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Abstract: In this paper, we consider the inverse problem of recovering a sound soft scatterer from
the measured scattered field. The scattered field is assumed to be induced by a point source on
a curve/surface that is known. Here, we propose and analyze new direct sampling methods for
this problem. The first method we consider uses a far-field transformation of the near-field data,
which allows us to derive explicit bounds in the resolution analysis for the direct sampling method’s
imaging functional. Two direct sampling methods are studied, using the far-field transformation. For
these imaging functionals, we use the Funk-Hecke identities to study the resolution analysis. We
also study a direct sampling method for the case of the given Cauchy data. Numerical examples are
given to show the applicability of the new imaging functionals for recovering a sound soft scatterer
with full and partial aperture data.
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1. Introduction

Here, we develop new direct sampling methods for recovering a sound soft scatterer
from the measured scattered field induced by point sources. Direct (also referred to
as orthogonality) sampling methods are qualitative reconstruction methods that have
gained interest recently by researchers. These types of reconstruction algorithms were
first introduced in [1]. Like other qualitative reconstruction methods, the direct sampling
method requires little a priori information about the specific physical parameters of the
scatterer. This implies that these methods are robust in the fact that they recover multiple
types of scatterers using the same algorithm (see, for example, [2-4]). Therefore, these
methods can be advantageous to use in applications such as non-destructive testing and
medical imaging. Similar methods were also studied in diffuse optical tomography [5],
electrical impedance tomography [6] and thermodynamics [7]. These methods were studied
in detail for far-field data, but little was done for the case of near-field data. In this paper,
we develop and analyze some direct sampling method, given near-field measurements.
The methods studied here are applicable in the field of near-field acoustic holography;
see [8-10].

The main idea behind the methodology of qualitative methods is to develop an
imaging functional using the measured data that are positive in the region that you wish to
recover and are (approximately) zero outside the region. All qualitative methods achieve
this in various ways (see, for example, [11,12]). One of the main advantages of direct
sampling methods is the fact that the imaging functional is usually given by an inner
product (or norm) of the data operator and a specifically chosen function. This implies that
these imaging functionals are simple to compute as well as stable, with respect to noise
in the scattering data. The main analytical tool for studying these methods comes from
the factorization of the data operator, just as in the factorization method (see, for example,
[13-15]).
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The main idea of this paper is to preform a far-field transformation of the near-
field operator. This completely transforms the operator to the corresponding far-field
operator for the scattering problem. This has the advantage that we can then use the theory
already developed in the literature for the far-field operator as well as avoid using the
Helmholtz-Kirchhoff identity, which is often used in reverse time migration [16]. Reverse
time migration is very similar to the direct sampling method, but in the case of near-field
measurements, the Helmholtz—Kirchhoff identity does not provide explicit decay rates for
the resolution analysis. For the case of far-field measurements, one uses the Funk-Hecke
identity. This gives explicit bounds on the imaging functionals as dist(z, D) — co, where D
denotes the unknown scatterer to be recovered and z € R is the sampling point where
we evaluate the imaging functional. Using the asymptotic bounds on the Bessel functions
given in the Funk-Hecke identity, we can have theoretical limits on the value of the imaging
functional outside the scatterer. We also study a new direct sampling method which uses
the measured Cauchy data of the scattered field from point sources.

The rest of the paper is organized as follows. In the next section, we rigorously
describe the scattering problem under consideration as well as derive a factorization for the
corresponding near-field operator. The factorization for the near-field operator is critical
in the development of the new direct sampling methods. Next, we derive two new direct
sampling methods, where we use a far-field transformation of the near-field operator. This
is done in order to avoid using the Helmholtz—Kirchhoff identity, which is often used in
reverse time migration. We also study a direct sampling imaging functional that uses the
near-field Cauchy data. For proof of concept, we provide numerical examples for the three
imaging functionals studied for both full and partial aperture data.

2. Analysis of the Scattering Problem

In this section, we derive a factorization of the near-field operator that will be used
to analyze the new direct sampling methods imaging functionals for recovering a sound
soft scatterer from the measured scattered field. To this end, we begin by formulating the
direct time-harmonic scattering problem under consideration. The scattered field denoted
by u*(+,y) is induced by a point source incident field u'(-,y) = ®(-,y). Here, we let y
denote the location of the point source located on the curves/surface I', and ®(x, y) is the
radiating fundamental solution to Helmholtz equation given by the following;:

iV (kx—y|) inR2

D(x,y) =
1 exp(iklx—y|) in R3
o |x—yl /

for x # y, where H((]l) is the first kind Hankel function of the order zero. Throughout the
paper, we use the boundary integral operators in our analysis, so we will assume that I'is a
class C2-smooth closed curves/surface.

Now, let D € R? (for d = 2,3) be the sound soft scattering obstacle (possibly with
multiple components). We assume that the boundary 9D is a class C2-smooth closed
curve/surface, where the exterior R? \ D is connected. Therefore, the radiating time-
harmonic scattered field u°(x,y) € HL (R?\ D) given by the point source incident field is

loc
the unique solution to the following (see, for example, [17]):

At +K2u* =0 in RI\\D and u(-,y) = —®(-,y) on aD (1)
1
S : s __
o,u® —iku _O(r(dﬂ)/z) as r— oo )
where r = |x| with k is the positive wave number. Here, we assume that k? is not a

corresponding Dirichlet eigenvalue for the negative Laplacian in D. The Sommerfeld
radiation condition given by (2) is satisfied uniformly in all directions. This gives that we
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can assume that we have the measured scattering data u°(x,y) for all x,y € T, provided
that dist(I', D) > 0. Therefore, we now define the so-called near-field operator as follows:

N:L*(T) — L*(T) givenby (Ng)(x) :/rus(x,y)g(y) ds(y).

In order to study the inverse problem of reconstructing the sound soft scattering obstacle
D given the near-field measurements, we need to derive a suitable factorization for the
near-field operator. In [18], a factorization of the near-field operator was studied, but for
our purposes, we need to derive a different factorization.

