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Quantifying Cybersecurity Effectiveness of
Dynamic Network Diversity
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Abstract—The deployment of monoculture software stacks can have devastating consequences because a single attack can
compromise all of the vulnerable computers in cyberspace. This one-vulnerability-affects-all phenomenon will continue until after
software stacks are diversified, which is well recognized by the research community. However, existing studies mainly focused on
investigating the effectiveness of software diversity at the building-block level (e.g., whether two independent implementations indeed
exhibit independent vulnerabilities); the effectiveness of enforcing network-wide software diversity is little understood, despite its
importance in possibly helping justify investment in software diversification. As a first step towards ultimately tackling this problem, we
propose a systematic framework for modeling and quantifying the cybersecurity effectiveness of network diversity, including a suite of
cybersecurity metrics. We also present an agent-based simulation to empirically demonstrate the usefulness of the framework. We
draw a number of insights, including the surprising result that proactive diversity is effective under very special circumstances, but
reactive-adaptive diversity is much more effective in most cases.

Index Terms—Software diversity, network diversity, security quantification, metrics, agent-based simulation, cybersecurity dynamics
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1 INTRODUCTION

SOFTWARE monoculture enables the automatic amplifi-
cation of cyber attack damages because vulnerabilities

are replicated network-wide or even cyberspace-wide [1],
[2]. As a consequence, a single exploit may allow an at-
tacker to compromise many programs. In order to cope
with the problem, researchers have proposed diversifying
program implementations [3], [4], [5], leading to the notion
of software diversity. There are various flavors of software
diversity, such as: N -version programming (i.e., a program
specification has multiple independent implementations [6],
[7]); natural diversity (e.g., multiple browsers incurred by
market competition [8]); compiler-based diversification (i.e.
random executables generated from a given source code
[9], [10], [11], [12], [13]); and software runtime environment
diversification (e.g., address space layout randomization
[14], [15], [16], [17], instruction set randomization [18], [19],
system calls randomization [20], and replicated execution
[21]).

It is intuitive that employing software diversity could
increase security. For example, the U.S. Navy developed
the RHIMES system [22] to enhance security of shipboard
systems, by introducing diversity to each programmable
logic controller. However, real-world software diversity is
often employed in an ad hoc fashion, which can be justified
by how different OSes (e.g., Windows vs. various kinds of
Unix) and browsers (e.g., Safari vs. Firefox vs. Chrome) are
employed in practice. One exception is the investigation of
employing software diversity to enhance Byzantine Fault-
Tolerance (BFT), namely how to employ software diversity

H. Chen is with the Department of Computer Science, University of Texas at
San Antonio, San Antonio, TX, USA. H. Cam is with Best Buy, Richfield,
MN, USA. S. Xu is with the Department of Computer Science, University of
Colorado Colorado Springs, Colorado Springs, Colorado, USA; this work was
partly done when he was affiliated with University of Texas at San Antonio.
Correspondence: sxu@uccs.edu

in the replica implementations so that they do not contain
common vulnerabilities [23], [24], [25], [26], [27], [28]. This is
important because the theoretical fault-tolerance guarantee
can be ruined otherwise. Another exception is the investi-
gation of employing software diversity in detecting cyber
attacks by leveraging the behavioral discrepancy between
diversified replicas [29], [30], [31]. Despite these studies,
some fundamental questions remain open, such as: How
should software diversity be employed in practice to amplify, if
not maximize, security?

The preceding question leads to the notion of network
diversity, which deals with the employment of diversified
program implementations in network-wide software stacks
[1], [2], [3], [32], [33]. A simpler version of the notion may
be called static diversity, where diversified implementations
are employed once and for all (i.e., unchanged after initial
employment). There are studies on optimizing static diver-
sity via some flavor of graph coloring algorithm; by treating
colors as diversified implementations, the research problem
is to minimize defective edges (i.e., adjacent nodes have the
same color or run the same implementation) [32], [33], [34],
[35], [36], [37]. There are also studies on quantifying the
effectiveness of static diversity [37], [38], [39], [40], [41].

Despite these studies, there is no systematic under-
standing on the network-wide effectiveness of employing
software diversity, for multiple reasons. First, most studies
use coarse-grained models (i.e., treating each computer as
a unit) and do not consider attack-defense interactions.
Second, it is not clear how to quantify the network-wide
cybersecurity effectiveness of employing network diversity.
Third, it is not clear how network diversity should be
dynamically employed, leading to the notion of dynamic
diversity. Addressing these problems can deepen our un-
derstanding of software diversity, help decision-makers de-
termine whether or not to invest in software diversity, and
guide practitioners in intelligently employing diversified



implementations in real-world cyber defense operations.
Our contributions. We make three contributions. First, we
propose a framework for modeling and quantifying the
network-wide cybersecurity of enforcing network diversity.
The framework considers fine-granularity by distinguishing
applications and operating systems. The framework con-
siders the time dimension, which allows us to investigate
dynamic diversity; that is, the employment of diversified
implementations in the network evolves over time.

Second, we propose a suite of metrics to quantify the
network-wide effectiveness of employing diversity, includ-
ing: (i) time-to-succeed, which measures how long it takes
an attacker to break a defender’s goal (if possible); (ii)
attacker slow-down, which measures the extent an attacker is
slowed down by network diversity; (iii) attack worst damage,
which measures the damage an attacker can cause in the
worst case; (iv) attack extra cost, which measures the extra
investment the defense imposes on an attacker in order to
break the defender’s goal; (v) vulnerability tolerance, which
measures the upper bound of vulnerabilities that can be
tolerated when achieving the defender’s goal; (vi) average
operational cost, which measures the average fraction of
programs that re-deploy dynamic diversity. These metrics
may be of independent value.

Third, we demonstrate the usefulness of the frame-
work and metrics by presenting a multi-agent simula-
tion study with multiple network diversity strategies:
monoculture (the baseline with no diversity), static di-
versity (for comparison purposes), proactive (periodically
re-diversifying network-wide software stacks), reactive-
adaptive (re-diversifying the network stacks in response to
detected attacks), and hybrid (of the last two). According to
the simulation study, we draw a number of insights, includ-
ing: (i) In terms of attacker slow-down, reactive-adaptive di-
versity is the most effective strategy and the initial diversity
configuration matters. (ii) In order to reduce the attack worst
damage, different diversity strategies should be used in dif-
ferent parameter regimes. (iii) Reactive-adaptive diversity
leads to a higher vulnerability-tolerance than proactive di-
versity does. (iv) Proactive diversity improves security only
when dynamic diversity is widely re-employed at a high
frequency, which however incurs a high operational cost.
(v) The more the diversified implementations, the higher
the attacker slow-down, the higher the attack extra cost, and
the higher the vulnerability tolerance. This is especially true
for reactive-adaptive diversity. Note that these findings may
not be universally true because they are derived from the
parameter settings used in the simulation study.
Paper outline. Section 2 presents the framework. Section
3 describes the simulation study. Section 4 reviews related
prior work. Section 5 discusses the limitations of the present
study. Section 6 concludes the paper. Table 1 summarizes
the notations used throughout the paper.

2 THE FRAMEWORK

Consider a network, where each node represents a com-
puter. Each computer has a software stack, running an
operating system (OS) in the kernel space and some ap-
plication(s) in the user space. Each program, OS and ap-
plication alike, may have diversified implementations (e.g.,

A, D attacker A and defender D
n, i, j n is the number of computers in a network, appi,j is the

j-th application running in computer i ∈ [1, n]
`, z ` is the number of phases of A’s strategy, z ∈ [1, `]
~, k ~ is the number of different programs, k ∈ [1, ~]
Xk Xk is the number of diversified implementations of pro-

gram k
Qk software quality of diversified implementations of the k-

th program (functionality), Qk ∈ [0, 1] interpreted as
probability of containing vulnerability

G G = (V,E) is the communication graph of a network
(rather than the network’s physical topology), where v ∈
V represents a program (application or operating system)

Ct Ct : V → SW is the network diversity configuration at
time t, where SW is the set of diversified implementations
of all programs

φt φt : Ct(V ) → 2VUL is the mapping from diversified
programs to the vulnerabilities present in them at time t.
Φt = (φt(Ct(v)))v∈V is the vulnerabilities in the network.

sv,t si,t ∈ {0, 1, 2} is the cybersecurity state of node (i.e.,
program running at) v ∈ V at time t (0: vulnerable; 1:
compromised; 2: invulnerable). Vector St = (sv,t)v∈V

si,t si,t ∈ {0, 1, 2} is the cybersecurity state of computer i at
time t, similarly defined as sv,t. Vector S′

t = (si,t)i∈[1,n]

Σt Σt = (G,Ct,Φt, St) is the cybersecurity situation of a
network at time t

ΣA,t ΣA,t = (GA,t, CA,t,ΦA,t, SA,t) is A’s perception of the
target network Σt at time t

ΩA,t ΩA,t = (ωv,A,t)v∈VA,t
is A’s goal at time t at the program

level, where ωv,A,t ∈ {⊥, 1}; Ω′
A,t = (ωi,A,t)i∈[1,n] isA’s

goal at time t at the computer level, where ω′
i,A,t ∈ {⊥, 1}

ΓA ΓA = {γA,1, . . . , γA,`} is attacker’s strategy of ` phases
∆A ∆A = (∆A,z)z∈[1,`] is an attacker’s capability where

∆A,z = {ψA,z,1, . . . , ψA,z,mz} is the exploits that are
applicable and available to the attacker at phase z

FA,t FA,t is the attacker’s decision-making algorithm to make
an attack plan ΛA = (λA,1, . . . , λA,`) at time t, where
λA,z ∈ ∆A,z for 1 ≤ z ≤ `

ΣD,t ΣD,t = (GD, CD,t,ΦD,t, SD,t) is D’s perception of Σt at
time t

ΩD,t ΩD,t = (ωv,D,t)v∈V is D’s goal at time t at the program
level, where ωv,D,t ∈ [0, 1]; Ω′

D,t = (ωi,D,t)i∈[1,n] is D’s
goal at time t at the computer level, where ωi,D,t ∈ [0, 1]

ΓD ΓD = {γD,1, . . . , γD,} is defender’s strategy
ηD,1 ηD,1 represents the proportion of nodes in V employing

diversified implementations
ηD,2 ηD,2 represents the frequency at which the diversified

implementations will be dynamically re-employed
ηD,3 ηD,3 represents the condition under which diversified im-

plementations are re-employed
∆D ∆D = (∆D,k)k∈[1,~] is defender’s capability, where

∆D,k = {δD,k,1, . . . , δD,k,Xk
} is a set of Xk diversified

implementations of program k;
FD,t the decision-making algorithm to make a defense plan

ΛD,t = (δD,t(v))v∈V at time t
τ the compromise probability of computer i ∈ [1, n] at time

t ∈ [0, T ] that can be tolerated by the defender
TTS TTS(A,D) = min{t : cc(t) > τ} measures how long it

takes for attacker A to break defender D’s mission goal τ
ASD ASDD,q = TTS(A,Dq)−TTS(A,D1) measures the extent

at which A is slowed down by defense strategy γD,q

AWD AWDG,~,X,Q(A,D, T ) = max{cc(t) : t ≤ T} measures
attack worst damage during mission lifetime t ∈ [0, T ]

AEC AECD,q = AI(γD,q) − AI(γD,1) measures the num-
ber of extra exploits A needs to obtain to make
AWDG,~,X,Q(A,Dq , T ) > τ against defense strategy γD,q

VT VTD,q = max{Q : AWDG,~,X,Q(A,Dq , T )≤τ} captures
the upper bound of tolerable vulnerabilities such that D
can still achieve its mission goal τ in lifetime [0, T ]

AOC AOCD,q(T ) =
∑T

t=1 OCD,q(t)/T is the average oper-
ational cost to achieve the defender’s goal; AOCmax

D,q =
max{AOCD,q(T ) : AWDG,~,X,Q(A,Dq , T ) ≤ τ} and
AOCmin

D,q = min{AOCD,q(T ) : AWDG,~,X,Q(A,Dq , T ) ≤
τ} are maximum and minimum AOCD,q(T ), respectively.

TABLE 1: Summary of main notations.
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Fig. 1: Illustration of dynamic diversity in a network of 5 computers (1 ≤ i ≤ 5). The time horizon shown is t = 0, 1, . . . , 5.

Safari vs. Firefox vs. Chrome for browser). These diversified
implementations may be obtained by using some of the
diversification methods mentioned above (e.g., N -version
programming or natural diversity via market competition).
Each program may or may not be vulnerable.

2.1 Intuition of Dynamic Network Diversity

Given diversified implementations of programs, the afore-
mentioned notion of static network diversity is to employ
diversified programs in the computers’ software stacks,
where the employment (or configuration) will not change
during the time horizon of interest. We initiate the afore-
mentioned dynamic network diversity, which aims to dy-
namically employ diversified programs at the computers’
software stacks, where the employment (or configuration)
does change during the time horizon of interest.

