [45] and use crawlers to retrieve the information
about their vulnerabilities from NVD and BID. In total,
we collected 263 vulnerabilities from 44 releases, including
114 vulnerabilities that were detected after the previous
study on the 1998-2005 code base [15]. Among the 263
vulnerabilities, 136 have no CVE identifiers, 104 have one
CVE identifier, 10 have two CVE identifiers, and 13 have
three or more CVE identifiers; this is caused by the fact that
OpenBSD developers sometimes fix multiple vulnerabilities
via a single patch. We treat these sets of multiple vulnerabili-
ties as one each because we do not have enough information
to distinguish them from each other.

For Firefox, we set its birth time as March 22, 2011, when
release 4.0 is made public. This release is deemed by many
as the first stable code base because Firefox had a huge itera-
tion in this release. For collecting vulnerabilities, we extract
its vulnerabilities from MFSA [46] and use crawlers to re-
trieve vulnerability information from NVD and BID. In total,
we collected 1,630 vulnerabilities from 72 releases. Among
these vulnerabilities, 634 CVE identifiers correspond to a
single vulnerability, 34 CVE identifiers correspond to two
vulnerabilities, 141 CVE identifiers correspond to three or
more vulnerabilities. The latter two scenarios can happen
because a CVE identifier may accommodate multiple un-
specified vulnerabilities (e.g. CVE-2016-1952).

3.1.1 Determining Vulnerability Lifecycle Attributes
Since a vulnerability’s patch deployment time T5 is only
known to end users, we will only investigate T0, . . . , T4.
Determining a vulnerability’s introduction time T0. This
is where we encounter the challenge mentioned above, de-
termining T0 when it is not available from the data sources.
At a high level, we address this challenge as follows: (i)
we leverage the modified lines of code in a patch to help
identify the vulnerable piece of code; (ii) we track the
modified lines of code back to the software release that intro-
duced them; (iii) we treat this release as the vulnerability’s
introduction time T0. Given that the release identified as
such may not be unique because some modified lines of
code may be introduced in one release and the others may
be introduced in another release, we propose considering
conservative vs. radical estimation of T0, which are elaborated
below.

For OpenBSD, developers use a sequence number
to identify a vulnerability in each release, such as
“012 openssl” (meaning the 12th patch to openssl). Since
OpenBSD vulnerability identifiers do not provide enough
information and some commit descriptions do not include
vulnerability or CVE identifiers, we identify OpenBSD
patches in its errata bulletin, rather than searching for
vulnerability patches through their commit messages. Af-
ter identifying OpenBSD patches, we use Algorithm 1 to

determine T0. The input to Algorithm 1 is the list of rele-
vant patches corresponding to the vulnerability in question.
We extract the lines of code that are changed between
two consecutive revisions and use these as a vulnerability
candidate (Line 4 in Algorithm 1). In OpenBSD’s version
control system, the annotate command extracts each line
of code in a given program file, along with the information
regarding when the line of code is introduced (Line 5 in
Algorithm 1). This allows us to locate vulnerable revisions,
namely the latest and earliest modifications to these lines of
code (Line 6-9 in Algorithm 1). We use these two ends of the
spectrum as the estimated vulnerability introduction time
T0 (i.e., conservative vs. radical estimation mentioned above),
which will be compared with each other to demonstrate the
robustness of our methodology.

For Firefox, we locate a patch by traversing the commits
corresponding to a given vulnerability according to its iden-
tifier pattern “Bug \d+”. This method is reliable because
Firefox mandates developers to include a bug number and
a clear explanation for each fix. In the case a commit is
later reverted (e.g., because they introduced new bugs or
were unreliable), we ignore the problematic versions in
order to avoid any unintended side-effects. Given a patch,
we can use Algorithm 1 to determine the corresponding
vulnerability’s introduction time T0. In order to further
clarify the idea and demonstrate the execution of Algorithm
1, consider the example of Firefox vulnerability #682335.
In order to patch this vulnerability, Firefox revision 73339,
dated August 26, 2011, evolved to revision 73348, dated
September 9, 2011, whereby three lines of code (#759, #770
and #779) in revision 73339 are deleted. These three lines of
code are the vulnerability candidate (Line 4 in Algorithm
1). Then, we use command “hg annotate -r 73339
content/canvas/src/WebGLContext.h” to extract the
last revisions, 63070 (dated February 24, 2011), 63070 (dated
February 24, 2011), and 43009 (dated June 1, 2010), which
introduced these three lines of code (Line 5-9 in Algorithm
1). Since the release corresponding to revision 63070 is
Firefox 4.0, Firefox’s birth time for the sake of this study
(as explained above), we treat the release corresponding to
revision 43009 as Firefox 4.0 even though it may correspond
to an earlier release. Therefore, we set the release time of
Firefox 4.0 (March 22, 2011) as the introduction time T0
of vulnerability #682335. As discussed above, we do not
use June 1, 2010 or February 24, 2011 as T0 because these
revisions are internal to the developers but are not released
to the public.

Determining T1, . . . , T4. For OpenBSD, the vulnerability
discovery time T1 is not available. The vulnerability ex-
ploitation time T2 can be set as the earliest publication date
of the corresponding exploit. By looking into the exploits
in NVD, BID and Exploit-DB [48], we find 90 OpenBSD
exploits in total. The vulnerability disclosure time T3 can
be set as the earliest time when a vulnerability is published
in NVD and BID. The vulnerability patch release time T4 can
be set as a patch’s release time in OpenBSD’s errata bulletin.

For Firefox, a vulnerability discovery time T1 can be
approximated as the vulnerability’s opened date in Bugzilla,
which is the date indicating when the developer discovered
the vulnerability. The vulnerability exploitation time T2 can

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

be set as the earliest publication date of exploits, and we
find 128 exploits in total. The vulnerability disclosure time
T3 can be set as the earliest time when a vulnerability is
published in NVD and BID. The vulnerability patch release
time T4 can be set as a patch’s release time in MFSA.

3.1.2 Determining the Other Attributes
In order to determine the other attributes, we aggregate
the vulnerabilities extracted from NVD, BID, and vendor
advisories into a single dataset by reconciling the discrep-
ancy between the data sources. The discrepancy is caused
by differences in the indexing methods of different sources
(e.g., CVE-2011-2895 and BID #49124 correspond to the same
vulnerability). Whenever possible, we can automatically
leverage a common identifier, such as the CVE identifier
that may be used in the different sources and/or the links
that are used by one source for cross-referencing to another
source to reconcile the discrepancy. When the preceding au-
tomated process does not work because there are no obvious
references to leverage, we manually check and map the vul-
nerabilities. To do this, we follow these three steps: (i) extract
some reference that may help identify an record in another
data source; (ii) leverage such references to automatically
match the data records extracted from different data sources;
and (iii) manually check and map vulnerabilities that are not
resolved by the preceding automated method.

