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Abstract The exploration of complex physical or technological processes usually
requires exploiting available information from different sources: (i) physical laws
often represented as a family of parameter dependent partial differential equations
and (ii) data provided by measurement devices or sensors. The amount of sensors
is typically limited and data acquisition may be expensive and in some cases even
harmful. This article reviews some recent developments for this “small-data” scenario
where inversion is strongly aggravated by the typically large parametric dimension-
ality. The proposed concepts may be viewed as exploring alternatives to Bayesian
inversion in favor ofmore deterministic accuracyquantification related to the required
computational complexity. We discuss optimality criteria which delineate intrinsic
information limits, and highlight the role of reduced models for developing efficient
computational strategies. In particular, the need to adapt the reduced models—not
to a specific (possibly noisy) data set but rather to the sensor system—is a central
theme. This, in turn, is facilitated by exploiting geometric perspectives based on
proper stable variational formulations of the continuous model.

1 Introduction

Modern sensor technology and data acquisition capabilities generate an ever increas-
ing wealth of data about virtually every branch of science and social life. Machine
learning offers novel techniques for extracting quantifiable information from such
large data sets. While machine learning has already had a transformative impact on
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a diversity of application areas in the “big-data” regime, particularly in image clas-
sification and artificial intelligence, it is yet to have a similar impact in many other
areas of science.

Utilizing data observations in the analysis of scientific processes differs from tra-
ditional learning in that one has the additional information that these processes are
described by mathematical models—systems of partial differential equations (PDE)
or integral equations—that encode the physical laws that govern the process. Such
models, however, are often deficient, inaccurate, incomplete or need to be further cal-
ibrated by determining a large number of parameters in order to accurately represent
an observed process. Typical guiding examples are Darcy’s equation for the pressure
in ground-water flow or electron impedance tomography. Both are based on second
order elliptic equations as core models. The diffusion coefficients in these examples
describe premeability or conductivity, respectively. The parametric representations
of the coefficients could arise, for instance, from Karhunen-Loève expansions of a
random field that represent “unresolvable” features to be captured by the model. In
this case the number of parameters could actually be infinite.

The use of machine learning to describe complex states of interest or even the
underlying laws, solely through data, seems to bear little hope. In fact, data acquisi-
tion is often expensive or even harmful as in applications involving radiation. Thus, a
severe undersampling poses principal obstructions to state or parameter estimation
by solely processing observational data through standard machine learning tech-
niques. It is therefore more natural to try to effectively combine the data information
with the knowledge of the underlying physical laws represented by parameter depen-
dent families of PDEs.

Methods that fuse together data-driven and model-based approaches fall roughly
into two categories. One prototype of a data assimilation scenario arises in meteorol-
ogy where data are used to stabilize otherwise chaotic dynamical systems, typically
with the aid of (stochastic) filtering techniques. A second setting, in line with the
above examples, uses an underlying stable continuous model to regularize otherwise
ill-posed estimation tasks in a “small-data” scenario. Bayesian inversion is a promi-
nent way of regularizing such problems. It relaxes the estimation task to asking only
for posterior probabilities of states or parameters to explain given observations.

The present article reviews some recent developments on data driven state and
parameter estimation that can be viewed as seeking alternatives to Bayesian inver-
sion by placing a stronger focus on deterministic uncertainty quantification and its
relation to computational complexity. The emphasis is on foundational aspects such
as the optimality of algorithms (formulated in an appropriate sense) when treating
estimation tasks for “small-data” problems in high-dimensional parameter regimes.
Central issues concern the role of reduced modeling and the exploitation of intrinsic
problem metrics provided by the variational formulation of the underlying con-
tinuous family of PDEs. This is used by the so called Parametrized Background
Data-Weak (PBDW) framework, introduced in [20] and further analyzed in [4], to
identify a suitable trial (Hilbert) spaceU that accommodates the states and eventually
also the data. An important point is to distinguish between the data and correspond-
ing sensors—here linear functionals in the dual U′ of U—from which the data are
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generated. This will be seen to actually open a geometric perspective that sheds light
on intrinsic estimation limits. Moreover, in the deterministic setting, a pivotal role
is played by the so called solution manifold, which is the set of all states that can be
attained when the parameters in the PDE traverse the whole parameter domain.

Even with full knowledge of a state in the solution manifold, to infer from it a
corresponding parameter is a nonlinear severely ill-posed problem typically formu-
lated as a non-convex optimization problem. On the other hand, state estimation from
data is a linear, and hence a more benign inversion task mainly suffering under the
current premises from a severe undersampling. We will, however, indicate how to
reduce, under certain circumstances, the latter to the former problem so as to end up
with a convex optimization problem. This motivates focusing in what follows mainly
on state estimation. A central question then becomes how to best invoke knowledge
on the solution manifold to regularize the estimation problem without introducing
unnecessarily ambiguous bias. Our principal viewpoint is to recast state estimation
as an optimal recovery problem which then naturally leads one to explore the role
and potential of reduced modeling.

The layout of the paper is as follows. Section2 describes the conceptual frame-
work for state estimation as an optimal recovery task. This formulation allows the
identification of lower bounds for the best achievable recovery accuracy.

Section3 reviews recent developments concerning a certain affine recovery
scheme and highlights the role of reduced models adapted to the recovery task.
The overarching theme is to establish certified recovery bounds. When striving for
optimality of such affine recovery maps, high parameter dimensionality is identified
as a major challenge. We outline a recent remedy that avoids the Curse of Dimen-
sionality by trading deterministic accuracy guarantees against analogs that hold with
quantifiable high probability.