Figure 1 illustrates the idea via a network of 5 computers,
denoted by 1 ≤ i ≤ 5. The time horizon is t = 0, . . . , 5.
Each computer runs an OS, and we use osi to represent
the OS running in computer i. There are two applications,
denoted by APPj for 1 ≤ j ≤ 2 (e.g., APP1 is browser
and APP2 is email). Computers 1, 4 and 5 run both ap-
plications; computer 2 runs APP2; computer 3 runs APP1.
We use appi,j to represent the application APPj running
in computer i. (i) There are three implementations of OS
(e.g., Windows vs. Linux vs. macOS), which are respectively
indicated by three colors. For example, at time t = 0, 1, 2,
computers 1 and 4 run the same OS, causing os1 and os4
to have the same color; computers 2 and 5 run another OS,
causing os2 and os5 to have another color; computer 3 runs
yet another OS, causing os3 to have a different color. (ii)
There are three implementations of APP1 (e.g., Safari vs.
Firefox vs. Chrome), which are respectively indicated by
three colors. For example, at time t = 0, 1, 2, computers
1 and 5 run the same implementation of APP1, causing
app1,1 and app5,1 to have the same color; computers 3 and
4 run two other implementations of APP1, causing app3,1
and app4,1 to have different colors; computer 2 does not
run APP1. (iii) There are three implementations of APP2

(e.g., Outlook vs. Thunderbird vs. eM Client), which are
respectively indicated by three colors. For example, at time

t = 0, 1, 2, computers 4 and 5 run the same implementation
of APP2, causing app4,2 and app5,2 to have the same color;
computers 1 and 2 run two other implementations of APP2,
causing app1,2 and app2,2 to have different colors; computer
3 does not run APP2.

Figure 1 illustrates dynamic diversity as follows. At time
t = 0, the network-wide diversity is configured to run a
certain combination of specific implementations of OS and
applications as indicated by colors. The solid arrow at t = 0
indicates that a new (i.e., initial) diversity configuration is
employed. This configuration remains unchanged for t =
1, 2, as indicated by dashed arrows at t = 1, 2. At time t = 3,
the network-wide diversity is re-configured to run another
combination of the diversified implementations of OS and
applications. The solid arrow at t = 3 indicates this new
employment. The configuration remains unchanged for t =
4, 5, as indicated by dashed arrows at t = 4, 5.

2.2 Framework Overview
Figure 2 highlights the Cyber Observation-Orientation-
Decision-Action Loop (COODAL) framework for describing
attack-defense interactions in a network. COODAL adapts
the military operation concept of OODA Loop [42] to cy-
berspace. At a high level, the network is abstracted as a com-
munication graph. Both attacker and defender have their
own Observation (collecting data), Orientation (analyzing
the collected data while leveraging relevant intelligence or
information), Decision (determining what to do), and Action
(executing the decision). We consider a discrete-time model
with a finite time horizon t = 0, 1, . . . , T , where T is the de-
fender’s mission lifetime (i.e., certain security requirements
must be satisfied in order to achieve mission assurance in
time interval [0, T ]). For simplicity, we assume an attack
or defense action takes effect instantly (if effective). When
desired, this assumption can be eliminated by explicitly
modeling the delay for an action to take effect (e.g., the
framework can be extended to accommodate that an attack
or defense action occurs at time t and takes effect at t+ 1).

We stress that the framework does not make restrictive
assumptions. For example, we do not make any restriction
on how vulnerabilities may be distributed among the di-
versified implementations by equally accommodating the
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Fig. 2: The COODAL framework for characterizing the effectiveness of dynamic network diversity.

scenarios where diversified implementations may or may
not have common vulnerabilities. When the attacker has an
exploit against a vulnerability that is common to multiple
programs, the attacker can compromise all of these vulner-
able programs. A successful attack against an OS implies
a successful attack against the applications running on top
of the OS; a successful attack against an application paves a
way for the attacker to attack the OS beneath the application
(e.g., privilege escalation).

2.3 Modeling Network
Modeling computers’ software stacks. A network (e.g.,
enterprise or mission network) consists of n interconnected
computers or devices. Each computer runs a software stack,
which has two layers: application and operating system
(OS). We treat any software running in the user space as
application program. By contrast, an OS runs in the kernel
space. Consistent with the notations used above, we use
APP to denote the universe of application programs. As
mentioned above, computer i runs one or multiple appli-
cations, denoted by appi,j , where 1 ≤ i ≤ n, j is the index
of the application, and appi,j ∈ APP. We use OS to denote
the universe of OSes, and use osi to denote the specific OS
running in computer i, where osi ∈ OS. Let ~ denote the
number of different programs running in the network.

Modeling communications. We explicitly model the com-
munications between applications because they can be
leveraged by the attacker to wage attacks. There are two
types of communications: intra-computer and inter-computer
[43]. Intra-computer communications are conducted by the
programs running in a computer and can be represented as
edges in the terminology of Graph Theory. For example, Fig-
ure 1 shows that the two applications running in computer
1 (i.e., app1,1 and app1,2) are designed to communicate with
each other, and that both app1,1 and app1,2 can communicate
with os1 (e.g., for making system calls). Inter-computer
communications are conducted by applications running in
different computers and can be represented as edges. Note
that OSes may not communicate with each other. We distin-
guish intra-computer and inter-computer communications
for two reasons: (i) they are often leveraged by the attacker
for different purposes — the former for privilege escalation
and the latter for lateral movement between computers;
and (ii) they are defended by different security mechanisms
— the former is defended by host-based mechanisms (e.g.,
intrusion prevention) and the latter is defended by network-
based mechanisms (e.g., firewall).

Formalizing the preceding discussion, we naturally ob-
tain the notion of communication graph G = (V,E), where

each vertex or node v ∈ V represents (and runs) a program
and each edge (u, v) ∈ E represents that a pair of nodes
are permitted to communicate with each other. Note that a
computer is represented by a set of nodes in G because it
runs a set of programs. Since programs run at nodes in G,
we use programs and nodes interchangeably to make succinct
statements. We use the term edges in the standard way to
indicate undirected graphs; a communication graph can be
directed in principle, which is however rare in practice. In
the example illustrated in Figure 1, where have |V | = 13
(i.e., 4 nodes running APP1, 4 nodes running APP2, and 5
nodes running OS), and the edge set E is as illustrated.

We stress that communication graph G = (V,E) is
different from a networking-induced graph, for two reasons.
First, a vertex or node in a communication graph represents
a program running in a computer and each edge represents
the communication between two programs. In contrast, a
node in a networking-induced graph often represents a
computer, which can run multiple programs. Second, a
communication graph can encode access control policies,
which may regulate which programs are (not) allowed to
communicate with which other programs running in the
same computer or different computers. This means that a
communication graph may not be a complete graph because
some programs may only be allowed to communicate with
some of the others. Whereas, a networking-induced graph
cannot encode access control policies and would be a com-
plete graph because any computer can communicate with
any other computer as long as they are routable.

In this paper we assume a communication graph G =
(V,E) is time-independent, meaning that the applications
running in a computer are fixed. This means that the ap-
plications running in a computer do not change, but their
specific implementations may change over time. This is
plausible because we focus on quantifying the effectiveness
of dynamic network diversity. Nevertheless, G = (V,E) can
be extended to time-dependent Gt = (Vt, Et) when desired.

Modeling network diversity configuration. Let SW denote
the set of diversified implementations of the ~ programs
running in the network, including applications and OSes.
The dynamic network diversity configuration at time t refers
to the mapping from the set of programs to their spe-
cific implementations. This mapping can be described by
a function Ct : V → SW such that Ct(v) is a specific
implementation of the program running at node v ∈ V
at time t. For example, Figure 1 shows that there are 3
different programs (i.e., APP1, APP2, OS); each program
has 3 diversified implementations (indicated by 3 different
colors) and thus |SW| = 9, where computer 1 runs a
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specific implementation of each of the three programs at
t ∈ [0, 2]. Note that the preceding representation is general
enough to accommodate the static network diversity, which
corresponds to C0 = C1 = . . . = CT , and the monolithic
software stack, which corresponds to each program having
exactly one implementation (i.e., |SW| equals the number of
different programs and C0 = C1 = . . . = CT ).

Modeling software vulnerabilities. The software running
in a computer, application and OS alike, may contain vul-
nerabilities. We use VUL to denote the universe of software
vulnerabilities that may be present in the software stacks
running in the computers of the network in question. Since
vulnerabilities are associated with the nodes in V , we use
function φt : Ct(V ) → 2VUL to describe the set of vulner-
abilities that are present in the implementations of appli-
cation and OS programs running in the computers, where
φt(Ct(v)) = ∅ means the implementation running at node
v is not vulnerable. We use vector Φt = (φt(Ct(v)))v∈V
to denote the ground-truth vulnerabilities that are present
in the software running in computers at time t. Note
that this ground-truth vulnerability set may or may not
be known to the attacker or defender, and that defining
φt : Ct(V ) → 2VUL is equivalent to defining it as a function
from the software set SW to 2VUL. We choose the former
because it simplifies subsequent discussion (in regards to
dynamic network diversity). Let Qk ∈ [0, 1], 1 ≤ k ≤ ~,
denote the quality of program, which is measured by the ra-
tio of the number of vulnerable implementations to the total
number of diversified implementations of program k. The
parameter Qk, which is interpreted as the probability that
program k is vulnerable, would depend on the technologies
that are employed to reduce vulnerabilities in the course
of software development (e.g., vulnerability detection [44],
[45], [46], [47], [48]). The smaller the Qk, the higher the
diversity quality of program k.

Modeling network-wide cybersecurity state and situation.
Cybersecurity state and situation can be defined at the
program of v ∈ V and at the computer level. The former
is suitable for modeling and simulation purposes, and the
latter is more suitable for cyber defense operation and
management purposes. So, we consider both.

At the program level, we consider a communication
graph G = (V,E), which abstracts a network as described
above. We use sv,t ∈ {0, 1, 2} to denote the state of node
v ∈ V at time t: sv,t = 0 means v (i.e., the program
running at v) is vulnerable but not compromised, namely
that v contains a vulnerability but the vulnerability is not
exploited by the attacker and the underlying OS is not com-
promised; sv,t = 1 means v is compromised either because
its vulnerability is exploited or because the underlying OS
is compromised; and sv,t = 2 means v is invulnerable (i.e.,
containing no vulnerabilities) and the underlying OS is not
compromised. The program-level network-wide cybersecurity
state at time t is represented by vector St = (sv,t)v∈V .

At the computer level, we say computer i is vulnerable
(or si,t = 0) if any program running in the computer is
vulnerable, compromised (or si,t = 1) if any program running
in the computer is compromised, and invulnerable (or si,t=2)
if all programs running in the computer are invulnerable.
Similarly, we can define computer-level network-wide cyber-

security state at time t as S′t = (si,t)i∈[1,n], where S′t can
be derived from G and St. We further define the vector
((vc(t), cc(t), ic(t))) to succinctly describe the computer-
level network-wide cybersecurity effect at time t, where
vc(t) = |{i : si,t = 0}|/n is the fraction of vulnerable com-
puters, cc(t) = |{i : si,t = 1}|/n is the fraction of compro-
mised computers, and ic(t) = |{i : si,t = 2}|/n is the fraction
of invulnerable computers. Note that cc(t)+vc(t)+ ic(t) = 1.

The network-wide cybersecurity situation can be de-
scribed by Σt = (G,Ct,Φt, St), or a tuple of the commu-
nication graph, the network diversity configuration, the set
of vulnerabilities associated with each implementation, and
the network-wide cybersecurity state. Note that we do not
mention S′t because it can be derived from St.

2.4 Modeling Attacker

We model an attacker A (i.e., threat model) with five at-
tributes: knowledge (what A knows about a network), goal
(what A attempts to achieve), strategy (what strategy A
uses), capability (what exploits A possesses), and decision-
making (i.e., what decision-making algorithms A uses). In-
tuitively, A with a certain knowledge attempts to achieve a
goal by leveraging some capabilities to compromise some
nodes or computers according to some strategies.

Attacker’s knowledge. We define attacker A’s knowl-
edge as vector ΣA = (ΣA,t)t∈[0,T ] such that ΣA,t =
(GA,t, CA,t,ΦA,t, SA,t) is A’s perception of the target net-
work Σt = (G,Ct,Φt, St) at time t, where GA,t =
(VA,t, EA,t) ⊆ G is the attacker’s perception of G, CA,t

is the attacker’s perception of Ct, ΦA,t is the attacker’s
perception of Φt, and SA,t is the attacker’s perception of
St. Note that SA,t = St because the attacker knows which
programs are compromised by the attacker itself. Note also
that the notion of initial compromise can be modeled as part of
the attacker’s knowledge at time t = 0, because it describes
which nodes v ∈ V are compromised at t = 0. We use
IniComp = {v ∈ V : sv,0 = 1} to denote the set of programs
that are compromised at t = 0.