From the direct scattering problem (1)—(2), we make the ansatz such that the scattered
field can be represented by the boundary integral operator SLyp : H~1/2(dD) — HL _(R?\ D)
as follows:

w(,y) = (SLap)gy where (SLip)gy= [ @(,wlgy(@)ds(@) ()

for some ¢, € H1/2(dD). See [19] for the mapping properties of the boundary integral
operator SLyp. Therefore, we have that ¢, satisfies the following equation:

(Sop—ap) ¢y = —P(-,y) forany fixed y € C

where Syp_,5p : H/2(dD) — H'Y2(aD) is given by the following:

(Sa0-s00) 0y = [ @ @)yl ds(@)] .

Note that we have used the continuity of the trace for the boundary integral operator
SLyp on the boundary 0D (see, for example, [19]). Since k? is not a Dirichlet eigenvalue of
the negative Laplacian in D, Lemma 1.14 of [12] gives that Syp_,yp has a bounded inverse.
We define the bounded linear operator as follows:

T:H'Y2(D) — H/*(dD) suchthat T=-S;} ... )

This implies that the scattered field has the following representation:

Wy = [ @,w0)[TO(,y)](w) ds(w) ©

Equation (5) gives us an analytical solution to the direct scattering problem, using
boundary integral operators. One can view (5) as a stand in for the Lippmann-Schwinger
integral representation of the scattered field that one obtains by considering a penetrable
scatterer (see, for example, Equation (8.13) of [17]). From this, we derive a factorization of
the near-field operator. To this end, we define the bounded linear operator as follows:

S:L%(T) — L*(dD) givenby Sg= /Fcb(ny)g(y) ds(y)’al) ©®)

along with its dual operator
ST:I12(3D) — [A(T) givenby S ¢ = /a ®(w, )p(w) ds(w) ]r @)
D
with respect to the bilinear L? dual product (-, )2 such that the following holds:

<(P, Sg>L2(aD) = <ST(P,g>L2(r) for all g S Lz(r) and [ S Lz(aD)
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The single layer potential operators S and S defined above are commonly used in
studying problems in scattering theory. We can now use the operators defined above to
factorize the data operator N. By superposition, we have that

w(x) = [ w(xygydsly) vxeRN\D

is the scattered field corresponding to (1)—(2) when the point source incident field is
replaced by Sg for some ¢ € L?(T') given by (6). Now, appealing to the representation of
the scattered field (5), we have the following;:

w(x) = /a ®(x,w)[TSg](w)ds(w) VYxeRY\D.
D
This implies the following:
Ng=w|p =S' TSy forall gec L*(T) 8)

by the above definition of the operators in (6) and (7). Note that the Range(S) ¢ H'/2(aD)
and S" : H/2(dD) — H'/2(T) by the mapping properties in [19]. The factorization
of the near-field operator (8) as well as the representation Formula (5) for the scattered
field is instrumental in studying the resolution analysis for the direct sampling imaging
functionals presented in the following sections.

3. Direct Sampling via Far Field Transform

Now that we have the factorization of the near-field data operator given in (8), we
wish to develop new direct sampling methods. To this end, we use far-field transformation
for the near-field operator N. We mainly focus on the two-dimensional case, as the three-
dimensional case can be handled similarly. The main advantage is that when considering
the direct sampling method for far-field data (see, for example, [2,4]) we have that the
resolution analysis can easily be obtained by the Funk-Hecke integral identities. Then,
the resolution can be derived by the asymptotic decay of the Bessel functions. When
considering reverse time migration for near-field data (see, for example, [16]) the analysis
uses the Helmholtz—Kirchhoff integral identity, which does not have an explicit decaying
of the first-order terms. This means that analytically, one must take the sources/receivers
far away from the intended target. Recall, the Funk-Hecke integral identities in [4] are
given by the following:

27t]o(k|x — z|) if d=2,

e e ds(g) = ©)
47tjo (k|x — z]) if d=3

and when x # z

Zn(’;:zz)‘h(k|x—z|) if d=2,

. i il
ge =TT ds () = (10)
AarEDi(klx—z|)  if d=3

ilx—z|

Sd-1

where S7~1 is the unit circle for d = 2 or unitsphere ford = 3,i.e, S* 1 = {p ¢ R? : |p| = 1}.
We make use of the decay of the Bessel functions, i.e., as follows:

=S 0TV = o (1))
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for d = 2 as well as the following;:

o) = “;”{HOC)} and  ji(t) = Cotst{—uo(i)}

ford =3 ast — co (see for e.g., [4]).

In order to proceed, we need to define the Dirichlet-to-far-field transformation just as
in [3]. This mapping takes the Dirichlet data of the radiating exterior Helmholtz equation in
the exterior of Int(T') to the corresponding far-field pattern. Here, we let Int(I') denote the
region enclosed by the collection curve I'. Therefore, we have that the Dirichlet-to-far-field
transformation Q : H'/2(T') — L%(S%~1) is given by the following:

(Qf) (%) =v™(%), Vies™! (11)

where v € HL (R?\ Int(T)) is the unique solution to

Av+Ko=0 in RI\Int(T) with o|r=f (12)
_ 1
arv —ikv = O(r(d-‘rl)/Z) as r — oo. (13)

Now, we define the far-field pattern v, where v has the following expansion:

eik\x| o 1
v(x) = ’)/|x|(d1)/2{0 (%) —l—(’)(m)} as |x| — oo

where £ := x/|x| (see Chapter 1 of [12]). Here, the constant is as follows:

This operator was used in [3] to derive a direct sampling method for both isotropic and
anisotropic scatterers. In this section, we see that this can be extended to the case of sound
soft scatterers. Additionally, the operator Q can be constructed without a priori knowledge
of D. If I is a ball centered at the origin with radius R > 0,ie., I' = 0B(0; R), then Q has
an explicit formula via the separation of variables given by the following;:

2

0) = 0 d h 0 &) — (1-1) & em0—¢-7/2)
(21)(0) = 0/ QDT whee Q) =3 T St

with f(¢) := f(R(cos ¢, sin¢)); see Section 2 of [3] for details. For our numerical experi-
ments, we truncate the series to approximate the operator Q, which converges geometrically
in the operator norm (see [3]).