For OpenBSD, we obtain 263 vulnerabilities from
OpenBSD’s errata bulletin and 186 CVE identifiers from
NVD and BID, where 136 (out of the 263) vulnerabilities
have no CVE identifiers. Therefore, we use the vulnerability
identifiers in OpenBSD’s errata bulletin rather than the CVE
identifiers.

For Firefox, we use Bugzilla identifiers (rather than
CVE identifiers) because some CVE identifiers correspond
to multiple vulnerabilities (rather than uniquely pointing
to vulnerabilities). For example, CVE-2016-2804 points to
multiple unspecified vulnerabilities. Bugzilla identifiers are
more appropriate here because they uniquely point to vul-
nerabilities.

3.2 Answering the RQs
3.2.1 RQ1: What are the dominating types of vulnerabili-
ties?
Table 1 lists the 14 CWE types of OpenBSD vulnerabilities.
These types only cover 71 (out of the 263) OpenBSD vul-
nerabilities, because many vulnerabilities’ CVE entries are
missing or the CWE types in many CVE entries are missing.
The major types of OpenBSD vulnerabilities are Numeric
Error, Buffer Overflow and Resource Management Error.

Firefox vulnerabilities are covered by 41 CWE types.
These 41 types only cover 1259 (out of the 1,630) Firefox
vulnerabilities, as the CVE entries in NVD for the other
371 vulnerabilities do not include their types. Table 2 lists
the top 20 of the 41 types. The major types of Firefox
vulnerabilities are Buffer Overflow, Use After Free, and Re-
source Management Error, while noting that buffer overflow
dominates among them.

We observe that 11 types of vulnerabilities are common
to OpenBSD and Firefox, including two top vulnerabilities
in Buffer Overflow and Resource Management Error. Moreover,

TABLE 1
CWE Types of OpenBSD Vulnerabilities Ranked by The

Number of Associated CVEs.

CWE-ID Weakness Summary Number

1 189 Numeric Error 18
2 119 Buffer Overflow 13
3 399 Resource Management Error 11
4 264 Access Control Error 5
5 20 Improper Input Validation 5
6 310 Cryptographic Issues 4
7 200 Information Disclosure 4
8 362 Race Condition 3
9 17 Code 2
10 284 Improper Access Control 2

11 611 Improper Restriction of XML
External Entity Reference 1

12 287 Improper Authentication 1
13 190 Integer Overflow or Wraparound 1
14 476 NULL Pointer Dereference 1

TABLE 2
Top 20 CWE Types of Firefox Vulnerabilities Ranked by

The Number of Associated CVEs.

CWE ID Weakness Summary Number

1 119 Buffer Overflow 221
2 416 Use After Free 73
3 399 Resource Management Error 62
4 264 Access Control Error 56
5 200 Information Disclosure 49
6 20 Improper Input Validation 38
7 79 Cross-site Scripting 28
8 189 Numeric Error 18
9 17 Code 13
10 787 Out-of-bounds Write 12
11 254 Security Features 12
12 190 Integer Overflow or Wraparound 10
13 362 Race Condition 10
14 94 Code Injection 9
15 125 Out-of-bounds Read 8
16 284 Improper Access Control 7
17 310 Cryptographic Issues 6
18 704 Incorrect Type Conversion or Cast 5
19 120 BClassic Buffer Overflow 5
20 352 Cross-Site Request Forgery 4

the common vulnerabilities Buffer Overflow, Use After Free
and Improper Input Validation are mainly memory corruption
vulnerabilities. This suggests that OpenBSD and Firefox de-
velopers tend to make the same kinds of security-critical er-
rors in programming, especially memory corruption errors.
This phenomenon can be attributed to that OpenBSD and
Firefox are written in memory-unsafe languages (i.e., C and
C++). On the other hand, Firefox suffers from web-specific
vulnerabilities, such as Cross-site Scripting, which are not
applicable to OpenBSD. Note that many vulnerabilities can
be prevented by practicing secure coding. Proper input
validation can eliminate many vulnerabilities, such as Buffer
Overflow, Cross-Site Scripting and Code Injection; practicing
standard memory management can prevent most memory
management errors, such as Use After Free; and performing
range and overflow checking can prevent Numeric Error
vulnerabilities.

Insight 1. OpenBSD and Firefox developers make similar
security mistakes, especially memory management ones.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

3.2.2 RQ2: How severe are the vulnerabilities?
We study the severity of a vulnerability based on its impact
and exploitability, which can be quantified by the CVSS [41].
Intuitively, impact score reflects a vulnerability’s impact on
confidentiality, integrity, and availability; a higher impact
score means a greater potential damage. The exploitability
score reflects the degree of difficulty in exploiting a vulner-
ability; a higher exploitability score means a vulnerability is
easier to exploit. Vulnerabilities reported in NVD after 2016
were scored using CVSS 3.x and 2.0, while vulnerabilities
reported in NVD prior to 2016 were scored using CVSS
2.0. Since our dataset consists of vulnerabilities that were
reported prior to 2016, we use CVSS 2.0 for the sake of
compatibility.

� � � �
 � � � � � �
 	 � � � � � � �
�

� � �

� � �

� � �

� � �

�
��

��
���

�	

�

��
��

	��
��

 � � � �
 � � �
� � 	
 � � � �

(a) Impact score

� � � � � � �
�

� � �

� � �

� � �

� � �

�

�
�

�

� � � � � 	

� � � � � � � �

(b) Impact score

� � � � � � � � � � � � 	 � � � � � � �
�

� � �

� � �

� � �

 � �

�
��

��
���

�	

�

��
��

	��
��

 � � � �
 � � �
� � 	
 � � � �

(c) Exploitability score

� � � � � � �
�

� � �

� � �

� � �

� � �

�

�
�

�

� � � � � 	

� � � � � � � �

(d) Exploitability score

Fig. 3: Vulnerability impact and exploitability.

