
1.  Introduction
Injection of fluids into naturally or hydraulically fractured formations has been an important research topic 
due to its relevance in a vast number of engineering applications: waste disposal (Cornaton et al., 2008; Mc-
Carthy & Zachara, 1989; Witherspoon et al., 1981), carbon sequestration (Iding & Ringrose, 2010), contam-
inant transport (Sahimi, 2011), enhanced oil recovery (Jiménez-Martínez et al., 2016), and tracer surveil-
lance (Hu & Moran, 2005; Rugh & Burbey, 2008; Warner et al., 2014). In many applications, a key objective 
of the numerical model built to simulate the processes is to quantify the mixing between the injected and 
resident fluids and quantify the extent of the associated mixing zone (Bonazzi et al., 2020, 2021; Cirpka & 
Valocchi, 2007; Dentz et al., 2011; Jha et al., 2011a; Z. Zhao et al., 2011). In cyclic well operations, where the 
well alternates or cycles through injection and production/withdrawal stages, the evolution of fluid mixing 
is complicated by short time scale variations in the pore pressure field. Often, the reservoir of interest is 
geomechanically sensitive and deformable due to the presence of pre-existing fractures, unconsolidated for-
mations, or excessive flow-induced stresses. Resolving the geomechanical coupling effect in those reservoirs 
becomes critically dependent on modeling the effect of stress-modulated processes such as fracture opening 
and shear failure on mass transport processes such as advection and diffusion (Fox et al., 2011; Latham 
et al., 2013; Matthäi et al., 2010; Tran & Jha, 2020; Yan et al., 2019). This is required to answer questions 
such as how much change in the breakthrough time or degree of mixing corresponds to a given change in 
the average volumetric stress during groundwater withdrawal.

The presence of hydraulically stimulated and natural fractures in a low permeability rock adds an extra di-
mension of complexity because the characteristic length and time scales of flow and deformation processes 
can be markedly different between the fracture and the host rock domains. Often understood as displace-
ment discontinuities, fractures have been proven to make a first-order impact on the flow behavior of any 
rock (Hardebol et al., 2015; Levison & Novakowski, 2012) by altering its permeability. While accounting for 
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all individual fractures in a reservoir is computationally intractable and unnecessary, the contribution of 
a subset of fractures, at length scales relevant to the dominant physical processes in the problem, must be 
assessed. The role of flow-geomechanical coupling in modulating hydraulic properties such as stress-de-
pendent permeability and porosity is increasingly recognized as a necessity in reservoir-scale simulation 
models (Bubshait & Jha, 2019; Rutqvist & Stephansson, 2003; Meguerdijian & Jha, 2021). Flow processes 
can also change the spatial and temporal evolution of stress state and fracture dynamics, which affect the 
mechanical stability of fractures and formation integrity (Jin & Zoback, 2018). Therefore, a tightly coupled 
flow and geomechanics computational framework (Tran & Jha, 2020; X. Zhao & Jha, 2019, 2021) is often re-
quired to correctly encapsulate and explain the interaction among these underlying processes. This can help 
us find geomechanical signals, for example, change in the magnitude and direction of principal stresses or 
activation/healing of fractures oriented along a certain direction, that we can monitor in the field to infer 
the plume size and dilution during injection.