Attacker’s goal. We define attacker A’s goal as vector ΩA =
(ΩA,t)t∈[0,T ] where vector ΩA,t = (ωv,A,t)v∈VA,t

is A’s goal
at time t, where ωv,A,t ∈ {⊥, 1}, ωv,A,t = ⊥ means that A
does not care about the state of v ∈ VA,t at time t, ωv,A,t = 1
means A attempts to make v ∈ V compromised at time t.
Since Ω′A,t = (ωi,A,t)i∈[1,n] can be derived from ΩA,t, in
what follows we do not have to mention Ω′A,t explicitly.
This representation is flexible because it can accommodate
intuitive attack goals, such as: (i) attempting to compromise
a fixed set of nodes or computers at time t; (ii) attempting
to compromise as many nodes or computers as possible at
time t; and (iii) attempting to cumulatively compromise as
many nodes or computers as possible at time t.

Attacker’s strategy. Inspired by the state-of-the-art indus-
trial characterization of sophisticated cyber attacks, such as
the Cyber Kill Chain [49] and Mitre’s ATT&CK [50], we pro-
pose abstracting them into attacker’s strategy. Since strategy
is often fixed for t ∈ [0, T ], we specify attacker A’s strategy
via ` ≥ 1 phases, denoted by ΓA = {γA,1, . . . , γA,`}. For
example, we have ` = 7 for the Cyber Kill Chain and
` = 12 for Mitre’s ATT&CK version 7. Since there are
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different kinds of strategies, we will demonstrate how to
use a specific strategy in our case study.

Attacker’s capability. Given an `-phase strategy ΓA, at-
tacker A’s capability at phase z, where z ∈ [1, `], is defined
as a set of mz exploits applicable at phase z and available
to A, denoted by ∆A,z = {ψA,z,1, . . . , ψA,z,mz

}. We define
A’s capability as vector ∆A = (∆A,z)z∈[1,`]. Since A’s
capability depends on exploits, we define A’s investment as
AI =

∑`
z=1

∑mz

q=1 costA,z,q , where costA,z,q is the cost to
obtain the q-th exploit that is applicable at phase z.

Attacker’s decision-making. At time t, attacker A uses a
decision-making algorithm FA,t to make an attack plan,
which specifies the utilization of some of A’s capabilities,
denoted by ΛA,t = (λA,1, . . . , λA,`) where λA,z ∈ ∆A,z for
1 ≤ z ≤ `. This can be denoted by

λA,z ← FA,t(ΣA,t,ΩA,t,ΓA,∆A,z), (1)

where ΣA,t = (GA,t, CA,t,ΦA,t, SA,t) is A’s knowledge at
time t as described above, ΩA,t is A’s goal at time t, ΓA is
A’s strategy, and ∆A,z is A’s capability at phase z of the
attack strategy. Note the Eq. (1) can be extended to consider
multiple exploits (rather than a single exploit λA,z) that may
be used in an appropriate manner (e.g., sequential).

Putting the description together, we denote attackerA =
(At)t∈[0,T ] with At = (ΣA,t,ΩA,t,ΓA,∆A,FA,t).

2.5 Modeling Defender
Similar to the attacker (or threat) model, we describe a
defender D via five attributes: knowledge (what D knows),
goal (what D aims to achieve), strategy, capability (what tools
D possesses), and decision-making (what algorithms D uses).

Defender’s knowledge. We define defender D’s knowl-
edge as vector ΣD = (ΣD,t)t∈[0,T ] such that ΣD,t =
(GD, CD,t,ΦD,t, SD,t) is D’s perception of the ground-truth
situation Σt = (G,Ct,Φt, St) at time t. In the case of full
knowledge, we have ΣD,t = Σt, meaning the defender
knows everything about the ground-truth situation. In the
more realistic case of partial knowledge, the defender only
knows: (i) the communication graph G, namely GD = G
because the network is managed by the defender; (ii) the
network configuration Ct, namely CD,t = Ct because
the defender decides which nodes run which specific im-
plementations; (iii) some information about the ground-
truth vulnerabilities associated with the programs, namely
ΦD,t ⊆ Φt because the defender may not know the 0-day
ones that are known to the attacker; and (iv) some noisy
information about the network’s ground-truth cybersecurity
state St because of the false-positives and/or false-negatives
in measuring or inferring cybersecurity states.

Defender’s goal. Corresponding to the program-level vs.
computer-level distinction, D’s goal can be defined at two
levels. At the program level of v ∈ V , we define D’s goal
as vector ΩD = (ΩD,t)t∈[0,T ] such that ΩD,t = (ωv,D,t)v∈V
is D’s goal at time t, where ωv,D,t ∈ [0, 1] is the tolerable
probability that program running at v ∈ V is compromised
at time t. For example, ωv,D,t = 0 means that a successful
attack against v cannot be tolerated; ωv,D,t = 0.5 can be in-
terpreted as that compromise of v for at most 50% of the time
can be tolerated. At the computer level, we define D’s goal

as vector Ω′D = (Ω′D,t)t∈[0,T ] such that Ω′D,t = (ωi,D,t)i∈[1,n]
is D’s goal at time t, where ωi,D,t ∈ [0, 1] is the tolerable
probability that computer i is compromised at time t. One
computer-level goal of particular interest is: ωi,D,t≤1/3 for
i ∈ [1, n] and t ∈ [0, T ]; it describes cyber defense using
Byzantine fault-tolerance techniques to tolerate the compro-
mise of a certain threshold of computers [51]. Since Ω′D can
be derived from ΩD , we do not have to mention Ω′D except
when we discuss computer-level effectiveness.

Defender’s strategy. We specify defender D’s strate-
gies in employing network diversity as a set ΓD =
{γD,1, . . . , γD,}. For example, γD,1 represents monocul-
ture software stacks (i.e., the baseline strategy), γD,2 rep-
resents static diversity, γD,3 represents proactive diversity
with fixed intervals, γD,4 represents reactive-adaptive diver-
sity where the employment is triggered by security alerts,
and γD,5 represents hybrid diversity (i.e., a combination
of proactive diversity and reactive-adaptive diversity). A
strategy can be accompanied by some of the following pa-
rameters. (i) the proportion of nodes in V (re-)employing
diversified implementations (e.g., all or some nodes), de-
noted by ηD,1; (ii) the frequency at which the diversified
implementations will be dynamically re-employed at the
nodes, denoted by ηD,2; (iii) the condition under which
diversified implementations are re-employed, denoted by
ηD,3. As an example showing that not every parameter is
relevant to every strategy, we note that the preceding (ii)
and (iii) are not relevant to the static diversity strategy; this
can be indicated by setting ηD,2 = NULL and ηD,3 = NULL.

Defender’s capability. We define defender D’s capability
as the diversified implementations that are available to D.
Recall that ~ different programs running in the network
(including both applications and operation systems) and
each program may have diversified implementations. D’s
capability with respect to program k, where 1 ≤ k ≤ ~,
is a set of Xk diversified implementations, denoted by
∆D,k = {δD,k,1, . . . , δD,k,Xk

}. We define D’s capability as
the vector of diversified implementations that are available
to D, denoted by ∆D = (∆D,k)k∈[1,~]. Since D’s capabil-
ity depends on the diversified implementations, we define
the defender’s investment as DI =

∑~
k=1

∑Xk

w=1 costD,k,w,
where costD,k,w is the cost for obtaining the w-th diversified
implementation of program k.

Defender’s decision-making. At time t, D uses decision-
making algorithm FD,t to make a defense plan ΛD,t =
(δD,t(v))v∈V , which specifies how to employ the diversified
implementations of the ~ programs at nodes v ∈ V at time
t. Formally, ΛD,t is the output of the defender’s decision-
making algorithm FD,t on a number of inputs, denoted by

ΛD,t ← FD,t(ΣD,t,ΩD,t,ΓD,∆D), (2)

where ΣD,t is the defender’s perception of the ground-
truth situation Σt = (G,Ct,Φt, St) at time t, ΩD,t is the
defender’s goal, ΓD is defender’s strategy as described
above, and ∆D is the defender’s capability.

Putting the description together, we denote defender
D = (Dt)t∈[0,T ] with Dt = (ΣD,t,ΩD,t,ΓD,∆D,FD,t).
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2.6 Modeling Effect of Dynamic Diversity
Modeling local effect of dynamic diversity at the node
level. At any point in time, a program (i.e., node v ∈ V ) is
in one of the following three states: vulnerable, meaning that
the program contains a vulnerability but the vulnerability
has not been exploited by the attacker; invulnerable, meaning
that the program contains no vulnerability; and compromised,
either because the program contains a vulnerability that has
been exploited, or because the underlying OS is compro-
mised (causing any application program running on top
of it to be compromised, no matter whether the program
contains vulnerability or not).
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app/os

Compromised
app/os

time

0 1 2
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7 8
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Compromised
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Fig. 3: Modeling the local effect of dynamic network diver-
sity at the program level (i.e., program running at v ∈ V ).

Figure 3 highlights the effect of employing dynamic
diversity at the program level. Suppose at time t = 3, 6 dy-
namic diversity is employed such that a different implemen-
tation of a program (i.e., application or OS) is employed at
time t to replace the implementation employed at time t−1.
The employment of dynamic diversity at time t leads to one
of the following state transitions (see upper half of Figure 3):
(i) a vulnerable program is replaced with another vulnerable
or an invulnerable program of the same functionality; (ii)
an invulnerable program is replaced with a vulnerable or
another invulnerable program; (iii) a compromised program
is replaced with a vulnerable or invulnerable program.
However, a vulnerable or invulnerable program is never
replaced with a compromised program because a successful
attack only occurs to a vulnerable program that has been
employed and exploited (as diversified implementations are
stored in a secure environment).

At any other point in time than the employment of
dynamic diversity (e.g., t ∈ {1, 2, 4, 5, 7, 8} as shown in
Figure 3), the security state transition of application pro-
grams is different from that of OSes. For applications, the
state transitions are: (i) a vulnerable application program
stays vulnerable or become compromised, either because
its vulnerability is exploited or the underlying OS is com-
promised; (ii) a compromised application program stays in
the compromised state because we focus on the defense
based on dynamic diversity, without considering reactive
defense that may detect and clean up the compromised
application programs; (iii) an invulnerable application pro-
gram stays invulnerable or becomes compromised because

the underlying OS is compromised. For OSes, the state tran-
sitions are: (i) a vulnerable OS stays vulnerable or become
compromised because its vulnerability is exploited; (ii) a
compromised OS stays in the compromised state because
we do not consider reactive defense; (iii) an invulnerable
OS stays invulnerable.

Quantifying the global effect of dynamic network diver-
sity at the computer level. We quantify the global effect at
the computer level via the following metrics.

Definition 1 (time-to-succeed or TTS). This metric measures
how long it takes attacker A to break defender D’s goal
specified by a program-level vector ΩD,t = (ωv,D,t)v∈V
or computer-level vector Ω′D,t = (ωi,D,t)i∈[1,n], where t ∈
[0, T ], and ωv,D,t ∈ [0, 1] (ωi,D,t ∈ [0, 1]) is the compro-
mise probability of program v (computer i) at time t that
can be tolerated. As mentioned above, a defense goal of
particular interest is ωi,D,t≤1/3 for computers i ∈ [1, n]
at any time t ∈ [0, T ] because such compromises can
be tolerated by Byzantine fault-tolerant techniques [51].
Formally, we define TTS(A,D) = min{t : cc(t) > τ},
where cc(t) is the fraction of compromised computers
(i.e., attack damage) at time t.

The time-to-succeed metric is reminiscent of the well-known
mean-time-to-compromise metric. However, the former is de-
fined as a random variable with respect to a specific goal
(e.g., breaking defender’s goal), where randomness is rooted
in different attack strategies, capabilities and decision-
makings algorithms. In contrast, the latter is defined as a
number (or the mean value of a random variable).

Definition 2 (attacker slow-down or ASD). Consider at-
tacker A (i.e., a fixed threat model) that attempts to
break defender D’s goal Ω′D = (Ω′D,t)t∈[0,T ], where
Ω′D,t = (ωi,D,t)i∈[1,n] and, for concreteness, ωi,D,t≤τ
is the tolerable compromise probability for every com-
puter i ∈ [1, n] and t ∈ [0, T ], while recalling that
τ = 1/3 corresponds to assuring the assumption that is
needed by Byzantine fault-tolerant techniques [51]. We
define attacker slow-down as ASDD,q = TTS(A,Dq) −
TTS(A,D1), to measure the extent at which A is slowed
down by the employment of network diversity defense
strategy γD,q (denoted by Dq), where 2 ≤ q ≤ 5 in this
study, when compared with the baseline strategy γD,1 of
monoculture software stacks (denoted by D1).