Remark 1. When I' # 0B(0; R), we can define the Dirichlet-to-far-field transformation Q by
using the boundary integral equations. See Section 2 of [12] for a detailed construction.

We now show that the near-field operator N for a sound soft scatterer can be trans-
formed into the far-field operator (see Chapter 2 [12]), using the operator Q. Once we have
shown this, we can employ similar analysis of the direct sampling methods studied in [2].
Recall, that the single layer potential

v(x) = /aD ®(x,w)p(w)ds(w) forany ¢ € L2(aD)

satisfies (12)—(13) with f = ST ¢ as defined in (7). Note that by the mapping properties of
the single layer potential (see Chapter 6 of [19]), we have that the range of ST is a subset
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of H'/2(T'). Therefore, by the asymptotic expansion of the fundamental solution (see, for
example, [17]) we obtain the following relationship:

(25T p)(%) = /a e k9o (w)ds(w) forany ¢ € L2(aD). (14)
D
Now, motivated by (14), we define the trace of the Herglotz wave function on

the boundary 9D as the bounded linear operator H : L*>(S*~1) —— L%(dD) given by
the following:

_ kw2 () Je( o 2(qd—1
(Hg)(w) = /SLH e g(%)ds(%) b forany g€ L°(S"7).

Now, we recall the adjoint operator H* : L?(dD) +— L?(S?~1) such that the following holds:
(Hg, ¢)12(op) = (& H ¢)12ga-1) forall g€ L*(S"!)and ¢ € L*(aD)

which is given by the following:
(H'9)(2) = /a e M g(w)ds(w) forany g € L(aD)
(see, for example, [12] Chapter 2). Therefore, by appealing to (14) we have the following:
QS'¢=H*¢ forany ¢ € L*(D).

From this, we have that the dual operator of (H*) " : L2(S%~1) —— L2(aD) satisfies
the following:

SQ"T = (H*)T  with the operator ((H*)Tg) (w) :== /SDH e koto(2)ds(%)

for all ¢ € L*(S?"1) (see, for example, Chapter 2 of [20]). To continue, we notice the
following:

((H)Tg)(w) = [, ehg(e)ds(s)

where the operator R : L>(S*~1) —— L2(S%71) is given by (Rg)(%) = g(—%). It is clear
that R is a bounded linear operator and R = R 1. By the definition of the operators Q
and R, we can conclude the following:

ONQ'R = H*TH where QNQ'R:L2(S" 1) — L2(S?1) (15)

by appealing to the factorization in (8). Note, by Equation (1.55) in [12], we can conclude
that ONQ TR corresponds to the far-field operator for the scattering problem (1)—(2), where
the incident field is a plane wave.

The imaging functional via far-field transform: We now have all we need to define
two new imaging functionals via the transformed operator QN Q' R. For each sampling
point z € R? the imaging functional via the far-field transform is given by the following:

Wer(z) = ‘(QNQTR%, (])Z) where ¢, (%) = e ¥, (16)

LZ(Sd—l)

Due to the fact that ONQ' R transforms the near-field operator N for (1)—(2) into the
corresponding far-field operator, we can appeal to the results in [2].
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Theorem 1. Let the imaging functional Wrr(z) be as defined by (16). Then, for any sampling
point z € R4\ D, we have the following:

Wep(z) = (’)(dist(z,D)lfd) as  dist(z, D) — co.

Proof. In order to prove the result, we let v; denote the Herglotz wave function for any
x € RY given by the following:

o) = [, e Ig(9) ds(y).

Here, we can see that v, € H} (RY) for any given g € L2(S%~1), which then implies
that vg|yp = Hg € H'/2(3D). Therefore, just as in [2], we see that for any z € R, we have
the following:

[(eNQ™R¢,¢:)

Lasi-) = ’(TH(])Z, quZ)Lz(aD)’ by Equation (15)

< C||H4>Z||12L11/2(3D> by the boundedness of T
= Cl|vg, ”%11/2(3D) by the definition of vy

< Cllvg, ||%{1(D) by the Trace Theorem.

See, for example, [21] for the Trace Theorem. Now, by the definition of the Herglotz wave
function and the Funk-Hecke integral identities (9)—(10), we have the following;:

log. 12 p) = O(dlist(z, D) ¥) as  dist(z,D) — oo

where we used the decay of the Bessel functions. [

The result in Theorem 1 is the same as in Theorem 1 in [2]. This is due to the fact
that we have transformed the near-field operator into the far-field operator. A similar
construction was considered in Section 2.4 of [12], where boundary integral operators were
used. Here, we avoid the complex computational set up by not appealing to boundary
integral operators to define the imaging functional when I is a circle/sphere. By Theorem
2.8 of [4], we have that the imaging functional Wgg(z) is stable with respect to perturbations
in the operator N.

By further appealing to the results in [2], we can construct another direct sampling
imaging functional, using the transformed operator QN QT R. We note that the analysis in
Chapter 1 of [12] gives that the compact operator QN QTR is injective and has a complete
orthonormal eigensystem in L?(S?~1), provided that k? is not a Dirichlet eigenvalue of the
negative Laplacian in D. Let (A;,9;) € C\ {0} x L%(S?~!) be the orthonormal eigensystem
for the operator QN Q " 'R. Therefore, we can define the following:

IQNQTRIPg = Zl |/\j‘p(8r lpj)Lz(Sd—l)wj
j=

for any fixed p > 0, where the set {;} is an orthonormal basis in L2(S%~1). Then, we have
that the factorization method can be used to recover the scatterer D (see for e.g., [15]) which
gives the result that the following is solvable:

|IONQTR|"?g, = ¢, forz € R? (17)

if and only if the sampling point z € D. In [2], a connection between the Tikhonov
regularized solution to (17) was used to develop another imaging functional. To derive
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the new imaging functional, we define the Tikhonov filter function for (17) given by the
following:
Vi