Even optimal affine reduced models can, in general, not be expected to realize the
benchmarks identified in Sect. 2. To put the results in Sect. 3 in proper perspective, we
comment in Sect. 4 on ongoing work that uses the results on affine reduced models
and corresponding estimators as a central building block for nonlinear estimators.
We also indicate briefly some ramifications on parameter estimation.

2 Models and Data

2.1 The Model

Technological design or simulating physical processes is often based on continuum
models given by a family

R(u, y) = 0, y ∈ Y, (2.1)

of partial differential Equations (PDEs) that depend on parameters y ranging over
a parameter domain Y ⊂ Rdy . We will always assume uniform well-posedness of
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(2.1): for each y ∈ Y, there exists a unique solution u = u(y) in some trial Hilbert
space U which satisfies R(u(y), y) = 0.

Specifically, we consider only linear problems of the form Byu = f , that is,

R(u, y) = f − Byu. (2.2)

Here f belongs to the dual V′ of a suitable test space V and By is a linear operator
acting from U to V′ that depends on y ∈ Y. Here, uniform well-posedness means
then that By is boundedly invertible with bounds independent of y. By the Babuška-
Banach-Nečas Theorem, this is equivalent to saying that the bilinear form

(u, v) %→ by(u, v) := (Byu)(v) (2.3)

satisfies the following continuity and inf-sup conditions

sup
u∈U

sup
v∈V

by(u, v)
‖u‖U‖v‖V

≤ Cb and inf
u∈U

sup
v∈V

by(u, v)
‖u‖U‖v‖V

≥ cb > 0, y ∈ Y, (2.4)

together with the property that by(u, v) = 0, u ∈ U, implies v = 0 (injectivity ofB∗
y ).

The relevance of this stability notion lies in the entailed validity of the error-residual
relation

C−1
b ‖f − Byv‖V′ ≤ ‖u(y) − v‖U ≤ c−1

b ‖f − Byv‖V′ , v ∈ U, y ∈ Y, (2.5)

where ‖g‖V′ := sup{g(v) : ‖v‖V = 1}. Thus, errors in the trial norm are equivalent
to residuals in the dual test norm which will be exploited in what follows.

For a wide range of problems such as space-time variational formulations, e.g.
of parabolic or convection-diffusion problems, indefinite or singularly perturbed
problems, the identification of a suitable pair U,V that guarantees stability in the
above sense is not entirely straightforward. In particular, trial and test space may
have to differ from each other, see e.g. [6, 11, 17, 23] for examples as well as some
general principles.

The simplest example, used for illustration purposes, is the elliptic family

R(u, y) = f + div (a(y)∇u), (2.6)

set in ! ⊂ Rdx where dx ∈ {1, 2, 3}, with boundary conditions u|∂! = 0. Uniform
well-posedness follows then forU = V = H 1

0 (!) if we have for some fixed constants
0 < r ≤ R < ∞ the bounds

r ≤ a(x, y) ≤ R, (x, y) ∈ ! × Y, (2.7)

readily implying (2.4).
Aside from well-posedness, a second important structural property of the model

(2.1) is affine parameter dependence. By this we mean that
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Byu = B0u +
dy∑

j=1

yjBju, y = (yj)j=1,...,dy ∈ Y, (2.8)

where the operators Bj : U → V′ are independent of y. In turn, the residual has a
similar affine dependence structure

R(u, y) = R0(u)+
dy∑

j=1

yjRju, R0(u) := f − B0u, Rj = −Bj. (2.9)

For the example (2.6) such a structure is encountered for affine parametric represen-
tations of the diffusion coefficients

a(x, y) = a0(x)+
dy∑

j=1

yjθj(x), (x, y) ∈ ! × Y, (2.10)

i.e., the field a is expanded in terms of some given spatial basis functions θj. As
indicated earlier, the pressure equation in Darcy’s law for porous media flow is
an example for (2.6) where the diffusion coefficient a(y) of the form (2.10) may
arise from a stochastic model for permeability via a Karhunen-Loève expansion. In
this case (upon proper normalization) y ∈ [−1, 1]N has, in principle, infinitelymany
entries, that is dy = ∞. However, due to (2.7), the θj should then have some decay
as j → ∞ which means that the parameters become less and less important when j
increases. Another example is electron impedance tomography involving the same
type of elliptic operator where parametric expansions represent possible variations of
conductivity often modeled as piecewise constants, i.e., the θj could be characteristic
functions subordinate to a partition of !. In this case data are acquired through
sensors that act through trace functionals greatly adding to ill-posedness.

A central role in the subsequent discussion is played by the solution manifold

M = u(Y) := {u(y) : y ∈ Y} (2.11)

which is then the range of the parameter-to-solution map u : y %→ u(y) comprised of
all states that can be attained when y traverses Y. Without further mention, M will
be assumed to be compact which actually follows under standard assumptions met
in all above mentioned examples.

Estimating states inM or corresponding parameters frommeasurements requires
the efficient approximation of elements in M. A common challenge encountered
in all such models lies in the inherent high-dimensionality of the states u = u(·, y)
as functions of dx spatial variables x ∈ ! and dy . 1 parametric variables y ∈ Y.
In particular, when dy = ∞ any calculation, of course, has to work with finitely
many “activated” parameters whose number, however, has to be coordinated with the
spatial resolution of a numerical scheme to retain model-consistency. It is especially
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this issue that hinders standard approaches based on first discretizing the parametric
model because rigorously balancing spatial and parametric uncertainties becomes
then difficult.