Definition 3 (attack worst damage or AWD). This metric
measures how much damage an attacker A can cause
in the worst case during t ∈ [0, T ], namely the maxi-
mum fraction of compromised computers at any time
t ∈ [0, T ]. Formally, we define attack worst damage as
AWDG,~,X,Q(A,D, T ) = max{cc(t) : t ≤ T} where
G, ~, X,Q are defined above.

Definition 4 (attack extra cost or AEC). Consider attacker
A (i.e., a fixed threat model) attempting to break de-
fender D’s goal Ω′D = (Ω′D,t)t∈[0,T ], where Ω′D,t =
(ωi,D,t)i∈[1,n] and, for concreteness, ωi,D,t≤τ is the tol-
erable compromise probability for computer i ∈ [1, n]
and t ∈ [0, T ]. We define attack extra cost (AEC) metric,
AECD,q = AI(γD,q)−AI(γD,1), to measure the number of
extra exploits A needs to obtain (i.e., extra investment)
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such that AWDG,~,X,Q(A,Dq, T ) > τ when D employs
strategy γD,q (i.e., AI(γD,q)) than the baseline strategy of
employing monoculture software stacks (i.e., AI(γD,1)).

Inspired by the notion of fault-tolerance, we define a
vulnerability-tolerance metric to capture the upper bound of
vulnerabilities in the network that can be tolerated by the
defender D in achieving its goal ΩD . The importance of this
metric can be seen as follows. (i) When each computer is
vulnerable with probability at least 1/3 + ε for some ε, the
attacker able to compromise all of them can render Byzan-
tine fault-tolerance techniques useless. (ii) When dynamic
network diversity is employed, the attacker may only be
able to compromise 1/3 of the computers because the di-
versity configuration may have changed before the attacker
compromises all of the vulnerable computers. Intuitively,
the larger the ε, the higher the vulnerability tolerance.

Definition 5 (vulnerability-tolerance or VT). Consider de-
fender goal ωi,D,t≤τ for every computer i ∈ [1, n]
and each time t ∈ [0, T ] and a fixed diversification
quality Q ∈ [0, 1] for diversified implementation (when
applying the same quality-enhancement techniques), we
define VTD,q = max{Q : AWDG,~,X,Q(A,Dq, T )≤τ}
with AWDG,~,X,Q(A,Dq, T ) specified in Definition 3.

Definition 6 (average operational cost or AOC). We de-
fine the operational cost incurred by defender’s strat-
egy γD,q at time t, denoted by OCD,q(t) ∈ [0, 1], as
the fraction of programs that are replaced at time t,
where 2 ≤ q ≤ 5. We define the average operational
cost up to time T as AOCD,q(T ) =

∑T
t=1 OCD,q(t)/T ,

which refers to the average fraction of programs that
are re-installed at each time t ∈ [1, T ]. Intuitively,
the larger the AOCD,q(T ), the higher the operational
cost. Given a defender’s goal ωi,D,t ≤ τ for com-
puter i ∈ [1, n] and t ∈ [0, T ], we define AOCmax

D,q =
max{AOCD,q(T ) : AWDG,~,X,Q(A,Dq, T ) ≤ τ} and
AOCmin

D,q = min{AOCD,q(T ) : AWDG,~,X,Q(A,Dq, T ) ≤
τ} as the maximum and minimum average operational
cost to meet the defender’s goal, respectively.

Figure 4 illustrates the relationship between the metrics.
The effectiveness metrics TTS, ASD, AWD, AEC and VT
depend on the attacker’s goal in τ , mission lifetime T , and
attack damage cc(t). The cc(t) depends on the attack in-
vestment AI, the defense investment DI, and the defender’s
operational cost AOC. The attack investment AI depends
on the number of attack phases (`), the number of exploits
applicable at each phase (mz), and the cost to obtain exploits
(costA,z,q). The defense investment depends on the number
of programs (~), the number of diversified implementations
of each program (Xk), and the cost to obtain each implemen-
tation (costD,k,w). The defender’s average operational cost
AOC depends on the proportion ηD,1 and frequency ηD,2 of
re-employment.

2.7 Research Questions (RQs)

In order to characterize the effectiveness of dynamic net-
work diversity, we propose investigating the following RQs,
where RQ1-RQ3 correspond to defender’s gains, RQ4-RQ5
corresponds to defender’s cost.
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Fig. 4: Illustration of the relationships between the metrics,
where “X → Y ” means X is a factor in determining Y .

• RQ1: To what extent can dynamic network diversity
slow down the attacker?

• RQ2: How much extra cost can dynamic network
diversity impose on the attacker?

• RQ3: To what extent can dynamic network diversity
increase the defender’s vulnerability tolerance?

• RQ4: To what extent can dynamic network diversity
increase the defender’s average operational cost?

• RQ5: Is it true that the more diversified implementa-
tions the better?

3 SIMULATION EXPERIMENTS

The preceding framework is meant to be as realistic as we
can be. This means that it does not make strong assumptions
that would warrant analytical treatment. This explains why
we pursue simulation-based empirical study to answer the
RQs. We adopt agent-based simulation because agents can
conduct activities concurrently, which can mimic real-world
attack-defense interaction better than sequential simulation.
We implement the agent-based simulation via multithread-
ing, where each active local agent, attack and defense alike,
is instantiated as one thread such that multiple events
can take place concurrently. The simulation experiment is
conducted on a computer with 32-CPU and 128GB RAM
in the Python environment. In order to accommodate the
randomness in the simulation experiment, we conduct 500
simulation runs for each experiment and take their average
as the result. In the discrete-time models, all events occur at
discrete points in time. In our experiment, we make every
attack or defense activity take effect instantly, which can be
extended to accommodate any delays if desired.

3.1 Agent-based Simulation of Network System

Figure 5 illustrates our agent-based simulation of attack-
defense experiments. We use a master-agent architecture,
where two master agents are responsible for scheduling
attacks and defenses, respectively. Each simulated host runs
a local defense agent by default, which receives instruction
from the defense master server. Once a computer is com-
promised, a local attack agent is instantiated on the com-
promised computer to receive instructions from the attack
master server. When the employment of dynamic network
diversity is conducted manually, the defense agent can be

8



Communication network  
(attacker’s view)

𝐺𝒜,𝑡

Communication network  
(defender’s view)

𝐺𝒟,𝑡

…

Attacker

Defender

Attack local agent 

Defense local agent 

Software programs

Control flow

Host1 Host2 Host3 Hostn-2 Hostn-1 Hostn
Attack master server 

Defense master server 

Fig. 5: Illustration of our agent-based simulation of attack-defense experiments.

compromised and re-installed from a clean version when
the computer is compromised; when the re-employment
process is automatic, the defense agent must not be compro-
mised (even if the computer is compromised) so as to assure
the re-employment of diversified program implementations.
The master attack server updates its knowledge ΣA,t based
on the information received from the attack agents and
makes decisions correspondingly. The master defense server
updates its knowledge ΣD,t in a similar fashion.

Simulating computers’ software stack and communica-
tions. In order to make the communication graph G =
(V,E) as realistic as possible, we adopt two real-world
social networks in Twitter and Friendfeed (which is a social
media aggregator) [52], where the former has 5,702 users
and the latter has 5,540 users. Together, there are 6,325 users
because many users use both Twitter and Friendfeed. We
construct the communication graph as follows: a Twitter
user corresponds to a Twitter client program and a Friend-
feed user corresponds to a Friendfeed client program. A
user of Twitter and Friendfeed runs both client programs
(i.e., the user’s computer is represented as three nodes in
the communication graph: one OS and two applications).
An edge between two users in the social network means
that they communicate with each other using the social net-
work client program. Therefore, the communication graph
accommodates the relationships in both social networks.

Simulating network diversity configuration. Since there
are many ways to configure network diversity and the
notion of an optimal algorithm is elusive (e.g., the algorithms
for generating configuration Ct for t > 0 can be different
from the one for generating configuration C0), we will con-
sider multiple algorithms and empirically contrast them. In
contrast, monoculture software stack is trivial to configure
because each program has exactly one implementation.

Simulating software vulnerabilities. In order to simulate
vulnerabilities contained in the diversified program imple-
mentations, namely Φt, we assume that each diversified
program has the same diversity quality, namely Q1 = Q2 =
. . . = Q~ = Q, and each implementation of a program
is equally vulnerable with a certain probability; this is a
somewhat simplifying assumption but is reasonable in the
sense that the same vulnerability prevention and detection
techniques may be equally applicable to all implementa-
tions. Since there are studies showing that different imple-
mentations often do not have the same vulnerability [53],
[54], we assume that the vulnerabilities are distinct in the

sense that each requiring a different exploit.

3.2 Simulating Attacker
Simulating attacker’s knowledge. For describing attacker’s
knowledge at time t = 0, we assume that the attacker
already compromised some vulnerable programs running at
some nodes v ∈ V , namely the initial compromise denoted
by IniComp. This is reasonable because initial compromise
typically follows reconnaissance or is waged by an insider
threat, which is orthogonal to the main purpose of the
present study. As attack proceeds, the attacker can increase
its knowledge by learning more information about the com-
munication graph G = (V,E), and the programs running
at the other nodes v ∈ V that may not be known to the
attacker at time t = 0. We assume the attacker knows the
vulnerabilities associated with the diversified programs.
Simulating attacker’s goal. For describing attacker’s goal
ΩA,t, we assume the attacker wants to cumulatively com-
promise as many programs as possible till time t = T . That
means ωv,A,T = 1 for v ∈ VA,t, where t ∈ [0, T ].
Simulating attacker’s strategy. The framework aims to
accommodate many attack strategies. In order to make
our simulation experiment concrete, we adopt MITRE’s
ATT&CK [50] because it is widely used. The attack tactics in
ATT&CK can be naturally mapped to the attack phases in
our framework. In terms of attacker’s strategy ΓA, we focus
on the following phases: (i) installation, which corresponds
to γA,1 in the framework and installing attack agents in
compromised computers (this phase is called command-and-
control in ATT&CK); (ii) discovery, which corresponds to γA,2

in the framework and allows the attacker to concurrently
explore the other programs running at the nodes in the other
computers of the network; (iii) privilege escalation, which
corresponds to γA,3 in the framework and occurs when
the attacker gains the root privilege in the compromised
computer; (iv) lateral movement, which corresponds to γA,4

in the framework and allows the attacker or its malware to
exploit the vulnerabilities in the a remote software stack;
and (v) causing damages, which corresponds to γA,5 and
allows the attacker to causes damages to a compromised
computer (this phase accommodates the tactics of collection,
exfiltration, and impact in ATT&CK).
Simulating attacker’s capability. In order to describe at-
tacker’s capability ∆A, we adopt ATT&CK’s attack proce-
dures (i.e., attacks) as exploits. We assume the attacker pos-
sesses the following exploits: (i) an exploit for achieving re-
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mote access, denoted by ψA,1,1; (ii) an exploit for achieving re-
mote system discovery or obtaining information about the soft-
ware running in other computers, denoted by ψA,2,1; (iii) an
exploit for discovering system information or getting detailed
information about a compromised computer, denoted by
ψA,2,2; (iv) a set of exploits for escalating privilege or com-
promising a vulnerable OS from a compromised application
running on top of it, denoted by {ψA,3,1, . . . , ψA,3,m3

};
(iv) a set of exploits for remote exploitation capability or
compromising a remote, vulnerable computer for lateral
movement purposes, denoted by {ψA,4,1, . . . , ψA,4,m4

}; and
(v) an exploit causes some damages (e.g., collecting sensitive
data from the compromised software), denoted by ψA,5,1.
For our purposes, it suffices to assume costA,z,q = 1 for
1 ≤ z ≤ `, 1 ≤ q ≤ mz , meaning that each exploit incurs
the same cost to the attacker (e.g., purchasing or developing
an exploit). Future studies can extend this basic scenario to
actual cost that may be incurred to the attacker.
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Fig. 6: AttackerA’s 5-phase strategy (i.e., γA,1, . . . , γA,5) and
possible decisions (i.e., the arrows), which are adopted from
ATT&CK’s attack simulator called CALDERA [55].

Simulating attacker’s decision-making. In order to simu-
late the attacker’s decision-making function FA, we adopt
the decision-making component of ATT&CK that is used
by ATT&CK’s sub-system known as CALDERA [55]. Figure
6 shows how attacks proceed according to the 5-phase
strategy mentioned above: install remote access tools at
compromised computers; discover local and remote targets;
compromise vulnerable OS via privilege escalation (if appli-
cable); compromise remote computers for lateral movement
(if applicable); conduct malicious activities; and repeat these
processes. Basically, the decision-making algorithm outputs
the next exploit that is to be executed, as follows: (i) if the
next phase is γA,1 or γA,5, the attacker will use exploit
ψA,1,1 or ψA,5,1 because it only possesses one exploit at
each phase; (ii) if the next phase is γA,2, the attacker will
use exploits ψA,2,1 and ψA,2,2 simultaneously, where ψA,2,1

targets one or more remote computers and ψA,2,2 targets
the compromised local computer; (iii) if the next phase
is γA,3, the attacker will select one exploit from the set
{ψA,3,1, . . . , ψA,3,m3} according to the vulnerability infor-
mation discovered in phase γA,2; (iv) if the next phase
is γA,4, the attacker will select one exploit from the set
{ψA,4,1, . . . , ψA,4,m4} according to the vulnerability infor-
mation discovered in phase γA,2.

