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ACCURACY CONTROLLED DATA ASSIMILATION

FOR PARABOLIC PROBLEMS

WOLFGANG DAHMEN, ROB STEVENSON, AND JAN WESTERDIEP

Abstract. This paper is concerned with the recovery of (approximate) so-
lutions to parabolic problems from incomplete and possibly inconsistent ob-
servational data, given on a time-space cylinder that is a strict subset of the
computational domain under consideration. Unlike previous approaches to
this and related problems our starting point is a regularized least squares for-
mulation in a continuous infinite-dimensional setting that is based on stable
variational time-space formulations of the parabolic partial differential equa-
tion. This allows us to derive a priori as well as a posteriori error bounds
for the recovered states with respect to a certain reference solution. In these
bounds the regularization parameter is disentangled from the underlying dis-
cretization. An important ingredient for the derivation of a posteriori bounds
is the construction of suitable Fortin operators which allow us to control oscil-
lation errors stemming from the discretization of dual norms. Moreover, the
variational framework allows us to contrive preconditioners for the discrete
problems whose application can be performed in linear time, and for which
the condition numbers of the preconditioned systems are uniformly propor-
tional to that of the regularized continuous problem. In particular, we provide
suitable stopping criteria for the iterative solvers based on the a posteriori
error bounds. The presented numerical experiments quantify the theoretical
findings and demonstrate the performance of the numerical scheme in relation
with the underlying discretization and regularization.

1. Introduction

1.1. Background. Ever-increasing computational resources encourage considering
more and more complex mathematical models for simulating or predicting physi-
cal/technological processes. However, striving for increasing quantifiable accuracy
such models typically exhibit significant bias or are incomplete in that important
model data or accurate constitutive laws are missing. It is all too natural to gather
complementary information from data provided by also ever-improving sensor ca-
pabilities. Such a process of fusing models and data is often referred to as data
assimilation which seems to originate from climatology [Dal94, LLD06]. In this
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context, streaming data are used to stabilize otherwise chaotic dynamical systems
for prediction purposes, typically with the aid of (statistical) filtering techniques.
While this is still an expanding and vibrant research area [Maj16], the notion of
data assimilation is by now understood in a wider sense referring to efforts of
improving quantifiable information extraction from synthesizing model-based and
data driven approaches. Incompleteness of underlying models or model deficiencies
could come in different forms. For instance, one could lack model data such as ini-
tial conditions, or the model involves uncalibrated coefficients represented e.g. by
a parameter-dependent family of coefficients.

In this paper we focus on such a problem scenario where the physical law takes
the form of a parabolic partial differential equation (PDE), in the simplest case
just the heat equation in combination with a known source term. We then assume
that the state of interest, a (near-)solution to this PDE, can be observed on some
restricted time-space cylinder while its initial conditions are unknown. We are then
interested in recovering the partially observed state on the whole time-space domain
from the given information.

This problem is known to be (mildly) ill-posed. This or related problems have
been treated in numerous articles. In particular, the recent work in [BO18,BIHO18]
proposing a finite element method with built-in mesh-dependent regularization
terms has been a primary motivation for the present paper. Moreover, similar con-
cepts for an analogous data-assimilation problem associated with the wave equation
have been applied in [BFMO21]. Considering first a semi-discretization in [BO18],
the main results for a fully discrete scheme in [BIHO18] provide a priori estimates
for the recovered state on a domain that excludes a small region around the location
of initial data.

The results obtained in the present paper, although similar in nature, are instead
based on a different approach and exhibit a few noteworthy distinctions explained
below. In fact, our starting point is the formulation of a regularized estimation
problem in terms of a least squares functional in an infinite-dimensional function
space setting. We postpone for a moment the particular role of the regularization
parameter in the present context and remark first that our approach resembles a
number of other prior studies of ill-posed operator equations that are also based
on a Tikhonov regularization in terms of similar mixed variational formulations;
see e.g. [BBLD15,BR18,BLO18,DHH13,MS17]. These contributions are typically
formulated in more general setting (see e.g. [BR18]), covering also problems that
exhibit a stronger level of ill-posedness such as the Cauchy problem for second order
elliptic equations, or the backward heat equation. Although a direct comparison
with these works is therefore difficult, there are noteworthy relevant conceptual
links as well as distinctions that we will briefly comment on next.

For instance, in [BR18], one arrives at a similar mixed formulation as in the
present paper exploiting then, however, just coercivity where, for a regularizing
term ε‖ · ‖, the coercivity constant decreases proportionally to the regularization
parameter. The results in [BBLD15] for related numerical schemes indeed confirm a
corresponding adverse dependence of error bounds on the regularization parameter.
Moreover, these bounds are obtained only under additional regularity assumptions.
In contrast, our approach is based on numerically realizing inf-sup stability needed
to handle dual norms, resulting in the present context in ε-independent error esti-
mates without any a priori additional regularity assumptions.
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This hints at the perhaps main principal distinction from the above prior re-
lated work. Our guiding theme is that how well one can solve the inverse prob-
lem depends on the condition of the corresponding forward problem (already on
an infinite-dimensional level), in the present context a parabolic initial-boundary
value problem. Specifically, this requires identifying first a suitable pair X, Y of
(infinite-dimensional) trial- and test-spaces, for which the forward operator takes
X onto the dual Y ′ of Y , without imposing any “excess regularity” assumptions on
the solution beyond membership to X. This is tantamount to a stable variational
formulation of the forward problem in the sense of the Babuska-Necas Theorem.
We briefly refer to this as “natural mapping properties”. Drawing on the work in
[And13,RS18,SW20], the present approach is solely based on such natural mapping
properties. As a consequence, the basic error analysis is independent of any data-
consistency assumptions or of the regularity of solutions in the case of consistent
data, which in general never occur in practice.

In summary, the guiding “general hope” is that, just exploiting natural mapping
properties rather than assuming any excess regularity, should “help” minimizing
the necessary amount of regularization in an inverse problem. This, in turn, is
intimately related to the central motivation of this paper, namely the development
of efficient and certifiable numerical methods that should not rely on unverifiable
assumptions. In a nutshell, for the particular problem type at hand, significant
consequences of a stable variational formulation of the forward problem are: the
proposed numerical solvers exhibit a favorable quantifiable performance to be com-
mented on further below; regardless of data consistency and without imposing any
regularity assumptions we derive sharp a priori error bounds that do not degrade
when the regularization parameter tends to zero; there is no need for tuning pa-
rameters inside any mesh-dependent stabilization terms; we can derive computable
a posteriori error bounds that are valid without any excess regularity assumptions,
for arbitrary (inconsistent) data, and, in the present particular inverse problem, are
independent of the regularization parameter.

However, it should be emphasized that our “general hope” could so far be realized
only for the current rather mildly ill-posed problem class. The following remarks
elaborate a bit more on some of the related aspects.

(i) Respecting natural mapping properties reveals, in particular, that a unique
minimizer of the objective functional exists for any arbitrarily small regularization
parameter and even for a vanishing regularization parameter. In fact, a least squares
formulation by itself turns out to be already a sufficient regularization. However,
the condition number of corresponding discrete systems may increase with decreas-
ing regularization parameter. Our numerical experiments will shed some light on
this interdependence. We use this insight to develop efficient preconditioners for
the discrete problems. In fact, within the limitations of the infinite-dimensional
formulation the solvers will be seen to exhibit a quasi-optimal performance for
any fixed regularization parameter. Even for the mildly-ill posed problem under
consideration this seems to be unprecedented in the literature. In that sense, the
primary role of a non-vanishing regularization parameter for us is to facilitate a
rigorous performance analysis of the iterative solver in favor of its quantitative
improvement.

(ii) A stable infinite dimensional variational formulation is also an essential pre-
requisite for deriving rigorous a posteriori regularity-free - meaning they are valid
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without any excess regularity assumptions - error bounds for the recovered states.
As shown later, such bounds can be used, in particular, to identify suitable stopping
criteria for iterative solvers. Finally, we demonstrate some practical consequences
of regularity-free computable a posteriori bounds in Section 6. We indicate their
use for estimating data consistency errors as well as for choosing the regularization
parameter in a way that accuracy of the results is not compromized in any essential
way while enhancing solver performance.

(iii) Respecting natural mapping properties allows us to “disentangle” discretiza-
tion and regularization by studying first the intrinsic necessary “strength” of the
regularization in the infinite-dimensional setting. Moreover, it turns out that ad-
ditional regularization beyond the least squares formulation is not necessary on
the infinite-dimensional level, and persists to remain true for the proposed inf-sup
stable discretizations. Choosing nevertheless a positive regularization parameter
in favor of a better and rigorously founded solver performance still requires a bal-
anced choice so as to warrant optimal achievable accuracy of the state estimate.
Our formulation reveals that the relevant balance criterion is then the achievable
approximation accuracy of the trial space. Only sufficiently high regularity, typ-
ically hard to check in practice, allows one to express this quantity in terms of
a uniform mesh-size. Our approach will be seen to offer more flexibility and po-
tentially different choices of regularization parameters than those stemming from
the a priori fixed mesh-dependent approach in [BO18,BIHO18] or [DHH13]. This
concerns, for instance, adaptively refined meshes or higher order discretizations.

A perhaps more subtle further consequence of exploiting natural mapping prop-
erties is somewhat stronger a priori estimates than those obtained in previous
works.

Of course, the robustness of our results with respect to the regularization pa-
rameter reflects the mild degree of ill-posedness of the data-assimilation problem
under consideration. This cannot be expected to carry over to less stable prob-
lems in exactly the same fashion. We claim though that important elements will
persist to hold, for instance, for conditionally stable problems. In particular, non-
vanishing regularization parameters will then be essential and regularity-free a pos-
teriori bounds will be all the more important for arriving at properly balanced
choices in the spirit of the strategy indicated in Section 6. A detailed discussion is
beyond the scope of this paper and is therefore deferred to forthcoming work.

1.2. Layout. In Section 2 we present a stable weak time-space formulation of a
parabolic model problem and introduce the data assimilation problem considered
in this work. Based on these findings we propose in Section 3 a regularized least
squares formulation of the state estimation task. This formulation permits model
as well as data errors as the recovered states are neither required to satisfy the
parabolic equation exactly nor to match the data. We then derive a priori as well
as a posteriori error estimates for the infinite-dimensional minimizer as well as for
the minimizer over a finite dimensional trial space revealing the basic interplay
between model inconsistencies, data errors, and regularization strength.

Since the “ideal” infinite-dimensional objective functional involves a dual-norm
a practical numerical method needs to handle this term. We show that a proper
discretization of the dual norm is tantamount to identifying a stable Fortin oper-
ator. For the given formulation of the parabolic problem this turns out to impose
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theoretical limitations on discretizations based on a standard second order vari-
ational formulation. Therefore we consider in Section 4 an equivalent first order
system least squares formulation. Section 5 is devoted to the construction of Fortin
operators for both settings. Moreover, we present in Sections 3.4 and 4.2 effec-
tive preconditioners for the iterative solution of the arising discrete problems along
with suitable stopping criteria. Section 6 is devoted to numerical experiments that
quantify the theoretical findings and illustrate the performance of the numerical
schemes, in particular, depending on the choice of the regularization parameter
which, in principal, could be chose as zero. We conclude in Section 7 with a brief
discussion of several ramifications of the results, including the application of a pos-
teriori bounds for estimating data-consistency errors.

1.3. Notations. In this work, by C ! D we will mean that C can be bounded
by a multiple of D, independently of parameters which C and D may depend on.
Exceptions are given by the parameters η and ω in the Carleman estimate (2.7),
the polynomial degrees of various finite element spaces, and the dimension d of the
spatial domain Ω. Obviously, C " D is defined as D ! C, and C ! D as C ! D
and C " D.

For normed linear spaces E and F , by L(E, F ) we will denote the normed linear
space of bounded linear mappings E → F , and by Lis(E, F ) its subset of bound-
edly invertible linear mappings E → F . We write E ↪→ F to denote that E is
continuously embedded into F . For simplicity only, we exclusively consider linear
spaces over the scalar field ℝ.

2. Problem formulation and preview

For a given domain Ω ⊂ ℝd and time-horizon T > 0, let I := [0, T ]. Let a(t; ·, ·)
denote a bilinear form on H1

0 (Ω) × H1
0 (Ω) such that for any θ, ζ ∈ H1

0 (Ω), the
function t &→ a(t; θ, ζ) is measurable on I. Moreover, we assume that for almost all
t ∈ I, a(t; ·, ·) : H1

0 (Ω) × H1
0 (Ω) → ℝ is bounded and coercive, i.e.

|a(t; θ, ζ)| ! ‖θ‖H1(Ω)‖ζ‖H1(Ω) (θ, ζ ∈ H1
0 (Ω)),(2.1)

a(t; θ, θ) " ‖θ‖2
H1(Ω) (θ ∈ H1

0 (Ω))(2.2)

hold with constants independent of t ∈ I. By Lax Milgram’s Theorem, A(t), defined
by (A(t)θ)(ζ) := a(t; θ, ζ), (θ, ζ ∈ H1

0 (Ω)), belongs to Lis(H1
0 (Ω), H−1(Ω)).

Before discussing the parabolic data assimilation problem, we recall some facts
about a time-space variational formulation of the parabolic initial value problem –
the corresponding forward problem – of the form

(2.3)

{
dz
dt (t) + A(t)z(t) = h(t) (t ∈ I a.e.),

γ0z = z0,

with trace map γt : z &→ z(t). With the spaces

X := L2(I; H1
0 (Ω)) ∩ H1(I; H−1(Ω)), Y := L2(I; H1

0 (Ω)),

the operator B defined by

(Bw)(v) :=

∫

I

dw
dt (t)(v(t)) + a(t; w(t), v(t))dt

belongs to L(X, Y ′). Recall also that

(2.4) X ↪→ C(I; L2(Ω))
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with the latter space being equipped with the norm on L∞(I; L2(Ω)). In particular,
this implies that γt ∈ L(X, L2(Ω)), with a norm that is uniformly bounded in t ∈ I.
The resulting weak formulation of (2.3) reads as

Bz = h, γ0z = z0,

and it is known (e.g. see [DL92, Ch.XVIII, §3], [Wlo82, Ch. IV, §26], [SS09]) to be
well-posed in the sense that

(2.5)

[
B
γ0

]
∈ Lis(X, Y ′ × L2(Ω)).

Turning to the data assimilation problem, suppose in what follows that ω ⊂ Ω is
a fixed non-empty sub-domain (possibly much smaller than Ω) and that we are given
data f ∈ L2(I × ω) as well as g ∈ Y ′. The data-assimilation problem considered in
this paper is to seek a state u ∈ X that approximately satisfies Bu = g, while also
closely agreeing with f in L2(I × ω); see [BO18,BIHO18]. To make this precise,
ideally one would like to solve

(2.6)

{
du
dt (t) + A(t)u(t) = g(t) (t ∈ I a.e.),

u(t)|ω = f(t) (t ∈ I).