What renders such problem scenarios nevertheless numerically tractable is a fur-
ther property that will be implicitly assumed in what follows, namely that the Kol-
mogorov n-widths of the solution manifold

dn(M)U := inf
dimUn=n

sup
u∈M

inf
v∈Un

‖u − v‖U (2.12)

exhibits at least some algebraic decay

dn(M)U ! n−s (2.13)

for some s > 0, see [13] for a comprehensive account.
For instance, this is known to be the case for elliptic models (2.6) with (2.7), as

a consequence of the results of sparse polynomial approximation of the parameter
to solution map y %→ u(y) established e.g. in [15]. More generally, (2.13) can be
established under a general holomorphy property of the parameter to solution map,
as a consequence of a similar algebraic decay assumed on the n-widths of the param-
eter set, see [14]. For a fixed finite number dy < ∞ of parameters, under certain
structural assumptions on the parameter representations (e.g. piecewise constants on
checkerboard partitions) one can even establish (sub-) exponential decay rates, see
[2] for more details. Assuming s in (2.13) to have a “substantial” size for any range
of dy, is therefore justified.

In summary, the results discussed below are valid and practically feasible for well
posed linear models (2.4) with affine parameter dependence (2.9) whose solution
manifolds have rapidly decaying n-widths (2.13).

2.2 The Data

Suppose we are given data w = (w1, . . . ,wm)
/ ∈ Rm representing observations of

an unknown state u ∈ U obtained through m linearly independent linear functionals
$i ∈ U′, i.e.,

wi = $i(u), i = 1, . . . ,m. (2.14)

Since in real applications data acquisition may be costly or harmful we assume
that m is fixed. The central task to be discussed in what follows is to recover from
this information an estimate for the observed unknown state u, based on the prior
assumption that u belongs toM or is close toM. Moreover, to bring out the essence
of this estimation task we assume for the moment that the data are noise-free.

Following [4, 20], we first recast the data in a “compliant” metric, by introducing
the Riesz representers ψi ∈ U, defined by
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(ψi, v)U = $i(v), v ∈ U, i = 1, . . . ,m,

The ψi now span the m-dimensional subspace W ⊂ U which we refer to as mea-
surement space, and the information carried by the $i(u) is equivalent to that of the
orthogonal projection PWu of u toW. The decomposition

u = PWu + PW⊥u, u ∈ U, (2.15)

thus contains a first term that is “seen” by the sensors and a second (infinite-
dimensional) term which cannot be detected. The decomposition (2.15) may be seen
as a sensor-induced “coordinate system” thereby opening up a geometric perspective
that will prove very useful in what follows. State estimation can then be viewed as
learning from samples w := PWu the unknown “labels” PW⊥u ∈ W⊥.

In this article, we are interested in how well we can approximate u from the
information that u ∈ M and PWu = w with w given to us. Any such approximation
is given by a mapping A : w → A(w) ∈ U. The overall performance of recovery on
all ofM by the mapping A is typically measured in the worst case setting, that is,

Ewc(A,M,W) = sup
u∈M

‖u − A(PWu)‖U. (2.16)

The optimal recovery error onM is then defined as

Ewc(M,W) := inf
A
Ewc(A,M,W), (2.17)

where the infimum is over all possible recovery maps. Let us observe that the con-
struction of recovery maps can be restricted to be of the form

A : w → A(w), A(w) = w + B(w), with B : W → W⊥. (2.18)

Indeed, given any recovery mapping A, we can write A(w) = PWA(w)+ PW⊥A(w)
and the performance of the recovery can only be improved if we replace the first
term by w. In other words, A(w) should belong to the affine space

Uw := w +W⊥, (2.19)

that contains u. The mappings B are commonly referred to as liftings intoW⊥.

2.3 Optimality Criteria and Numerical Recovery

Finding a best recovery map A attaining (2.17) is known as optimal recovery. The
best mapping has a well-known simple theoretical description, see e.g. [21], that we
now describe. Note first that a precise recovery of the unknown state u from the given
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information is generally impossible. Indeed, the best we can say about u is that it lies
in the manifold slice

Mw := {u ∈ M : PWu = w} = M ∩ Uw, (2.20)

which is comprised of all elements inM sharing the samemeasurementw ∈ W. The
Chebyshev ball B(Mw) is the smallest ball inU that containsMw. The best recovery
algorithm is then given by the mapping

A∗(w) := cen(Mw), (2.21)

that assigns to each w ∈ M the center cen(Mw) of B(Mw), called the Chebyshev
center ofMw. Then, the radius rad(Mw) of B(Mw) is the best worst case error over
the class Mw. The best worst case error over M, which is achieved by A∗, is thus
given by

Ewc(M,W ) = Ewc(A∗,M,W) = max
w∈W

rad(Mw). (2.22)

While the above mapping A∗ gives a nice theoretical description of the optimal
recovery algorithm, it is typically not numerically implementable since the Cheby-
shev center cen(Mw) is not easily found. Moreover, such an optimal algorithm is
highly nonlinear and possibly discontinuous. The purpose of this section is to for-
mulate a more modest goal for the performance of a recovery algorithm with the
hope that this more modest goal can be met with a numerically realizable algorithm.
The remaining sections of the paper introduce numerically implementable recovery
mappings, analyze their performance, and evaluate the numerical cost in constructing
these mappings.