3.3 Simulating Defender
Simulating defender’s knowledge. As described in the
framework, the defender naturally knows, as a part of its
knowledge ΣD,t, the communication graph G (i.e., GD =
G) and the network configuration Ct (i.e., CD,t = Ct) for
any past and present time t. At time t = 0, we set that
the defender’s perception of the cybersecurity state S0 as
SD,0 = (0, 0, . . . , 0)|V | because the attack-detection tool (if

applicable) may start to run at t = 0. The defender does
not know the information about the vulnerabilities because
we allow zero-day vulnerabilities, meaning that ĜD,0 = ∅.
Putting these together, the defender’s initial knowledge is
ΣD,0 = (GD, CD,0SD,0, ĜD,0).
Simulating defender’s goal. For describing a defender’s
goal ΩD,t, we assume the defender aims to keep the com-
promise rate at any time t ≤ T under a certain threshold τD .
That is, we have ωi,D,t = τD for i ∈ [1, n] and t ∈ [0, T ] on
average, where the average is over the 500 simulation runs
of each experiment.
Simulating defender’s strategy. We consider the following
5 defense strategies ΓD , (i) monoculture software stacks,
denoted by γD,1, which corresponds to ηD,1 = NULL,
ηD,2 = NULL, ηD,3 = NULL. (ii) Static diversity, denoted
by γD,2, which corresponds to ηD,1 = V , ηD,2 = NULL,
ηD,3 = NULL. (iii) Proactive diversity, denoted by γD,3, which
corresponds to ηD,1 6= NULL, ηD,2 6= NULL, ηD,3 = NULL.
(iv) Reactive-adaptive diversity, denoted by γD,4, which cor-
responds to ηD,2 = NULL, ηD,3 6= NULL, because dynamic
network diversification is triggered by some security events,
which may come from an intrusion detection system or
the observed network-wide cybersecurity state SD,t. Since
such reactive intelligence is often noisy in practice, we
incorporate false-negative rate (FNR) and false-positive rate
(FPR) into such intelligence. When such intelligence is pro-
vided by an employed attack detection system, we assume
that the attack detection system cannot be compromised
in the present study. (iv) Hybrid diversity, denoted by γD,5,
which combines the aforementioned proactive diversity and
reactive-adaptive diversity and corresponds to ηD,2 6= NULL,
ηD,3 6= NULL. In this case, dynamic network diversity is
triggered periodically or by security events.
Simulating defender’s capability. For simplicity, we as-
sume that defender’s capability ∆D includes: (i) the same
number of diversified implementations for each program
(for simplicity), namely X1 = X2 = . . . = X~ = X ; and (ii)
costD,k,w = 1 for 1 ≤ k ≤ ~ and 1 ≤ w ≤ Xk, meaning that
each diversified implementation incurs the same cost to the
defender. These simplifying assumptions, while arguably
reasonable when diversification is an automated process,
need to be extended to consider more general cases. It
is worth mentioning that different versions of a program
should not be counted as diversified implementations be-
cause they would have many vulnerabilities in common.
Simulating defender’s decision-making. For describing
defender’s decision-making function FD,t, we first consider
FD,0 at time t = 0, which outputs the initial network diver-
sity configuration C0. We consider three decision-making
algorithms for FD,0 at time t = 0: (i) the baseline random
coloring algorithm, which assigns a random implementation
of the program in question to run at node v; (ii) the color
flipping algorithm [32], which uses the random coloring
algorithm mentioned above as a starting point and then it-
eratively let nodes change their colors to reduce the number
of defective edges (i.e., the edges with two end nodes having
the same color or running the same implementation of a
software); (iii) a new algorithm we propose, which leverages
the degrees of the nodes to assign software implementations
to nodes v ∈ V , by giving the large-degree nodes a high
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priority in running diversified programs. Our algorithm is
different from the color flipping algorithm mentioned above
because we prioritize large-degree nodes in the initial as-
signment. Due to space limit, we defer the pseudo-code of
the algorithm to the Supplementary Material.

For describing defender’s decision-making function
FD,t for t > 0, we consider FD,1 = . . . = FD,T = NULL
for defense strategy γD,2 because the software deployment
stays unchanged over time in the case of static network
diversity. For dynamic diversity γD,q where 3 ≤ q ≤ 5,
we consider a simple random decision-making function
FD,t for t ∈ [1, T ], namely that the defender randomly
selects diversified implementations to replace the currently-
employed implementations at some or all of the nodes
v ∈ V according to defender’s strategy. More sophisticated
decision-making functions are left for future studies.

3.4 Simulating Local Effect and Quantifying Global Ef-
fect of Dynamic Diversity
We simulate the local effect of dynamic network diver-
sity at each node v ∈ V as described in Figure 3 and
the global effect according to the COODAL based attack-
defense interactions described in Figure 2. We collect the
network-wide cybersecurity state and situation over time t
to quantitatively answer the RQs (Section 2.7).

3.5 Answering RQs
Our simulation study is centered at measuring the metrics to
quantify the security effectiveness of employing network di-
versity, and then leveraging these quantitative effectiveness
to draw insights. While the model is general, the simulation
study can only consider some specific parameter settings
because it is not feasible to consider all parameter settings.
That is, the simulation study only corresponds to some
scenarios of the general model, and the findings drawn
from the simulation study may not be generalized to other
parameter settings. Researchers and practitioners can apply
our model to their specific parameter settings.

3.5.1 RQ1: To what extent can dynamic network diversity
slow down the attacker?
In order to answer RQ1, we investigate how the attacker
slower-down metric ASDD,q depends on defender’s goal
τ with 2 ≤ q ≤ 5. The experimental parameters are: ~ =
3 (3 different programs running in the network: Twitter,
Friendfeed, OS), X = 10 (each program has 10 diversified
implementations), Q = 1 (every diversified implementation
is vulnerable), |IniComp| = 10 (10 programs/nodes are ini-
tially compromised), m3 = 5 (the attacker has 5 exploits
against OS), m4 = 10 (the attacker has 5 exploits against
Twitter and 5 exploits against Friendfeed), and T = 500 (the
simulation stops at t = 500).

Figure 7(a) plots attacker slow-down ASDD,2 with re-
spect to defender’s goal τ ∈ [0, 0.5], where the defender uses
static diversity and different decision-making algorithm
FD,0 at time t = 0. We observe: (i) ASDD,2 = 0 when τ ≤ 0.1,
meaning that static diversity cannot slow down the attacker
when the defender can only tolerate no more than 10% of the
nodes being compromised. (ii) ASDD,2 > 0 when τ ≥ 0.15,
meaning that static diversity can slow down the attacker at

an extent that increases with the degree of tolerable compro-
mise. This is reasonable because the attacker has to do more
lateral movements in order to disrupt the defender’s goal.
(iii) For a fixed tolerable compromise threshold τ , the (initial
diversity) decision-making algorithm FD,0 matters and our
algorithm slows down the attacker most, with an average
slow-down that is almost 2X of that of the random coloring
algorithm, where the average is over the τ ’s.

Figure 7(b) plots attacker slow-down ASDD,3 with re-
spect to defender’s goal τ ∈ [0, 0.5], where the defender
uses different decision-making algorithms FD,0 for initial
diversity and proactively uses FD,t for t > 0 with parame-
ters ηD,1 = 0.5 and ηD,2 = 0.2 (diversified implementations
are re-deployed at 50% of the nodes every 5 time steps).
We make the same observations as that of ASDD,2. This
is reasonable because proactive diversity can replace com-
promised programs with secure programs (i.e., benefiting
the defender), but can also replace secure programs with
vulnerable ones (i.e., benefiting the attacker).

Figure 7(c) plots attacker slow-down ASDD,4 with re-
spect to defender’s goal τ ∈ [0, 0.5], where the defender uses
some decision-making algorithm FD,0 for initial diversity
and reactive-adaptively uses FD,t for t > 0 while assuming
parameters FPR = 0.1 and FNR = 0.1 (i.e., the attack-
detection or threat intelligence has a 10% false-positive rate
and a 10% false-negative rate). We make the following
observations: (i) ASDD,4 > 0 for τ ∈ (0, 0.5], meaning
that reactive-adaptive diversity can always slow down the
attacker at an extent that concavely increases with the toler-
able compromise threshold τ . This is reasonable because the
defender can replace a likely-compromised software with
another diversified implementation to benefit the defender.
(ii) For a fixed tolerable compromise threshold τ , the initial
diversity algorithm FD,0 matters because our algorithm
slows down the attacker most, with an average of almost 2X
slow-down than that of the the random coloring algorithm.

Figure 7(d) plots attacker slow-down ASDD,5 with re-
spect to defender’s goal τ ∈ [0, 0.5], where the defender uses
some decision-making algorithm FD,0 for initial diversity
and hybrid (of proactive and reactive-adaptive) decision-
making algorithm FD,t for t > 0 with parameters ηD,2 = 0.2,
FPR = 0.1 and FNR = 0.1. We observe the same phenomena
as in the case of reactive-adaptive diversity, except that the
degree of slow-down incurred by hybrid diversity increases
with the tolerable compromise threshold in a convex (rather
than concave) fashion.

By comparing Figures 7(a)-7(d), we observe that for
a fixed (initial diversity) decision-making algorithm FD,0,
we have ASDD,4 > ASDD,5 � ASDD,3 ≈ ASDD,2 for
τ ∈ (0, 0.45], indicating that reactive-adaptive diversity out-
performs hybrid diversity, which significantly outperforms
proactive diversity and static diversity. Consider τ = 1/3
as an example, we observe ASDD,4 = 412, ASDD,5 = 269,
ASDD,3 = 10, and ASDD,2 = 10 when using our algorithm
as (initial diversity) decision-making algorithm FD,0. Note
that the curves in Fig. 7(a) are not smooth because, under
the static diversity strategy, compromised programs are not
cleaned up and can attack others. This also explains why the
curves in Fig. 7(b) are not smooth, namely that proactive di-
versity always periodically selects random programs for re-
employing dynamic diversity, causing some compromised
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Fi g. 7: Pl ot s of att a c k e r sl o w- d o w n A S D D , q u n d e r diff e r e nt di v e r sit y st r at e gi e s ( w h e r e r e a cti v e i s s h o rt f o r r e a cti v e- a d a pti v e)
wit h v a r yi n g t ol e r a bl e c o m p r o mi s e t h r e s h ol d τ , w h e r e 2 ≤ q ≤ 5 a n d d ott e d v e rti c al li n e s i n di c at e τ = 1 / 3.

c o m p ut e r s t o r e m ai n c o m p r o mi s e d f o r e xt e n d e d d u r ati o n s
a n d all o wi n g t h e m t o c o n d u ct f u rt h e r att a c k s. I n c o nt r a st,
t h e c u r v e s i n Fi g. 7( c) a n d Fi g. 7( d) a r e s m o ot h b e c a u s e t h e s e
t w o st r at e gi e s l e v e r a g e r e a cti v e d ef e n s e s y st e m s t o i d e ntif y
a n d r e pl a c e t h e c o m p r o mi s e d p r o g r a m s ti m el y, w hi c h c a n
li mit t h e a b r u pt s p r e a di n g of att a c k s a n d sl o w d o w n t h e
att a c k e r. O n e r e a s o n f o r t h e r e a cti v e- a d a pti v e st r at e g y t o
p e rf o r m b ett e r t h a n t h e h y b ri d st r at e g y i s t h at t h e f o r m e r
c a n i m m e di at el y cl e a n u p t h e c o m p r o mi s e d p r o g r a m s, b ut
t h e l att e r w ait s u ntil a p e ri o d of ti m e, w hi c h all o w s t h e
att a c k e r t o c o m p r o mi s e ot h e r v ul n e r a bl e p r o g r a m s. T h at i s,
t h e diff e r e n c e i s c a u s e d b y w h et h e r t h e r e i s a g a p b et w e e n
w h e n c o m p r o mi s e d p r o g r a m s a r e d et e ct e d a n d w h e n c o m-
p r o mi s e d p r o g r a m s a r e cl e a n e d u p.

I n si g ht 1. I n t e r m s of t h e att a c k e r sl o w- d o w n m et ri c,
r e a cti v e- a d a pti v e di v e r sit y i s t h e m o st eff e cti v e st r at e g y
a n d t h e i niti al di v e r sit y c o n fi g u r ati o n m att e r s.

3. 5. 2  R Q 2: H o w m u c h e xtr a c o st c a n d y n a mi c n et w or k
di v er sit y i m p o s e o n t h e att a c k er ?