However, in general such data (g, f) may be inconsistent, i.e., (2.6) has no solution
and is therefore ill-posed. To put this formally, denoting by Γω the restriction of a
function on I ×Ω to a function on I × ω, we have Γω ∈ L(X, L2(I × ω)), i.e., Γω is
bounded on X. However, the range of the operator

Bω :=

[
B
Γω

]
∈ L(X, Y ′ × L2(I × ω))

induced by (2.6) is a strict subset of Y ′ × L2(I × ω).
Before addressing this issue, it is instructive to understand the case of a consistent

pair (g, f) ∈ ran Bω, i.e., when there exists a u ∈ X such that (g, f) = (Bu,Γωu).

Remark 2.1. Any data consistent pair (g, f) ∈ ran Bω determines a unique state
u ∈ X satisfying (2.6).

That this is indeed the case can be derived from the following crucial tool that
has been employed in prior related studies such as [BO18, BIHO18] and will be
heavily used in what follows as well. For η ∈ (0, T ) let

Xη := L2([η, T ]; H1
0 (Ω)) ∩ H1([η, T ]; H−1(Ω)).

Fixing both η and a subdomain ω ⊂ Ω, a version of the so-called Carleman Estimate
says in the present terms

(2.7) ‖w‖Xη ! ‖Γωw‖L2(I×ω) + ‖Bw‖Y ′ (w ∈ X).

Remark 2.2. The validity of (2.7) has been established in [BO18, Thm. 2] for the
heat operator (i.e., a(t; θ, ζ) =

∫
Ω ∇θ(t) · ∇ζ(t) dx) and Ω ⊂ ℝd being a convex

polytope. It holds in greater generality though. For instance, the argument in the
proof of [BO18, Lemma 7] still works when Ω is star-shaped w.r.t. an x0 ∈ Ω and
any open ω ⊂ Ω that contains x0. In what follows up to this point we will tacitly
assume at this point suitable problem specifications that guarantee the validity of
(2.7) without further mentioning.
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Returning to the uniqueness of u given consistent data (g, f), suppose there exist
two solutions, then their difference e ∈ X satisfies ‖Γωe‖L2(I×ω) + ‖Be‖Y ′ = 0,
meaning in view of (2.7) that ‖e‖Xη = 0, and so thanks to Xη ↪→ C([η, T ]; L2(Ω)),
that e(t) = 0 for t ∈ [η, T ]. From X ↪→ C([0, T ]; L2(Ω)), and the fact that η > 0 is
arbitrary, it follows that e = 0.

However, the nature of the Carleman Estimate indicates that one cannot stably
recover the trace γ0u which would then together with g stably recover u. In fact,
one may convince oneself that significantly different initial data (far) outside ω may
give rise to homogeneous solutions of (2.3) that hardly differ on I × ω. Thus, even
for a state u ∈ X from (nearly) consistent data (g, f) ∈ Y ′ × L2(I × ω) we cannot
expect to find an accurate numerical approximation to u on the whole time-space
cylinder I × Ω. Moreover, any perturbation of the data may land outside ran Bω.

In practice, neither will the data/measurements (g, f) ∈ Y ′×L2(I ×ω) be exact
nor will the observed state behind f satisfy the model – here a parabolic PDE –
exactly. Thus, in general a pair of data (g, f) ∈ Y ′ × L2(I × ω) allows one to
recover any hypothetical source u ∈ X only within some uncertainty. A central
theme in this article is to quantify this uncertainty (theoretically and numerically)
by properly exploiting the information provided by the PDE model, and the data.
While any such assimilation attempt rests on the basic hypothesis that the data
(g, f) are “close” in Y ′ × L2(I × ω) to a consistent pair (Bu, u|I×ω) ∈ ran Bω, for
some u ∈ X, this “closeness” is generally not known beforehand.

To perform such a recovery we formulate in the next section a family of regu-
larizations of the ill-posed problem (2.6) involving a parameter ε ≥ 0, taking data
errors and model bias into account. We then show, first on the continuous infinite-
dimensional level, that for each ε ≥ 0 there exists a unique regularized solution
uε ∈ X. Letting this precede an actual discrete scheme will be important for a
number of issues, such as the design of efficient iterative solvers, the derivation of
a posteriori error bounds, as well as disentangling regularization and discretization
in favor of an overall good balance of uncertainties. Aside from the question what
a preferable choice of ε would be in that latter respect, a central issue will be to
assess the quality of a regularized state uε and of its approximation uδ,δ

ε from a
given finite-dimensional trial space Xδ ⊂ X provided by our numerical scheme.

To that end, recall that generally (for inconsistent data) the idealized assimilation
problem (2.6) has no solution. So whatever state u ∈ X may be used to “explain”
the data should be viewed as a candidate or reference state that is connected with
the recovery task through the consistency error

(2.8) econs(u) :=
√
‖Bu − g‖2

Y ′ + ‖Γωu − f‖2
L2(I×ω).

At the heart of our analysis is then an a priori estimate of the type

(2.9) ‖u − uδ,δ
ε ‖Xη ! econs(u) + eδapprox(u) + ε‖γ0u‖L2(Ω),

where eδapprox(u) denotes the error of the best approximation to u from Xδ in X,
thereby implicitly quantifying the regularity of the state u. Recall that, as always,
the constant in this estimate absorbed by the !-symbol may depend on η > 0, but
neither on u nor on ε.

It is important to note that (2.9) is valid for any u ∈ X, not making use of the
assumption that (Bu,Γωu) be close to (g, f). It is of evident value, of course, for
states u with small or at least moderate consistency error. This suggests singling
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out a particular state

u0 := argmin
u∈X

econs(u)

that minimizes the consistency error. As in the case of consistent data, we will see
that u0 is unique, and, as is suggested by its notation, it will turn out to be the
limit for ε ↓ 0 of the regularized solutions uε that will be defined later. One reason
for not confining the error estimates – or perhaps better termed distance estimates
– to the specific state u0 is the potential significant model bias. In fact, we view it
as a strength to keep (2.9) general since this covers automatically various somewhat
specialized scenarios. For instance, if the data were exact, i.e., econs(u0) = 0, (2.9),
for u = u0, shows the dependence of the error just on ε and the choice of the
discretization. Moreover, if the model is exact (or the model bias is negligible
compared with data accuracy) it will later be seen how to get a “nearly-computable”
bound for econs(u0) and hence an idea of the model bias (due to g) and measurement
errors in f . Another case of interest is u = uε because this is the “compromise-
solution” suggested by the chosen regularization and targeted by the numerical
scheme.

Finally, while in principle, ε can be chosen as small as we wish (even zero), it will
be seen to benefit solving the discrete problems by choosing ε as large as possible
so as to remain just dominated, ideally, by econs(u0), in practice, by the announced
a posteriori bounds.

3. Regularized least squares

Knowing that the data assimilation problem is ill-posed and taking the preceding
considerations into account, we consider for some parameter ε ≥ 0 the regularized
least squares problem of finding the minimizer uε over X of

(3.1) Gε : w &→ ‖Bw − g‖2
Y ′ + ‖Γωw − f‖2

L2(I×ω) + ε2‖γ0w‖2
L2(Ω),

1

where, as before, Γω is the restriction of a function on I ×Ω to a function on I ×ω.
The resulting Euler-Lagrange equations read as

(3.2) 〈Buε−g, Bw〉Y ′+〈Γωuε−f,Γωw〉L2(I×ω)+ε2〈γ0uε, γ0w〉L2(Ω) = 0 (w ∈ X).

Since Γω ∈ L(X, L2(I × ω)), and on account of (2.5), for w ∈ X it holds that

(3.3) ε2‖w‖2
X ! ‖Bw‖2

Y ′ + ‖Γωw‖2
L2(I×ω) + ε2‖γ0w‖2

L2(Ω) ! max(1, ε2)‖w‖2
X .

By the Lax-Milgram Lemma, we thus know that for ε > 0 the minimizer uε exists
uniquely, and satisfies

(3.4) ‖uε‖X ! max(ε−1, 1)
(
‖g‖Y ′ + ‖f‖L2(I×ω)

)
.

Selecting any reference state u ∈ X, similarly to (3.4) one can show that for
ε > 0

‖u − uε‖X ! max(ε−1, 1)
(
ε‖γ0u‖L2(Ω) + econs(u)

)
,

see (2.8). This result is by no means satisfactory. With the aid of (2.7), much
better bounds will be established for ‖u − uε‖Xη .

1We could have included additional weights in front of the first terms that could reflect a priori
knowledge on model- or data-fidelity. Since this would not affect the subsequent developments we
disregard this option for simplicity of exposition.
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Remark 3.1. Also for ε = 0, the minimizer u0 of G0(·) = econs(·)2 over X exists
uniquely. Indeed, suppose there are two minimizers. Then, by (3.2), their difference
e0 satisfies

〈Be0, Bw〉Y ′ + 〈Γωe0,Γωw〉L2(I×ω) = 0 (w ∈ X),

and so ‖Γωe0‖2
L2(I×ω) + ‖Be0‖2

Y ′ = 0. As we have seen, using (2.4) and (2.7) this
implies e0 = 0.

A frequently used tool reads as follows.

Lemma 3.2. For any w ∈ X one has

‖u − w‖Xη !
√

G0(w) + econs(u).

Proof. We infer from (2.7) and a triangle-inequality for the norm
√
‖ ‖2

L2(I×ω)+‖ ‖2
Y ′

that

‖u − w‖Xη !
√
‖Γω(u − w)‖2

L2(I×ω) + ‖B(u − w)‖2
Y ′ ≤

√
G0(w) + econs(u)

which confirms the claim. #

When taking as reference state u = uε, we obtain the following a posteriori
bound.

Proposition 3.3. For ε ≥ 0 and w ∈ X, one has

‖uε − w‖Xη !
√

Gε(w).

Proof. The proof follows from Lemma 3.2 and
√

G0(w) + econs(uε) ≤
√

Gε(w) +
√

Gε(uε) ≤ 2
√

Gε(w). #

The same arguments, used to show for ε ≥ 0 existence and uniqueness of the
minimizer uε of Gε over X, show for any closed subspace Xδ ⊂ X uniqueness of
the minimizer uδ

ε of Gε over Xδ. An a priori bound for ‖u−uδ
ε‖Xη for an arbitrary

reference state u ∈ X is given in Proposition 3.4.

Proposition 3.4. It holds that

‖u − uδ
ε‖Xη ! econs(u) + eδapprox(u) + ε‖γ0u‖L2(Ω),

where

eδapprox(u) := min
w∈Xδ

‖u − w‖X

denotes the corresponding approximation error of the state u.

Proof. Let PXδ denote the X-orthogonal projector onto Xδ, then using B∈L(X, Y ′)
and (2.4), we infer that

√
G0(uδ

ε) ≤
√

Gε(uδ
ε) ≤

√
Gε(PXδu)

≤‖B(u − PXδu)‖Y ′ + ‖Bu − g‖Y ′ + ‖f − Γωu‖L2(I×ω)+

‖Γω(u − PXδu)‖L2(I×ω) + ε‖γ0(u − PXδu)‖L2(Ω) + ε‖γ0u‖L2(Ω)

!eδapprox(u) + econs(u) + ε‖γ0u‖L2(Ω),

which together with Lemma 3.2 completes the proof. #
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At this point we note that because of the presence of the dual norm ‖ · ‖Y ′ in
Gε, neither uδ

ε nor the a posteriori bound for ‖uε − w‖Xη from Proposition 3.3 for
e.g. w = uδ

ε can be computed. Both problems are going to be tackled in the next
two subsections.

Remark 3.5. Although the upper bound from Proposition 3.4 is minimal for ε = 0,
a reason for nevertheless taking ε > 0, say of the order of the expected magnitude
of econs(u) + eδapprox(u), is to enhance the numerical stability of solving the Euler-
Lagrange equations.

Remark 3.6. Notice that even when econs(u) = 0 and ε = 0, Proposition 3.4 does
not show that uδ

0 is a quasi-best approximation to u from Xδ. Indeed the norm
‖ · ‖X used to define eδapprox(u) differs from the norm ‖ · ‖Xη in which u − uδ

0 is
measured.

We conclude this section with a few comments on the behavior of uε when ε
tends to zero. First, note that the consistency error of uε approaches the minimal
consistency error econs(u0) when ε → 0 because

econs(uε) ≤
√

Gε(uε) ≤
√

Gε(u0)≤ econs(u0) + ε‖γ0u0‖L2(Ω).

In particular, a first trivial consequence of Proposition 3.4 is that, for consistent
and exact data, i.e., econs(u0) = 0, uε tends to the state u0 in Xη for any η > 0.
Even without the assumption econs(u0) = 0, a stronger result is derived in Remark
3.7.

Remark 3.7. One has

‖u0 − uε‖X → 0, ε → 0.

Proof. We remark first that
√

Gε Γ-converges to
√

G0 =: F . In fact, let (εn)n∈ℕ
tend to zero. The functionals Fn :=

√
Gεn : X → ℝ+ are uniformly coercive (in

the sense of optimization, meaning that Fn(w) → ∞ for ‖w‖X → ∞). Let (wn)n∈ℕ
be any sequence in X with limit w ∈ X. Then

F (w) − Fn(wn) ≤ F (w) − F (wn)≤
√
‖B(w − wn)‖2

Y ′ + ‖γω(w − wn)‖2
L2(I×ω)

! ‖w − wn‖X , n ∈ ℕ,

so that F (w) ≤ lim infn→∞ Fn(wn). Moreover, for any w ∈ X there exists a
sequence (wn)n∈ℕ in X such that F (w) ≥ lim supn→∞ Fn(wn), as can be seen by
simply taking wn = w. Thus, by the main Theorem of Γ-convergence, minimizers
of Fn converge to the minimizer of F . #

Thus, trying to solve the regularized problem, with ε as small as possible, in-
cidentally favors u0 as a target state. Thus, it is of interest to estimate econs(u0)
(see Corollary 3.14) since a relatively large econs(u0) weakens the relevance of u0,
favoring correspondingly larger regularization parameters.

3.1. Discretizing the dual norm. Minimizing Gε over Xδ does not correspond
to a practical method because the dual norm ‖ ·‖Y ′ cannot be evaluated. Therefore,
given a family of finite dimensional subspaces (Xδ)δ∈∆ of X, the idea is to find a
family (Y δ)δ∈∆ of finite dimensional subspaces of Y , ideally with dim Y δ ! dim Xδ,
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such that ‖Bw‖Y ′ can be controlled for w ∈ Xδ by the computable quantity
‖Bw‖Y δ′ . This is ensured whenever

(3.5) inf
δ∈∆

inf
{w∈Xδ : Bw '=0}

sup
0'=µ∈Y δ

(Bw)(µ)

‖Bw‖Y ′‖µ‖Y
> 0

is valid.
In the subsequent discussion we make heavy use of the Riesz isometry R ∈

Lis(Y, Y ′), defined by

(Rv)(w) := 〈v, w〉Y :=

∫

I

∫

Ω
∇xv · ∇xw dx dt, (v, w ∈ Y ).

Introducing auxiliary variables for µε = R−1(g − Buε) ∈ Y , θε = f − Γωuε ∈
L2(I × ω), and νε = −γ0uε ∈ L2(Ω) gives rise to a mixed formulation of the
problem of finding the minimizer uε over X of Gε defined in (3.1) in terms of the
saddle point system

(3.6) Sε(µε, θε, νε, uε) :=





R 0 0 B
0 I 0 Γω

0 0 I εγ0

B′ Γ′
ω εγ′

0 0









µε

θε
νε
uε



 =





g
f
0
0





(see [CDW12, Sect. 2.2]). (Equivalently, (3.6) characterizes the critical point of
the Lagrangian obtained when inserting in Gε these variables and appending cor-
responding constraints by Lagrange multipliers.)