Fig. 3(a) plots the density function of the impact score
of OpenBSD and Firefox vulnerabilities. We observe that
Firefox has many more vulnerabilities than OpenBSD. More-
over, OpenBSD vulnerabilities have somewhat evenly dis-
tributed impact scores, while Firefox has many more vul-
nerabilities with medium or higher impact than with low
impact. Fig. 3(b) plots the cumulative distribution function
(CDF) of their impact scores. We observe that the two CDFs
are similar, which can be explained by the fact that their
density functions are somewhat close to the uniform distri-
bution. These phenomena suggest that the proportions of
high- and medium-impact vulnerabilities within OpenBSD
and Firefox are similar, and that OpenBSD developers
and Firefox developers make programming mistakes with
similar consequences. Fig. 3(c) plots the density function
of the exploitability score for OpenBSD and Firefox vul-
nerabilities. We observe that most OpenBSD and Firefox
vulnerabilities have high exploitability scores, meaning that
they are easy to exploit. Fig. 3(d) plots the CDF of the
exploitability score. Let F (x) denote the CDF of OpenBSD
vulnerability exploitability score and G(x) denote the CDF
of Firefox vulnerability exploitability score. We observe that
F (x) ≥ G(x) for any x, meaning that Firefox vulnerabilities
are easier to exploit than OpenBSD vulnerabilities. One fac-
tor contributing to this is that 1628 (out of the 1,630) Firefox
vulnerabilities can be exploited remotely without requiring

authentication (e.g., CVE-2016-2808 can be exploited when
a user visiting a malicious website). This may explain why
there are more Firefox exploits than OpenBSD’s (128 vs. 90),
as shown by the exploits we collected.
Insight 2. OpenBSD and Firefox vulnerabilities cause similar

damages, but Firefox vulnerabilities are easier to exploit.

3.2.3 RQ3: What are the vulnerability lifetimes (i.e., T4 −
T0)?
As mentioned above, we will focus on two choices when
determining T0, namely the conservative one that treats the
most recent revision time as T0 vs. the radical one that treats
the earliest possible time as T0 (denoted by T ′0 for ease of
reference). We observe that T0 = T ′0 for 38% of the OpenBSD
vulnerabilities and 44% of the Firefox vulnerabilities, which
correspond to the cases where T0 can be uniquely deter-
mined. In order to clarify the difference between T0 and T ′0,
let us look at OpenBSD vulnerability “62-002 fktrace” as an
example.In order to patch this vulnerability, the OpenBSD
file kern_ktrace.c in revision 1.92, dated August 12,
2017, evolved to revision 1.93, dated November 28, 2017,
whereby the function sys_fktrace in kern_ktrace.c
is deleted. This function contains 64 lines of code, among
which 63 were introduced in revision 1.92 and 1 was intro-
duced in revision 1.45. Therefore, T0 is set to be the time
when revision 1.92 (or OpenBSD release 6.2) was published
and T ′0 is set to the time when revision 1.45 (or OpenBSD
release 4.5) was published.

� �
�

� �
�
� �

 �
� �

� �
� 	

� �
� �

 �
� �

� �
�

� �
� �

	 �
� �

� �
�

� � �

� � �

� � �

� � �

� � � �

�
�

���
��

��
	

��
��

�	�
��

�

� � � �
 � � �
� � 	
 � � � �

(a) T4 − T0 density function

� � � � � � � � � � � � � � � � �
�

� � �

� � �

� � �

� � �

�

�
�

�

� � � �
 � � �
� � 	
 � � � �

(b) T4 − T0 CDF

� �
�

� �
�
� �

 �
� �

� �
� 	

� �
� �

 �
� �

� �
�

� �
� �

	 �
� �

� �
�

� � �

� � �

� � �

�
��

��
���

�	

�

��
��

	��
��

� � � �
 � � �
� � 	
 � � � �

(c) T4 − T ′
0 density function

� � � � � � � � � � � � � � � � �
�

� � �

� � �

� � �

� � �

�

�
�

�

� � � �
 � � �
� � 	
 � � � �

(d) T4 − T ′
0 CDF

Fig. 4: Vulnerability lifetime (days).

Fig. 4(a) plots the density function of vulnerability life-
time T4 − T0 (unit: day). We observe that for any lifetime,
there are many more Firefox vulnerabilities than OpenBSD
vulnerabilities. Nevertheless, most OpenBSD and Firefox
vulnerabilities have a lifetime under 730 days (or 2 years).
Fig. 4(b) plots the CDF of vulnerability lifetime T4 − T0. For
OpenBSD, we further observe that 50% of the vulnerabilities
have lifetimes exceeding 477 days (15.9 months); 75% have
lifetimes under 1,156 days (3.2 years); 90% have lifetimes
under 2,655 days (7.3 years). For Firefox, we further observe

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

that 50% vulnerabilities have lifetimes exceeding 308 days
(10.3 months); 75% have lifetimes under 737 days (2.0 years);
90% have lifetimes under 1,547 days (4.2 years). Let F (x)
denote CDF of OpenBSD vulnerability lifetime and G(x)
denote CDF of Firefox vulnerability lifetime. We observe
that F (x) ≤ G(x) for any x, meaning that Firefox vulner-
abilities tend to have a shorter lifetime than OpenBSD vul-
nerabilities. In particular, OpenBSD has a significant fraction
of vulnerabilities that have a long lifetime (> 3136 days),
but Firefox has no vulnerabilities with this long lifetime.
The relatively shorter lifetime of Firefox vulnerabilities can
be attributed to Firefox’s practice of multiple bate releases
before a stable release.

Fig. 4(c) plots the density functions of OpenBSD and
Firefox’s vulnerability lifetimes T4 − T ′0 (unit: day). We
observe that both density functions are somewhat different
from the density functions of T4−T0, which are depicted in
Fig. 4(a). This is because replacing T0 with T ′0 makes some
vulnerabilities’ lifetimes appear longer because T ′0 ≤ T0.
This explains, for example, why there are 306 Firefox vul-
nerabilities whose lifetimes with respect to T0 are within 365
days, but are longer than 365 days with respect to T ′0. Fig.
4(d) plots the CDFs of OpenBSD and Firefox’s vulnerability
lifetimes T4 − T ′0. We observe that both CDFs are somewhat
“smoother” than their counterparts with respect to T4 − T ′0
because of the reason discussed above.