The search for a numerically realizable algorithmmust out of necessity lessen the
performance criteria. A first possibility is to weaken the performance criteria to near
best algorithms. This means that we search for an algorithm A such that

Ewc(A,M,W) ≤ C0Ewc(M,W), (2.23)

with a reasonable value of C0 > 1. For example, any mapping A which takes w into
an element in the Chebyshev ball ofMw is near best with constantC0 = 2. However,
finding near best mappings A also seems to be numerically out of reach.

In order to formulate a more attainable performance criterion, we return to our
earlier observations about uncertainty in both the model classM and in the measure-
ments w. The former is a modeling error while the latter is an inherent measurement
error. Both of these uncertainties can be quantified by introducing for each ε > 0,
the ε-neighborhood of the manifold

Mε := {v ∈ U : dist (v,M)U ≤ ε}. (2.24)
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The uncertainty in the model can be thought of as saying the sought after u is inMε

rather than u ∈ M. Also, we may formulate uncertainty (noise) in the measurements
as saying that they are not measurements of a u ∈ M but rather some u ∈ Mε. Here
the value of ε quantifies these uncertainties.

Our new goal is to numerically construct a recovery map A that is near-optimal
on Mε, for some given ε > 0. Let us note that Mε is not compact. An algorithm A
is worst-case near optimal for Mε if and only if its performance is bounded by a
constant multiple of the diameter

δε(M,W) := max {‖u − v‖U : u, v ∈ Mε, PW(u − v) = 0}. (2.25)

Notice that ε = 0 gives the performance criterion for near optimal recovery overM.
One can show that the function ε %→ δε(M,W) is monotone non-decreasing in ε,
continuous from the right, and limε→0+ δε(M,W) = δ0(M,W). The speed at which
δε(M,W) approaches δ0(M,W) reflects the “condition” of the estimation problem
depending onM andW.While the practical realization ofworst-case near-optimality
forMε is already a challenge, quantifying corresponding computational cost would
require assumptions on the condition of the problem.

One central theme, guiding subsequent discussions, is therefore to find recovery
maps Aε that realize an error bound of the form

Ewc(Aε,M,W) ≤ C0δε(M,W). (2.26)

Any a priori information on measurement accuracy and model bias might be used to
choose a viable tolerance ε.

High parametric dimensionality poses particular challenges to estimation tasks
when the targeted error bounds are in the above worst case sense. These challenges
can be somewhat mitigated when adopting a Bayesian point of view [24]. The prior
information on u is then described by a probability distribution p on U, which is
supported on M. Such a measure is typically induced by a probability distribution
on Y that may or may not be known. In the latter case, sampling M, i.e., com-
puting snapshots u(yi), i = 1, . . . ,N , for i.i.d. samples yi ∈ Y, provides labeled
data (wi,w⊥

i ) = (PWu(yi),PW⊥u(yi)) according to the sensor-based decomposition
(2.15). This puts us into the setting of regression in machine learning asking for an
estimator that predicts for any new measurement w ∈ W its lifting w⊥ = B(w). It is
then natural to measure the performance of an algorithm in an averaged sense. The
best estimator A that minimizes the mean-square risk

Ems(A, p,W) = E(‖u − A(PWu)‖2) =
∫

U

‖u − A(PWu)‖2dp(u) (2.27)

is given by the conditional expectation

A(w) = E(u|PWu = w). (2.28)
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Since always Ems(A, p,W) ≤ Ewc(A,M,W), the optimality benchmarks are some-
what weaker. In the rest of this paper, we adhere to the worst case error in the
deterministic setting that only assumes membership of u toM or Mε.

The following section is concerned with an important building block on a path-
way towards achieving (2.26) at quantifiable computational cost. This building block,
referred to as one-space method is a linear (affine) schemewhich is, in principle, sim-
ple and easy to numerically implement. It depends on suitably chosen subspaces. We
highlight the regularizing property of these subspaces as well as ways to optimize
them. This will reveal certain intrinsic obstructions caused by parameter dimen-
sionality. The one-space method by itself will generally not achieve (2.26) but, as
indicated earlier, can be used as a building block in a nonlinear recovery scheme that
may indeed meet the goal (2.26).

3 The One-Space Method

3.1 Subspace Regularization

The one space method can be viewed as a simple regularizer for state estimation.
The resulting recovery map is induced by an n-dimensional subspace Un of U for
n ≤ m. Assume that, for each n ≥ 0, we are given a subspace Un ⊂ U of dimension
n whose distance fromM can be assessed

dist(M,Un)U := max
u∈M

dist(u,Un)U ≤ εn. (3.1)

Then the cylinder

K(Un, εn) := {u ∈ U : dist(u,Un)U ≤ εn} (3.2)

containsM and likewise the cylinderK(Un, εn + ε) containsMε. Our prior assump-
tion that the observed state belongs to M or Mε can then be relaxed by assuming
membership to these larger but simpler sets.

Remarkably, one can now realize an optimal recovery map quite easily that meets
the relaxed benchmark Ewc(K(Un, εn),W): in [4] it was shown that the Chebyshev
center of the slice

Kw(Un, εn) := K(Un, εn) ∩ Uw, (3.3)

is exactly given by the state in Uw that is closest to Un, that is

u∗ = u∗(w) := argmin
u∈Uw

‖u − PUnu‖U. (3.4)
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This minimizer exists and can be shown to be unique as long as Un ∩ W⊥ = {0}.
The corresponding optimal recovery map

AUn : w %→ u∗(w) (3.5)

was first introduced in [20] as the Parametrized Background Data Weak (PBDW)
algorithm, and is referred to as the one-space method in [4]. Due to its above mini-
mizing property, it is readily checked that this map is linear and can be determined
with the aid of the singular value decomposition of the cross-Gramian between any
pair of orthonormal basis for Un and W.