Remark 3.8. Eliminating the second and third variables from (3.6), one arrives at
the equivalent more compact formulation

[
R B
B′ −(Γ′

ωΓω + ε2γ′
0γ0)

] [
µε

uε

]
=

[
g

−Γ′
ωf

]
.

It serves in Section 3.4 as the starting point for a numerical scheme.

Theorem 3.9. Let (3.5) be valid. For uδ,δ
ε denoting the (unique) minimizer over

Xδ of

Gδ
ε := w &→ ‖Bw − g‖2

Y δ′ + ‖Γωw − f‖2
L2(I×ω) + ε2‖γ0w‖2

L2(Ω),

one has

‖u − uδ,δ
ε ‖Xη ! econs(u) + eδapprox(u) + ε‖γ0u‖L2(Ω).

(We recall that, as always, the constant absorbed by the !-symbol may (actually
will) depend on ω and η, but not on ε ≥ 0 or δ ∈ ∆.)

Proof. Denoting the block-diagonal operator comprised of the leading 3 × 3 block
in Sε by D, the operator Sε can be rewritten as

Sε =

[
D Cε

C ′
ε 0

]
,

where Cε ∈ L
(
X, Y ′ × L2(I × ω) × L2(Ω)

)
is defined by

(Cεw)(µ, θ, ν) := (Bw)(µ) + 〈Γωw, θ〉L2(I×ω) + ε〈γ0w, ν〉L2(Ω).
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With the usual identification of L2(I ×ω) and L2(Ω) with their duals, D is just the
isometric Riesz isomorphism between Y ×L2(I×ω)×L2(Ω) and its dual. Equipping
X with the (ε-dependent) “energy”-norm

|||w|||ε :=
√
‖Bw‖2

Y ′ + ‖Γωw‖2
L2(I×ω) + ε2‖γ0w‖2

L2(Ω),

one verifies that ‖Cεw‖Y ′×L2(I×ω)×L2(Ω) = |||w|||ε, so that in particular Cε satisfies
an ‘inf-sup’ condition. Consequently, the operator Sε on the left hand side of (3.6)
is a boundedly invertible mapping from Y × L2(I × ω) × L2(Ω) × (X, ||| |||ε) to its
dual (uniformly in ε).

Analogously to the continuous case, the minimizer uδ,δ
ε of Gδ

ε equals the fourth
component of the solution (µδ,δ

ε , θδ,δε , νδ,δε , uδ,δ
ε ) of the Galerkin discretization of (3.6)

with trial space Y δ×L2(I ×ω)×L2(Ω)×Xδ. Thanks to (3.5), for w ∈ Xδ we have

sup
0'=(µ̃,θ̃,ν̃)∈Y δ×L2(I×ω)×L2(Ω)

(Bw)(µ̃) + 〈Γωw, θ̃〉L2(I×ω) + ε〈γ0w, ν̃〉L2(Ω)√
‖µ̃‖2

Y + ‖θ̃‖2
L2(I×ω) + ‖ν̃‖2

L2(Ω)

! |||w|||ε,

so that the so-called Ladyzhenskaya-Babuška-Brezzi condition is satisfied. Conse-
quently, the discretization of the saddle-point system is uniformly stable, and so we
have

‖µε−µδ,δ
ε ‖Y + ‖θε − θδ,δε ‖L2(I×ω) + ‖νε − νδ,δε ‖L2(Ω) + |||uε − uδ,δ

ε |||ε
! min

(µ̃,ũ)∈Y δ×Xδ
‖µε − µ̃‖Y + |||uε − ũ|||ε

≤ ‖µε‖Y + min
ũ∈Xδ

|||uε − ũ|||ε = ‖g − Buε‖Y ′ + min
ũ∈Xδ

|||uε − ũ|||ε.
(3.7)

From (2.7), we have

‖u − uδ,δ
ε ‖Xη ! |||u − uδ,δ

ε |||ε ≤ |||u − uε|||ε + |||uε − uδ,δ
ε |||ε,

where, by (3.7),

|||uε − uδ,δ
ε |||ε ! ‖g − Buε‖Y ′ + |||u − uε|||ε + min

ũ∈Xδ
|||u − ũ|||ε,

! ‖g − Buε‖Y ′ + |||u − uε|||ε + eδapprox(u),

where we have used ||| |||ε ! ‖ ‖X . By applying a triangle-inequality for the norm√
‖ · ‖2

Y ′ + ‖ · ‖2
L2(I×ω) + ε2‖ · ‖2

L2(Ω), one infers that

‖g − Buε‖Y ′ + |||u − uε|||ε ≤
√

G0(uε) +
√

Gε(u) +
√

Gε(uε) ≤ 3
√

Gε(u)

≤ 3(econs(u) + ε‖γ0u‖L2(Ω)).

By combining the estimates from the last three displayed formulas the proof is
complete. #

Remark 3.10. Let (Xδ)δ∈∆ = (Xδn)n∈ℕ be such that ∪nXδn = X and Xδn ⊂ Xδn+1

(∀n). Let (Y δn)n∈ℕ be a corresponding sequence such that (3.5) is valid, ∪nY δn = Y
and Y δn ⊂ Y δn+1 (∀n), and let (εn)n∈ℕ be such that limn→∞ εn = 0. Then

lim
n→∞

G0(u
δn,δn
εn

) = lim
n→∞

Gεn(uδn,δn
εn

) = G0(u0) = econs(u0).

Proof. For convenience writing (δ, ε) = (δn, εn), for ξ ∈ {0, ε} we write

G0(u0) − Gξ(u
δ,δ
ε ) = G0(u0) − Gξ(uε) + Gξ(uε) − Gξ(u

δ,δ
ε ).
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Since limn→∞ ‖u0 − uε‖X = 0 by Remark 3.7, and hence limn→∞ ‖µ0 − µε‖Y =
limn→∞ ‖B(u0−uε)‖Y ′ = 0, we have limn→∞ Gξ(uε) = G0(u0). As shown in (3.7),
it holds that

|Gξ(uε) − Gξ(u
δ,δ
ε )| ≤ |||uε − uδ,δ

ε |||ε ! min
(µ̃,ũ)∈Y δ×Xδ

‖µε − µ̃‖Y + |||uε − ũ|||ε

! min
(µ̃,ũ)∈Y δ×Xδ

‖µε − µ̃‖Y + ‖uε − ũ‖X

≤ ‖µ0 − µε‖Y + ‖u0 − uε‖X + min
(µ̃,ũ)∈Y δ×Xδ

‖µ0 − µ̃‖Y + ‖u0 − ũ‖X → 0

for n → ∞. #
The above results hinge on the validity of (3.5). When A(t) ≡ A is a spatial

(second order elliptic) differential operator with constant coefficients on a convex
polytopal domain Ω, and Xδ is a lowest order finite element space w.r.t. quasi-
uniform prismatic elements, we will be able to verify in Section 5.2 the inf-sup
condition (3.5).

Since we are able to show (3.5) only under such restrictive conditions on Ω
and the trial spaces Xδ, we will consider in Section 4 a First Order System Least
Squares formulation of the data assimilation problem, for which a corresponding
inf-sup condition will be shown in more general situations in Section 5.3.

Stability of the discretization, and hence (3.5), is in particular intimately con-
nected with a posteriori accuracy control. A well-known tool for establishing (3.5) is
the identification of suitable Fortin operators which also serve to define appropriate
notions of data oscillation as discussed next.

3.2. Fortin operators, a posteriori error estimation and data-oscillation.
It is well-known that existence of uniformly bounded Fortin interpolators is a suffi-
cient condition for the inf-sup condition (3.5) to hold. In Theorem 3.11 it is shown
that existence of such interpolators is also a necessary condition, and quantitative
statements are provided.

Theorem 3.11. Let

(3.8) Qδ ∈ L(Y, Y ) with ranQδ ⊂ Y δ and (BXδ)
(
(Id − Qδ)Y

)
= 0.

Then γδ := inf{w∈Xδ : Bw '=0} sup0'=µ∈Y δ
(Bw)(µ)

‖Bw‖Y ′‖µ‖Y
≥ ‖Qδ‖−1

L(Y,Y ).

Conversely, when γδ > 0, there exists a Qδ as in (3.8), which is a projector, and
‖Qδ‖L(Y,Y )≤ 2+1/γδ.

Proof. If a Qδ as in (3.8) exists, then for w ∈ Xδ it holds that

‖Bw‖Y ′ = sup
0'=µ∈Y

(Bw)(µ)

‖µ‖Y
= sup

0'=µ∈Y

(Bw)(Qδµ)

‖µ‖Y
≤ ‖Qδ‖L(Y,Y ) sup

0'=µ∈Y δ

(Bw)(µ)

‖µ‖Y
,

or γδ ≥ ‖Qδ‖−1
L(Y,Y ).

Now let γδ > 0. Equipping Xδ/ker B with ‖B · ‖(Y δ)′ , given µ ∈ Y consider the
problem: find (µδ, [wδ]) ∈ Y δ × Xδ/ker B that solves

(3.9)

([
R B
B′ 0

] [
µδ − µ
[wδ]

])[
µ̃δ

[w̃δ]

]
= 0 ((µ̃δ, [w̃δ]) ∈ Y δ × Xδ/ker B).

One verifies that Qδ := µ &→ µδ is a projector and satisfies (3.8), and so what
remains is to bound its norm.
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Denoting by IδY : Y δ → Y and IδX : Xδ/ker B → X/ker B the trivial embeddings,
in operator language the above system reads as

[
(IδY )′RIδY (IδY )′BIδX
(IδX)′B′IδY 0

] [
µδ

[wδ]

]
=

[
(IδY )′Rµ
(IδX)′B′µ

]
.

One verifies that Bδ :=(IδY )′BIδX : Xδ/kerB → (Y δ)′ is an isometry, and further-
more that Rδ :=(IδY )′RIδY : Y δ → (Y δ)′ is an isometric isomorphism. Therefore,

the Schur complement Sδ := Bδ ′Rδ−1
Bδ is an isometric isomorphism. From

µδ = Rδ−1[
(IδY )′Rµ + BδSδ−1(

(IδX)′B′µ − Bδ ′Rδ−1
(IδY )′Rµ

)]
,

‖(IδY )′R‖L(Y,Y δ′) ≤ 1, and

‖(IδX)′B′‖L(Y,(Xδ/ker B)′) = ‖BIδX‖L(Xδ/ker B,Y ′)

= sup
{w∈Xδ : Bw '=0}

inf
0'=µ∈Y δ

‖Bw‖Y ′‖µ‖Y

(Bw)(µ)
= 1/γδ,

we conclude that ‖µδ‖Y ≤ (2 + 1/γδ)‖µ‖Y which completes the proof. #

Lemma 3.12. Let (Xδ, Y δ)δ∈∆ ⊂ X × Y be such that (3.5) is satisfied, and let
(Qδ)δ∈∆ be a corresponding family of uniformly bounded Fortin interpolators as in
(3.8). Then with

eδosc(g) := ‖(Id − Qδ ′)g‖Y ′ , 2

one has for any ε ≥ 0 and w ∈ Xδ,
√

Gε(w) !
√

Gδ
ε(w) + eδosc(g).

Proof. Thanks to (Id − Qδ ′)BXδ = 0, the proof follows from

‖Bw − g‖Y ′ ≤ ‖Qδ ′(Bw − g)‖Y ′ + ‖(Id − Qδ ′)g‖Y ′

≤ ‖Qδ‖L(Y,Y )‖Bw − g‖Y δ′ + eδosc(g). #

Together Proposition 3.3 and Lemma 3.12 show the following a posteriori error
bound.

Corollary 3.13. In the situation of Lemma 3.12, one has for ε ≥ 0 and w ∈ Xδ,

‖uε − w‖Xη !
√

Gδ
ε(w) + eδosc(g).

Lemma 3.12 can also be used to compute an a posteriori upper bound, modulo
data-oscillation, for the minimal consistency error.

Corollary 3.14. Adhering to the setting in Lemma 3.12, one has for any w ∈ Xδ

econs(u0) !
√

Gδ
0(w) + eδosc(g).

Proof. The proof follows from econs(u0) =
√

G0(u0) ≤
√

G0(w) and an application
of Lemma 3.12. #

2A similar data-oscillation term appears in [CDG14] dealing with the derivation of a posteriori
error estimators for minimal residual methods w.r.t. a dual norm (as our norm on Y ′).
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In view of Proposition 3.4 or Theorem 3.9, this upper bound on econs(u0) narrows
the range for appropriate regularization parameters balancing accuracy of the state
estimator and the condition of corresponding discrete systems.

In the light of the a priori error bound from Theorem 3.9 the above observations
hint at further desirable properties of the family (Y δ)δ∈∆ associated with given
trial spaces (Xδ)δ∈∆. Namely, they should permit the construction of uniformly
bounded Fortin interpolators Qδ, as in (3.8), for which in addition,

(3.10) eδosc(g) = O(eδapprox(u)), or even eδosc(g) = o(eδapprox(u))

holds for sufficiently smooth g. For the model case mentioned at the end of Section
3.1, in Section 5.2 we will construct (Y δ)δ∈∆ such that both (3.8) and (3.10) are
valid.

3.3. Comparisons with the forward problem. To show that the solution of
the least squares problem

argmin
w∈Xδ

‖Bw − h‖2
Y δ ′ + ‖γ0w − z0‖2

L2(Ω)

is a quasi-best approximation from Xδ to the solution of the initial-value problem
(2.3), the corresponding inf-sup condition reads as

(3.11) inf
δ∈∆

inf
0'=w∈Xδ

sup
0'=(µ,z)∈Y δ×L2(Ω)

(Bw)(µ) + 〈γ0w, z〉L2(Ω)

‖w‖X(‖µ‖Y + ‖z‖L2(Ω))
> 0.

The inf-sup condition (3.5) which is relevant for our data-assimilation problem
implies (3.11). The converse is true when γ0w = 0 for all w ∈ Xδ. If there is
no reason to assume that the target solution u of our data-assimilation problem
vanishes at t = 0, then however this is not a relevant case.

As shown in [And13,SW20] for the symmetric case A(t)′ = A(t) (t ∈ I a.e.), and
without this restriction in [SW21], sufficient conditions for (3.11) are Xδ ⊂ Y δ and

inf
δ∈∆

inf
0'=w∈Xδ

sup
0'=µ∈Y δ

(∂tw)(µ)

‖∂tw‖Y ′‖µ‖Y
> 0.

This latter inf-sup condition can be realized in far more general discretization set-
tings than we are able to show (3.5).

Even for the initial-value problem, a benefit of having (3.5), i.e. (3.8), is that
it gives rise to the efficient and, up to a data-oscillation term, reliable a posteriori
error bound

√
‖Bw − h‖2

Y δ′ + ‖γ0w − z0‖2
L2(Ω) !

‖z − w‖X !
√
‖Bw − h‖2

Y δ ′ + ‖γ0w − z0‖2
L2(Ω) + oscδ(h),

where z is the solution of (2.3), and w is any element of Xδ.