Recall that we collected OpenBSD vulnerabilities in
versions 2.3-6.7 over the span of 22 years (1998-2020); by
contrast, we collected Firefox vulnerabilities in releases 4.0-
75.0 over the span of 9 years (2011-2020). Since vulnerability
lifetime is affected by the availability of vulnerability detec-
tion techniques, we compare the lifetime of the same type of
vulnerabilities in Firefox and different periods of OpenBSD.
The median lifetime of Buffer Overflow vulnerabilities intro-
duced into OpenBSD prior to 2011 is 1,073 days; the median
lifetime of Buffer Overflow vulnerabilities introduced into
OpenBSD after 2011 is 603 days; and the median lifetime
of Buffer Overflow vulnerabilities in Firefox is 364 days.

Insight 3. Firefox vulnerabilities have a shorter lifetime than
OpenBSD vulnerabilities, hinting that operating systems
vulnerabilities take more time and effort to detect.

3.2.4 RQ4: Where do the vulnerabilities reside?
We divide OpenBSD and Firefox into modules according
to their second-level source code directories. Fig. 5 depicts
the 10 OpenBSD and Firefox modules that have most vul-
nerabilities. The module having the most vulnerabilities is
sys/kern for OpenBSD and js/src for Firefox, which are
their main function modules, respectively. The vulnerability
density of a module in a release is the ratio of the number of
vulnerabilities in that module to the number of lines of code
(LoC) in that module. We calculate the average vulnerability
density of each module over its releases considered in
this paper. Since there are many modules (at the order of
magnitude of hundreds), we plot in Fig. 6 the 10 modules
of OpenBSD and Firefox that have the highest average vul-
nerability density (unit: number of vulnerabilities per 103

LoC). The module with the highest vulnerability density is
usr.bin/su for OpenBSD and dom/media for Firefox. We
observe that modules with a large number of vulnerabilities

do not necessarily have a high vulnerability density; instead,
small modules containing few vulnerabilities can exhibit
a high vulnerability density. In Firefox, dom/media and
dom/base have both a large number of vulnerabilities and
a high vulnerability density.

��
��
��
��

�

��
�

��
��

��
��
�

��
��
	

��
��
��
�

��
��
��
��
�

�

��
��
��
�	

��
��
��
��
��

�

��
��
��
�

��
�

��
��
��

�
�	
��
��

��
��
��
��
�

�

�

� �

� �

� �

�
��

��
���

�	

�

��
��

	��
��

(a) Top 10 OpenBSD modules

�
��
��

��

�
��
��

��

�

�
�	
�

��
��
��
��
��
��
��
��

��
��
��
��
��
�

��
��
��
��
��
��

�
��
��
��
��
��

�
�	
��
��
��
��

��
��
��
��
��
��
	�

��
��
��
��
��

�

� � �

� � �

� � �

� � �

�
��

��
���

�	

�

��
��

	��
��

(b) Top 10 Firefox modules

Fig. 5: Vulnerable OpenBSD and Firefox modules.

��
��
��
��
��

��
��
��
��
��

�
�

��
��
��
��
��
��
��

��
��
��
��
��
��
��
	

��
��
��
��
��
��
�

��
��
��
��
��
��
��

��
��
��
�	
��
��

��
��
��
��
��

�
��
��
��
��

��
��
��
��
��
�

�

��
��
��
��
��
��
�

�

�

�

�

�

�

	�

�

��
���

��
��

	�
���

(a) Top 10 OpenBSD modules

��

�

�
�

�

�

��
��
��

�

�

�
��
��
��
�

�

��

	�
��
��
��
��
�

��
��
��
��

�

��
��
�

��

�
��
��
�

��
��
��
��
��
��

��
��
��
��

�
�

	�
��
��
��
��
��

��

�
��
��

�

�

�

�

�	
�

��
���

��
��

�	
��

��

(b) Top 10 Firefox modules

Fig. 6: Ten highest vulnerability densities of modules (unit:
of vulnerabilities per 103 LoCs).

Insight 4. Most OpenBSD vulnerabilities belong to the
sys/kern module and most Firefox vulnerabilities be-
long to the js/src module. The module with the high-
est vulnerability density is usr.bin/su for OpenBSD
and dom/media for Firefox.

3.2.5 RQ5: Does a software system get more secure with
time?
Guided by the vulnerability density metric defined in
Section 2, Fig. 7(a) plots OpenBSD’s vulnerability density
(D1), vulnerability density in new code (D2), and vulner-
ability density of inherited code (D3) with respect to its
releases. We make the following observations. First, D1

almost always decreases with time because vulnerabilities
get patched when they become known and when patches
become available, except for release 5.6 where a slight in-
crease occurs; this increase is caused by the fact that there are
9 vulnerabilities in the newly introduced code and there are
6 vulnerabilities that are newly detected from the inherited
code. This suggests that that OpenBSD gets more secure
over the time span of 1998-2020, which reinforces the finding
by Ozment and Schechter based on OpenBSD’s time span of
1998-2005 [15]. Second, D2 exhibits substantial fluctuations,
this suggests that both the size of newly introduced code

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

and the number of vulnerabilities in newly introduced code
are in a sense random, hinting that newly introduced code
can, but does not always, include a substantial number of
vulnerabilities and that today’s OpenBSD developers do
not necessarily produce more secure code. More specifically,
vulnerability density D1 reflects the overall security of a
software release, whereas vulnerability density in new code
D2 reflects the security of the code that is newly introduced
into a software release (which reflects more on whether or
not developers are producing more secure code with time).
Third, D3 exhibits a similar pattern as D1. This can be
explained as follows: most of the code and most of the
vulnerabilities in a software release are largely inherited
from the immediately preceding release, explaining why
their ratios, namely D1 and D3, are also similar.

� � � � � � � � � � � � � � �
�

� �

� �

� �

� �

� �

�
��

��
��

�

� � �

� � �

� � �

(a) OpenBSD

� � � � � � � � � � �
�

� � �

� � �

� � �

�
��

��
��

�

� � �

� � �

� � �

(b) Firefox

Fig. 7: Vulnerability density-related metrics with time (unit:
of vulnerabilities per 106 LoCs).

Fig. 7(b) plots Firefox’s vulnerability density (D1), vul-
nerability density in new code (D2), and vulnerability den-
sity of inherited code (D3) with respect to its releases. We
observe that Firefox vulnerabilities exhibit similar phenom-
ena to OpenBSD’s. It is worth mentioning that the actual
vulnerability density of the last few releases may be higher
because they may contain vulnerabilities that are yet to be
discovered. This is possible because vulnerability lifetime,
even under the conservative estimation, T4 − T0, can be
multiple years.

Insight 5. Both OpenBSD and Firefox get more secure with
time, but today’s developers do not necessarily produce
more secure code. This highlights the importance of
continually checking for and repairing vulnerabilities.