The worst case error Ewc(K(Un, εn),W) can be described more precisely by
introducing

µ(Un,W) := sup
v∈Un

‖v‖U
‖PWv‖U

(3.6)

which is finite if and only if Un ∩ W⊥ = {0}. This quantity, also introduced in a
related but slightly different context in [1], is therefore related to the angle between
the spaces Un and W. It becomes large when Un contains elements that are nearly
perpendicular to W. It is actually computable: one has µ(Un,W) = β(Un,W)−1

where
β(Un,W) := inf

v∈Un

sup
w∈W

〈v,w〉U
‖v‖U‖w‖U

, (3.7)

and β(Un,W) is the smallest singular value of the cross-Gramian between any pair
of orthonormal bases forW and Un. It has been shown in [4, 20] that the worst case
error bound over K(Un, εn) is given by

Ewc(AUn ,K(Un, εn),W) = Ewc(K(Un, εn),W) = µ(Un,W)εn. (3.8)

The quantityµ(Un,W) also coincides with the norm of the linear recovery map AUn .
Relaxing the prior u ∈ M by exploiting information on M solely through approx-
imability of M by Un, thus implicitly regularizes the estimation task: whenever
µ(Un,W) is finite, the optimal recovery map AUn is bounded and hence Lipschitz.

One important observation is that the map AUn is actually independent of εn. In
particular, it achieves optimality for the smallest possible containment cylinder

K(Un) := K(Un, dist(M,Un)U), (3.9)

and therefore, since Ewc(AUn ,M,W) ≤ Ewc(AUn ,K(Un),W) = Ewc(K(Un),W),

Ewc(AUn ,M,W) ≤ µ(Un,W)dist (M,Un)U. (3.10)

Likewise, the containment Mε ⊂ K(Un, dist (M,Un)U + ε) implies that

Ewc(AUn ,Mε,W) ≤ µ(Un,W)(dist (M,Un)U + ε). (3.11)
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On the other hand, the recovery map AUn may be far from optimal over the setsM
or Mε. This is due to the fact that the cylinders K(Un, εn) and K(Un, εn + ε) may
be much larger than M or Mε. In particular, it is quite possible that for a particular
observationw, one has rad(Mw) 4 rad(Kw(Un, εn)). Therefore,we cannot generally
expect that the one spacemethod achieves our goal (2.26). In particular, the condition
n ≤ m, which is necessary to avoid that µ(Un,W) = ∞, limits the dimension of
an approximating subspace Un and therefore εn itself is inherently bounded from
below. The “dimension budget” has therefore to be used wisely in order to obtain
good performance bounds. This typically rules out “generic approximation spaces”
such as finite element spaces, and raises the question which subspace Un yields the
best estimator when applying the above method.

3.2 Optimal Affine Recovery

The results of the previous section bring forward the question as to what is the best
choice of the space Un for the given M. On the one hand, proximity to M is desir-
able since dist (M,Un)U enters the error bound. However, favoring proximity, may
increase µ(Un,W). Before addressing this question systematically, it is important
to note that the above results carry over verbatim when Un is replaced by an affine
space Un = ū + Ũn where Ũn ⊂ U is a linear space. This means the reduced model
K(Un, εn) is of the form

K(Un, εn) := ū +K(Ũn, εn).

The best worst-case recovery bound is now given by

Ewc(K(Un, εn),W) = µ(Ũn,W)εn. (3.12)

Intuitively, this may help to better control the angle betweenW andUn by anchoring
the affine space at a suitable location (typically near or on M). More importantly,
it helps in localizing models via parameter domain decompositions that will be
discussed later.

The one-space algorithm discussed in the previous section confines the “dimen-
sionality” budget of the approximation spaces Un to n ≤ m. In view of (3.10), to
obtain an overall good estimation accuracy, this space can clearly not be chosen
arbitrarily but should be well adapted both to the solution manifold M and to mea-
surement space W , that is, to the given observation functionals giving rise to the
data.

A simple way of adapting a recovery space to W is as follows: suppose for
a moment that we were able to construct for n = 1, . . . ,m, a hierarchy of spaces
Unb

1 ⊂ Unb
2 ⊂ · · · ⊂ Unb

m , that approximate M in a near-best way, namely

dist (M,Unb
n )U ≤ Cdn(M)U. (3.13)
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We may compute along the way the quantities µ(Unb
j ,W), then choose

n∗ = argmin
n≤m

µ(Unb
n ,W)dist (M,Unb

n )U, (3.14)

and take themapAUnb
n∗
.We sometimes refer to this choice as “poor man’s algorithm”.

It is not clear though whether Unb
n∗ is indeed a near-best choice for state recovery by

the one-space method. In other words, one may question whether

Ewc(AUnb
n∗
,M,W) ≤ C inf

dimŨ≤m
Ewc(AŨ,M,W), (3.15)

holdswith a uniform constantC < ∞. In fact, numerical tests strongly suggest other-
wise, which motivated in [12] the following alternative to the poor man’s algorithm.