3.4. Numerical solution of the discrete problem. As in Remark 3.8, by elimi-
nating the second and third variables from the Galerkin discretization of (3.6) with
trial space Y δ ×L2(I × ω)×L2(Ω)×Xδ, the minimizer uδ,δ

ε of Gδ
ε over Xδ can be

found as the second component of the solution (µδ,δ
ε , uδ,δ

ε ) ∈ Y δ × Xδ of
([

R B
B′ −(Γ′

ωΓω + ε2γ′
0γ0)

] [
µδ,δ
ε

uδ,δ
ε

]
−
[

g
−Γ′

ωf

])[
µ̃
ũ

]
= 0 ((µ̃, ũ) ∈ Y δ × Xδ).
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To solve this linear system, we need to select bases. Let ΦY δ
= {φY δ

1 ,φY δ

2 , . . .}
and ΦXδ

= {φXδ

1 ,φXδ

2 , . . .} denote ordered bases, formally viewed as column vec-

tors, for Y δ and Xδ, respectively. Writing µδ,δ
ε = (µδ,δ

ε ))ΦY δ
, uδ,δ

ε = (uδ,δ
ε ))ΦXδ

,

and defining the vectors gδ := g(ΦY δ

), fδ
ω := f(ΦXδ |I×ω), introducing the matrix

Rδ := (RΦY δ

)(ΦY δ

)=[〈φY δ

j ,φY δ

i 〉Y ]ij , and similarly, matrices Bδ := (BΦXδ

)(ΦY δ

),

M δ
Γω

:= 〈ΓωΦXδ
,ΓωΦXδ 〉L2(I×ω), and M δ

γ0
:= 〈γ0ΦXδ

, γ0ΦXδ〉L2(Ω), one finds the

pair (µδ,δ
ε , uδ,δ

ε ) as the solution of

(3.12)

[
Rδ Bδ

Bδ) −(M δ
Γω

+ ε2M δ
γ0

)

][
µδ,δ

ε

uδ,δ
ε

]
=

[
gδ

−fδ
ω

]
.

Remark 3.15. Using that ‖Buδ,δ
ε − g‖Y δ′ = ‖µδ,δ

ε ‖Y , one verifies that for any ε̃ ≥ 0,
the a posteriori estimate from Corollary 3.13 for the deviation of uδ,δ

ε from uε̃ can
be evaluated according to

Gδ
ε̃(u

δ,δ
ε ) =〈Rδµδ,δ

ε , µδ,δ
ε 〉 + 〈M δ

Γω
uδ,δ
ε , uδ,δ

ε 〉
− 2〈uδ,δ

ε , fδ
ω〉 + ‖f‖2

L2(I×ω) + ε̃2〈M δ
γ0

uδ,δ
ε , uδ,δ

ε 〉.

This will later be used in the numerical experiments.

For spatial domains with dimension d > 1, the realization of any reasonable
accuracy gives rise to system sizes that require resorting to an iterative solver.
When employing a discretization based on a partition of the time-space cylinder
into “time slabs”, the availability of a uniformly spectrally equivalent preconditioner
Kδ

Y ! (Rδ)−1 that can be applied at linear cost is actually a mild assumption.
All properties we have derived for the solution of (3.12) remain valid when we

replace Rδ in this system by (Kδ
Y )−1, because this replacement amounts to replac-

ing the Y -norm on Y δ by an equivalent norm. Therefore, despite this replacement,
we continue to denote the solution vector and corresponding function in Xδ by uδ,δ

ε

and uδ,δ
ε = (uδ,δ

ε ))ΦXδ
, respectively.

To approximate uδ,δ
ε we apply Preconditioned Conjugate Gradients to the Schur

complement equation

(3.13) (Bδ)Kδ
Y Bδ + M δ

Γω
+ ε2M δ

γ0
)

︸ ︷︷ ︸
Gδ

ε:=

uδ,δ
ε = fδ

ω + Bδ)Kδ
Y gδ

︸ ︷︷ ︸
hδ:=

.

We use a preconditioner Kδ
X that is the representation of a uniformly boundedly

invertible operator Xδ ′ → Xδ, with Xδ and Xδ ′ being equipped with ΦXδ
and the

corresponding dual basis. Again, under the time-slab restriction, such precondition-
ers Kδ

X of wavelet-in-time, multigrid-in-space type, that can be applied at linear
cost, have been constructed in [And16,SvVW21]. Assuming (3.5) (even (3.11) suf-
fices), it follows from (3.3) that λmax(Kδ

XGδ
ε) ! max(1, ε2) and λmin(Kδ

XGδ
ε) " ε2.

Consequently, the number of iterations that is sufficient to reduce an initial alge-
braic error by a factor ρ in the ‖(Gδ

ε)
1
2 · ‖-norm3 can be bounded by ! ε−1 log ρ−1.

To derive a stopping criterion for the iteration, for ũδ,δ
ε ≈ uδ,δ

ε let e := uδ,δ
ε −ũδ,δ

ε ,

r := hδ−Gδ
εũ

δ,δ
ε , ũδ,δ

ε := (ũδ,δ
ε ))ΦXδ

, and the algebraic error e := uδ,δ
ε −ũδ,δ

ε . Then,

3A reduction of the desired factor ρ can be achieved by applying a nested iteration approach.
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from (3.5) we have that

Gδ
0(e) ≤ ‖Be‖2

Y δ′ + ‖Γωe‖2
L2(I×ω) + ε2‖γ0e‖2

L2(Ω)

=
〈
(Bδ)Rδ−1

Bδ + M δ
Γω

+ ε2M δ
γ0

)e, e
〉

!
〈
(Bδ)Kδ

Y Bδ + M δ
Γω

+ ε2M δ
γ0

)e, e
〉

= 〈Gδ
εe, e〉.

Moreover, for e 5= 0, we have4

(3.14) max(1, ε2)−1 ! λmax(K
δ
XGδ

ε)
−1 ≤ 〈Gδ

εe, e〉
〈r, Kδ

Xr〉
≤ λmin(Kδ

XGδ
ε)

−1 ! ε−2.

Taking u0 as the reference state, the iteration should ideally be stopped as soon
as the algebraic error is dominated by ‖u0 − uδ,δ

ε ‖Xη . Ignoring data-oscillation, as
an indication that ũδ,δ

ε is indeed close enough to uδ,δ
ε we accept that the respec-

tive upper bounds from Corollary 3.13 are close enough, i.e.,
√

Gδ
0(ũ

δ,δ
ε ) satisfies√

Gδ
0(ũ

δ,δ
ε ) !

√
Gδ

0(u
δ,δ
ε ). Using

√
Gδ

0(ũ
δ,δ
ε ) ≤

√
Gδ

0(u
δ,δ
ε ) +

√
Gδ

0(e), and the above

bound for Gδ
0(e), we conclude that for the latter to hold true it suffices when for a

sufficiently small constant µ > 0,

〈r, Kδ
Xr〉 ≤ µε2Gδ

0(ũ
δ,δ
ε ).

Since we expect (3.14) to be pessimistic, we simply take µ = 1 and thus will stop
the iterative solver as soon as 〈r, Kδ

Xr〉 ≤ ε2Gδ
0(ũ

δ,δ
ε ).

4. First order system least squares (FOSLS) formulation

In view of the difficulty to demonstrate the inf-sup condition (3.5) in general
settings for the second order weak formulation of the data assimilation problem,
we consider in this section a regularized FOSLS formulation. Its analysis builds to
a large extent on the concepts used in Section 3.

For /b ∈ L∞(I × Ω)d, c ∈ L∞(I ×Ω), and uniformly positive definite K = K) ∈
L∞(I × Ω)d×d, we consider a(t; θ, ζ) as in (2.1)-(2.2) of the form

(4.1) a(t; θ, ζ) =

∫

Ω
K∇θ · ∇ζ dx + (/b · ∇θ + cθ)ζ dx.

Adhering to the definitions of the spaces X, Y from the previous sections, we ab-
breviate Z := L2(I; L2(Ω)d) and consider the operator C ∈ L(X × Z, Y ′), given
by

(4.2) C(w, /q)(v) :=

∫

I

∫

Ω
∂twv + /q · ∇xv + (/b · ∇xw + cw)v dxdt.

Moreover, we introduce the corresponding least squares functional Hε : X×Z → ℝ,
defined by

Hε(w, /q) :=

‖C(w, /q) − g‖2
Y ′ + ‖/q − K∇xw‖2

Z + ‖Γωw − f‖2
L2(I×ω) + ε2‖γ0w‖2

L2(Ω).

The following simple observations allow us to tie the analysis of the corresponding
minimization problem to the concepts developed in the previous section.

4Instead of the possibly very pessimistic upper bound in (3.14) that moreover requires esti-
mating λmin(Kδ

XGδ
ε), one may consult [GM97,MT13,AK01] for methods to accurately estimate

〈Gδ
εe, e〉 using data that is obtained in the PCG iteration.
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Remark 4.1. One has for any w ∈ X

C(w, K∇xw)(v) = (Bw)(v), v ∈ Y,

and more generally, for any (w, /q, 0) ∈ X × Z × Y ′,

C(w, /q) − 0(v) = (Bw)(v) − 0(v) +

∫

I×Ω
(/q − K∇xw) · ∇xvdxdt.

Hence

‖Bw − 0‖Y ′ ≤ ‖C(w, /q) − 0‖Y ′ + ‖v &→
∫

I

∫

Ω
(/q − K∇xw) · ∇xv dx dt‖Y ′

≤ ‖C(w, /q) − 0‖Y ′ + ‖/q − K∇xw‖Z ,
(4.3)

which, with 0 = g in particular, implies that

(4.4) Hε(w, K∇xw) = Gε(w) ≤ 2Hε(w, /q), for any /q ∈ Z.

Using (4.3), one infers from (3.3) that

ε2 !
‖C(w, /q)‖2

Y ′ + ‖/q − K∇xw‖2
Z + ‖Γωw‖2

L2(I×ω) + ε2‖γ0w‖2
L2(Ω)

‖w‖2
X + ‖/q‖2

Z

! max(1, ε2).

By an application of the Lax-Milgram Lemma, we conclude that for ε > 0 the
minimizer (ūε, /pε) over X × Z of Hε exists uniquely, and satisfies

‖ūε‖X + ‖/pε‖Z ! max(ε−1, 1)(‖g‖Y ′ + ‖f‖L2(I×ω)),

as well as, for any reference state u ∈ X,

‖u − ūε‖X + ‖K∇u − /pε‖Z ! max(ε−1, 1)
(
ε‖γ0u‖L2(Ω) + econs(u)

)
.

Again, using (2.7), much better bounds will be established for ‖u − ūε‖Xη .

Remark 4.2. Also for ε = 0, the minimizer (ū0, /p0) exists uniquely. Indeed, let
there be two minimizers of H0 over X × Z. Then their difference (e0,/e0) is a
homogeneous solution of the corresponding Euler-Lagrange equations which, in
turn, implies ‖C(e0,/e0)‖2

Y ′+‖/e0−K∇xe0‖2
Z+‖Γωe0‖2

L2(I×ω) = 0, and so ‖Be0‖2
Y ′+

‖Γωe0‖2
L2(I×ω) = 0, which as we have seen, implies that e0 = 0, and so /e0 = 0.

Proposition 4.3. For any w ∈ X, /q ∈ Z one has

‖u − w‖Xη !
√

H0(w, /q) + econs(u).

In particular, for ε ≥ 0, we have the a posteriori bound

‖ūε − w‖Xη !
√

Hε(w, /q).

Proof. Lemma 3.2 gives ‖u − w‖Xη !
√

G0(w) + econs(u), and G0(w) ≤ 2H0(w, /q)
by (4.4). The second result follows from

√
H0(w, /q) + econs(ūε) ≤

√
Hε(w, /q) +

√
Gε(ūε)

≤
√

Hε(w, /q) +
√

2
√

Hε(ūε, /pε) ≤ (1 +
√

2)
√

Hε(w, /q). #

The same arguments used to show for ε ≥ 0 existence and uniqueness of the
minimizer (ūε, /pε) of Hε over X×Z show for any closed subspace Xδ×Zδ ⊂ X×Z
uniqueness of the minimizer (uδ

ε, /p
δ
ε) of Hε over Xδ × Zδ. An a priori bound for

‖u − ūδ
ε‖Xη for an arbitrary reference state u ∈ X is given in Proposition 4.4.
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Proposition 4.4. It holds that

‖u − ūδ
ε‖Xη ! econs(u) + ēδapprox(u) + ε‖γ0u‖L2(Ω),

where ēδapprox(u) := min(w,)q)∈Xδ×Zδ ‖u − w‖X + ‖K∇xu − /q‖Z .

Proof. Let PXδ and PZδ denote the X- respectively Z-orthogonal projector onto
Xδ respectively Zδ. Then we have
√

Hε(PXδu, PZδK∇xu) ≤ ‖C(PXδu, PZδK∇xu) − C(u, K∇xu) + Bu − g‖Y ′

+ ‖PZδK∇xu − K∇xu + K∇xu − K∇xPXδu‖Z

+ ‖Γω(PXδu − u) + Γωu − f‖L2(I×ω) + ε‖γ0PXδu‖L2(Ω)

≤ ‖C(PXδu − u, PZδK∇xu − K∇xu)‖Y ′ + ‖Bu − g‖Y ′

+ ‖PZδK∇xu − K∇xu‖Z + ‖K∇x(u − PXδu)‖Z

+ ‖Γω(PXδu − u)‖L2(I×ω) + ‖Γωu − f‖L2(I×ω)

+ ε‖γ0(u − PXδu)‖L2(Ω) + ε‖γ0u‖L2(Ω)

! ε‖γ0u‖L2(Ω) + econs(u) + ēδapprox(u),

where we have used C ∈ L(X × Z, Y ′), K∇x ∈ L(Z, X), and (2.4). Since by
Proposition 4.3, ‖u − ūδ

ε‖Xη !
√

Hε(ūδ
ε, /p

δ
ε) + econs(u) and since, by definition,

Hε(ūδ
ε, /p

δ
ε) ≤ Hε(PXδu, PZδK∇xu), the proof is completed. #

Since the definition of Hε incorporates the dual norm ‖ ·‖Y ′ neither its minimizer
(ūδ

ε, /p
δ
ε) over Xδ × Zδ can be computed, nor the a posteriori error bound from

Proposition 4.3 can be evaluated. In the next subsection both problems will be
tackled by discretizing this dual norm.

Remark 4.5. Our FOSLS formulation of the data-assimilation problem has been
based on the fact that a well-posed FOSLS formulation of the initial-value problem
(2.3), with (A(t)θ)(ζ) = a(t; θ, ζ) of the form (4.1), is given by

argmin
(w,)q)∈X×Z

‖C(w, /q) − g‖2
Y ′ + ‖/q − K∇xw‖2

Z + ‖γ0w − z0‖2
L2(Ω),

see [RS18, Lem. 2.3 and Rem. 2.4]. Notice that with well-posedness we mean that
(w, /q) &→ (C(w, /q), /q − K∇xw, γ0w) ∈ Lis(X × Z, Y ′ × Z × L2(Ω)). In the recent
work [FK21] it was shown that an alternative well-posed FOSLS formulation for
this problem5 is given by

argmin
{(w,)q)∈X×Z : ∂tw−divx )q∈L2(I;L2(Ω))}

‖C(w, /q) − g‖2
L2(I;L2(Ω)) + ‖/q − K∇xw‖2

Z + ‖γ0w − z0‖2
L2(Ω).