Ty(t) = ar: O™ the interval [O,

QNQTRH]

which is a continuous function on the given interval. Here, we let « > 0 denote the
fixed regularization parameter. See [22] for the study of regularization techniques and the
factorization method. From this, we have that for every € > 0, there is an approximating
polynomial P, ¢(t) such that the following holds:

[|Pae(t) —Ta(t)||1> < € on the interval [O, QNQTRN. (18)
Using the polynomial approximate P, (t) for the filter function, we can define a new
imaging functional.
The imaging functional via Tikhonov regularization: This imaging functional de-
rived from the Tikhonov regularization of (17) for fixed regularization parameter « > 0 and
approximation error ¢ is given by the following:

2

: o\ _ —ikzg
Lasi-) with ¢, (%) =e 7. (19)

Poe(|QNQTR|) ¢

Wrpsm(z) = ‘

where the polynomial P, satisfies Py ¢(t) = T (t) + O(¢) as € — 0. From this, we have the
following result by the analysis in [2]. The imaging functional given in (19) was motivated
by the work in [23], and we extend that work to the case of near-field data. There are some
interesting questions when considering the implementation of the Wrpgp (z) such as the
following: how to pick @ and which polynomial approximation method works best for
constructing P, ¢(f). Even with these unanswered questions, our numerical experiments
show that Wrpgm (z) can provide good restrictions of the scatterer for a simple least-squares
polynomial approximation and without having to find an optimal regularization parameter.

Theorem 2. Let the imaging functional Wrpsp(z) be as defined by (19). Then for any sampling
point z € R4\ D, we have the following: 3 C, > 0 independent of z such that

Wrpsm(z) < CaWrp(z) + O(e) as e —0
for all fixed « > 0 provided that Pye(t) = To(t) + O(€) as € — 0.

Proof. For the proof of Theorem 2, see Section 4 of [2] to avoid repetition. O

The imaging functional provided in (19) is equivalent to the one studied in [2] where
one has the far-field operator, which corresponds to QN QTR. We also note that even
though the stability of the imaging functional Wypgp(z) is not established, our numerical
experiments with added noise in the data still provide good reconstructions. Additionally,
with the numerical experiments provided in [2], it is seen that Wypgpm(z) provides better
reconstructions than Wgg(z) in R3. This is not verified theoretically, but the multiple
examples in [2] would seem to suggest this to be true.

Notice that just like the Dirichlet-to-far-field transformation Q, we can construct the
operator R without a priori knowledge of D. We also see that R can easily and efficiently
be approximated numerically. To do so, we write the operator as an integral operator with
an explicit kernel function. From the fact that £ = (cos 6, sin6) for 0 € [0,27) if d = 2, we
let g(6) = g((cos 8, sinf)). This implies the following:

(Rg)(6) = g(6 + ) (20)
where we used the sum of angles formula to obtain the following equalities:

—cos(f) =cos(0+m) and —sin(f) = sin(6 + 7).
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Now, using the Fourier series for ¢(6), we have the following:

27
=) gne™  where g, = 7 /g(¢)e*‘m4’d4) for all m € Z.
|m|=0 0

Therefore, by the definition of the operator R in equation (20), we obtain the following:

27
(Rg)(6) = / R(6,$)g(¢)dp where R(6,¢) = 7‘ |2 cim(6—p+7)
0 m|=0

by using (20) as well as the Fourier series for g. In order to numerically compute the
direct sampling methods imaging functionals, we need a way to compute (Rg)(6). To this
end, we give a result that implies that R can be approximated by a truncated series for
sufficiently smooth g.

Lemma 1. Let R : HP(0,2m) +— L2(0,27) be the operator defined by (20) and
Ry : HP(0,27t) — L%(0,27) be the truncated series for some M € N with p > 0. Then
we have norm-convergence with the convergence rate given by the following:

1
IR = Rmllur 0, p7) 120027 = O(Mp>/ as M — co.

Proof. To begin, we clearly see the following:

— = i 3 im(0+7)
(R—Rm)g = = Z me .
[m|=M+1

To prove the claim, we now estimate the L?(0,27t)-norm of (R — Rp;)g which is given by
the following:

[e0]

H(R RM)gHLZ 027) — Z |eimngm‘2-
[m|=M+1

where we have used the fact that [e””| = 1 for any m € Z. Now, we have the following

estimate:

& (1+[m)P o
(R —Rwm)gll? - |gm]
8l2(0,27) ‘m|§4+1 1+ |mP)? 8m

1 [ee)

<——0= Y (14 [mP)P|gnl?
2
(1+M ey v I

> sz ||8||Hn 0.2m)*
Taking the supremum over g with unit norm in H” (0, 27r) proves the claim. [

Remark 2. Even though we only focus on the analysis in R?, it is clear that one can define R
similarly in R3. In R3, one can use spherical harmonics to define the operator as well as prove a
similar approximation result as in Lemma 1.

Recall that in order to compute the imaging functionals Wgg(z) and Wrpgm(z) given
by Equations (16) and (19), respectively, we need to evaluate R¢,. Since ¢, is given by a
plane wave, we have that it is a smooth function. This implies that Rp;¢, ~ R¢., where
the truncation M can be taken to be reasonably small. In Section 5, we see that M = 10
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gives good reconstructions of the scatterer D when used to truncate the operators R and Q
for both of the imaging functionals studied in this section.

4. Direct Sampling with Cauchy Data

In this section, we consider another direct sampling method imaging functional
provided that one has access to the Cauchy data for the scattering problem (1)—(2). The
main idea is to use the representation of the solution given in (5) to establish the resolution
analysis. The imaging functional we consider was studied for the case when the scatterer
is either isotropic or anisotropic in [3]. The analysis of the imaging functional studied here
was not done for the case of a sound soft scatterer, which is the case in this paper. Therefore,
in this section, we assume that we have the ‘measured’ Cauchy data.