Recall that a given linear space Un determines the linear recovery map AUn . Like-
wise a given affine space Un determines an affine recovery map AUn . Conversely,
it can be checked that an affine recovery map A determines an affine space Un that
allows one to interpret the recovery scheme as a one-space method in the sense that
A = AUn . Denoting by A the class of all affine mappings of the form

A(w) = w + z + Bw, (3.16)

where z ∈ W⊥ and B ∈ L(W,W⊥) is linear, we might thus as well directly look for
a mapping that minimizes

Ewc(A,M,W) := sup
u∈M

‖u − A(PWu)‖U = sup
u∈M

‖PW⊥u − z − BPWu‖U =: E(z,B)
(3.17)

overA, i.e., over all (z,B) ∈ W⊥ × L(W,W⊥). It can be shown that indeed a min-
imizing pair (z∗,B∗) exists, i.e.,

E(z∗,B∗) = min
A∈A

Ewc(A,M,W) =: Ewc,A(M,W),

see [12].However, theminimizationofEwc(A,M,W)over (z,B) ∈ W⊥×L(W,W⊥)
is far from practically feasible. In fact, each evaluation of Ewc(A,M,W) requires
exploringM and B can have a range in the infinite dimensional spaceW⊥. In order
to arrive at a computationally tractable problem, one needs to

(i) ReplaceM by a finite set M̃ ⊂ M, that should be sufficiently dense. Denseness
can be quantified by requiring that M̃ = M̃δ is a δ-net for M for some δ > 0,
i.e., for any u ∈ M, there exists ũ ∈ M̃δ such that ‖u − ũ‖U ≤ δ.

(ii) Choose a finite dimensional space UL ⊂ U that approximates M to a desired
precision dist (M,UL)U ≤ η, and replaceW⊥ by the finite dimensional comple-
ment
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W̃⊥ := UL 5 W (3.18)

ofW in UL.

The resulting optimization problem

(z̃, B̃) = argmin
(z,B)∈W̃⊥×L(W,W̃⊥)

sup
u∈M̃δ

‖PW⊥u − z − BPWu‖U. (3.19)

can be solved by primal-dual splittingmethods providing aO(1/k) convergence rate,
[12].

Due to the perturbations (i) and (ii) of the idealminimization problem, the resulting
(z̃, B̃) is no longer optimal. However, one can show that

Ewc(̃A,M,W) ≤ Ewc,A(M,W)+ η + Cδ, (3.20)

where the constantC is the operator norm of Bminimizing (3.17). On the other hand,
since the range of any affine mapping A is an affine space of dimension at most m,
therefore contained in a linear space of dimension at most m+ 1, one always has
Ewc,A(M,W) ≥ dm+1(M)U. Therefore (z̃, B̃) satisfies a near-optimal bound

Ewc(̃A,M,W) <∼ Ewc,A(M,W), (3.21)

whenever η and δ are picked such that

η <∼ dm+1(M)U, and δ <∼ dm+1(M)U. (3.22)

The numerical tests in [12] for a model problem of the type (2.6) with piecewise
constant checkerboard diffusion coefficients and dy up to dy = 64 show that this
recovery map exhibits significantly better accuracy than the method based on (3.14).
It even yields smaller error bounds than the affine mean square estimator (2.27). The
following section discusses the numerical cost entailed by conditions like (3.22).

3.3 Rate-Optimal Reduced Bases

To keep the dimension L of the space UL in (3.18) small, a near-best subspace Unb
L

in the sense of (3.13) would be highly desirable. Likewise the poor man’s scheme
(3.14) would benefit from such subspaces. Unfortunately, such near-best subspaces
are not practically accessible. The reduced basis method aims to construct subspaces
which come close to near-optimality in a sense that we further explain next. The
main idea is to generate theses subspaces by a sequence of elements picked from
the manifoldM itself, by means of a weak-greedy algorithm introduced and studied
in [8]. In an idealized form, this algorithm proceeds as follows: given a current
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space Uwg
n = span{u1, . . . , un}, one takes un+1 = u(yn+1) such that, for some fixed

γ ∈]0, 1], ‖un+1 − PUnun+1‖U ≥ γ maxu∈M ‖u − PUnu‖U, or equivalently

‖u(yn+1) − PUnu(yn+1)‖U ≥ γ max
y∈Y

‖u(y) − PUnu(y)‖U. (3.23)

Then, one definesUwg
n+1 = span{u1, . . . , un+1}.While unfortunately, the weak greedy

algorithm does in general not produce spaces satisfying (3.13), it does come close.
Namely, it has been shown in [3, 19] that the spaces Uwg

n are rate-optimal in the
following sense:

(i) For any s > 0 one has

dn(M)U ≤ C(n+ 1)−s, n ≥ 0 =⇒ dist (M,Uwg
n )U ≤ C̃(n+ 1)−s, n ≥ 0,

(3.24)
where C̃ depends on C, s, γ .

(ii) For any β > 0, one has

dn(M)U ≤ Ce−cnβ

, n ≥ 0 =⇒ dist (M,Uwg
n )U ≤ C̃e−c̃nβ

, n ≥ 0, (3.25)

where the constants c̃, C̃ depend on c,C,β, γ .

In the form described above, the weak-greedy concept seems infeasible since it
would, in principle, require computing the solution u(y) for all values of y ∈ Y
exactly, exploring the whole exact solution manifold. However, its practical applica-
bility is facilitated when there exists a tight surrogate R(y,Un), satisfying

cRR(y,Un) ≤ ‖u(y) − PUnu(y)‖U = dist (u(y),Un) ≤ CRR(y,Un), y ∈ Y,

(3.26)
for uniform constants 0 < cR ≤ CR < ∞, which can be evaluated at affordable cost.
Then, maximization of R(y,Un) over Y amounts to the weak-greedy step (3.23)
with γ := cR

CR
. According to [18], the validity of the following two conditions indeed

allows one to derive computable surrogates that satisfy (3.26):

(i) The underlying parametric family of PDEs (2.1) permits a uniformly stable
variational formulation (2.4), and one has affine parameter dependence (2.9);

(ii) The discrete projection +Un (of Galerkin or Petrov-Galerkin type) has the best
approximation property, i.e., resulting errors are uniformly comparable to the
best approximation error.