3.2.6 RQ6: How prevalent are residual vulnerabilities in a
software system?

Guided by the residual vulnerability metrics described in
Section 2, we define the reference time points, namely the
t’s. Since a new version of OpenBSD is released every six
months and the span of time we consider is 1998-2020,
we make every month a reference time t for measuring its
residual vulnerabilities. Since a new release of Firefox is
made every six weeks and the span of time we consider
is 2011-2020, we make every week a reference time t for
measuring its residual vulnerabilities.

Fig. 8(a) plots OpenBSD’s residual vulnerability density
where the x-axis time unit is month. We observe that by and
large, OpenBSD’s residual vulnerability density decreases
with time. However, few vulnerabilities are discovered be-
tween November 1, 2011 (release 4.8) and May 1, 2013

� � � � � � � � � � � � � � � � � �
�

�

� �

�
��

��

�

���

�

	�

�

��
���

��
��

	�
��

�

(a) OpenBSD

� � � � � � � � � � � � � � � � � �
�

� �

� � �

�
��

��

�

���

�

	�

�

��
���

��
��

	�
��

�

(b) Firefox

Fig. 8: Residual vulnerability density (unit: # of vulnerabili-
ties per 106 LoCs).

(release 5.3), which explains why the residual vulnerability
density does not monotonically decrease with time. Fig. 8(b)
plots Firefox’s residual vulnerability density where the x-
axis time unit is week. We observe that the residual vul-
nerability density generally decreases over time, with some
exceptions. Roughly speaking, the chances for OpenBSD
and Firefox to be attacked by 0-day attacks are generally
decreasing, but the chance for Firefox to suffer from such
attacks is one order of magnitude higher that of OpenBSD’s
because the residual vulnerability density is 3.86 (vulnera-
bilities per 106 LoCs) and Firefox’s is 45.94 (vulnerabilities
per 106 LoCs) on average. It is worth mentioning that the
actual residual vulnerabilities corresponding to the recent
releases may be higher than what is plotted because their
vulnerabilities may continue to be detected as time goes by.

Insight 6. OpenBSD and Firefox’s residual vulnerabilities
are overall decreasing, but Firefox has one order of
magnitude more residual vulnerabilities.

3.2.7 RQ7: How should we compare security of two soft-
ware systems?
Recall that for OpenBSD, we collected vulnerabilities in
versions 2.3-6.7 over the span of 22 years (1998-2020);
for Firefox, we collected vulnerabilities in releases 4.0-75.0
over the span of 9 years (2011-2020). In order to make a
fair comparison between their security, we need to take
into consideration the notion of their age as described in
the methodology. Since Firefox is much “younger” than
OpenBSD, we contrast them for their first 9 years, namely
OpenBSD releases 2.3-4.1 (1998-2007) vs. Firefox releases 4.0-
75.0 (2011-2020). For OpenBSD, this means that we only
focus on the vulnerabilities whose introduction times are
earlier that OpenBSD 4.1 (dated May 1, 2007).

Fig. 9(a) contrasts OpenBSD and Firefox’s vulnerabil-
ity density D1 (unit: number of vulnerabilities per 106

LOC). We observe that Firefox has more vulnerabilities than
OpenBSD does, and that Firefox’s vulnerability density is,
for most of the time, almost one order of magnitude higher
than OpenBSD’s. These suggest that the community is com-
mitted to making OpenBSD a secure operating system. This
is confirmed by the fact that (i) many security features have
been adopted into OpenBSD, such as Kernel randomization,
Privilege separation, Pledge, and Unveil [49], [50], [51], [52],
[53], [54], and (ii) the entire OpenBSD code base has under-
gone a large-scale manual source code audit [45], [50], [55].
On the other hand, Firefox’s rapid release cycle (i.e, 6 weeks)
may have contributed to the fact that more than 91% of its

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

vulnerabilities are detected after a number of subsequent
releases. Nevertheless, Firefox uses the Security Bug Bounty
Program to detect vulnerabilities. This explains why many
vulnerabilities in Firefox are discovered and fixed after its
releases, namely that Firefox initially exhibits a higher vul-
nerability density which however drops more rapidly than
its OpenBSD counterpart. It is worth mentioning that this
finding does not contradict [18], which says that Firefox’s
rapid release cycle does not cause a higher vulnerability
rate. This is because their study was based on comparing
Firefox with vs. without employing the rapid release cycle;
by contrast, we compare Firefox against OpenBSD.

� � � � � �
�

� �

� � �

� � �

�
��

��
��

�

� � � �
 � � �
� � 	
 � � � �

� � �

(a) Density D1

� � � � � � � � ��

� � �

�

�
�

�

� � � �
 � � �
� � 	
 � � � �

(b) Lifetime T4 − T0

� � � � � � � ��

� � �

�

�
�

�

� � � �
 � � �
� � 	
 � � � �

(c) Patch delay T4−T3

Fig. 9: OpenBSD vs. Firefox vulnerabilities in their “child-
hood” (0-9 years old).

Fig. 9(b) plots the CDF of vulnerability lifetime T4 − T0
during OpenBSD and Firefox’s “childhood” (i.e., 0-9 years
old). These CDFs are similar to their counterparts with re-
spect to OpenBSD and Firefox’s lifetime, which are depicted
in Fig. 4(b). Nevertheless, we observe that Firefox vulner-
abilities have a shorter lifetime (549 days on average) than
OpenBSD’s (1227 days on average). This is a fair comparison
in the sense that we only compare their “childhood”, while
noting that OpenBSD is 11 years older than Firefox.

Fig. 9(c) plots the patch delay T4−T3, where T4−T3 < 0
means that a patch is released before the vulnerability is
disclosed. A greater T4−T3 value means that the vendor has
a longer response time and that the software suffers a longer
period of time during which it can be attacked because of
the known but yet-to-be-patched vulnerabilities. We observe
that for most vulnerabilities, we have T3 = T4, indicating
the practice of responsible disclosure. A few OpenBSD
vulnerabilities have a large T4 − T3 because they belong
to some OpenBSD modules (e.g., httpd) that have to be
fixed by third-party vendors. For Firefox vulnerabilities, we
observe very few instances with T4 − T3 > 0, meaning that
patches are almost always available when vulnerabilities are
disclosed.

Insight 7. Firefox’s vulnerability density is almost one order
of magnitude higher than OpenBSD’s.