Remark 3. Notice that if only the scattered field u’(x,y) is given for all x,y € T, then one can
compute the normal derivative d,u°(x,y) on I'. This can be done by computing the scattered field
on the exterior of Int(T') by using a similar formulation as in (3).

The imaging functional for Cauchy data: Assume that we have the Cauchy data
u®(x,y) and o,u°(x,y) for all x,y € T that corresponds to the scattering problem (1)—(2).
Then, we define the following imaging functional:

Wep(z /‘/ 9y CI> (x,2)u’(x,y) — ®(x,z)0,u’(x,y)ds(x) pds(y) (21)

where p > 0 is a positive constant. Here, again, ® corresponds to the radiating fundamental
solution to Helmholtz equation. Additionally, the normal derivative, with respect to the x
variable, is such that 9, = v(x) - V forany x € T.

In order to analyze the imaging functional Wcp(z), we first recall that by (5), we have
that the scattered field is given by the following:

u(x,y) = /E)D O(x,w)[TO(-,y)] (w)ds(w) forany x,yeTl

where T : H'/2(dD) — H~1/2(3D) is a bounded linear operator, provided that k? is not a
Dirichlet eigenvalue of the negative Laplacian in D. We derive an equivalent expression for
the imaging functional Wep(z) such that the dependence on 9D is made more explicit. To
this end, by taking the normal derivative on I' of the above representation of the scattered
field, we have the following:

1 (x,y) = /BD 0,P(x,w)[TP(-,y)] (w)ds(w) forany x,yeT.

Notice that by using the above representations of the Cauchy data for u°(x,y) and
dyu’(x,y), we have the following:

9, D(x,2)u’(x,y) — P(x,2)d,u’ (x,y)ds(x)

)/BD P(x,w)TP(-,y)ds(w) — P(x,2) /EiD @ (x,w)TP(-,y)ds(w)|ds(x)

x,2)P(x,w) — ®(x,2)d,P(x, )}TCD( ,y)ds(w) ds(x)

D
/81, x,2)P(x,w) — ®(x,2)d,D(x, w)ds(x )} TO(-,y)ds(w).

From the analysis in Section 2.2 of [3] we have the following:

%%@(z,w) = /F[BVCD(x,z)CD(x,w) - dD(x,z)avd)(x,w)}ds(x).

1
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This is a simple consequence of Green’s second identity and the symmetry of the fun-
damental solution. Therefore, we have that the imaging functional is equivalent to the
following:

D %J(D(Z w)[Td)(.,y)](w)ds(w) pds(y)

o(k|w — z|) if d=2,
IO(z,w) = {

jo(klw —z|) if d=3.

Wep(z) = /

where we recall that

As we see by the equivalent representation of Wep (z), we have that the inner integral
is in terms of a Bessel function kernel, which will be maximal when z is on 9D but will
decay as the sampling point moves away from the scatterer.

Theorem 3. Let the imaging functional Wep(z) be as defined by (21). Then for any sampling
point z € R4\ D, we have the following:

Wep(z) = O(dist(z,D)(lfd)pﬂ) as dist(z,D) — oo for d =2,3.

Proof. To begin, we first recall that T : H/2(dD) +— H~1/2(dD) is a bounded linear
operator, provided that k? is not a Dirichlet eigenvalue of the negative Laplacian in D.
Therefore, we have the following estimates:

weo() = [|[ %«@(z W)Te(-,y))(w)ds(ew)] sty
< C||SP(z, H1/2(aD / |ITD(, HH 1/2(aD)d s(y) by the dual-pairing
< C|ISD(z, H1/2 aD) /HCD Hl/z(aD) ds(y) by the boundedness of T
< ISPz ) mp /||<1> ds(y) by the Trace Theorem.

Notice that ®(-,y) restricted to the scatterer D is a smooth function for every y € T
since we have assumed that dist(I, D) > 0. Then, we obtain the following:

JIRC s ) 850) = 190y o

which is a fixed constant depending on D and I'. Therefore, we have the following;:
Wep(2) < ClIS®(z,) Iy
and we then use the fact that
o (k| - =zl (py = O(dist(z,D)7"/2) and [ljo(k| - —z)|[151(p) = O(dist(z, D) ")

as dist(z, D) — oo, which proves the claim. [

Note, that the imaging functional in this section does not require a transformation
of the data as in the previous section, but one does need both pieces of Cauchy data. In
order to have an explicit decay rate for the direct sampling functionals as dist(z, D) — oo,
one must either transform the near-field data or use the Cauchy data in the reconstruction.
This is due to the fact that when deriving bounds for the imaging functionals using just
the scattered field as in reverse time migration, one uses the Helmholtz—Kirchhoff integral
identity. This integral identity has a leading order term that is bounded as dist(z, D) — co.
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This is in contrast to the Funk—Hecke integral identity, which can be evaluated explicitly
using Bessel functions, which has a well-established asymptotic decay rate.

5. Numerical Examples

In this section, we present some numerical examples in R? to show the applicability
of the imaging functionals studied in the previous sections. All of our experiments are
done with the software MATLAB 2018a on a 2017 iMac with a 4.2 GHz Intel Core i7 processor
with 8 GB of memory. In our examples, we take the scattering obstacle D to be a star-like
region with respect to the origin for simplicity. Therefore, we take the the boundary of the
scatterer to be given by the following;:

0D =r(0)(cos,sinf) forall 0<6<2m

where the radial function r(6) > 0 is a smooth 27t period function. The radial functions we
consider in our examples are given by the following:

r(d) = 0.5 circular domain,
r() = 025(2+0.5co0s(30)) acorn-shaped domain.
r(6) 0.75(1 — 0.25sin(40)) flower-shaped domain,
1 ~1/10
r(@) = 05 (\ sin(0)]'0 + ﬁ\ cos(6) \10) rounded-square domain.