Modeling of discontinuities such as fractures usually falls under two popular categories of methods: dis-
crete fracture network modeling and continuum modeling (such as the continuum damage mechanics ap-
proach [Bubshait & Jha, 2019; Pogacnik et al., 2016; Yan et al., 2019]). Methods in each category have their 
own merits and drawbacks, most of which can be understood in terms of a method's sensitivity to mesh 
size dependency, the capability to model localization of flow or deformation and the resulting anisotropic 
response, and the computational cost to achieve a certain order of numerical accuracy. The cost, which is 
related to the number of iterations required to solve the discretized linearized system, is often expressed 
in terms of the number of degrees of freedom and/or the condition number of the Jacobian matrix of the 
discrete system. The EDFM approach capitalizes on the best features of discrete and continuum approach-
es to model the effect of fractures while maintaining a relatively lower cost. The basic idea of EDFM is to 
represent fractures using a structured gridding scheme, separate from the host matrix grid, and use special 
non-neighboring connections to model the fluxes between fracture and matrix (Hajibeygi et al., 2011; Lee 
et al., 2001). EDFM allows a numerically fast and stable representation of individual fractures’ contribution 
to flow and transport processes. Compared to traditional fracture modeling methods such as dual-continu-
um modeling, local grid refinement, and unstructured gridding, EDFM offers a balance between accuracy, 
flexibility, gridding, and computational efficiency. To improve cross-media flux transfer in media with high 
conductivity contrasts, for example, in hydraulically fractured shales or geothermal rocks, Tene et al. (2017) 
proposed pEDFM with adjustments of matrix-matrix and fracture-matrix transmissibilities in the imme-
diate surrounding of the explicit fractures. Compartmental EDFM (c-EDFM) allows sub-grid resolution 
by splitting the matrix grid when a fracture grid intersects a matrix cell (Chai et al., 2018). Sangnimnuan 
et al.  (2018) developed a coupled flow-geomechanics model with EDFM to characterize stress evolution 
during fluid production from ultralow permeability reservoirs and to model stress redistribution and reori-
entation induced by the depletion. Norbeck et al. (2016) addresses how to include nonlinear evolution of 
nucleated tensile fracture and shear failure events. Moinfar et al. (2013) models the change in aperture and 
associated permeability of an evolving fracture network via the effective normal stresses acting on fracture 
planes within an EDFM framework.

Despite a recent shift of focus to coupled flow-geomechanical modeling, there have been limited attempts 
to model transport phenomena in a complex fracture network under the framework of poroelasticity. The 
effect of geomechanical coupling on solute spreading, mixing, and viscous fingering in stress-sensitive res-
ervoirs has been explored recently (Sweeney & Hyman, 2020; Tran & Jha, 2020; Tran et al., 2018). In addi-
tion, recent advances in understanding fracture dynamics have shed new light on inherently strong non-
linearities that exist between the state of stress and closure and dilation of natural joints (X. Li et al., 2020; 
Olsson & Barton, 2001). Often, these nonlinearities lead to hysteresis in the mechanical response of the 
jointed rock when subjected to loading/unloading cycles over time scales of interest. Hysteresis in stress-
strain behavior, post-peak shear strength, shear induced dilation are required to improve fracture modeling 
in aquifers deforming under injection/production (Asadollahi & Tonon, 2010). Yet, many modern-day ge-
omechanical simulators neglect this behavior because of the lack of a computationally efficient poroelastic 
model for fractured rocks. This paper attempts to bridge these technical gaps by proposing modifications 
in the classical Bandis model (Bandis et al., 1983), implementing it within a coupled flow-transport-po-
roelastic framework, and successfully demonstrating its capability in predicting the following observables 
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during tracer tests in aquifers with complex fracture networks: the tracer 
breakthrough profile, pore pressure field, and aquifer stress and strain 
fields around the well.

The physical properties of a solute, which can be a contaminant or a re-
mediation agent, can vary in space and time due to the dependence of sol-
ute density, viscosity, or diffusivity on the concentrations of the dissolved 
species (Flowers & Hunt, 2007). Further, the contaminant viscosity may 
change with time due to phase separation, dissolution, and evaporation 
of lighter volatile components (Mercer & Cohen, 1990). Contaminant re-
mediation processes often alter the dynamic properties of contaminant 
plumes. More specifically, remediation by injection of steam, surfactants, 
oxidizing agents, or polymer can produce a mobile, dissolved-phase 
plume with a viscosity that is different from the viscosity of the fluid bank 
ahead or behind it. Table 1 displays the viscosity and log viscosity ratio E R 
of some groundwater chemicals compared to water. Even for non-aque-
ous phase liquid (NAPL) contaminants, which are considered mostly 
immiscible with water, miscible plumes are created as components par-
tition from the NAPL phase into the flowing groundwater (Poulsen & 
Kueper, 1992). This has two major implications for contaminant trans-
port. First, changes in the viscosity can affect contaminant mobility even 
in homogeneous permeability fields. Second, when a less viscous fluid 
is displacing a more viscous fluid, the transport becomes hydrodynam-
ically unstable and culminates into viscous fingering (Homsy,  1987), 
which leads to stretching of the plume interface and enhanced mixing 
(Jha et al., 2011b; Nicolaides et al., 2015), which then affects contaminant 
recovery. To answer questions such as whether solute fingering leads to 
more dilution in a stiffer rock with fracture activation or in a softer, intact 
rock with large porosity changes, we need to understand the role of trans-
port-geomechanics coupling in advection-dominated transports.