Conditions (i) and (ii) ensure, in view of (2.5), that ‖u(y) − PUnu(y)‖U ∼ ‖R(y,
+Unu(y))‖V′ holds uniformly in y ∈ Y. Thus,

R(y,Un) := ‖R(y,+Unu(y))‖V′ = sup
v∈V

R(y,+Unu(y))(v)
‖v‖V

(3.27)

satisfies (3.26) and is therefore a tight surrogate for dist (M,Un)U. In the elliptic case
(2.6) under assumption (2.7), (i) and (ii) hold and the above comments reflect standard
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practice. For the wider scope of stable but unsymmetric variational formulations [6,
16, 23] the inf-sup conditions (2.4) imply (i), but the Galerkin projection in (ii)
needs to be replaced by a stable Petrov-Galerkin projection with respect to suitable
test spaces Vn accompanying the reduced trial spaces Un. It has been shown in [18]
how to generate such test spaces with the aid of a double-greedy strategy, see also
[16].

The main pay-off of using the surrogate R(y,Un) is that one no longer needs to
compute u(y) but only the low-dimensional projection+Unu(y) by solving for each y
an n × n system, which itself can be rapidly assembled thanks to the affine parameter
dependence [22]. However, one still faces the problem of its exact maximization
over y ∈ Y. A standard approach is to maximize instead over a discrete training set
Ỹn ⊂ Y , which in turn induces a discretization of the solution manifold

M̃n = {u(y) : y ∈ Ỹn}. (3.28)

The resulting weak-greedy algorithm can be shown to remain rate optimal in the
sense of (3.24) and (3.25) if the discretization is fine enough so that M̃n constitutes
an εn-approximation net of M where εn does not exceed cdist (M,Uwg

n )U for a
suitable constant 0 < c < 1. In the current regime of large or even infinite parameter
dimensionality, this becomes prohibitive because #Ỹn would then typically scale like
O

(
ε

−cdy
n

)
, [10].

As a remedy it has been proposed in [10] to use training sets Ỹn that are generated
by randomly samplingY, and ask that the objective of rate optimality ismetwith high
probability. This turns out to be achievable with training sets of much less prohibitive
size. In an informal and simplified manner the main result can be stated as follows.

Theorem 1 Given any target accuracy ε > 0 and some 0 < η < 1, then the weak
greedy reduced basis algorithm based on choosing at each step N = N (ε, η) ∼
| ln η| + | ln ε| randomly chosen training points in Y has the following properties
with probability at least 1 − η: it terminates with dist (M,Un(ε))U ≤ ε as soon as
the maximum of the surrogate over the current training set falls below cε1+a for
some c, a > 0. Moreover, if dn(M)U ≤ Cn−s, then n(ε) <∼ ε− 1

s −b. The constants
c, a, b depend on the constants in (3.26), as well as on the rate r of polynomial
approximability of the parameter to solution map y %→ u(y). The larger s and r, the
smaller a and b, and the closer the performance becomes to the ideal one.

4 Nonlinear Models

4.1 Piecewise Affine Reduced Models

As already noted, schemes based on linear or affine reduced models of the form
K(Un, ε) can, in general, not be expected to realize the benchmark (2.26), discussed
earlier in Sect. 2. The convexity of the containment set K(Un, ε) may cause the
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reconstruction error to be significantly larger than δε(M,W). Another way of under-
standing this limitation is that in order to make ε small, one is enforced to raise the
dimension n of Un, making the quantity µ(Un,W) larger and eventually infinite if
n > m.

To overcome this principal limitation one needs to resort to nonlinear models
that better capture the non-convex geometry ofM. One natural approach consists in
replacing the single space Un by a family (Uk)k=1,...,K of affine spaces

Uk = uk + Ũk , dim(Ũk) = nk ≤ m, (4.1)

each of which aims to approximate a portionMk ofM to a prescribed target accuracy
simultaneously controlling µ(Uk ,W): fixing ε > 0, we assume that we have at hand
a partition of M into portions

M =
K⋃

k=1

Mk (4.2)

such that

dist (Mk ,Uk)U ≤ εk , and µ(Ũk ,W)εk ≤ ε, k = 1, . . . ,K . (4.3)

One way of obtaining such a partition is through a greedy splitting procedure of the
domain Y = [−1, 1]dy which is detailed in [9]. The procedure terminates when for
each cell Yk the corresponding portion of the manifold Mk can be associated to
an affine Uk satisfying these properties. We are ensured that this eventually occurs
since for a sufficiently fine cell Yk one has rad(Mk) ≤ ε which means that we
could then use a zero dimensional affine space Uk = {ūk} for which we know that
µ(Ũk ,W) = 1. In this piecewise affine model, the containment property is now

M ⊂
K⋃

k=1

K(Uk , εk). (4.4)

and the cardinality K of the partition depends on the prescribed ε.
For a given measurement w ∈ W, we may now compute the state estimates

u∗
k (w) = AUk (w), k = 1, . . . ,K, (4.5)

by the affine variant of the one-space method from (3.4). Since u ∈ Mk0 for some
value k0, we are ensured that