Applying the latter formulation to the data-assimilation setting would offer the
important advantage that there is no need to discretize the dual norm ‖ ‖Y ′ . On
the other hand, error estimates for such a formulation would be based on the
estimate ‖w‖Xη ! ‖Γωw‖L2(I×ω) + ‖Bw‖L2(I;L2(Ω)), which is a weaker version of
the Carleman estimate ‖w‖Xη ! ‖Γωw‖L2(I×ω) + ‖Bw‖Y ′ . Furthermore, in view
of an iterative solution process, a likely non-trivial issue is the development of
optimal preconditioners for the space {(w, /q) ∈ X×Z : ∂tw−divx /q ∈ L2(I; L2(Ω))}
equipped with the graph norm.

5The result given in [FK21] for the heat equation immediately generalizes to the more gen-
eral parabolic problem under consideration; see [GS21]. Surjectivity of (w, #q) #→ (C(w, #q), #q −
K∇xw, γ0w) has also been shown in the latter work.
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4.1. Discretizing the dual norm. Given a family of finite dimensional subspaces
(Xδ×Zδ)δ∈∆ of X×Z, for each δ ∈ ∆ we seek a finite dimensional subspace Ȳ δ ⊂ Y ,
with dim Ȳ δ ! dim Xδ + dim Zδ, such that in analogy to (3.5)

(4.5) inf
δ∈∆

inf
0'=(w,)q)∈Xδ×Zδ

sup
0'=µ∈Ȳ δ

C(w, /q)(µ)

‖C(w, /q)‖Y ′‖µ‖Y
> 0.

Theorem 4.6. Let (4.5) be valid. For (ūδ,δ
ε , /pδ,δε ) denoting the (unique) minimizer

over Xδ × Zδ of

Hδ
ε := (w, /q) &→

‖C(w, /q) − g‖2
Ȳ δ′ + ‖/q − K∇xw‖2

Z + ‖Γωw − f‖2
L2(I×ω) + ε2‖γ0w‖2

L2(Ω),

it holds that

‖u − ūδ,δ
ε ‖Xη ! econs(u) + ēδapprox(u) + ε‖γ0u‖X .

Proof. Equipping X × Z with “energy”-norm

||||(w, /q)||||ε :=
√
‖C(w, /q)‖2

Y ′ + ‖/q − K∇xu‖2
Z + ‖Γωw‖2

L2(I×ω) + ε2‖γ0w‖2
L2(Ω),

analogously to the proof of Theorem 3.9, in particular following the same reasoning
that leads to (3.7), one concludes that

||||(ūε, /pε) − (ūδ,δ
ε , /pδ,δε )||||ε ! ‖g − C(ūε, /pε)‖Y ′

+ min
(w,)q)∈Xδ×Zδ

||||(ūε, /pε) − (w, /q)||||ε.(4.6)

From (2.7), the triangle-inequality, and (4.3) we have

‖u − ūδ,δ
ε ‖Xη ! |||u − ūε|||ε + |||ūε − ūδ,δ

ε |||ε
≤

√
2(||||(u, K∇xu) − (ūε, /pε)||||ε + ||||(ūε, /pε) − (ūδ,δ

ε , /pδ,δε )||||ε).

From (4.6) one infers

||||(ūε, /pε) − (ūδ,δ
ε ,/pδ,δε )||||ε

! ‖g − C(ūε, /pε)‖Y ′ + ||||(u, K∇xu) − (ūε, /pε)||||ε + ēapprox(u),

where we have used that |||| ||||ε ! ‖ ‖X×Z . An application of a triangle-inequality for

the norm
√
‖ ‖2

Y ′ + ‖ ‖2
Z + ‖ ‖2

L2(I×ω) + ε2‖ ‖2
L2(Ω) gives

‖g−C(ūε, /pε)‖Y ′ + ||||(u, K∇xu) − (ūε, /pε)||||ε
≤

√
H0(ūε, /pε) +

√
Hε(u, K∇xu) +

√
Hε(ūε, /pε)

≤ 3
√

Hε(u, K∇xu) = 3
√

Gε(u) ≤ 3(econs(u) + ε‖γ0u‖L2(Ω)).

By combining these estimates from the last three displayed formulas the proof is
completed. #

Similar to Section 3.2, a necessary and sufficient condition for (4.5) to hold is
the existence of a family of uniformly bounded Fortin interpolators, i.e.,

(4.7) Q̄δ ∈ L(Y, Ȳ
δ
), (C(Xδ × Zδ))

(
(Id − Q̄δ)Y

)
= 0, sup

δ∈∆
‖Q̄δ‖L(Y,Y ) < ∞.

Similar to Corollary 3.13, we have the following a posteriori error bound.
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Proposition 4.7. Let (Xδ, Zδ, Ȳ δ)δ∈∆ ⊂ X×Z×Y be such that (4.5) is satisfied,
and let (Q̄δ)δ∈∆ be a corresponding family of Fortin interpolators as in (4.7). Then
with

ēδosc(g) := ‖(Id − Q̄δ ′)g‖Y ′ ,

for any (w, /q) ∈ Xδ × Zδ it holds that

‖ūε − w‖Xη !
√

Hδ
ε (w, /q) + ēδosc(g).

Proof. From ‖C(w, /q)− g‖Y ′ ≤ ‖Q̄δ‖L(Y,Y )‖C(w, /q)− g‖Ȳ δ′ + ēδosc(g) and Proposi-
tion 4.3 the proof follows. #

Bearing the a priori error bound from Theorem 4.6 in mind, this result shows
that a desirable additional property of the sequence of spaces (Ȳ δ)δ∈∆, associated
with a given sequence of trial spaces (Xδ×Zδ)δ∈∆, gives rise to Fortin interpolators
Q̄δ, as in (4.7), warranting for sufficiently smooth g

ēδosc(g) = O(ēδapprox(u)), or even ēδosc(g) = o(ēδapprox)(u).

We conclude by remarking that, in analogy to the second order formulation,
condition (4.5) is sufficient for the well-posedness of the corresponding forward
problem, and gives in addition an a posteriori error bound.

Remark 4.8. Concerning the initial-value problem (2.3), if (4.5) is satisfied, then

argmin
(w,)q)∈Xδ×Zδ

‖C(w, /q) − h‖2
Ȳ δ ′ + ‖/q − K∇xw‖2

Z + ‖γ0w − z0‖2
L2(Ω)

is a quasi-best approximation to (z, K∇xz) ∈ X × Z from Xδ × Zδ, and for any
(w, /q) ∈ Xδ × Zδ, it holds

√
‖C(w, /q) − h‖2

Ȳ δ′ + ‖/q − K∇xw‖2
Z + ‖γ0w − z0‖2

L2(Ω)

! ‖z − w‖X + ‖K∇xz − /q‖Z

!
√
‖C(w, /q) − h‖2

Ȳ δ′ + ‖/q − K∇xw‖2
Z + ‖γ0w − z0‖2

L2(Ω) + ēδosc(h).

4.2. Numerical solution of the discrete problem. Recalling the Riesz operator
R ∈ Lis(Y, Y ′), ūδ,δ

ε can be practically computed as the second component of the
solution (λδ,δ

ε , ūδ,δ
ε , /pδ,δε ) ∈ Ȳ δ × Xδ × Zδ of the linear system








R Cu C)p

C ′
u −(∇′

xK2∇x+ Γ′
ωΓω+ε2γ′

0γ0) ∇′
xK

C ′
)p K∇x −Id








λδ,δ
ε

ūδ,δ
ε

/pδ,δε



−




g

−Γ′
ωf

0












λ̃
ũ
/̃p



 = 0

((λ̃, ũ, /̃p) ∈ Ȳ δ×Xδ×Zδ), where for C(·, ·) defined by (4.2), (Cuw)(v) := C(w, 0)(v)
and (C)pq)(v) := C(0, q)(v).

With ordered bases ΦȲ δ
, ΦXδ

, and ΦZδ
for Ȳ δ, Xδ, and Zδ, and previously used

or otherwise obvious notations λδ,δ
ε , ūδ,δ

ε , /pδ,δ
ε , ḡδ =g(ΦȲ δ

), fδ
ω, Rδ, Cδ

u, Cδ
)p , M δ

Γω
,

and M δ
γ0

, and Jδ :=〈KΦZδ
,∇xΦXδ〉L2(Ω)d , Lδ :=〈K∇xΦXδ

, K∇xΦXδ 〉L2(Ω)d , and

N δ :=〈ΦZδ

,ΦZδ 〉L2(Ω)d , one finds (λδ,δ
ε , ūδ,δ

ε ,/pδ,δ
ε ) as the solution of

(4.8)




Rδ Cδ

u Cδ
)p

Cδ
u
) −(Lδ + M δ

Γω
+ ε2M δ

γ0
) Jδ

Cδ
)p
)

Jδ) −N δ








λδ,δ
ε

ūδ,δ
ε

/pδ,δ
ε



 =




ḡδ

−fδ
ω

0



 .
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Similarly as in Section 3.4, one expresses the a posteriori error bound
√

Hε(ū
δ,δ
ε , /pδ,δε )

(modulo ēδosc(g)) in terms of the vectors λδ,δ
ε , ūδ,δ

ε , and /pδ,δ
ε .

As in Section 3.4, in the above system we replace Rδ by a uniform preconditioner
(Kδ

Y )−1, whilst keeping the same notation for the resulting solution vector and
corresponding function in Ȳ δ × Xδ × Zδ, and apply Preconditioned Conjugate
Gradients to the symmetric positive definite Schur complement system
(4.9)[
Lδ + M δ

Γω
+ ε2M δ

γ0
+ Cδ

u
)

Kδ
Y Cδ

u Cδ
u
)

Kδ
Y Cδ

)p − Jδ

Cδ
)p
)

Kδ
Y Cδ

u − Jδ) N δ + Cδ
)p
)

Kδ
Y Cδ

)p

]

︸ ︷︷ ︸
Hδ

ε :=

[
ūδ,δ
ε

/pδ,δ
ε

]
=

[
fδ
ω + C)

u Kδ
Y ḡδ

C)
)p Kδ

Y ḡδ

]
.

With Kδ
X from Section 3.4, and Kδ

Z being spectrally equivalent to the inverse of the

mass matrix of ΦZδ
, the eigenvalues of the preconditioned system

[
Kδ

X 0
0 Kδ

Z

]
Hδ

ε

are bounded from above and below, up to constant factors, by max(1, ε2) and ε2,
respectively.

For ũδ,δ
ε ≈ uδ,δ

ε , /̃pδ,δ
ε ≈ /pδ,δ

ε , with eu := uδ,δ
ε − ũδ,δ

ε , e)p := /pδ,δ
ε − /̃pδ,δ

ε , eu :=

(eu))ΦXδ
, /e)p := (e)p))ΦZδ

, we apply (2.7) and the arguments from the proof of
Proposition 4.3 to obtain

‖eu‖2
Xη

! ‖Γωeu‖2
L2(I×ω) + ‖Beu‖2

Y ′

≤ ‖Γωeu‖2
L2(I×ω) + ‖C(eu,/e)p)‖2

Y ′ + ‖/e)p − K∇xeu‖2
X

! ‖Γωeu‖2
L2(I×ω) + ‖C(eu,/e)p)‖2

Ȳ δ′ + ‖/e)p − K∇xeu‖2
X

≤ ‖Γωeu‖2
L2(I×ω) + ‖C(eu,/e)p)‖2

Ȳ δ′ + ‖/e)p − K∇xeu‖2
X + ε2‖γ0eu‖2

L2(ω)

!
〈

Hδ
ε

[
eu

/e)p

]
,

[
eu

/e)p

]〉
,

where the last “!”-symbol reads as an equality for (Kδ
Y )−1 = Rδ.

For the residuals

[
ru

/r)p

]
:=

[
fδ
ω + C)

u Kδ
Y ḡδ

C)
)p Kδ

Y ḡδ

]
− Hδ

ε

[
eu

/e)p

]
it then holds that

max(1, ε2)−1

〈[
ru

/r)p

]
,

[
Kδ

Xru

Kδ
Z/r)p

]〉
!

〈
Hδ

ε

[
eu

/e)p

]
,

[
eu

/e)p

]〉
! ε−2

〈[
ru

/r)p

]
,

[
Kδ

Xru

Kδ
Z/r)p

]〉
,

uniformly in δ.

Remark 4.9. A reasonable stopping criterion can be determined by the same rea-
soning as used in Section 3.4. Ignoring again data oscillation we use the a posteriori
bound from Proposition 4.7 to see whether the pair (ũδ,δ

ε , /̃pδ,δ
ε ) is sufficiently close

to (uδ,δ
0 ,/pδ,δ

0 ). Specifically, we stop the iteration as soon as
〈[

ru

/r)p

]
,

[
Kδ

Xru

Kδ
Z/r)p

]〉
≤ ε2Hδ

0 (ũδ,δ
ε , /̃pδ,δ

ε ).

5. Construction of a suitable Fortin interpolator

The spaces Xδ and Y δ, or Xδ, Zδ and Ȳ δ, which we are going to employ, will be
finite element spaces w.r.t. a partition of the time-space cylinder into ‘time slabs’
with each time-slab being partitioned into prismatic elements. As a preparation for
the derivation of a suitable Fortin interpolator for both the standard second order
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formulation from Section 3 and the first order formulation from Section 4, we start
with constructing certain biorthogonal projectors acting on the spatial domain.

5.1. Construction of auxiliary biorthogonal projectors. Let (T δ)δ∈∆,(T δ
S )δ∈∆

be families of conforming, uniformly shape regular partitions of Ω ⊂ ℝd into, say,
closed d-simplices, where T δ

S is a refinement of T δ (denoted by T δ ≺ T δ
S ) of some

fixed maximal depth in the sense that |T | " |T ′| for T δ
S 7 T ⊂ T ′ ∈ T δ. Thus, one

still has dim T δ
S ! dim T δ. On the other hand, setting

σ := sup
δ∈∆

sup
T ′∈T δ

sup
{T∈T δ

S : T⊂T ′}

|T |
|T ′| ,

we will assume that this constant is sufficiently small so that the refinement is
sufficiently fine.

Thanks to the conformity and the uniform shape regularity, for d > 1 we know
that any adjacent T, T ′ ∈ T δ (or T δ

S ) with T ∩ T ′ 5= ∅ have uniformly comparable
sizes. For d = 1, we impose this uniform ‘K-mesh property’ explicitly.

Given a conforming partition T of Ω into closed d-simplices, we define S−1,q
T

as the space of all piecewise polynomials of degree q w.r.t. T , and for q ≥ 1, set
S0,q

T ,0 := S−1,q
T ∩H1

0 (Ω). With ∂T we denote the mesh skeleton ∪{T∈T }∂T . Next we
construct projectors whose range is included in a conforming finite element space
of prescribed degree on the refined partition and which vanish on the skeleton of
the coarse partition. Moreover, the range of their adjoints contains all piecewise
polynomials of the same degree on the coarse partition, as specified next.