4 LIMITATIONS

First, the completeness of the vulnerability datasets we col-
lected could be improved because we extracted vulnerabili-
ties from NVD, BID, and vendor advisories. This is relevant
because not all OpenBSD vulnerabilities are widely reported
(especially so for the ones that are not confirmed to be
exploitable [45]).

Second, the quality of the vulnerability datasets may
need to be improved because NVD and BID may con-
tain some inaccurate information. This can be seen from

the following examples. (i) OpenBSD patch “40-015 file”
fixes a heap overflow vulnerability, which can be mapped
to CVE-2007-1536, BID #23021 and BID #24146, but BID
#24146 also contains CVE-2007-2799. This causes the ag-
gregation of “(40-015 file, CVE-2007-1536, CVE-2007-2799,
23021, 24146)” as a vulnerability, even though OpenBSD
may not suffer from CVE-2007-2799. (ii) We encountered 136
OpenBSD vulnerabilities that do not correspond to any CVE
identifier; for Firefox, we encountered 175 CVE identifiers
which correspond to multiple vulnerabilities each.

Third, the accuracy of the estimated vulnerability intro-
duction time T0 may not be perfect because of the following.
(i) The modified portion of code in a patch may contain
some code that is not related to the vulnerability. This
can be improved by precisely locating the vulnerable lines
of code. (ii) Using the annotate command to determine
the vulnerability introduction time T0 may be overly con-
servative because changes in syntax does not necessarily
change the semantics (e.g., dividing a line of code into
two). This explains why we considered two extreme choices,
conservative vs. radical estimation, to alleviate this problem.
(iii) Neither the conservative estimation nor the radical es-
timation of T0 is perfect. For example, OpenBSD patch “42-
012 xorg2” fixed five vulnerabilities (i.e., CVE-2008-2360,
CVE-2008-2361, CVE-2008-2362, CVE-2008-1379, and CVE-
2008-1377). As a consequence, this patch leads to the same
T0 assigned to these five vulnerabilities. Unfortunately, there
is not enough information available to distinguish these
vulnerabilities from each other, explaining why we cannot
offer more accurate estimation of their respective T0’s.

Fourth, the fairness in comparing OpenBSD and Firefox
may not be perfect. This is because Firefox is more widely
used than OpenBSD, meaning that attackers and researchers
may be more interested in investigating and searching for
vulnerabilities in Firefox. This may have introduced a bias
in the number of vulnerabilities reported, and consequently,
exploited and patched in these two software systems.

Fifth, the timespan of software systems also makes it
hard to fairly compare two systems. This is because both
the knowledge of software developers and the vulnerability
discovery techniques evolve with time and are difficult to
quantify. For example, if we compare OpenBSD and Firefox
with respect to the same period of time (say 2011-2020), the
comparison may not be fair because OpenBSD has evolved
for 13 years (or 13 years old since its introduction in 1998)
but Firefox is first released in 2011 (as the first stable code
base). If we compare Firefox and OpenBSD during the same
age (say, 1998-2007 for OpenBSD and 2011-2020 for Firefox),
the comparison may not be fair because programmers and
programming techniques are quite different during these
two periods of time. Eliminating such biases is an out-
standing open problem for future studies because the result
would be widely applicable.

Sixth, the subjectivity of our case study. Our case study
focuses on OpenBSD and Firefox, which is somewhat sub-
jective. Nevertheless, this subjectivity on our case study may
not cause substantial damage, because of the following:
(i) the methodology we proposed is equally applicable to
other software systems than OpenBSD and Firefox; (ii) the
choice of OpenBSD is to achieve backward compatibility
in the sense that Ozment and Schecter [15] analyzed the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

vulnerabilities of OpenBSD about 15 years ago; (iii) we
additionally analyze Firefox because it is widely used, it
is a large and complex software, and its source code is
available. This means that analyzing OpenBSD and Firefox
would suffice to show the usefulness of the methodology.

5 CONCLUSION

We have presented an empirical study on the evolution
of OpenBSD and Firefox vulnerabilities, respectively over
the span of 2009-2020 and 2011-2020. To the best of our
knowledge, this is the most systematic study about the
vulnerabilities in these two important software systems.
We have collected and processed the most comprehensive
dataset on OpenBSD and Firefox vulnerabilities, and have
made the dataset publicly available. Our empirical analysis
has led to a number of insights, which shed light on the
security of OpenBSD and Firefox. The aforementioned limi-
tations of the present study offer interesting future research
directions.

Acknowledgment. We thank the reviewers for their in-
sightful comments and suggestions, which have guided us
in improving the paper. The authors affiliated with HUST
were supported by the Key Program of the National Science
Foundation of China under Grant No. U1936211. Shouhuai
Xu was supported in part by the National Science Founda-
tion under Grants #2122631 and #2115134, Army Research
Office Grant #W911NF-17-1-0566, and Colorado State Bill
18-086.

REFERENCES

[1] D. Gens, S. Schmitt, L. Davi, and A. Sadeghi, “K-miner: Uncover-
ing memory corruption in linux,” in Proc. 25th Annu. Netw. Distrib.
Syst. Secur. Symp., 2018.

[2] M. Pradel, V. Murali, R. Qian, M. Machalica, E. Meijer, and
S. Chandra, “Scaffle: Bug localization on millions of files,” in Proc.
29th ACM SIGSOFT Int. Symp. Softw. Test. Anal., 2020.

[3] A. Habib and M. Pradel, “How many of all bugs do we find? a
study of static bug detectors,” in Proc. 33rd ACM/IEEE Int. Conf.
Autom. Softw. Eng., 2018, pp. 317–328.

[4] M. Pradel and K. Sen, “Deepbugs: a learning approach to name-
based bug detection,” Proc. ACM Program. Lang., vol. 2, no. OOP-
SLA, pp. 147:1–147:25, 2018.

[5] S. Kim, S. Woo, H. Lee, and H. Oh, “Vuddy: A scalable approach
for vulnerable code clone discovery,” in Proc. IEEE Symp. Secur.
Priv. IEEE, 2017, pp. 595–614.

[6] J. Jang, A. Agrawal, and D. Brumley, “Redebug: finding unpatched
code clones in entire os distributions,” in Proc. IEEE Symp. Secur.
Priv. IEEE, 2012, pp. 48–62.

[7] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “Vulpecker: an
automated vulnerability detection system based on code similarity
analysis,” in Proc. 32nd Annu. Conf. Comput. Secur. Appl., 2016, pp.
201–213.

[8] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability
detection,” in Proc. 25th Annu. Netw. Distrib. Syst. Secur. Symp.,
2018.