‖u − u∗
k0(w)‖U ≤ ε, (4.6)

for this particular choice. However k0 is unknown to us and one has to rely on the
data w in order to decide which one among the affine models is most appropriate for
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the recovery. One natural model selection criterion can be derived if for any u ∈ U
we have at our disposal a computable surrogate S(u) that is equivalent to the distance
from u toM, that is

cS(ū) ≤ dist (ū,M)U ≤ CS(ū), dist (ū,M)U = min
y∈Y

‖u − u(y)‖U, (4.7)

for some fixed 0 < c ≤ C. We give an instance of such a computable surrogate in
Sect. 4.2 below. The selection criterion then consists in picking k∗ minimizing this
surrogate between the different available state estimates, that is,

u∗(w) := u∗
k∗(w) = argmin {S(u∗

k (w)) : k = 1, . . . ,K}. (4.8)

The following result, established in [9], shows that this estimator now realizes the
benchmark (2.26) up to a multiplication of ε by κ := C/c, where c,C are the con-
stants from (4.7).

Theorem 2 Assume that (4.2) and (4.3) hold. For any u ∈ M, if w = PWu, one has

‖u − u∗(w)‖ ≤ δκε(M,W), (4.9)

where δε(M,W) is given by (2.25).

4.2 Approximate Metric Projection and Parameter
Estimation

A practically affordable realization of the surrogate S(u), providing a near-metric
projection distance toM, is a key ingredient of the above nonlinear recovery scheme.
Since it has further useful implications we add a few comments on that matter.

As already observed in (2.5), whenever (2.1) admits a stable variational formula-
tion with respect to a suitable pair (U,V) of trial and test spaces, the distance of any
u ∈ U to any u(y) ∈ M is uniformly equivalent to the residual of the PDE in V′

c‖R(ū, y)‖V′ ≤ ‖u(y) − ū‖U ≤ C‖R(ū, y)‖V′ , (4.10)

with c = C−1
b ,C = c−1

b from (2.5). Assume in addition that R(u, y) depends affinely
on y ∈ Y, according to (2.9). Then, minimizing ‖R(ū, y)‖V′ over y is equivalent to
solving a constrained least squares problem

ȳ = argmin
y∈Y

‖g − My‖2, (4.11)

where M is a matrix of size dy × dy resulting from Riesz-lifts of the functionals
Rj(ū).
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The solution to this problem therefore satisfies

‖ū − u(ȳ)‖U ≤ κ inf
y∈Y

‖ū − u(y)‖U = κdist (ū,M)U. (4.12)

where κ = C/c = Cb/cb is the quotient between the equivalence constants in (4.10).
The surrogate

S(ū) := ‖R(ū, y)‖V′ (4.13)

for the metric projection distance of u onto M obviously satisfies (4.7). It is indeed
computable at affordable cost using (an approximation to) its Riesz-lifted version
‖e(ū, y)‖V = ‖R(ū, y)‖V′ (inVh ⊂ V) assembled from the Riesz-lifts of the compo-
nents Rj(ū), see [9] for details in the affine expansion (2.9).

Since solving the above problem provides an admissible parameter value y ∈ Y,
this also has some immediate bearing on parameter estimation. Suppose we wish to
estimate from w = PWu(y∗) the unknown parameter y∗ ∈ Y. Assume further that A
is any given linear or nonlinear recovery map. Computing along the above lines

ȳw = argmin
y∈Y

‖R(A(w), y)‖V′

we have

‖u(y∗) − u(ȳw)‖U ≤ ‖u(y∗) − A(w)‖U + ‖A(w) − u(ȳw)‖U
≤ Ewc(A,M,W)+ κdist (A(w),M)U ≤ (1+ κ)Ewc(A,M,W). (4.14)

We consider now the specific elliptic model (2.6) with affine diffusion coefficients
a(y) given by (2.10). For this model, it was established in [5] that for strictly positive
f and certain regularity assumptions on a(y) as functions of x ∈ !, parameters may
be estimated by states. Specifically, when a(y) ∈ H 1(!) uniformly in y ∈ Y, one
has an inverse stability estimate of the form

‖a(y) − a(ỹ)‖L2(!) ≤ C‖u(y) − u(ỹ)‖1/6U . (4.15)

Thus, whenever the recovery map A satisfies (4.9) for some prescribed ε > 0, we
obtain a parameter estimation bound of the form

‖a(y∗) − a(ȳw)‖L2(!) ≤ Cδκε(M,W)1/6,

Note that when the basis functions θj are L2-orthogonal, ‖a(y∗) − a(ȳw)‖L2(!) is
equivalent to a (weighted) $2 norm of y∗ − ȳw.
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4.3 Concluding Remarks

The affine or piecewise affine recovery scheme hinges on the ability to approximate
a solution manifold effectively by linear or affine spaces, globally or locally. As
explained earlier this is true for problems of elliptic or parabolic type thatmay include
convective terms as long as they are dominated by diffusion. This may however no
longer be the case when dealing with pure transport equations or models involving
strongly dominating convection.

An interesting alternative would then be to adopt a stochastic model according
to (2.27) and (2.28) that allows one to view the construction of the recovery map as
a regression problem. In particular, when dealing with transport models, a natural
candidate for parametrizing a reduced model are deep neural networks. However,
properly adapting the architecture, regularization and training principles pose wide
open questions addressed in current work in progress.
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