Lemma 5.1. Let q ≥ 1. Then, for a sufficiently small, but fixed σ there exists a
family of projectors (P δ

q )δ∈∆ with

ran P δ
q
′ ⊇ S−1,q

T δ , ran P δ
q ⊆ {w ∈ S0,q

T δ
S ,0

: w|∂T δ = 0},(5.1)

‖P δ
q w‖L2(T ′) ! ‖w‖L2(T ′) (T ′ ∈ T δ, w ∈ L2(Ω)).(5.2)

Proof. Let T ′ ∈ T δ. Given p ∈ Pq(T ′), let pS ∈ H1
0 (T ′) denote its continuous

piecewise polynomial interpolant of degree q w.r.t. to the partition T δ
S |T ′ using

the canonical selection of the interpolation points, where on ∂T ′ the interpolation
values are replaced by zeros.

Obviously, p and pS coincide on each T ∈ T δ
S |T ′ for which T ∩ ∂T ′ = ∅. Now

consider T ∈ T δ
S |T ′ with T ∩ ∂T ′ 5= ∅. Equivalence of norms on finite dimensional

spaces and standard homogeneity arguments show that

‖p − pS‖L2(T ) ! |T | 1
2 ‖p − pS‖L∞(T ) ! |T | 1

2 ‖p‖L∞(T ′) ! |T | 1
2 |T ′|− 1

2 ‖p‖L2(T ′).

Using the uniform shape regularity of T δ
S and the definition of σ, we arrive at

‖p − pS‖2
L2(T ′) =

∑

{T∈T δ
S |T ′ : T∩∂T ′ '=∅}

‖p − pS‖2
L2(T ) ! σ1/d‖p‖2

L2(T ′).

From this closeness of p and pS , one infers that for σ sufficiently small,

(5.3) inf
0'=p∈Pq(T ′)

sup
0'=p̃∈S0,q

T δ
S ,0

∩H1
0 (T ′)

〈p, p̃〉L2(T ′)

‖p‖L2(T ′)‖p̃‖L2(T ′)
" 1,

which implies that there exists a (uniform) L2(T ′)-Riesz collection of functions in
S0,q

T δ
S ,0

∩H1
0 (T ′) that is biorthogonal to the L2(T )-normalized nodal basis for Pq(T ′).

Licensed to Univ of South Carolina. Prepared on Wed Jun 15 18:46:45 EDT 2022 for download from IP 129.252.139.141.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



580 WOLFGANG DAHMEN ET AL.

Taking P δ
q
′
restricted to T ′ to be the corresponding biorthogonal projector onto

Pq(T ′), it has all three stated properties. #

As shown in the above lemma, the projectors P δ
q exist when T δ

S is a refinement of

T δ of sufficient fixed depth. Hence, the size of the resulting linear systems remains
uniformly proportional to dim Xδ, with a proportionality factor depending on σ.
In applications, one needs to know which depth suffices. The usual procedure to
construct a partition T δ of the closure of a (polytopal) domain Ω is to recursively
apply some fixed ‘affine equivalent’ refinement rule to each simplex in an initial
(conforming) partition of Ω. With this approach, the partition of each T ′ ∈ T δ

formed by its ‘descendants’ of some fixed generation 0 ≥ 1 falls into a fixed finite
number of classes T+,1(T ′), . . . , T+,N(+)(T

′). By using that the left-hand side of (5.3)
is invariant under affine transformations, fixing a reference d-simplex T ′ and a
refinement procedure of the above type, given a degree q and a generation 0, it
suffices to check whether

α(q, 0) := inf
1≤j≤N(+)

inf
0'=p∈Pq(T ′)

sup
0'=p̃∈H1

0 (T ′)∩
∏

T∈T%,j (T ′) Pq(T )

〈p, p̃〉L2(T ′)

‖p‖L2(T ′)‖p̃‖L2(T ′)
> 0.

Remark 5.2. For d ∈ {1, 2, 3}, q ∈ {1, 2, 3, 4}, and both newest-vertex bisec-
tion and red-refinement, we have calculated the minimal 0 such that α(q, 0) > 0.
In all cases but one, this minimal 0 equals the minimal generation for which
dim H1

0 (T ′) ∩
∏

T∈T%,j(T ′) Pq(T ) ≥ dim Pq(T ′). Only for d = 3, q = 4, and newest
vertex bisection, for one of the three classes it was necessary to increase this gen-
eration by one in order to ensure uniform inf-sup stability.

Remark 5.3. For the construction of the Fortin interpolator in the FOSLS case,
it will be sufficient to replace the conditions (5.1)-(5.2) on the projectors from
Lemma 5.1 by the somewhat weaker ones

ran P δ
q
′ ⊇ S0,q

T δ,0 + S−1,q−1
T δ , ran P δ

q ⊆ S0,q
T δ

S ,0
,(5.4)

‖"−1
δ P δ

q "δ‖L(L2(Ω),L2(Ω)) ! 1,(5.5)

where "δ is the piecewise constant function defined by "δ|T ′ = diamT ′ (T ′ ∈ T δ).
Note that because of the uniform ‘K-mesh property’, (5.5) is implied by local L2-
stability of the form

(5.6) ‖P δ
q w‖L2(T ′) ! ‖w‖L2({x∈Ω : d(x,T ′)!diam T ′}) (T ′ ∈ T δ, w ∈ L2(Ω)),

which, in particular, is implied by (5.2).
For d = 1, the codimension of S0,q

T δ,0 + S−1,q−1
T δ in S−1,q

T δ is 1 when q = 1, or 0
when q > 1. Since we do not expect that we can benefit from the relaxation of the
condition ran P δ

q ⊆ {w ∈ S0,q
T δ

S ,0
: w|∂T δ = 0} to ranP δ

q ⊆ S0,q
T δ

S ,0
, for d = 1, we doubt

that the relaxed conditions hold for any less deep refinement T δ
S of T δ.

For d > 1 and any fixed degree q, however, the aforementioned codimension is
! dim S−1,q

T δ , and we may hope that a less deep refinement T δ
S of T δ suffices to

satisfy the relaxed conditions.
So far we have studied this issue in one particular example of d = 2, q = 2, and

the red-refinement rule. For this case, we could show the existence of the projectors
from Lemma 5.1 when T δ

S is created by applying two recursive red-refinements to
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each triangle from T δ. In Appendix A, we show that in order to satisfy the relaxed
conditions (5.4) and (5.6) it suffices to apply one red-refinement.

Remark 5.4. When P δ
q is an L2-orthogonal projector onto a finite element space, a

condition as (5.5) is known to ensure its H1-stability (see e.g. [BY14]).

Remark 5.5. Spaces of type S0,q
T δ,0 + S−1,q−1

T δ , or more precisely S0,q
T δ,0 + S−1,0

T δ , have
been used as approximation spaces for the pressure in Stokes solvers to ensure local
mass conservation (see e.g. [Che14]).

Remark 5.6. Also for the construction of the Fortin interpolator for the standard
second order formulation, it suffices when ranP δ

q
′ ⊇ S0,q

T δ,0 + S−1,q−1
T δ instead of

ran P δ
q
′ ⊇ S−1,q

T δ,0 . The second condition in (5.1) however, turns out to be essential.

5.2. Standard, second order formulation. For this formulation our construc-
tion of a suitable Fortin interpolator will be restricted to second order elliptic spatial
differential operators with constant coefficients on convex domains, and lowest order
finite elements w.r.t. partitions of the time-space cylinder that are Cartesian prod-
ucts of a quasi-uniform temporal mesh and a quasi-uniform conforming, uniformly
shape regular spatial mesh into d-simplices.

Consider the families of partitions (T δ)δ∈∆ and (T δ
S )δ∈∆ of Ω ⊂ ℝd introduced

in Section 5.1. Assuming them to be quasi-uniform, we set hδ := maxT ′∈T δ diam T ′

(not to be confused with the piecewise constant function "δ).
Let (Iδ)δ∈∆ be a family of quasi-uniform partitions of I into subintervals, where

the lengths of the subintervals in Iδ are ! hδ. We denote by S−1,q
Iδ and S0,q

Iδ the
space of all piecewise polynomials or continuous piecewise polynomials of degree q
w.r.t. Iδ, respectively.

Theorem 5.7. Let Ω ⊂ ℝd be a convex polytope, a(t; θ, ζ) be of the form (4.1) for
constants K, /b and c, and let Xδ := S0,1

Iδ ⊗ S0,1
T δ,0 ⊂ X and Y δ := S−1,1

Iδ ⊗ S0,1
T δ

S ,0
⊂

Y , where T δ
S is a sufficiently deep refinement of T δ such that a projector P δ

1 as
in Lemma 5.1 exists. Then, a Fortin interpolator Qδ as in (3.8) exists, and for
g ∈ F := L2(I) ⊗ H1(Ω) ∩ H2(I) ⊗ H−1(Ω), it holds that eδosc(g) ! h2

δ.

Remark 5.8. For this (Xδ)δ∈∆, and a sufficiently smooth u we have eδapprox(u) ! hδ

where in general an approximation error of higher order cannot be expected. So
indeed, eδosc(g) is of higher order as desired, cf. (3.10).

Proof. We are going to construct uniformly bounded Qδ
t ∈ L(L2(I), L2(I)), Qδ

x ∈
L(H1

0 (Ω), H1
0 (Ω)) with ranQδ

t ⊂ S−1,1
Iδ , ran Qδ

x ⊂ S0,1
T δ

S ,0
and

〈
S0,1

Iδ , ran(Id − Qδ
t )
〉

L2(I)
= 0 =

〈
d
dtS

0,1
Iδ , ran(Id − Qδ

t )
〉

L2(I)
,

〈
S−1,0

T δ,0 +S0,1
T δ,0, ran(Id−Qδ

x)
〉

L2(Ω)
= 0 =

〈
K∇xS0,1

T δ,0,∇x ran(Id−Qδ
x)
〉

L2(Ω)d .(5.7)

Then one verifies that Qδ := Qδ
t ⊗ Qδ

x satisfies the conditions in (3.8).
A valid choice for Qδ

t is given by the L2(I)-orthogonal projector onto S−1,1
Iδ . It

satisfies in addition

(5.8) ‖(Id − Qδ
t )

′‖L(H2(I),L2(I)) ! h2
δ.
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We seek Qδ
x in the form Qδ

x = QA,δ
x +QB,δ

x +QB,δ
x QA,δ

x with ranQA,δ
x , ranQB,δ

x ⊂
S0,1

T δ
S ,0

such that

‖QA,δ
x ‖L(H1

0 (Ω),H1
0 (Ω)) ! 1, ‖Id − QA,δ

x ‖L(H1
0 (Ω),L2(Ω)) ! hδ,(5.9)

〈
K∇xS0,1

T δ,0,∇x ran(Id − QA,δ
x )

〉
L2(Ω)d = 0,(5.10)

‖QB,δ
x ‖L(L2(Ω),L2(Ω)) ! 1, ‖(Id − QB,δ

x )′‖L(H1(Ω),L2(Ω)) ! hδ,(5.11)
〈
S−1,0

T δ,0 +S0,1
T δ,0, ran(Id−QB,δ

x )
〉

L2(Ω)
= 0 =

〈
K∇xS0,1

T δ,0,∇x ran QB,δ
x

〉
L2(Ω)d .(5.12)

One easily verifies that

Id − Qδ
x = (Id − QB,δ

x )(Id − QA,δ
x ),

which, together with the first relation in (5.12), yields the first relation in (5.7).
Moreover, from (5.10) and the second relation in (5.12) one deduces the second
relation (5.7).

Similarly, observing that Qδ
x = QA,δ

x + QB,δ
x (Id − QA,δ

x ) in combination with
(5.9), ‖QB,δ

x ‖L(L2(Ω),L2(Ω)) ! 1, and the inverse inequality ‖ ‖H1(Ω) ! h−1
δ ‖ ‖L2(Ω)

on S0,1
T δ

S ,0
⊃ ran QB,δ

x , one infers that ‖Qδ
x‖L(H1

0 (Ω),H1
0 (Ω)) ! 1. Thus, all claimed

properties of Qδ
x have been verified.

Before turning to the construction of QA,δ
x and QB,δ

x , we estimate eδosc(g). For
g ∈ F , we have

‖(Id − Qδ)′g‖Y ′ ≤ ‖(Id − Qδ)′‖L(F,Y ′)‖g‖F = ‖Id − Qδ‖L(Y,F ′)‖g‖F .

Writing

Id − Qδ = (Id ⊗ (Id − Qδ
x))(Qδ

t ⊗ Id) + (Id − Qδ
t ) ⊗ Id,

from L2(I) ⊗ H1(Ω)′ ↪→ F ′, H2(I)′ ⊗ H1
0 (Ω) ↪→ F ′, and ‖Qδ

t‖L(L2(I),L2(I)) ! 1 we
infer

‖Id − Qδ‖L(Y,F ′)

! ‖Id ⊗ (Id − Qδ
x)‖L(Y,L2(I)⊗H1(Ω)′) + ‖(Id − Qδ

t ) ⊗ Id‖L(Y,H2(I)′⊗H1
0 (Ω))

= ‖Id − Qδ
x‖L(H1

0 (Ω),H1(Ω)′) + ‖Id − Qδ
t‖L(L2(I),H2(I)′)

≤ ‖Id − QB,δ
x ‖L(L2(Ω),H1(Ω)′)‖Id − QA,δ

x ‖L(H1
0 (Ω),L2(Ω)) + ‖(Id − Qδ

t )
′‖L(H2(I),L2(I))

! hδhδ + h2
δ,

where we have used (5.8), (5.9), and (5.11).
We now identify the operators QA,δ

x , QB,δ
x . For QA,δ

x , we take the ‘Galerkin’
projector onto S0,1

T δ,0, i.e. the orthogonal projector w.r.t. 〈K∇x·,∇x·〉L2(Ω)d . It

satisfies (5.10), and ‖QA,δ
x ‖L(H1

0 (Ω),H1
0 (Ω)) = 1.

Thanks to Ω being a convex polytope, the homogeneous Dirichlet problem with
operator − div K∇ is H2-regular. Indeed, by making a linear coordinate transfor-
mation that transforms the convex polytope into another convex polytope [Ash15],
the operator reads as −= for which this regularity result is well-known. Conse-
quently the usual Aubin-Nitsche duality argument shows that

‖(Id − QA,δ
x )v‖L2(Ω) ! hδ‖∇(Id − QA,δ

x )v‖L2(Ω)d ≤ hδ‖∇v‖L2(Ω)d

holds for v ∈ H1
0 (Ω). This verifies the validity of (5.9).
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Next, we take QB,δ
x = P δ

1 as constructed in Lemma 5.1. It satisfies ran P δ
1 ⊂

S0,1
T δ

S ,0
, ‖P δ

1 ‖L(L2(Ω),L2(Ω)) ! 1, and ranP δ
1
′ ⊇ S−1,1

T δ . The last property shows the

first condition in (5.12). Using the uniform boundedness, one concludes that

‖(Id − P δ
1 )′w‖L2(Ω) ! inf

v∈S−1,1

T δ

‖w − v‖L2(Ω) ! hδ|w|H1(Ω),

which is the second condition in (5.11). The second condition in (5.12) follows by
an element-wise integration-by-parts from w|∂T δ = 0 for any w ∈ ran P δ

1 , and the
fact that S0,1

T δ,0 is a space of continuous piecewise linears.6 #

5.3. FOSLS formulation. We construct a suitable Fortin interpolator for the
FOSLS formulation of our data assimilation problem. In contrast to the standard
second order formulation, we allow now non-convex domains Ω, higher order finite
element spaces w.r.t. possibly non-quasi-uniform partitions into prismatic elements.
However, the time-space cylinder must be partitioned into time slabs.