I n o r d e r t o a n s w e r R Q 2, w e i n v e sti g at e h o w t h e att a c k
e xtr a c ost m et ri c A E C D , q i n c r e a s e s wit h d ef e n d e r’ s g o al τ ,
w h e r e 2 ≤ q ≤ 5 . F o r t hi s p u r p o s e, w e n e e d t o s e e h o w
att a c k c o st aff e ct s t h e n et w o r k- wi d e c y b e r s e c u rit y st at e, e s-
p e ci all y att a c k w o r st d a m a g e A W D G, , X, Q(A , D q , T ) , w h e r e
2 ≤ q ≤ 5 . T h e si m ul ati o n e x p e ri m e nt p a r a m et e r s a r e: = 3
(i. e., 3 diff e r e nt p r o g r a m s r u n ni n g i n t h e n et w o r k: T witt e r,
F ri e n df e e d, a n d O S), X = 1 0 (i. e., e a c h p r o g r a m h a s 1 0
di v e r si fi e d i m pl e m e nt ati o n s), Q = 1 (i. e., e v e r y di v e r si fi e d
i m pl e m e nt ati o n i s v ul n e r a bl e), |I ni C o m p| = 1 0 (i. e., 1 0
p r o g r a m s o r n o d e s a r e i niti all y c o m p r o mi s e d), F D ,0 i s o u r
al g o rit h m f o r e m pl o yi n g i niti al di v e r sit y, η D ,1 = 0 .5 (i. e.,
di v e r si fi e d i m pl e m e nt ati o n s a r e d y n a mi c all y r e- e m pl o y e d
at 5 0 % of all n o d e s), η D ,2 = 0 .2 (i. e., di v e r si fi e d i m pl e m e n-
t ati o n s a r e r e- e m pl o y e d e v e r y 5 ti m e st e p s), F P R = 0 .1 (i. e.,
1 0 % f al s e- p o siti v e r at e i n d et e cti n g att a c k s), F N R = 0 .1 (i. e.,
1 0 % f al s e- n e g ati v e r at e i n att a c k d et e cti o n), T = 5 0 0 . We
a s s u m e t h at t h e att a c k e r u s e s t h e a v ail a bl e e x pl oit s t o g et h e r,
f o r t h e s a k e of r e d u ci n g t h e u n c e rt ai nt y i n t h e o ut c o m e s t h at
m a y b e i n c u r r e d b y t h e o r d e r s of e x pl oit s u s a g e.

Fi g u r e 8( a) pl ot s A W D G, , X, Q(A , D q , 5 0 0) f o r 2 ≤ q ≤ 5 ,
wit h r e s p e ct t o t h e t ot al n u m b e r m 3 + m 4 of e x pl oit s p o s-
s e s s e d b y t h e att a c k e r, w h e r e m 3 i s t h e n u m b e r of e x pl oit s
t h at p r o vi d e t h e att a c k e r wit h p ri vil e g e e s c al ati o n c a p a bilit y
a n d m 4 i s t h e n u m b e r of e x pl oit s t h at p r o vi d e t h e att a c k e r
wit h l at e r al m o v e m e nt c a p a bilit y. We o b s e r v e t h e f oll o wi n g
p h ase-tr a nsiti o n p h e n o m e n o n. W h e n 0 < m 3 + m 4 ≤ 1 2 (i. e.,

t h e att a c k e r p o s s e s si n g n o m o r e t h a n 4 0 % of t h e t ot al 3 0
e x pl oit s, w hi c h c o r r e s p o n d t o all of t h e 3 0 v ul n e r a biliti e s
i n t h e di v e r si fi e d i m pl e m e nt ati o n s), t h e r e a cti v e- a d a pti v e
di v e r sit y st r at e g y γ D ,4 l e a d s t o t h e l o w e st att a c k w o r st d a m-
a g e (i. e., t h e γ D ,4 c u r v e); w h e n 1 2 < m 3 + m 4 ≤ 2 1 , t h e h y-
b ri d di v e r sit y st r at e g y γ D ,5 l e a d s t o t h e l o w e st att a c k w o r st
d a m a g e (i. e., t h e γ D ,5 c u r v e); w h e n 2 1 < m 3 + m 4 ≤ 3 0 , t h e
p r o a cti v e di v e r sit y st r at e g y γ D ,3 l e a d s t o t h e l o w e st att a c k
w o r st d a m a g e (i. e., t h e γ D ,3 c u r v e). T hi s p h e n o m e n o n c a n
b e e x pl ai n e d a s f oll o w s. I n t e r m s of t h e att a c k w orst d a m-
a ge m et ri c, r e a cti v e- a d a pti v e di v e r sit y i s t h e m o st eff e cti v e
st r at e g y a g ai n st a l e s s c a p a bl e att a c k e r b e c a u s e t h e d ef e n d e r
c a n d et e ct a n d r e pl a c e t h e s m all n u m b e r of c o m p r o mi s e d
p r o g r a m s; p r o a cti v e di v e r sit y i s t h e m o st eff e cti v e st r at e g y
a g ai n st a m o r e c a p a bl e att a c k e r, w hi c h c o m p r o mi s e s a l a r g e
n u m b e r of c o m p ut e r s a n d d e m a n d s p e ri o di c e nf o r c e m e nt of
d y n a mi c di v e r sit y at m o st, if n ot all, of t h e c o m p ut e r s.
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Fi g. 8: Pl ot s of A W D G, , X, Q(A , D q , 5 0 0) a n d A E C D , q wit h
2 ≤ q ≤ 5 .

F r o m Fi g u r e 8( a), w e c a n d e ri v e t h e att a c k e xt r a c o st
A E C D , q wit h r e s p e ct t o t h e d ef e n d e r’ s g o al τ ∈ [ 0, 0 .5] (i. e.,
n o m o r e t h a n a τ f r a cti o n of t h e n o d e s a r e c o m p r o mi s e d
at a n y ti m e t ∈ [ 0, T ]) w h e r e 2 ≤ q ≤ 5 , w hi c h i s pl ott e d
i n Fi g u r e 8( b). We m a k e t h e f oll o wi n g o b s e r v ati o n s: (i)
A E C D ,4 > 0 a n d A E C D ,5 > 0 w h e n τ ≥ 0 .0 2 5 , A E C D ,3 > 0
w h e n τ ≥ 0 .0 5 , a n d A E C D ,2 > 0 w h e n τ ≥ 0 .0 7 5 , m e a ni n g
t h at e m pl o yi n g d y n a mi c n et w o r k di v e r sit y d ef e n s e st r at e g y
c a n i m p o s e att a c k e xt r a c o st o n t h e att a c k e r at a n e xt e nt
t h at i n c r e a s e s wit h t h e d e g r e e of t ol e r a bl e c o m p r o mi s e s.
(ii) A E C D ,4 ≥ A E C D ,5 ≥ A E C D ,3 ≥ A E C D ,2 al w a y s h ol d s
f o r a n y τ ∈ ( 0, 0 .5] . C o n si d e r τ = 1 / 3 a s a n e x a m pl e, w e
o b s e r v e A E C D ,4 = 4 0 % ≥ A E C D ,5 = 3 0 % ≥ A E C D ,3 =
3 0 % ≥ A E C D ,2 = 2 0 % , m e a ni n g t h at r e a cti v e- a d a pti v e
di v e r sit y i m p o s e s e xt r a c o st o n t h e att a c k e r m o r e t h a n
h y b ri d di v e r sit y, w hi c h i n c u r s m o r e t h a n p r o a cti v e di v e r sit y
a n d e v e n m o r e t h a n st ati c di v e r sit y.
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I n si g ht 2. I n o r d e r t o r e d u c e t h e att a c k w o r st d a m a g e,
diff e r e nt di v e r sit y st r at e gi e s s h o ul d b e u s e d i n diff e r e nt
p a r a m et e r r e gi m e s.

3. 5. 3  R Q 3: T o w h at e xt e nt c a n d y n a mi c n et w or k di v er sit y
i n cr e a s e t h e d ef e n d er’ s v ul n er a bilit y t ol er a n c e ?

I n o r d e r t o a n s w e r R Q 3, w e i n v e sti g at e h o w t h e v ul ner a bilit y
t oler a n ce m et ri c V T D , q d e p e n d s o n d ef e n d e r’ s g o al τ , w h e r e
2 ≤ q ≤ 5 . Si n c e t hi s d e p e n d e n c e w o ul d r el y o n att a c k
w o r st d a m a g e A W D G, , X, Q(A , D q , T ) a n d t h e p a r a m et e r s
G a n d a r e l a r g el y d et e r mi n e d b y t h e a p pli c ati o n s a n d
X i s l a r g el y d et e r mi n e d b y w h at i s a v ail a bl e, w e will
i n v e sti g at e t h e i m p a ct of di v e r si fi c ati o n q u alit y Q . T h e
si m ul ati o n e x p e ri m e nt p a r a m et e r s a r e: = 3 ( 3 diff e r e nt
p r o g r a m s r u n ni n g i n t h e n et w o r k: T witt e r, F ri e n df e e d, a n d
O S), X = 2 0 ( e a c h p r o g r a m h a s 2 0 di v e r si fi e d i m pl e m e n-
t ati o n s), |I ni C o m p| = 1 0 ( 1 0 p r o g r a m s o r n o d e s a r e i niti all y
c o m p r o mi s e d), F D ,0 i s o u r al g o rit h m f o r e m pl o yi n g i niti al
di v e r sit y, m 3 = 0 .5 × X × Q (t h e att a c k e r h a s 5 0 % of
t h e t ot al X × Q e x pl oit s a g ai n st t h e O S e s o n a v e r a g e),
m 4 = 0 .5 × 2 X × Q (t h e att a c k e r h a s 5 0 % of t h e t ot al X × Q
e x pl oit s a g ai n st T witt e r a n d 5 0 % of t h e t ot al X × Q e x pl oit s
a g ai n st F ri e n df e e d o n a v e r a g e), η D ,1 = 0 .5 ( di v e r si fi e d
i m pl e m e nt ati o n s a r e d y n a mi c all y r e- e m pl o y e d at 5 0 % of
all n o d e s), η D ,2 = 0 .2 ( di v e r si fi e d i m pl e m e nt ati o n s a r e r e-
e m pl o y e d e v e r y 5 ti m e st e p s), F P R = 0 .1 ( 1 0 % f al s e- p o siti v e
r at e i n d et e cti n g att a c k s), F N R = 0 .1 ( 1 0 % f al s e- n e g ati v e
r at e i n att a c k d et e cti o n), a n d mi s si o n lif eti m e T = 5 0 0 .
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( b) V T D , q

Fi g. 9: Pl ot s of A W D G, , X, Q(A , D q , 5 0 0) a n d V T D , q wit h
2 ≤ q ≤ 5 .

Fi g u r e 9( a) pl ot s A W D G, , X, Q(A , D q , 5 0 0) wit h r e s p e ct
t o di v e r sit y q u alit y Q w h e n t h e d ef e n d e r e m pl o y s n et-
w o r k di v e r sit y d ef e n s e st r at e g y γ D , q , w h e r e 2 ≤ q ≤ 5 .
We o b s e r v e t h at c c D ,4 < c c D ,5 < c c D ,3 < c c D ,2 w h e n
0 < Q ≤ 0 .9 5 , a n d c c D ,5 < c c D ,4 < c c D ,3 < c c D ,2

w h e n 0 .9 5 ≤ Q ≤ 1 . T hi s m e a n s t h at e m pl o yi n g d y n a mi c
n et w o r k di v e r sit y al w a y s l e a d s t o hi g h e r s e c u rit y t h a n st ati c
di v e r sit y r e g a r dl e s s of t h e di v e r si fi c ati o n q u alit y Q . We o b-
s e r v e t h at t h e att a c k w o r st d a m a g e A W D G, , X, Q(A , D q , 5 0 0)
i n c r e a s e s w h e n t h e q u alit y of di v e r si fi e d i m pl e m e nt ati o n s
d r o p s, w h e r e 2 ≤ q ≤ 5 . T hi s m e a n s t h at d y n a mi c n et w o r k
di v e r sit y l e a d s t o a n e v e n hi g h e r s e c u rit y w h e n t h e di v e r sit y
q u alit y i s hi g h (i. e., l o w Q ’ s).

F r o m Fi g u r e 9( a), w e c a n d e ri v e t h e v ul n e r a bilit y t ol e r-
a n c e V T D , q wit h r e s p e ct t o t h e d ef e n d e r’ s g o al τ ∈ [ 0, 0 .5]
w h e r e 2 ≤ q ≤ 5 , w hi c h i s pl ott e d i n Fi g u r e 9( b). We
o b s e r v e t h at V T D ,4 ≥ V T D ,5 > V T D ,3 ≥ V T D ,2 w h e n
0 < τ ≤ 0 .4 7 5 . C o n si d e r τ = 1 / 3 a s a n e x a m pl e, w e o b s e r v e
V T D ,4 = 0. 8, V T D ,5 = 0. 7 5, V T D ,3 = 0. 6, a n d V T D ,2 = 0. 5 5.