Here, we take I = 9B(0; R) with R = 5 in all our examples. The locations of the
sources are given by y; = 5( cos 6;,sin 6;) for 64 equally spaced points 6; € [0,277). In order
to compute the simulated scattering data, we assume that the scattered field has the series
representation in R? \ D such that the following holds:

w(x,y) = ) am(yj)Hf;)(k\x\)eime“‘ foreach y; €Tl
|m|=0

where H,S} ) is the first-kind Hankel function of the order m. The coefficients (depending
only on y;) ay, in the series representation are determined by the boundary condition on
dD. To compute the scattering data, we solve 1°(-, y;) = —®(-,y;) on 9D for the truncated
series, where |m| = 0, - - -, 15 on the discretized boundary r(6,) ( cos Oy, ,sin 0y,) where
6y, € [0,27) are 64 equally spaced points. This implies that each j gives a 64 x 31 linear
system for the coefficients «,, which is solved via the spectral cut-off since the resulting
matrix is highly ill-conditioned. In our examples, the condition number of the linear system
used to solve for the scattered field is on the order of 101°. Therefore, we take the cut-off
parameter to be 10> in all the examples presented. Once the coefficients are computed,
we have that the approximation of the scattering data on I is given by the following;:

15 .
u® (xj, yj) ~ ) ocm(yj)Hg,})(5k)e‘m9Xi

|m|=0

and
15
s k i .
(v, yi) = Y ocm(yj)i(H,S}zl(Sk)—HSJ)rl(Sk))e’”ex,
|m|=0

where we have used the recursive relations for Bessel functions to compute the derivative
of Hankel functions. In many applications, the measured scattering data are given with
random noise, so we let 4 denote the noise level. Therefore, we have that in our simulations,
the noisy data are given by the following:

us"s(xi,y]-) = u’(x;,y;) (14 0E;;) and avus"s(x,-,y]-) = dyu® (x;, ¥j) (14 OE; ;)
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where E is the random complex-valued matrix of size 64 x 64 with norm ||E||, = 1.

In order to compute the imaging functional Wgg(z), we truncate the series representa-
tions (just as above) of the kernel functions for the operators Q and R, as well as employ
a standard 64-point Riemann sum approximation for the integrals. This gives 64 x 64
discretization of the operators denoted by Q and R. The discretization of the operators is
computed via the following;:

Q = [Q(6x,, 0« )L] , and R=[R(by,0.)]};

Lj=1
Here, we take the following:

(1 _ 1) 10 oim(0—¢—m/2)

0,¢) =
Qe 2mV/7k o Hy, (5K)

10
and R(6,¢) = Z m(O=¢+m)

which is the truncated series approximation for the given operators defined in (11) and (20).
To visualize the scatterer, we plot the following:

with ¢, = [e—ikz-a?lr . ,e—ikz-3?64]T

Wer(2) = | (QNQRg.,92) |

where £; = (cosfy,,sinfy,) withi = 1,---,64. Here, N = [u® (xl,y])]lj ,and ppis a
positive parameter to sharpen the resolution of the image (see, for example, [4]).

Now for the imaging functional Wypgp(z), we must construct the polynomial approx-
imate P, ¢(t) for the filter function I () defined in the previous section. Here, we proceed
just as in [2], where P, (t) is constructed such that

t
Pelt Zcmt such that p,,(,g(t,g):%
4

with t, given by the 10 equally spaced points in the interval [0, | QNQ " R||,], where we
use a spectral cut-off with parameter 107> in order to solve for the coefficients of the
polynomial P, . In all our examples, we fix the parameter « = 10~ since, in general,
we want the filter function to be an approximation of 1/+/t. Therefore, we have that the
imaging functional Wrpsy(z) can be numerically approximated using the singular value
decomposition of ONOQ 'R. Indeed, by following [2], we have that the discretization of the
imaging functional is given by the following:

P2
Wrpsm (2 2 si)|( ]/<Pz)z2|2

where (sj,vj) € Ry x C% are the singular values and right singular vectors of QNQ 'R.
The singular value decomposition is computed via the built-in svd command in MATLAB.
Again, p; is a positive parameter to sharpen the resolution. For the last imaging functional
Wep(z), we approximate the integrals, using a standard 64-point Riemann sum approxi-
mation in each variable. In each case, we normalize the imaging functionals to take 1 as the
maximal values. Therefore, we have that the imaging functionals should be approximately
1in D or on the boundary 0D and will take small values on the exterior of D.

Example 1 (Circular Scatterer). For this example, we plot the imaging functionals to recover a
circle. Therefore, we have that the radial function describing the scatterer is given by r(6) = 0.5.
Here, we take the wave number k = 4 as well as the parameters pl = p2 = 4and p = 8. The
dotted line represents the actual boundary of the circular obstacle in Figure 1.
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Reconstruction by WFF(z) with p1=4

2 1 2
‘ 0.9
15 w 15
08
1 1
0.7
05 - 05
0 B 0.5 0
0.4
-05 05
0.3
A El
0.2
15 o A5
2 2
2 15 1 05 0 05 1 15 2 P

Figure 1. The reconstruction of the circular obstacle by the three direct sampling imaging functionals. In this example, we

Reconstruction by WTDSM(z) with p2=4 Reconstruction by WCD(z) with p=8

take § = 0.05, which corresponds to a 5% noise level.

Example 2 (Acorn-Shaped Scatterer). Now, we present a numerical example for recovering an
acorn-shaped obstacle. Here, the radial function describing the scatterer is given by

r(0) = 0.25(2+0.5cos(30)).

For this example, we again take the wave number k = 4 as well as pl = p2 =4 and p = 8. The
dotted line represents the actual boundary of the acorn-shaped obstacle in Figure 2.

Reconstruction by WFF(z) with p1=4 Reconstruction by WTDSM(Z) with p2=4 Reconstruction by W cn(z) with p=8

Figure 2. The reconstruction of the acorn-shaped obstacle by the three direct sampling methods. In this example, we take
0 = 0.05, which corresponds to a 5% noise level.

Example 3 (Flower-Shaped Scatterer). Now, we present a numerical reconstruction for a flower-
shaped obstacle, where the radial function is given by the following:

r(6) = 0.75(1 — 0.25sin(46)).