Theorem 5.9. As in Theorem 5.7, let a(t; θ, ζ) be of the form (4.1) for constant
K, /b and c. For (Iδ = (([tδi , t

δ
i+1])i)δ∈∆ being a family of partitions of I, we consider

(Xδ)δ∈∆, (Zδ)δ∈∆, and (Y δ)δ∈∆ that satisfy

Xδ ⊆ {w ∈ C(I; H1
0 (Ω)) : w|(tδi ,tδi+1) ∈ Pq(t

δ
i , t

δ
i+1) ⊗ S0,q

T δi ,0
},(5.13)

Y ⊇ Ȳ δ ⊇ {v ∈ Y : v|(tδi ,tδi+1) ∈ Pq(t
δ
i , t

δ
i+1) ⊗ S0,q

T δi
S ,0

}, 7

Zδ ⊆ {/q ∈ L2(I; H(div;Ω)) : /q|(tδi ,tδi+1) ∈ Pq−1(t
δ
i , t

δ
i+1) ⊗ Zq

T δi
},(5.14)

where div Zq
T δi

⊂ S−1,q−1
T δi

, and where for each i, T δi is some partition from (T δ)δ∈∆

with corresponding refinement T δi
S ∈ (T δ

S )δ∈∆.
Then for T δ

S being a sufficiently deep refinement of T δ such that a projector P δ
q

as in Remark 5.3 exists, a Fortin interpolator Q̄δ as in (4.7) exists, and

(ēδosc(g))2 !
∑

i

∑

T ′∈T δi

{
inf

p∈Pq(tδi ,tδi+1)⊗L2(T ′)
‖g − p‖2

L2((tδi ,tδi+1)×T ′)

+ (diam T ′)2 inf
p∈L2(tδi ,tδi+1)⊗Pq−1(T ′)

‖g − p‖2
L2((tδi ,tδi+1)×T ′)

}
.

Remark 5.10. In view of balancing the approximation rates for smooth functions
by Xδ in X and Zδ in Z, for Xδ and Zδ being the spaces on the right-hand side
of (5.13) or (5.14) (in the latter case, possibly with /q ∈ L2(I; H(div;Ω)) reading
as /q ∈ C(I; H(div;Ω))), a natural choice for Zq

T δ is the Raviart-Thomas space of
index q or the Brezzi-Douglas-Marini finite element space of index min(1, q − 1)
w.r.t. T δ.

Notice that with these definitions of Xδ and Zδ, for sufficiently smooth g the
local oscillation error is of higher order than the expected local approximation error
by Xδ in X and Zδ in Z.

6This argument is the sole reason why this theorem is restricted to lowest order trial spaces
Xδ.

7If it were not for guaranteeing an oscillation error of higher order, then the polynomial degree
in the time direction could be reduced to q − 1.
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Proof. For (w, /q) ∈ Xδ × Zδ, v ∈ Y , taking Zq
T δi

⊂ H(div;Ω) into account,
integration-by-parts shows

C(w, /q)(v) =

∫

I

∫

Ω

(
∂w
∂t − divx /q +/b · ∇xw + cw

)
v dt dx.

Let (Q̄δ
x)δ∈∆ denote a family of uniformly bounded operators Q̄δ

x∈L(H1
0 (Ω), H1

0 (Ω))
with the properties

(5.15) ran Q̄δ
x ⊂ S0,q

T δ
S ,0

, 〈S0,q
T δ,0 + S−1,q−1

T δ , ran(Id − Q̄δ
x)〉L2(Ω) = 0.

Moreover, let Qi
q be the L2(I)-orthogonal projector onto Pq(tδi , t

δ
i+1). Then, the

operator Q̄δ defined by

(Q̄δv)|(tδi ,tδi+1)×Ω = (Qi
q ⊗ Q̄δi

x )v|(tδi ,tδi+1)×Ω

satisfies the conditions of (4.7).
We again seek Q̄δ

x of the form Q̄δ
x = Q̄A,δ

x + Q̄B,δ
x + Q̄B,δ

x Q̄A,δ
x where

ran Q̄A,δ
x , ran Q̄B,δ

x ⊂ S0,q
T δ

S ,0
,

〈
S0,q

T δ,0 + S−1,q−1
T δ , ran(Id − Q̄B,δ

x )
〉

L2(Ω)
= 0.

Then from Id − Q̄δ
x = (Id − Q̄B,δ

x )(Id − Q̄A,δ
x ), we infer that (5.15) is satisfied.

We take Q̄A,δ
x to be the Scott-Zhang quasi-interpolator onto S0,q

T δ
S ,0

, and Q̄B,δ
x =

P δ
q from Remark 5.3. Writing Q̄δ

x = Q̄A,δ
x + P δ

q (Id − Q̄A,δ
x ), the uniform bound-

edness of Q̄A,δ
x ∈ L(H1

0 (Ω), H1
0 (Ω)), "−1

δ (Id − Q̄A,δ
x ) ∈ L(H1

0 (Ω), L2(Ω)), as well as

"−1
δ P δ

q "δ ∈ L(L2(Ω), L2(Ω)), and ‖ · ‖H1(Ω) ! ‖h−1
δ · ‖L2(Ω) on S0,q

T δ
S ,0

, imply the

uniform boundedness of Q̄δ
x ∈ L(H1

0 (Ω), H1
0 (Ω)).

For any pi ∈ Pq(tδi , t
δ
i+1) ⊗ L2(Ω), p̃i ∈ L2(tδi , t

δ
i+1) ⊗ S−1,q−1

T δi
, and y ∈ Y , we

have
〈
g, (Id − Q̄δ)y

〉
L2(I×Ω)

=
∑

i

∑

T ′∈T δi

〈
((Id − Qi

q) ⊗ Id)(g − pi), y
〉

L2((tδi ,tδi+1)×T ′)

+
∑

i

∑

T ′∈T δi

〈
(Id ⊗ (Id − P δ

q )′)(g − p̃i), Q
i
q ⊗ (Id − Q̄A,δi

x )y
〉

L2((tδi ,tδi+1)×T ′)
,

since Pq(tδi , t
δ
i+1) is reproduced by Qi

q, and S−1,q−1

T δi
S

by P δ
q
′
. The first double sum is

bounded by a constant multiple of
√∑

i

∑
T ′∈T δi ‖g − pi‖2

L2((tδi ,tδi+1)×T ′)
‖y‖L2(I×Ω).

On account of ‖"δP δ
q
′"−1

δ ‖L(L2(Ω),L2(Ω)) ! 1 and

‖(Id − Q̄A,δi
x )v‖L2(T ′) ≤ (diam T ′)|v|H1(∪{T ′′∈T δi : T ′′∩T ′ &=∅}T ′′),

one infers that the second double sum can be bounded by a constant multiple of√∑
i

∑
T ′∈T δi (diam T ′)2‖g − p̃i‖2

L2((tδi ,tδi+1)×T ′)
‖y‖Y , which completes the proof.

#

6. Numerical experiments

In this section we investigate our two formulations for solving the data assim-
ilation problem numerically. As underlying parabolic equation we select a simple
heat equation posed on a spatial domain Ω ⊂ ℝd, and we take T = 1, i.e. I = [0, 1].

We use NGSolve [Sch97,Sch14] to assemble the system matrices and for spatial
multigrid. We employ a preconditioned conjugate gradient scheme for solving the
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corresponding Schur complement systems (3.13) from Section 3.4 and (4.9) from
Section 4.2.

6.1. Unit interval. We start with the simplest possible situation where d = 1,
and Ω := [0, 1]. We subdivide I and Ω into 1/hδ ∈ ℕ equal subintervals yielding Iδ

and T δ respectively. We then select our discrete function spaces as tensor-product
spaces of the form

(6.1) Xδ := S0,1
Iδ ⊗ S0,1

T δ,0, Y δ
+ := Ȳ δ

+ := S−1,1
Iδ ⊗ S0,1

T δ
% ,0

, Zδ := S−1,0
Iδ ⊗ S0,1

T δ

with T δ
+ constructed from T δ by recursively bisecting every subinterval 0 times.

As follows from Section 5, in our current setting, for both second order and
FOSLS formulation, for 0 ≥ 2 uniformly bounded Fortin interpolators exist, i.e.,
(3.8) or (4.7) is satisfied, so that the minimizers uδ,δ

ε ∈ Xδ and (ūδ,δ
ε , /pδ,δε ) ∈ Xδ×Zδ

of Gδ
ε or Hδ

ε exist uniquely, and satisfy the a priori bounds from Theorem 3.9 or
Theorem 4.6, as well as the a posteriori bounds from Corollary 3.13 and Propo-
sition 4.7. Moreover, these Fortin interpolators can be selected such that for suf-
ficiently smooth datum g the order of the data-oscillation term eδosc(g) or ēδosc(g),
which are present in the a posteriori bounds, exceeds the generally best possible
approximation order that can be expected. Consequently, for 0 = 2 the expressions√

Gδ
0(u

δ,δ
ε ) and

√
Hδ

0 (ūδ,δ
ε , /pδ,δε ) are, modulo a constant factor and oscillation terms

of higher order, upper bounds for the Xη-norm of eδε := u0 −uδ,δ
ε or ēδε := u0 − ūδ,δ

ε ,
respectively.

We will use this fact to explore in subsequent experiments also whether it would
actually be harmful in practice to take 0<2 (resulting in lower computational cost).
Note that the choice of the refinement level 0 in Y δ

+ or Ȳ δ
+ affects, on the one hand,

the quality of the numerical solution uδ,δ
ε and, on the other hand, the reliability

of the a posteriori error bound. We will denote below by 0 the refinement level
used to compute uδ,δ

ε , and by L the refinement level in Y δ
L or Ȳ δ

L used to compute
the a posteriori error bounds. Since these ‘reliable’ a posteriori error bounds with
L = 2 apply to any function from Xδ (taking for the second argument of Hδ

ε any
argument from Zδ), we have also used them, in particular, to assess the quality of
the numerical approximations based on taking Y δ

0 or Ȳ δ
0 instead of Y δ

2 or Ȳ δ
2 .

Equipping S−1,1
Iδ with basis Φδ

t , and S0,1
T δ
% ,0

with Φδ
x, the representation of the

Riesz isometry Y δ → Y δ ′ reads as Rδ = 〈Φδ
t ,Φ

δ
t 〉L2(I)⊗〈∇Φδ

x,∇Φδ
x〉L2(Ω)d . Taking

Φδ
t to be L2(I)-orthogonal, the first factor is diagonal and can be inverted directly.

With MGδ
x ! 〈∇Φδ

x,∇Φδ
x〉−1

L2(Ω)d a symmetric spatial multigrid solver, we define

Kδ
Y := 〈Φδ

t ,Φ
δ
t 〉−1

L2(I) ⊗ MGδ
x ! (Rδ)−1, which can be applied at linear cost. As

explained in Sections 3.4 and 4.2, all considerations concerning the discrete approx-
imations uδ,δ

ε or (ūδ,δ
ε , /pδ,δε ) remain valid when Rδ in the matrix vector system (3.12)

or (4.8), which defines these approximations, is replaced by (Kδ
Y )−1, and despite

this replacement we continue to denote them by uδ,δ
ε and (ūδ,δ

ε , /pδ,δε ).
Equipping Xδ and Zδ with similar tensor product bases, for the efficient iterative

solution of the Schur complements (3.13) or (4.9) that define uδ,δ
ε or (ūδ,δ

ε , /pδ,δε ), for
W ∈ {X, Z} we use a preconditioner Kδ

W that can be applied at linear cost and
that is uniformly spectrally equivalent to the inverse of the representation of the
Riesz isometry W δ → W δ ′. The construction of Kδ

Z does not pose any difficulties,
and for the construction of Kδ

X , which builds on a symmetric spatial multigrid
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Figure 1. A posteriori error estimators for the unit interval prob-
lem with consistent data

solver that is robust for diffusion-reaction problems and the use of a wavelet basis
in time that is stable in L2(I) and H1(I), we refer to [SvVW21].

6.1.1. Consistent data. As a first test we prescribe the solution

(6.2) u(t, x) = (t3 + 1) sin(πx),

take ω = [ 14 , 3
4 ] and use data (g, f) that are consistent with u. We computed uδ,δ

ε

and (ūδ,δ
ε , /pδ,δε ) for ε = hδ, being the largest value of ε (up to a constant factor)

for which we expect that the regularization doesn’t spoil the order of convergence.
Indeed, we expect that eδapprox(u) ! ēδapprox(u) ! hδ. For both the second order
and the FOSLS formulation, Figure 1 depicts the a posteriori error estimators√

Gδ
0(u

δ,δ
ε ) and

√
Hδ

0 (ūδ,δ
ε , /pδ,δε ) for (0, L) ∈ {(2, 2), (0, 2), (0, 0)} as a function of

dim Xδ ≈ h−2
δ . The two formulations show very similar performance. Moreover,

the observed convergence rate 1/2 is the best possible given our discretization of
piecewise linears on uniform meshes. Concerning the choices for 0 and L, the
results for L = 2, which give reliable a posteriori error bounds, indicate that there
is hardly any difference in the numerical approximations for test spaces Y δ

2 or Y δ
0 ,

respectively, Ȳ δ
2 or Ȳ δ

0 , i.e., for 0 = 2 or 0 = 0, so that we will take 0 = 0 in the
sequel. For the second order formulation, the value of the a posteriori estimator
evaluated for L = 0 is significantly smaller than that for L = 2, but it shows
qualitatively the same behaviour. In view of this observation, we will also use
L = 0 in what follows.

6.1.2. System conditioning. To see how the choice of ε affects the condition num-
ber of the preconditioned systems (3.13) and (4.9), we computed these condition
numbers for various ε and decreasing mesh sizes. The results depicted in Figure 2
illustrate that for constant ε > 0, the condition numbers are uniformly bounded.
We show the values for 0 = 2; for 0 = 0, the values are very similar. It also reveals
that the growth in terms of ε is far more modest than the upper bound ! ε−2 on
these condition numbers that we found in Sections 3.4 and 4.2.

6.1.3. Inconsistent data. In case of inconsistent data, there exists no state that
exactly explains the data, and econs(u0) > 0. In this case, it does not make sense
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Figure 2. Condition numbers of the preconditioned system for a
number of regularization parameters

to approximate u0 within a tolerance that is significantly smaller than econs(u0).
Considering for the second order formulation the a priori estimate

‖u0 − uδ,δ
ε ‖Xη ! econs(u0) + eδapprox(u0) + ε‖γ0u0‖L2(Ω)

from Theorem 3.9 and taking the fact into account that choosing ε small has an
only moderate effect on the conditioning of the preconditioned linear system, in
the following we take ε of the order of the best possible approximation error that
can be expected, so that ε‖γ0u0‖L2(Ω) ! eδapprox(u0). Then ideally we would like to

stop refining our mesh as soon as eδapprox(u0) ≈ econs(u0). In order to achieve this
we use the a posteriori error estimator. From Corollary 3.14 we know that

econs(u0) !
√

Gδ
0(u

δ,δ
ε ) + eδosc(g),

where, following the reasoning from the proof of Proposition 3.4,
√

Gδ
0(u

δ,δ
ε ) ≤

√
Gδ

ε(u
δ,δ
ε ) ≤

√
Gδ

ε(PXδu0) ≤
√

Gε(PXδu0)

! eδapprox(u0) + econs(u0) + ε‖γ0u‖L2(Ω).