T hi s m e a n s t h at gi v e n a n att a c k e r t h at c a n e x pl oit 5 0 %
of t h e v ul n e r a biliti e s i n t h e n et w o r k o n a v e r a g e, r e a cti v e-
a d a pti v e di v e r sit y st r at e g y γ D ,4 m a k e s t h e d ef e n d e r t ol e r-
at e a 0 .8 − 2 / 3 = 0 .1 4 o r 1 4 % e xt r a v ul n e r a biliti e s, a n d
h y b ri d di v e r sit y st r at e g y γ D ,5 m a k e t h e d ef e n d e r t ol e r at e
a 0 .7 5 − 2 / 3 = 0 .0 9 o r 9 % e xt r a v ul n e r a biliti e s; h o w e v e r,
p r o a cti v e a n d st ati c di v e r sit y st r at e gi e s c a n n ot a c hi e v e t hi s
eff e cti v e n e s s.

I n si g ht 3. R e a cti v e- a d a pti v e di v e r sit y l e a d s t o a hi g h e r
v ul n e r a bilit y-t ol e r a n c e t h a n p r o a cti v e di v e r sit y d o e s.

3. 5. 4  R Q 4: T o w h at e xt e nt c a n d y n a mi c n et w or k di v er sit y
i n cr e a s e t h e d ef e n d er’ s a v er a g e o p er ati o n al c o st ?

I n o r d e r t o a n s w e r R Q 4, w e i n v e sti g at e h o w t h e a ver a ge
o per ati o n al c ost m et ri c A O C D , q i n c r e a s e s wit h d ef e n d e r’ s
g o al τ , w h e r e 2 ≤ q ≤ 5 . F o r t hi s p u r p o s e, w e n e e d t o k n o w
h o w att a c k w o r st d a m a g e A W D G, , X, Q(A , D q , T ) d e p e n d s
o n d ef e n s e di v e r sit y st r at e gi e s γ D , q , w h e r e 2 ≤ q ≤ 5 . T h e
si m ul ati o n e x p e ri m e nt p a r a m et e r s a r e: = 3 ( 3 diff e r e nt p r o-
g r a m s r u n ni n g i n t h e n et w o r k: T witt e r, F ri e n df e e d, O S), X =
1 0 ( e a c h p r o g r a m h a s 1 0 di v e r si fi e d i m pl e m e nt ati o n s), Q = 1
( e v e r y di v e r si fi e d i m pl e m e nt ati o n i s v ul n e r a bl e), |I ni C o m p|
= 1 0 ( 1 0 p r o g r a m s / n o d e s a r e i niti all y c o m p r o mi s e d), F D ,0

i s o u r al g o rit h m f o r e m pl o yi n g i niti al di v e r sit y, m 3 = 5 (t h e
att a c k e r h a s 5 e x pl oit s a g ai n st O S), m 4 = 1 0 (t h e att a c k e r h a s
5 e x pl oit s a g ai n st T witt e r a n d 5 e x pl oit s a g ai n st F ri e n df e e d),
a n d mi s si o n lif eti m e T = 5 0 0 .
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( b) A O C mi n
D ,3

Fi g. 1 0: Pl ot s of A W D G, , X, Q(A , D 3 , 5 0 0) a n d A O C mi n
D ,3 .

Fi g u r e 1 0( a) pl ot s A W D G, , X, Q(A , D 3 , 5 0 0) wit h r e s p e ct
t o η D ,1 a n d 1 / η D ,2 , w h e r e η D ,1 i s t h e t h e p r o p o rti o n of n o d e s
w h e r e di v e r si fi e d p r o g r a m s a r e d y n a mi c all y e m pl o y e d a n d
1 / η D ,2 i s t h e ti m e i nt e r v al b et w e e n t w o c o n s e c uti v e di-
v e r sit y e m pl o y m e nt s. We o b s e r v e t h e f oll o wi n g: (i) W h e n
η D ,1 = 0. 1, p r o a cti v e di v e r sit y al w a y s l e a d s t o hi g h att a c k
w o r st d a m a g e, e v e n if 1 / η D ,2 i s s m all (i. e., hi g h-f r e q u e n c y i n
e m pl o y m e nt). T hi s m e a n s t h at p r o a cti v e di v e r sit y i s u s el e s s
w h e n d y n a mi c di v e r sit y i s e m pl o y e d at a f e w n o d e s. (ii)
W h e n η D ,1 = 0. 5 o r 0. 9, p r o a cti v e di v e r sit y c a n l e a d t o l o w
att a c k w o r st d a m a g e o nl y w h e n 1 / η D ,2 i s s m all. C o n si d e r
d ef e n s e g o al τ = 1 / 3 a s a n e x a m pl e, 1 / η D ,2 m u st b e n o m o r e
t h a n 2 w h e n η D ,1 = 0. 5 a n d n o m o r e t h a n 5 w h e n η D ,1

= 0. 9. T hi s m e a n s t h at p r o a cti v e di v e r sit y i s eff e cti v e o nl y
w h e n e m pl o y e d b r o a dl y a n d f r e q u e ntl y. (iii) W h e n η D ,1 =
0. 1 a n d 1 / η D ,2 ≥ 2 , o r w h e n η D ,1 = 0. 5 a n d 1 / η D ,2 ≥ 6 ,
o r w h e n η D ,1 = 0. 9 a n d 1 / η D ,2 ≥ 1 4 , p r o a cti v e di v e r sit y
l e a d s t o hi g h e r att a c k w o r st d a m a g e t h a n st ati c di v e r sit y.
T hi s m e a n s t h at p r o a cti v e di v e r sit y c a n d o m o r e h a r m t h a n
g o o d b y m a ki n g m a ki n g m o r e n o d e s e x pl oit a bl e o v e r ti m e.

1 3



I n si g ht 4. P r o a cti v e di v e r sit y i m p r o v e s s e c u rit y o nl y w h e n
e m pl o y e d at m o st n o d e s at hi g h f r e q u e n c y.

F r o m Fi g u r e 1 0( a), w e c a n d e ri v e t h e mi ni m u m a v e r a g e

o p e r ati o n al c o st A O C mi n
D ,3 wit h r e s p e ct t o t h e d ef e n d e r’ s g o al

τ ∈ [ 0, 0 .7] , w hi c h i s s h o w n i n Fi g u r e 1 0( b). C o n si d e r τ =
1 / 3 a s a n e x a m pl e, t h e mi ni m u m a v e r a g e o p e r ati o n al c o st
i s η D ,1 × η D ,2 = 0 .5 × 1 / 2 = 0 .2 5 f o r η D ,1 = 0. 5, a n d η D ,1 ×
η D ,2 = 0 .9 / 5 = 0 .1 8 f o r η D ,1 = 0. 9. N ot e t h at i n t h e c a s e

η D ,1 = 0. 1, A O C mi n
D ,3 i s u n d e fi n e d w h e n τ ∈ [ 0, 0 .5 5] b e c a u s e

t h e st r at e g y c a n n e v e r p r e v e nt t h e att a c k e r f r o m b r e a ki n g
t h e d ef e n d e r’ s g o al. We f u rt h e r o b s e r v e t h at η D ,1 = 0. 9 l e a d s

t o a l o w e r A O C mi n
D ,3 t h a n η D ,1 = 0. 5 w h e n 0 ≤ τ ≤ 0 .5 ,

m e a ni n g t h at a hi g h e r p r o p o rti o n of d y n a mi c di v e r sit y r e-
e m pl o y m e nt l e a d s t o a l o w e r a v e r a g e o p e r ati o n c o st.

I n si g ht 5. W h e n p r o a cti v e di v e r sit y i s eff e cti v e, a hi g h e r
p r o p o rti o n of d y n a mi c r e- e m pl o y m e nt l e a d s t o a l o w e r
o p e r ati o n al c o st t h a n w h at i s i n c u r r e d b y a hi g h e r r e-
e m pl o y m e nt f r e q u e n c y.
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( a) A W D G, , X , Q ( A , D 4 , 5 0 0 )
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( b) A O C D ,4

Fi g. 1 1: Pl ot s of A W D G, , X, Q(A , D 4 , 5 0 0) a n d A O C D ,4 .

Fi g u r e 1 1( a) pl ot s A W D G, , X, Q(A , D 4 , 5 0 0) wit h r e s p e ct
t o F P R (f al s e- p o siti v e r at e) a n d F N R (f al s e- n e g ati v e r at e),
w h e r e F P R , F N R ∈ [ 0.0 2 , 0 .1] . We o b s e r v e t h at a l o w e r F N R
a n d F P R (i. e., hi g h e r att a c k- d et e cti o n c a p a bilit y) l e a d s t o
a l o w e r att a c k w o r st d a m a g e, m e a ni n g t h e eff e cti v e n e s s of
r e a cti v e- a d a pti v e di v e r sit y l a r g el y d e p e n d s o n t h e att a c k-
d et e cti o n c a p a bilit y. C o n si d e r d ef e n d e r’ s mi s si o n g o al of
τ = 1 / 3 a s a n e x a m pl e, w e o b s e r v e t h at r e a cti v e- a d a pti v e
di v e r sit y c a n a s s u r e t h e mi s si o n w h e n F P R = 0 .0 2 a n d
0 .0 2 ≤ F N R ≤ 0 .1 , w h e n F P R = 0 .0 6 a n d 0 .0 2 ≤ F N R ≤
0 .0 9 , a n d w h e n F P R = 0 .1 a n d 0 .0 2 ≤ F N R ≤ 0 .0 7 . F r o m
Fi g u r e 1 1( a), w e c a n d e ri v e t h e A O C mi n

D ,4 a n d A O C m a x
D ,4 f o r a

gi v e n F P R wit h r e s p e ct t o τ ∈ [ 0, 0 .5] , w hi c h i s pl ott e d i n
Fi g u r e 1 1( b). We m a k e t h e f oll o wi n g o b s e r v ati o n s. (i) F o r a

fi x e d F P R , A O C mi n
D ,4 c a n b e v e r y l o w a n d r e m ai n s st a bl e a s

τ i n c r e a s e s, b e c a u s e A O C mi n
D ,4 i s al w a y s a c hi e v e d w h e n F N R

= 0. 0 2. T h e o p e r ati o n al c o st i s l o w b e c a u s e a hi g h att a c k-
d et e cti o n a c c u r a c y c a n d et e ct c o m p r o mi s e d c o m p ut e r s b e-
f o r e t h e y att a c k t h e ot h e r s. (ii) F o r a fi x e d F P R , a hi g h e r
τ oft e n l e a d s t o a hi g h e r A O C m a x

D ,4 , b e c a u s e a hi g h e r τ (i. e.,
hi g h e r c o m p r o mi s e-t ol e r a n c e) c a n b e a c hi e v e d at a l o w e r
o p e r ati o n al c o st f r o m a di v e r sit y- b a s e d d ef e n s e st a n d p oi nt.
(iii) T h e d ef e n d e r’ s o p e r ati o n al c o st f all s i nt o a wi d e r a n g e
a s τ i n c r e a s e s, m e a ni n g t h at t h e d ef e n d e r’ s o p e r ati o n al c o st
l a r g el y d e p e n d s o n t h e att a c k- d et e cti o n eff e cti v e n e s s.

Fi g u r e 1 2( a) pl ot s A W D G, , X, Q(A , D 5 , 5 0 0) wit h r e s p e ct
t o F P R a n d F N R , w h e r e F P R , F N R ∈ [ 0.0 2 , 0 .1] a n d r e-
d e pl o y m e nt f r e q u e n c y η D ,2 = 0 .2 . F r o m Fi g u r e 1 2( a), w e

d e ri v e A O C m a x
D ,5 a n d A O C mi n

D ,5 , w hi c h i s pl ott e d i n Fi g u r e
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( a) A W D G, , X , Q ( A , D 5 , 5 0 0 )
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( b) A O C D ,5

Fi g. 1 2: Pl ot s of A W D G, , X, Q(A , D 5 , 5 0 0) a n d A O C D ,5 .

1 2( b). We o b s e r v e t h at t h e d ef e n d e r’ s a v e r a g e o p e r ati o n al
c o st i s s m all. C o n si d e r τ = 1 / 3 a s a n e x a m pl e, w e o b s e r v e

A O C mi n
D ,5 = 0 .0 3 4 9 w h e n F P R = 0 .0 2 a n d A O C m a x

D ,5 = 0 .2 2 5 4
w h e n F P R = 0. 1, m e a ni n g A O C D ,5 ∈ [ 0. 0 3 4 9, 0. 2 2 5 4] w h e n
F P R ∈ [ 0.0 2 , 0 .1] a n d F N R ∈ [ 0.0 2 , 0 .1] .