For this example, we again take the wave number k = 4 as well as p1 = p2 = 4and p = 8.
The dotted line represents the actual boundary of the flower-shaped obstacle in Figure 3.
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Reconstruction by W____(z) with p2=4 Reconstruction by W ., (2) with p=8

Reconstruction by WFF(z) with p1=4 rDsM!

Figure 3. The reconstruction of the flower-shaped obstacle by the three direct sampling methods. In this example, we take
0 = 0.05, which corresponds to a 5% noise level.

Example 4 (Rounded-Square Scatterer). Now, we present a numerical reconstruction for a
rounded square-shaped obstacle, where the radial function is given by the following:

. 1 -1/10
r(0) = 0.5(| sin(0)[" + 75| cos(e)\w) .

For this example, we again take the wave number k = 4 as well as p1 = p2 =4 and p = 8. The
dotted line represents the actual boundary of the rounded-square in the figures. Here, we provide the

reconstruction for two different noises levels in Figures 4 and 5.

Reconstruction by W_(z) with p1=4 Reconstruction by W, . (2) with p2=4

2 1 1
15 o 15 09 -
08 <08
1
07 “o7
05 - 05 {os ts
o 0s 05
04 04
05 05 -05
03 03
] g .
02 02
4 - -
15 0 15 01 o
2 2 -
2 15 4 05 0 05 1 15 2 B a4 - 5 2 g

Figure 4. The reconstruction of the rounded square by the three direct sampling imaging functionals.

Reconstruction by W, (2) with p=8

In this example, we take 6 = 0.05, which corresponds to a 5% noise level.

Reconstruction by W__(2) with p1=4 Reconstruction by W (2) with p2=4

1
0s
08
o7
0s
0s
04
03
02
01

2 A5 4 05 0 05 1 15 2

Reconstruction by W, (z) with p=8

1 2 1
09 T 09
08 08
1
o7 o7
o6 ok 06
08 0 0s
04 04
05
03 03
4
0z 02
01 -5 o1
2
2 2 5 4 05 0 05 1 15 2

Figure 5. The reconstruction of the rounded square by the three direct sampling imaging functionals.

-1
15
2

In this example, we take § = 0.25, which corresponds to a 25% noise level.

In the presented examples, we see that each imaging functional is stable with noise
added to the data. This was noticed in [4], where large amounts of noise were added to the
data, which do not seem to affect the reconstruction much. As we see in Figures 4 and 5,
there is little to no difference in the reconstructions when the noise level is increased. We
also see that the reconstructions are similar in many cases, which is due to the fact that
with the choice of parameters, we have that the three imaging functionals should have the
same decay rate as dist(z, D) — oo. Next, we present two examples with partial aperture
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data. Notice that the imaging functionals discussed here require full aperture data on the
measurement surface I'.

Example 5 (Partial Aperture Data for the Rounded-Square). Here, we provide two examples
of reconstructing the rounded-square shaped obstacle with partial aperture data. Again, we take the
wave number k = 4 as well as pl1 = p2 = 4 and p = 8, where we use the imaging functionals with
data only given on 3/4 and 1/2 of the measurement surface.

In Figures 6 and 7, we see that Weg(z) and Wrpsm (z) seem to give better reconstruc-
tions than Wcp(z) for partial aperture data. Recently, in [24,25], some data completion
methods were used to compute the missing scattering data, which were then used by
a qualitative method to recover the scatterer. Applying these data completion methods
can possibly be employed to provide better reconstructions with partial aperture data.
Additionally, to derive a theoretically valid estimate for the imaging functions with partial
aperture data, one should be able to use Theorem 4.1 in [26].

Reconstruction by W,_(z) with p1=4 Reconstruction by W, . (2) with p2=4 Reconstruction by W, (2) with ;=8

2 1 2 1 1
09 09 09
15 } 15 15
08 08 08
) |
lo7 07 07
05 LS 05 - 05 s
o 05 05 05
04 04 04
05 05 05
03 03 03
02 02 02
A5 15 15
01 01 01
2 2 2
2 5 4 05 0 05 1 15 2 2 45 4 05 0 05 1 15 2 2 45 4 05 0 05 1 15 2

Figure 6. The reconstruction of the rounded square with 3/4 partial aperture data, i.e., measurements

only taken on 6; € [0,371/2). In this example, we take & = 0.05 which corresponds to a 5% noise level.

Reconstruction by W (z) with p1=4 Reconstruction by W, o, (2) with p2=4

Reconstruction by W, (2) with =8

1

09

08

o7

0s

05

. 04

03

: 02

o o1
: 2 -15 - -05 [ 05 1 15 g

Figure 7. The reconstruction of the rounded square with 1/2 partial aperture data, i.e., measurements

only taken on 9]- € [0, 7). In this example, we take § = 0.05, which corresponds to a 5% noise level.

We now wish to provide further evidence that the imaging functionals Wgg(z) and
Wrpsm(z) provide better reconstructions with partial data. To this end, we provide two
more examples for the acorn- and flower-shaped scattering obstacles, using 1/2 partial
aperture data. Again, we plot all three functionals studied in the previous sections.

Example 6 (Partial Aperture Data for Non Convex Scatterer). In order to show that the
imaging functionals Wrr(z) and Wrpgpm (z) provide better reconstructions with partial data, we
provide two more examples with 1/2 partial aperture data, i.e., measurements only taken on
0; € [0, 7). As in the other examples, we take the wave number k = 4 as well as p1 = p2 = 4 and
o = 8, where we recover the acorn- and flower-shaped obstacles.

As we see in Figures 8 and 9, the imaging functionals Wgg(z) and Wrpgm(z) still
outperform Wcp(z). Therefore, in the case of partial aperture data, the post-processing step
of transforming the near-field data into far-field data is advantageous. This is especially
useful for recovering non-convex shapes, where the non-convex part of the boundary is in
the shadow region (i.e., where measurements are not given). We see this numerically in
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the case of the acorn- and flower-shaped obstacles that these functionals provide favorable
reconstructions, even in the shadow region.