[9] D. Zou, S. Wang, S. Xu, Z. Li, and H. Jin, “µvuldeepecker: A
deep learning-based system for multiclass vulnerability detec-
tion,” IEEE Trans. Dependable Secure Comput., vol. 18, no. 5, pp.
2224–2236, 2021.

[10] S. Liu, G. Lin, L. Qu, J. Zhang, O. De Vel, P. Montague, and Y. Xi-
ang, “Cd-vuld: Cross-domain vulnerability discovery based on
deep domain adaptation,” IEEE Trans. Dependable Secure Comput.,
pp. 1–1, 2020.

[11] G. Lin, S. Wen, Q.-L. Han, J. Zhang, and Y. Xiang, “Software
vulnerability detection using deep neural networks: A survey,”
Proc. IEEE, vol. 108, no. 10, pp. 1825–1848, 2020.

[12] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, S. Wang, and J. Wang,
“Sysevr: A framework for using deep learning to detect software
vulnerabilities,” IEEE Trans. Dependable Secur. Comput., 2021.

[13] Z. Li, D. Zou, S. Xu, Z. Chen, Y. Zhu, and H. Jin, “Vuldeelocator:
A deep learning-based fine-grained vulnerability detector,” IEEE
Trans. Dependable Secur. Comput., 2021.

[14] D. Zou, Y. Zhu, S. Xu, Z. Li, H. Jin, and H. Ye, “Interpreting
deep learning-based vulnerability detector predictions based on
heuristic searching,” ACM Trans. Softw. Eng. Methodol., vol. 30,
no. 2, pp. 23:1–23:31, 2021.

[15] A. Ozment and S. E. Schechter, “Milk or wine: Does software
security improve with age?” in Proc. 15th USENIX Conf. Secur.
Symp., 2006.

[16] Mozilla, “Bugzilla main page,” 2020. [Online]. Available:
https://bugzilla.mozilla.org

[17] P. Behnamghader, R. Alfayez, K. Srisopha, and B. W. Boehm, “To-
wards better understanding of software quality evolution through
commit-impact analysis,” in Proc. IEEE Int. Conf. Softw. Quality,
Rel. Secur., 2017, pp. 251–262.

[18] S. Clark, M. Collis, M. Blaze, and J. M. Smith, “Moving targets:
Security and rapid-release in firefox,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2014, pp. 1256–1266.

[19] C. Vassallo, F. Palomba, A. Bacchelli, and H. C. Gall, “Continuous
code quality: are we (really) doing that?” in Proc. 33rd ACM/IEEE
Int. Conf. Autom. Softw. Eng., 2018, pp. 790–795.

[20] M. D’Ambros, H. C. Gall, M. Lanza, and M. Pinzger, “Analysing
software repositories to understand software evolution,” in Soft-
ware Evolution, 2008, pp. 37–67.

[21] A. Ganpati, A. Kalia, and H. Singh, “A comparative study of
maintainability index of open source software,” Int. J. Emerg.
Technol. Adv. Eng, vol. 2, no. 10, pp. 228–230, 2012.

[22] Q. Feng, Y. Cai, R. Kazman, D. Cui, T. Liu, and H. Fang, “Active
hotspot: An issue-oriented model to monitor software evolution
and degradation,” in Proc. 34th ACM/IEEE Int. Conf. Autom. Softw.
Eng. IEEE, 2019, pp. 986–997.

[23] J. Aranda and G. Venolia, “The secret life of bugs: Going past the
errors and omissions in software repositories,” in Proc. 31st Int.
Conf. Softw. Eng., 2009, pp. 298–308.

[24] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug
characteristics in open source software,” Empir. Softw. Eng., vol. 19,
no. 6, pp. 1665–1705, 2014.

[25] F. Li and V. Paxson, “A large-scale empirical study of security
patches,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
2017, pp. 2201–2215.

[26] M. Jimenez, M. Papadakis, and Y. Le Traon, “An empirical analysis
of vulnerabilities in openssl and the linux kernel,” in Proc. 23rd
Asia-Pacific Softw. Eng. Conf., 2016, pp. 105–112.

[27] Y. Wu, H. Siy, and R. Gandhi, “Empirical results on the study of
software vulnerabilities,” in Proc. 33rd Int. Conf. Softw. Eng., 2011,
pp. 964–967.

[28] Y. Shin, A. Meneely, L. Williams, and J. A. Osborne, “Evaluating
complexity, code churn, and developer activity metrics as indica-
tors of software vulnerabilities,” IEEE Trans. Software Eng., vol. 37,
no. 6, pp. 772–787, 2010.

[29] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai, “Have things
changed now?: an empirical study of bug characteristics in mod-
ern open source software,” in Proc. 1st Workshop on Architectural
and System Support for Improving Software Dependability, 2006, pp.
25–33.

[30] Q. Wu, Y. He, S. McCamant, and K. Lu, “Precisely characterizing
security impact in a flood of patches via symbolic rule compari-
son,” in Proc. 27th Annu. Netw. Distrib. Syst. Secur. Symp., 2020.

[31] D. Mu, A. Cuevas, L. Yang, H. Hu, X. Xing, B. Mao, and G. Wang,
“Understanding the reproducibility of crowd-reported security
vulnerabilities,” in Proc. 27th USENIX Conf. Secur. Symp., 2018, pp.
919–936.

[32] Y. Dong, W. Guo, Y. Chen, X. Xing, Y. Zhang, and G. Wang,
“Towards the detection of inconsistencies in public security vul-
nerability reports,” in Proc. 28th USENIX Conf. Secur. Symp., 2019,
pp. 869–885.

[33] Y. Shen and G. Stringhini, “Attack2vec: Leveraging temporal word
embeddings to understand the evolution of cyberattacks,” in Proc.
28th USENIX Conf. Secur. Symp., 2019, pp. 905–921.

[34] X. Feng, X. Liao, X. Wang, H. Wang, Q. Li, K. Yang, H. Zhu,
and L. Sun, “Understanding and securing device vulnerabilities
through automated bug report analysis,” in Proc. 28th USENIX
Conf. Secur. Symp., 2019, pp. 887–903.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

[35] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory
analysis of software vulnerability life cycles,” in Proc. 34th Int.
Conf. Softw. Eng., 2012, pp. 771–781.

[36] ——, “Large scale characterization of software vulnerability life
cycles,” IEEE Trans. Dependable Secure Comput., vol. 17, no. 4, pp.
730–744, 2020.