We selected (Y δ)δ∈∆ such that, in any case for sufficiently smooth g, the order of
eδosc(g) is equal to or higher than the generally best possible order of the approxi-
mation error, so that eδosc(g) ! eδapprox(u0). In view of our earlier assumption on ε,
we conclude that

econs(u0) !
√

Gδ
0(u

δ,δ
ε ) ! econs(u0) + eδapprox(u0).

Exploiting a common uniform or adaptive refinement strategy, it can be expected
that eδapprox(u0) decays with a certain algebraic rate ρ < 1. Unless econs(u0) is very
large, it can therefore be expected that in the early stage of the iteration the a pos-

teriori error estimator
√

Gδ
0(u

δ,δ
ε ) decays with this rate, whose value therefore can

be monitored. By contrast, as soon as eδapprox(u0) has been reduced to Cecons(u0)

for some constant C > 0, the reduction of
√

Gδ
0(u

δ,δ
ε ) in the next step cannot be

expected to be better than 1+Cρ
1+C . Taking C = 1/3, our strategy will therefore be
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Figure 3. A posteriori error estimators for the unit interval prob-
lem with inconsistent data of varying amounts

to stop the iteration as soon as the observed reduction of
√

Gδ
0(u

δ,δ
ε ) is worse than

1+Cρ
1+C .

We have implemented this strategy, and a similar one for the FOSLS formulation,
where we apply the discrete spaces as in (6.1), take ε = hδ, and again consider the
unit interval problem (6.2) but now perturb the measured state f = u|I×ω by
adding λ# to it for various values of λ.

From the results in Figure 3 we see that the error estimators decrease at first, but
then stagnate in the aforementioned sense, at which point we exit the refinement
loop (indicated by a ×-sign). Further refinement (indicated by the thin dashed
lines) is not very useful, and the error estimators stabilize to a value just below
λ|ω|1/2, being the L2(I × Ω)-norm of the perturbation we added to the consistent
f . Knowing that the error estimator converges to econs(u0) (see Remark 3.10), we
conclude that (0, #) ∈ Y ′ × L2(I × ω) is close to being orthogonal to ranBω. We
note that selecting 0 = L = 2 produces very similar results.

6.2. Unit square. We choose Ω := (0, 1)2. We again subdivide I into 1/hδ ∈ ℕ
equal subintervals yielding Iδ, and Ω first into 1/hδ × 1/hδ squares and then into
2/h2

δ triangles by connecting the lower left and the upper right corner in each square
yielding T δ. For a polynomial degree q, we take ε = hq

δ. Following the discussion
in Section 6.1.1, we select 0 = L = 0 and take our discrete spaces as

Xδ
q :=S0,q

Iδ ⊗S0,q
T δ,0, Y δ

q :=S−1,q
Iδ ⊗S0,q

T δ,0, Ȳ δ
q :=S−1,q−1

Iδ ⊗S0,q
T δ,0, Zδ

q :=S−1,q−1
Iδ ⊗Zq

T δ ,

where Zq
T δ is the BDM space of index min(1, q − 1). Note that the degree q − 1 in

the temporal direction of Ȳ δ
q guarantees an oscillation error of the same order as

the approximation error, cf. Footnote 7.
We define the preconditioners Kδ

Y , Kδ
Z , and Kδ

X similar as in the 1D case.

6.2.1. Consistent data. We start with ω := [ 14 , 3
4 ]2 with the prescribed solution

u(t, x, y) := (t3 + 1) sin(πx) sin(πy) and consistent data (g, f). Figure 4 shows for
both formulations and q ∈ {1, 2} the error estimators as a function of dim Xδ ! h−3

δ .
The choice of preconditioners allows to reach the desired tolerance 〈r,Kδ

Xr〉 ≤
ε2Gδ

0(ũ
δ,δ
ε ) = 5.937 · 10−13 for a system with 268 434 945 unknowns in only 96 iter-

ations. The two formulations again exhibit similar performance, and the observed
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Figure 4. A posteriori error estimators for the consistent unit
square problem with ω := [ 14 , 3

4 ]2 using piecewise linears and
quadratics

Figure 5. Time-slice errors for the consistent unit square problem
with ω := [ 14 , 3

4 ]2 using piecewise linears

rate q/3 is the best possible, in line with Theorem 5.9. Moreover, we see that while
theory is incomplete for the second order formulation in practice it works well also
for piecewise quadratics.

Thanks to Xη ↪→C([η, 1], L2(Ω)), the time-slice errors ‖eδε(t)‖L2(Ω) or ‖ēδε(t)‖L2(Ω)

are bounded by multiples of ‖eδε‖Xη or ‖ēδε‖Xη , respectively. Figure 5 shows these
time-slice errors for both formulations using piecewise linears, i.e., q = 1. We see
that for both formulations, the time-slice errors converge with the better rate 2/3,
and that these errors deteriorate for t ↘ 0.

This deterioration becomes much stronger when diamω → 0: taking for exam-
ple ω := [ 7

16 , 9
16 ]2, Figure 6 shows that while the error estimators remain nearly

unchanged, the time-slice errors fan-out an order of magnitude more than in the
case of ω := [ 14 , 3

4 ]2.

6.2.2. Inconsistent data. Finally, we return to the case of inconsistent observational
data. Again taking u(t, x, y) := (t3 + 1) sin(πx) sin(πy) and ω := [ 14 , 3

4 ]2, we select
consistent forcing data g := Bu but perturbed observational data f := u|I×ω +
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Figure 6. Second order formulation for the consistent unit square
problem with ω := [ 7

16 , 9
16 ]2. Left: error estimators; right: time-

slice errors.

Figure 7. A posteriori error estimators for the unit square prob-
lem with inconsistent data of varying amounts

λ#. Running the strategy outlined in Section 6.1.3 with C = 1/3, with uniform
refinements and choosing ε = hδ, yields the results of Figure 7. We see a situation
very similar to the unit interval case: the error estimators decrease at first and
then stagnate, at which point we exit the refinement loop. Error estimators again
stabilize at around λ|ω|1/2.

7. Concluding Remarks

We have seen that basing data assimilation for parabolic problems on infinite-
dimensional stable time-space formulations and related regularized least squares
functionals has a number of conceptual advantages: one obtains improved a pri-
ori error estimates as well as a posteriori error bounds. Among other things the
latter ones are important for determining suitable stopping criteria for iterative
solvers. Moreover, the design of corresponding preconditioners is based on the
infinite-dimensional variational formulation. We have shown that for each fixed
regularization parameter ε the preconditioner is optimal relative to the condition
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of the regularized problem so that the numerical complexity remains under con-
trol. Moreover, the regularization parameter is disentangled from the discretiza-
tions which offers possibilities of optimizing its choice.

Furthermore, it will be interesting to relate the present results to the recent
state estimation concepts in [BCD+11,CDD+20,MPPY15] providing error bounds
in the full energy norm ‖ · ‖X at the expense of certain stability factors reflecting
a geometric relation between X and a certain space of functionals providing the
data which, in turn, quantifies the “visibility” of the true states by the sensors.
A further important issue is to explore the use of the obtained “static” methods
for “dynamic data assimilation”. In this context the underlying stable variational
formulations are expected to be crucial for the use of certified reduced models.

A price for building on the above “natural” variational formulations – in the
sense that no excess regularity is implied – is to properly discretize dual norms. As
pointed out earlier in Remark 4.5, this is avoided in [FK21] by replacing the term
‖C(w, /q)− g̃‖2

Y ′ in Hε(w; /q) (for K = Id) by the L2-residual ‖C(w, /q)− g̃‖2
L2(I;L2(Ω)).

Being reduced to using then a somewhat weaker version of the Carleman estimate,
we would obtain a statement similar to that in Proposition 4.4, but with an ap-
proximation error ēδapprox(u) measured in a somewhat stronger norm

min
{(w,)q)∈Xδ×Zδ : ∂tw−divx )q∈L2(I;L2(Ω))}

‖u − w‖X + ‖∇xu − /q‖Z

+ ‖∂tu −=u − (∂tw − divx /q)‖L2(I;L2(Ω)).

Finally, optimal preconditioning in the space {(w, /q) ∈ Xδ × Zδ : ∂tw − divx /q ∈
L2(I; L2(Ω))} equipped with the graph norm seems to be a challenge.

On the other hand, we also have the standard, second order formulation whose
implementation is cheaper, and at least in the above experiments performs well also
in cases beyond the regime so far covered by theory.

Appendix A. Construction of the biorthogonal projector
as in Remark 5.3 for d = q = 2 and one red-refinement

A basis for S0,2
T δ,0 + S−1,1

T δ is given by the sum of the union over T ′ ∈ T δ of

the usual nodal basis for P1(T ′) and the union over the internal edges of T δ of
the continuous piecewise quadratic bubble associated to that edge, whose support
extends to the two neighbouring triangles in T δ. Indeed, one easily verifies that
this set of functions is linearly independent, and that each function from either
S0,2

T δ,0 or S−1,1
T δ is in its span.

We consider the restriction of this basis to one T ′ ∈ T δ, and subsequently transfer
it into a collection of functions on a ‘reference triangle’ T̂ with |T̂ | = 1 by an affine
transformation. We denote the resulting functions as indicated in Figure 8. At
the ‘dual side’, we consider the nodal basis of the continuous piecewise quadratics
w.r.t. the red-refinement of T̂ , where we omit the basis functions associated to the
vertices of T̂ . We denote these basis functions as indicated in Figure 9.

We now apply the following transformations:

(1) On the primal side, we redefine

e 1
2 , 1

2 ,0 ← e 1
2 , 1

2 ,0 − 7
10 (v1,0,0 + v0,1,0) + 7

30v0,0,1,

and update e 1
2 ,0 1

2
and e0, 1

2 , 1
2

analogously. As a consequence, we obtain

span{e 1
2 , 1

2 ,0, e 1
2 ,0, 1

2
, e0, 1

2 , 1
2
} ⊥ span{ṽ1,0,0, ṽ0,1,0, ṽ0,0,1}.
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Figure 8. Notation of the basis functions at the ‘primal side’ with
the indices of the missing basis functions obtained by permuting
the barycentric coordinates

Figure 9. Notation at the ‘dual side’

(2) On the dual side, we redefine

ẽ 1
2 , 1

2 ,0 ← 1
102 ẽ 1

2 , 1
2 ,0 − 7

2312 (ẽ 3
4 , 1

4 ,0 + ẽ 1
4 , 3

4 ,0),

and update ẽ 1
2 ,0 1

2
and ẽ0, 1

2 , 1
2

analogously. Consequently, {e 1
2 , 1

2 ,0, e 1
2 ,0, 1

2
,

e0, 1
2 , 1

2
} and {ẽ 1

2 , 1
2 ,0, ẽ 1

2 ,0, 1
2
, ẽ0, 1

2 , 1
2
} became biorthogonal. The functions

eπ( 3
4 , 1

4 ,0) for any permutation π will not play any role anymore, and will be
ignored.

(3) On the dual side, we redefine



ṽ1,0,0

ṽ0,1,0

ṽ0,0,1



 ← 12




3 −1 −1

−1 3 −1
−1 −1 3








ṽ1,0,0

ṽ0,1,0

ṽ0,0,1



 .

Consequently, {v1,0,0, v0,1,0, v0,0,1} and {ṽ1,0,0, ṽ0,1,0, ṽ0,0,1} became bior-
thogonal.

After these 3 steps, the 6 × 6 ‘local generalized mass matrix’ that contains the
L2(T̂ )-inner products between all primal functions, grouped into v- and e-functions,
and all (remaining) dual functions, grouped into ṽ- and ẽ-functions, has the 2 ×

2 block structure

[
Id 9

32 Id − 31
32#

0 Id

]
, with # the 3 × 3 all-ones matrix (and with

the ẽ-functions ordered as the ‘opposite’ v-functions). The invertibility of this
matrix confirms that both collections of 6 primal and 6 dual functions are linearly
independent.

We use these primal and dual functions on the reference triangle T̂ to construct
collections of primal and dual functions on Ω by the usual lifting by means of
an affine bijection between T̂ and any T ′ ∈ T δ. When doing so, we connect the

Licensed to Univ of South Carolina. Prepared on Wed Jun 15 18:46:45 EDT 2022 for download from IP 129.252.139.141.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DATA ASSIMILATION FOR PARABOLIC PROBLEMS 593

functions of e or ẽ-type continuously over ‘their’ edges, and omit them on edges on
∂Ω.

Each function of v or ṽ-type is supported on one T ′ ∈ T δ, and we multiply them
by the factor |T ′|− 1

2 . The functions of e or ẽ-type are supported on two adjacent
T ′, T ′′ ∈ T δ, and we multiply them by the factor (|T ′| + |T ′′|)− 1

2 .
By their construction, the resulting primal and dual collections, denoted by Φδ

and Φ̃δ, are uniformly L2(Ω)-Riesz systems, with mass matrices whose extremal
eigenvalues are inside the interval spanned by the extremal eigenvalues of the cor-
responding primal or dual mass matrices on the reference triangle.

Furthermore, spanΦδ = S0,2
T δ,0 + S−1,1

T δ , and span Φ̃δ ⊂ S0,2
T δ

S ,0
, with T δ

S being

constructed from T δ by one uniform red-refinement.
The generalized mass matrix, i.e., the matrix with the L2(Ω)-inner products

between all primal functions, grouped into v- and e-functions, and all dual functions,

grouped into ṽ- and ẽ-functions, has the 2 × 2 block structure

[
Id ∗
0 Id

]
. The

uniform L2(Ω)-Riesz basis property of both Φδ and Φ̃δ shows that the spectral
norm of the non-zero off-diagonal block is uniformly bounded. By now redefining

Φδ ←
[
Id −∗
0 Id

]
Φδ, we obtain primal and dual uniformly L2(Ω)-Riesz systems that

are biorthogonal, where spanΦδ = S0,2
T δ,0 + S−1,1

T δ and span Φ̃δ ⊂ S0,2
T δ

S ,0
.

In view of the supports of the dual functions, and those of the primal functions
before the last transformation, we infer that the support of a function in Φ̃δ is
contained in either one T ′ ∈ T δ (ṽ-type) or in the union of two triangles from T δ

that share an edge (ẽ-type), and that the support of a function in Φδ is contained
in either the union of two triangles from T δ that share an edge (e-type) or in the
union of T ′ ∈ T δ and those at most three T ′′ ∈ T δ that share an edge with T ′.
We conclude that the biorthogonal projector P δ

2 : u &→ 〈u,Φδ〉L2(Ω)Φ̃
δ satisfies both

conditions (5.4) and (5.6).
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