Reconstruction by WFF(z) with p1=4 Reconstruction by WTDSM(I) with p2=4 Reconstruction by WCD(z) with p=8

2 2
0.9
08
07
06
05
04
03

02

2 -1 0 b | 2 2 -1 0 1 2 2 -1 0 1 2

Figure 8. The reconstruction of the acorn-shaped obstacle with 1/2 partial aperture data. In this
example, we take § = 0.05, which corresponds to a 5% noise level.

Reconstruction by W, cl:'(z) with p=8

Reconstruction by WFF(z] with p1=4 Reconstruction by WTDSM(z) with p2=4
2 1 2 1

2 -1 0 | 2

Figure 9. The reconstruction of the flower-shaped obstacle with 1/2 partial aperture data. In this
example, we take § = 0.05, which corresponds to a 5% noise level.

Example 7 (‘3D’ Reconstruction of the Unit Sphere). For completeness, we provide an example
of reconstructing the unit sphere centered at the origin, using the imaging functionals Wrp(z) and
Wrpsm(z). Here, we assume that T = 0B(0; R) with R = 5 in three dimensions. In order to
compute the scattered field u®, we use the following formula (see, for example, Chapter 2 of [27]):

. N Y (5k) _ A
w(x,y) = — n;o(zn + 1)h,(1T(k) /SZ P(w,y)Ly (aJ . x) ds(w).

Here, L, is the Legendre polynomial of degree n, and h,gl) is the first-kind spherical Hankel

function of the order n. The vectors on the unit sphere W and X are given by the following:

@ = (sin(0y) cos(¢w), sin(6y) sin(Pw), cos(Gw))—r
as well as the following:
X = (sin(6y) cos(¢x), sin(x) sin(¢x), cos(@,c))—r
with azimuthal angle 6 € [0, 7r) and polar angle ¢ € [0,27). In this example, we recover the

projection of the unit sphere in R? (i.e., azimuthal angle @ = 7t/2) by using the approximation of
the near-field data as follows:

10 h(l)(Sk)
w(x,y)~—Y 2n+1)"2 | ®(D,y;)Ly (D - x;) ds(w).
-l nY (k) -/SZ Y

Here, the points x;,y; € dB(0; R) with R = 5 are given by x; = 5%; with the following:

X = (cos(¢y,), sin(¢x,), 0)T and y; = 5( cos(¢y;), sin(¢y,), 0)T
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where ¢z, ¢y, € [0,27) are 64 equally spaced points. In order to compute the integrals, we first
write them in spherical coordinates such that the following holds:

/Sz F(w)ds(w) = /O " /0 nP(ew, Pw) sin(6y) dby d.

Then, to numerically approximate the integrals, we use the integral2 command in MATLAB.
Since we have projected the data into two spacial dimensions, we can employ the method used for
the previous examples. We take the wave number k = 1 as well as pl = p2 = 1 in this example.

Example 8 (Partial Aperture Data for the Unit Sphere). For this example, we consider recov-
ering the projection of the unit sphere in R? with partial aperture data. Here, we assume that
there are sources and receivers only on the upper half of the collection curve. To this end, we again
use the method discussed in the previous example to compute the scattered field. Therefore, we
have the approximated scattered field u*(x;,y;) where the points x;,y; € 0B(0; R) are given by
the following:

x; = 5(cos(¢x,), sin(¢x,), O)—r and y; = 5(cos(¢y;), sin(¢y,), 0)—r

where ¢x;, Py, € [0, 7t) are 32 equally spaced points. For this example, we take the wave number
k=1aswellas pl = p2 = 2.

Again, we see that the functionals with the far-field transformations are able to recover
the obstacle even with ‘3D” measurements given in Figures 10 and 11. Additionally, notice
that there is little to no difference in the reconstruction when one has a substantial amount of
noise in the data. Lastly, we see that the imaging functional gives favorable reconstruction
for ‘3D’ data with partial aperture data given by Figure 12.

Reconstruction by WFF(z) with p1=1 Reconstruction by WTDSM(z) with p2=1

2 1 2 1

0.9 0.9

1.5 1.5
0.8 0.8

1 1
0.7 0.7

0.5 0.5
0.6 0.6
0 0.5 0 0.5
0.4 0.4

-0.5 -0.5
0.3 0.3

-1 -1
0.2 0.2
-1.5 b -1.5 b

-2 -2

2 -15 -1 -0.5 0 0.5 1 1.5 2 2 -15 -1 -0.5 0 0.5 1 1.5 2

Figure 10. The reconstruction of the unit sphere by the direct sampling imaging functionals. In this

example, we take 6 = 0.05, which corresponds to a 5% noise level.
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Reconstruction by WFF(z) with p1=1

2 1 2
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Figure 11. The reconstruction of the unit sphere by the direct sampling imaging functionals. In this

Reconstruction by WTDSM(z) with p2=1

example, we take 6 = 0.25, which corresponds to a 25% noise level.

Reconstruction by WFF(z) with p1=2

2 1 2
0.9

1.5 1.5
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.5 0.5
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Figure 12. The reconstruction of the unit sphere with 1/2 partial aperture data by the imaging

Reconstruction by wTDsM(z) with p2=2

o

o

2 -15 -1 -0.5 0 0.5 1 1.5 2

functionals. In this example, we take 6 = 0.05, which corresponds to a 5% noise level.

6. Conclusions

In this paper, we have developed new direct sampling methods for near-field mea-
surements. We focused on the case where the scatterer is a sound-soft obstacle, but just
as in [3], we see that these imaging functionals should work for other types of scatterers.
This is one of the main advantages of direct/qualitative reconstruction methods, but these
methods do require full aperture data for their theoretical justification. Our numerical
experiments seem to suggest that the imaging functionals derived by a far-field trans-
formation provide reasonable results with partial aperture data. A direction in which
this research can progress is to develop theoretical justification for the resolution analysis
for new direct sampling methods with partial aperture data. Just as in [28,29], one can
study the problem with multi-frequency data, which can often help reduce the amount of
sources and receivers. One would need to factorize the corresponding multi-frequency
data operator as is done in [30].
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