[37] L. Bilge and T. Dumitras, “Before we knew it: an empirical study
of zero-day attacks in the real world,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2012, pp. 833–844.

[38] D. R. Jeong, K. Kim, B. Shivakumar, B. Lee, and I. Shin, “Razzer:
Finding kernel race bugs through fuzzing,” in Proc. IEEE Symp.
Secur. Priv. IEEE, 2019, pp. 754–768.

[39] W. You, X. Wang, S. Ma, J. Huang, X. Zhang, X. Wang, and
B. Liang, “Profuzzer: On-the-fly input type probing for better zero-
day vulnerability discovery,” in Proc. IEEE Symp. Secur. Priv. IEEE,
2019, pp. 769–786.

[40] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:
Path sensitive fuzzing,” in Proc. IEEE Symp. Secur. Priv. IEEE,
2018, pp. 679–696.

[41] “Common vulnerability scoring system,” 2019. [Online].
Available: https://www.first.org/cvss/v2/guide

[42] “Common weakness enumeration,” 2019. [Online]. Available:
https://cwe.mitre.org/about/

[43] “National vulnerability database,” 2020. [Online]. Available:
https://nvd.nist.gov/

[44] “Securityfocus,” 2020. [Online]. Available: https://www.security
focus.com

[45] “Openbsd security,” 2019. [Online]. Available: http://www.open
bsd.org/security.html

[46] “Mozilla foundation security advisories,” 2019. [Online]. Avail-
able: https://www.mozilla.org/en-US/security/advisories/

[47] “Ubuntu security notices,” 2020. [Online]. Available: https:
//usn.ubuntu.com/

[48] “Exploit database - exploits for penetration testers, researchers,
and ethical hackers,” 2020. [Online]. Available: https://www.ex
ploit-db.com

[49] N. Provos, M. Friedl, and P. Honeyman, “Preventing privilege
escalation.” in Proc. 12th USENIX Conf. Secur. Symp., 2003.

[50] L. Teo, “Writing exploit-resistant code with openbsd,” https:
//lteo.net/assets/pdf/lteo-openbsd-carolinacon15-20190427.pdf,
CarolinaCon, 2019.

[51] T. Mortimer, “Removing rop gadgets from openbsd,” Proc. AsiaB-
SDCon, pp. 13–21, 2019.

[52] T. de Raadt, “Deterministic behaviours are your attacker’s
friend,” http://www.openbsd.org/papers/cuug2019-predictable
.pdf, Calgary Unix Users Group, 2019.

[53] ——, “Advances in openbsd,” http://www.openbsd.org/papers
/csw03/index.html, CanSecWest, 2003.

[54] ——, “Mitigations and other real security features,” https://ww
w.openbsd.org/papers/bsdtw.pdf, BSD Taiwan, 2017.

[55] A. Lindqvist, “Fuzzing the openbsd kernel,” http://www.open
bsd.org/papers/fuzz-slides.pdf, BSD Users Stockholm Meetup,
2018.

Jian Shi received the B.E. degree in computer
science and technology from China University of
Petroleum (UPC), Qingdao, China, in 2015, and
is currently pursuing the Ph.D. degree in School
of Cyber Science and Engineering, Huazhong
University of Science and Technology (HUST),
Wuhan, China. His research interests mainly in-
clude vulnerability detection and software secu-
rity.

Deqing Zou received the Ph.D. degree at
Huazhong University of Science and Technology
(HUST), in 2004. He is currently a professor
of School of Cyber Science and Engineering,
Huazhong University of Science and Technology
(HUST), Wuhan, China. His main research inter-
ests include system security, trusted computing,
virtualization and cloud security. He has always
served as a reviewer for several prestigious jour-
nals, such as IEEE TDSC, IEEE TOC, IEEE
TPDS, and IEEE TCC. He is on the editorial

boards of four international journals, and has served as PC chair/PC
member of more than 40 international conferences.

Shouhuai Xu (M’14–SM’20) received the Ph.D.
degree in computer science from Fudan Univer-
sity in 2000. He is the Gallogly Chair Professor in
the Department of Computer Science, University
of Colorado Colorado Springs (UCCS). Prior to
joining UCCS, he has been with University of
Texas at San Antonio. He pioneered the Cyber-
security Dynamics approach as foundation for
the emerging science of cybersecurity, with three
pillars: first-principle cybersecurity modeling and
analysis (the x-axis); cybersecurity data analyt-

ics (the y-axis, to which the present paper belongs); and cybersecurity
metrics (the z-axis). He co-initiated the International Conference on Sci-
ence of Cyber Security and is serving as its Steering Committee Chair.
He is/was an Associate Editor of IEEE Transactions on Dependable
and Secure Computing (IEEE TDSC), IEEE Transactions on Information
Forensics and Security (IEEE T-IFS), and IEEE Transactions on Network
Science and Engineering (IEEE TNSE).

Xianjun Deng received the B.S. and M.S.
degrees in communications engineering from
Chongqing University of Posts and Telecommu-
nications (CQUPT), China, in 2005 and 2008,
respectively, and the Ph.D. degree in the School
of Electronic Information and Communications,
Huazhong University of Science and Technol-
ogy (HUST), Wuhan, China, in 2014. He is cur-
rently a professor with School of Cyber Science
and Engineering, Huazhong University of Sci-
ence and Technology (HUST), Wuhan, China.

He obtained the IEEE TCSC Award for Excellence for Early Ca-
reer Researcher on December, 2019. He is Hibiscus Scholar of Hu-
nan Province, China, and the outstanding Young Instructor of Hunan
Province, China. His research interests focus on coverage optimization,
network reliability, security and privacy algorithms in wireless sensor
networks and Internet of Things. He has published more than 50 techni-
cal papers in international journals and conferences.

Hai Jin received the Ph.D. degree in computer
engineering from Huazhong University of Sci-
ence and Technology (HUST), Wuhan, China,
in 1994. He is a Cheung Kung Scholars Chair
Professor of computer science and engineering
at HUST in China. He was awarded Excellent
Youth Award from the National Science Founda-
tion of China in 2001. He is the chief scientist of
ChinaGrid, the largest grid computing project in
China, and the chief scientists of National 973
Basic Research Program Project of Virtualiza-

tion Technology of Computing System, and Cloud Security. He is a
fellow of the IEEE, a fellow of the CCF, and a member of the ACM. He
has co-authored 22 books and published over 700 research papers. His
research interests include computer architecture, virtualization technol-
ogy, cluster computing and cloud computing, peer-to-peer computing,
network storage, and network security.