B y c o m p a ri n g Fi g u r e s 1 0( b), 1 1( b), a n d 1 2( b), w e o b s e r v e
t h at f o r τ ∈ [ 0.0 5 , 0 .5] , w e h a v e A O C D ,3 ∈ [ 0.1 5 , 0 .5] w h e n
η 1 ∈ [ 0.5 , 0 .9] ; w e h a v e A O C D ,4 ∈ [ 0.0 0 7 1 , 0 .5 9 4 8] a n d
A O C D ,5 ∈ [ 0.0 3 4 9 , 0 .2 5 6 6] w h e n F P R ∈ [ 0.0 2 , 0 .1] a n d
F N R ∈ [ 0.0 2 , 0 .1] , m e a ni n g t h at r e a cti v e- a d a pti v e di v e r sit y
i n c u r s a n a v e r a g e o p e r ati o n al c o st f alli n g i nt o a wi d e r r a n g e
t h a n p r o a cti v e di v e r sit y a n d a n e v e n wi d e r r a n g e t h a n
h y b ri d di v e r sit y. We al s o o b s e r v e t h at p r o a cti v e di v e r sit y
i n c u r s a hi g h e r o p e r ati o n al c o st t h a n r e a cti v e- a d a pti v e di-
v e r sit y w h e n t h e d ef e n d e r’ s t ol e r a bl e c o m p r o mi s e t h r e s h ol d
τ i s s m all, a n d t h e o p p o sit e i s t r u e w h e n τ i s l a r g e.

3. 5. 5  R Q 5: I s it tr u e t h at t h e m or e di v er si fi e d i m pl e m e nt a-
ti o n s t h e b ett er ?

I n o r d e r t o a n s w e r R Q 5, w e i n v e sti g at e h o w t h e att a c ker
sl o w- d o w n m et ri c A S D D , q , t h e att a c k e xtr a c ost m et ri c A E C D , q ,
a n d t h e v ul ner a bilit y t oler a n ce m et ri c V T D , q d e p e n d o n t h e
n u m b e r of di v e r si fi e d i m pl e m e nt ati o n s X , w h e r e 2 ≤ q ≤ 5 .
T h e e x p e ri m e nt al p a r a m et e r s a r e: = 3 ( 3 diff e r e nt p r o-
g r a m s r u n ni n g i n t h e n et w o r k: T witt e r, F ri e n df e e d, a n d O S),
Q = 1 ( e v e r y di v e r si fi e d i m pl e m e nt ati o n i s v ul n e r a bl e),
|I ni C o m p| = 1 0 ( 1 0 p r o g r a m s o r n o d e s a r e i niti all y c o m p r o-
mi s e d), m 3 = 1 (t h e att a c k e r h a s 1 e x pl oit a g ai n st O S), m 4

= 2 (t h e att a c k e r h a s 1 e x pl oit a g ai n st T witt e r a n d 1 e x pl oit
a g ai n st F ri e n df e e d), F D ,0 i s o u r al g o rit h m f o r e m pl o yi n g
i niti al di v e r sit y, η D ,1 = 0 .5 ( di v e r si fi e d i m pl e m e nt ati o n s a r e
d y n a mi c all y r e- e m pl o y e d at 5 0 % of all n o d e s), η D ,2 = 0 .2
( di v e r si fi e d i m pl e m e nt ati o n s a r e r e- e m pl o y e d e v e r y 5 ti m e
st e p s), F P R = 0 .1 ( 1 0 % f al s e- p o siti v e r at e i n d et e cti n g
att a c k s), F N R = 0 .1 ( 1 0 % f al s e- n e g ati v e r at e i n att a c k
d et e cti o n), a n d mi s si o n lif eti m e T = 5 0 0 .
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Figure 13(a) plots ASDD,q with respect to X and τ =
0.01, where 2 ≤ q ≤ 5. We take τ = 0.01 as an example
because the attacker possessing one exploit for each pro-
gram may only compromise about 1% computers during
the mission lifetime T = 500 with X =10. We observe
that ASDD,4 increases rapidly with X , followed by ASDD,5,
while ASDD,3 and ASDD,2 increases slowly with X (e.g.,
ASDD,3 = ASDD,2 = 2 when X =2 and ASDD,3 = ASDD,2 =
14 when X = 10). When X = 10, reactive-adaptive diversity
slows down the attacker most.

Figure 13(b) plots AECD,q with respect to X and τ =
1/3, where 2 ≤ q ≤ 5. We observe that AECD,q shows an
upward trend as X increases for q = 2, 3, 4, 5, meaning
that the more diversified implementations, the higher the
attack extra cost for disrupting the defender’s mission goal
(i.e., no more than a τ fraction of computers are compro-
mised at any time t ∈ [0, T ]). In addition, we observe
AECD,4 ≥ AECD,5 ≥ AECD,3 ≥ AECD,2 for any X ∈ [1, 10],
meaning that reactive-adaptive diversity benefits most from
more diversified implementations, followed by hybrid di-
versity, proactive diversity and static diversity.

In order to characterize the impact of the number of
diversified implementations on the vulnerability tolerance
VTD,q where 2 ≤ q ≤ 5, we observe VTD,q = 0 when
X = 1, 2 and τ =1/3. This is reasonable because the attacker
having one exploit for each program can easily break the
defender’s goal when the total number of diversified imple-
mentations is no more than 2. In contrast, given τ =1/3, we
have VTD,q = 1 when X ≥ 3, where 2 ≤ q ≤ 5, because
Figure 13(b) shows that an attacker having one exploit for
each program will never compromise 1/3 computers when
X ≥ 3; this is true even if all of the diversified implemen-
tations are vulnerable. This means that when the attacker
has a limited capability, a substantially higher vulnerability
rate (than τ ) can effectively be tolerated until the number of
diversified implementations reaches a certain amount.
Insight 6. The more diversified implementations with a

similar quality, the higher the attacker slow-down, the
attack extra cost, and the vulnerability tolerance.

4 RELATED WORK

Prior studies in software diversity. Prior studies mainly
aim at obtaining diversified, ideally independent, implemen-
tations of a program specification [4]. There is a body of
literature on software diversity (e.g., [6], [10], [11], [12],
[13], [14], [15], [17], [18], [19]). However, the effectiveness
of these building-block techniques is not well understood.
For example, one study shows that independent software
implementation does not lead to independent vulnerabili-
ties because programmers tend to make the same mistakes
[56]. Other studies show positive results, such as: the same
vulnerabilities in different software may demand different
exploits [53]; few vulnerabilities simultaneously appear in
different OSes [57]. In contrast, the effectiveness of run-
time diversity is better understood: (i) address space layout
with 32-bit randomization can be compromised by brute-
forcing [58]; (ii) address space layout with higher entropy
can be compromised by side-channel attacks [59], [60], [61],
[62]; (iii) address space layout randomization is vulnerable
because of modern cache architectures [63]; (iv) fine-grained

address space layout randomization is subject to just-in-time
code reuse attacks [64]; and (v) instruction set randomiza-
tion is subject to brute-forcing attacks [65], [66].

The preceding studies consider standalone software di-
versification techniques. In contrast, we investigate the ef-
fectiveness of software diversification techniques from a net-
work standpoint. Since we consider diversifying network-
wide software stacks, multiple diversification techniques
can be used together. This is reminiscent of the notion of
N -variant systems [67], which however do not quantify the
network-wide effectiveness dynamic diversity.

Prior studies in network diversity. Network diversity has
been investigated in some contexts [1], [2], [3], [32], [33].
There are proposals on measuring static network diversity
via (i) the entropy of the distribution of software vulnerabil-
ity in a network [38] and (ii) the diversity index of the shared
vulnerabilities between different software implementations
in a network [41]. There are attempts at optimizing static
diversity by using some flavor of graph coloring algorithm
(i.e., treating a diversified implementation as a color and
a network as a graph) and minimizing defective edges (i.e.,
adjacent nodes have the same color or run the same software
implementation) [32], [33], [34], [35], [36], [37].

The closely related prior studies are [39], [40], which
measure network diversity via resource richness and attack
effort. Our study is different as follows: (i) they investigate
how to quantify diversity, whereas we study how to employ
dynamic diversity; (ii) they do not consider attack-defense
interactions, whereas we explicitly model attack-defense in-
teractions; (iii) we quantify the network-wide effectiveness
of dynamic diversity, which is not studied by them.

Prior studies related to Moving-Target Defense (MTD).
Proactive diversity is one form of MTD, which includes
other kinds of proactive defense techniques (e.g., proactively
changing IP addresses or port numbers) [68]. Quantifying
the security effectiveness of MTD in the broader context
is beyond the scope of the present paper (see, e.g., [69]).
While our finding that reactive-adaptive is more effective
than proactive diversity (i.e., MTD when applied to diver-
sity) may sound counter-intuitive at a first glance, it can
be understood as follows: MTD (i.e., proactive diversity
in this case) can be employed when the defender does
not know the situation information of the network (e.g.,
which and how many nodes are compromised); in contrast,
adaptive diversity can leverage the situational information
to adaptively employ diversity, leading to potentially higher
effectiveness. In addition, our simulation study focuses
on dynamic diversity against malware-like attacks after
the attacker establishes footholds at some compromised
computers in a network. This means that the simulation
study does not consider earlier stages of cyber attacks,
such as reconnaissance. Our findings do not contradict the
usefulness of MTD in defending against such earlier-stage
attack activities (e.g., MTD can effectively disrupt attacker’s
reconnaissance processes [70], [71], [72], [73]).

Prior studies related to whole-network security analysis.
We analyze the security effectiveness of dynamic diversity
from a whole-network perspective. There are studies in
this perspective, but tackling different problems and using
different approaches. The attack graph approach studies how
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an attacker may exploit multiple vulnerabilities to achieve a
certain goal and how to harden a network (see, e.g., [74],
[75], [76], [77], [78], [79], [80], [81], [82]). This approach
is combinatorial in nature and does not consider the time
dimension [83], [84], [85]. Another approach is the cyber-
security dynamics framework [83], [84], [85], which explicitly
models attack-defense interactions over time and includes a
rich family of models and results (e.g., [69], [86], [87], [88],
[89], [90], [91], [92], [93], [94], [95], [96]). These studies aim
at analytical results while making simplifying assumptions,
such as the independence assumption between attacks. In
order to eliminate such assumptions, initial efforts have
been made in both theoretical studies [89], [97], [98] and
empirical studies [43], [99]. Our framework does not make
the independence assumption, while characterizing the tran-
sient behaviors (i.e., the dynamics before converging to an
equilibrium); whereas, analytical models so far can only
offer asymptotic results (i.e., t → ∞ or when the dynamics
converges to the equilibrium). Last but not the least, our
framework goes much beyond [99] by characterizing (e.g.)
dynamic attack-defense interactions and decision-making.

5 LIMITATIONS

The present study has several limitations that need to be
addressed in future research. First, the framework has two
limitations. (i) We assumeG is fixed. This implicitly assumes
the network defense tools are not compromised because
a successful attack against a defense tool can effectively
change G. While this is reasonable for missions with a short
lifetime T , it is interesting to accommodate dynamic Gt for
missions of long lifetime T and the case that the network
defense tools can be compromised, as outlined in [83], [84],
[85]. (ii) We assume that the attacker selects one tool to use
at each phase of an attack strategy. This can be extended to
using multiple tools in a sequential manner.

Second, the simulation study has some limitations.
(i) We only consider simple decision-making algorithms,
which are sufficient for demonstrating the usefulness of the
framework but need to accommodate more sophisticated
decision-making algorithms. (ii) We use some “synthetic”
and simplifying scenarios owing to the lack of real data,
meaning that the findings may not be generalized to other
scenarios. Specifically, the assumption that each attack phase
takes place at one time step may limit the validity of
Insight 1; the assumption that each exploit incurs the same
cost to the attacker may limit the validity of Insight 2;
the assumption that each implementation of a program is
equally vulnerable may limit the validity of Insight 3; the
independence assumption that different implementations
do not have common vulnerabilities holds in some settings
[53], [54] but may not hold in general. In order to see
the potential impact of these assumptions, we conduct ad-
ditional experiments where different implementations can
contain common vulnerabilities. While omitting the experi-
mental details owing to space limit, they do show that the
independence assumption does cause overestimates of the
effectiveness of employing network diversity. This resonates
the results of earlier theoretical studies [89], [97], [98].

6 CONCLUSION

We proposed a framework for quantifying the cybersecurity
effectiveness of enforcing (dynamic) network diversity, in-
cluding a suite of security metrics for measuring attacker’s
cost (incurred by obtaining exploits) and defender’s oper-
ational cost (incurred by re-employing network diversity).
We conducted simulation experiments to measure these
metrics with respect to a number of dynamic diversity
strategies and drew insights from the experimental results.

There are many open problems. In addition to those
mentioned in Section 5, we highlight two: How can we
obtain analytic results without making strong assumptions?
How can we quantify attack power and defense power
without making strong assumptions?
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