Below we present our modeling framework in the context of a push-
chase-pull tracer test and use the model to elucidate physical mechanisms 
that arise solely due to the two-way coupling between flow, transport, and 
poroelasticity. The novelty of our work lies in unraveling these coupling 
mechanisms and exploring their relationships during hydrodynamical-
ly unstable transports in fractured porous media. In particular, we focus 
on the mechanisms that affect the mixing and spreading of the injected 
tracer, because these processes control the effectiveness of contaminant 
removal/remediation in groundwater applications. Finally, we use the 
framework to analyze the sensitivity of the field observables to changes in 
various rock-fluid properties, which is essential for applying the proposed 
framework to subsurface problems where properties may vary over large 
and/or uncertain ranges.

2.  Physical Model
We consider a horizontal section of an aquifer with a horizontal well in 
the middle (Figure  1) that injects and produces alternatingly. The res-
ervoir is fully saturated with a single-phase fluid (water) and is under 
hydromechanical equilibrium with external stresses hE S  and HE S  , which are 
the minimum and maximum principal horizontal compressions, respec-
tively, from regional tectonics. The stochastic fracture network depicted 
there is inspired by a tracer flowback study (J. Li et al., 2016) and is gen-
erated using the FracGen simulator based on fracture density, formation 

Chemical Viscosity (cp)



 0

1
lnE R

Benzene 0.6 0.39

Toluene 0.56 0.46

Ethylbenzene 0.64 0.33

O-Xylene 0.76 0.16

Trichloroethylene (TCE) 0.55 0.48

No. 4 fuel oil 36 −3.7

Trans-1,2dichloroethylene 0.4 0.8

Chlorobenzene 0.8 0.11

m-Cresol (pesticides, antiseptics) 6.1 −1.92

Diesel 2.2 −0.9

MTBE (gasoline additive) 0.37 0.88

Propane 0.1 2.19

Note. A water viscosity of 0.89 cp at 25°C is assumed.

Table 1 
Groundwater Chemicals With Viscosity 1E  Different From the Water 
Viscosity 0E

Figure 1.  A physical model of tracer injection, tracer soaking or chase 
fluid injection, and tracer-water withdrawal in a reservoir populated 
with discrete natural fractures of different lengths and orientations. The 
horizontal well is intersected by some of the fractures. The initial state of 
stress in the reservoir is determined by boundary compressions hE S  and HE S  
and zero normal displacement roller boundary conditions. The fractures 
are denoted by the green lines. The cyclic well is denoted by the thick blue 
line. The yellow-shaded region around the well indicates the mixture of 
injected tracer (viscosity 1E  ) and resident water (viscosity 0E  ), which forms 
a short time after tracer injection begins at the well. The remaining black 
domain is saturated with the resident fluid.
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resistivity-based imaging logs, and the tracer breakthrough curve (J. Li et al., 2016; Myshakin et al., 2015). 
This fracture network is designed to encompass complexities such as fracture-to-fracture intersections, 
well-to-fracture crossings, and heterogeneity in fracture orientation with respect to the HE S  direction. The 
cyclic well first acts as an injector, injecting a slug of tracer that is perfectly miscible with the in situ fluid 
but has a lower viscosity. The top and bottom boundaries are open to drainage at a fixed pressure that is 
lower than the initial aquifer pore pressure. As the less viscous slug moves through the aquifer and displac-
es the more viscous in situ fluid, the Saffman-Taylor hydrodynamic instability initiates at the tracer front 
giving rise to viscous fingering. The strength of fingering depends on the viscosity contrast between tracer 
and water, the tracer injection rate, tracer diffusivity, and the characteristics of permeability field (Tran & 
Jha, 2020), which in this model is dominated by the fracture network. We stop the injection of tracer when 
it breaks through at either of the two boundaries. Following breakthrough, the well switches to injection 
of the in-situ fluid (zero tracer concentration) to push the tracer further into the aquifer, and we call this 
duration the tracer soaking period. The soaking period lasts 30 days and is followed by the tracer extraction 
or withdrawal period, which is 90 days in the model. During withdrawal, the well produces both the tracer 
and the in-situ water. This process resembles either a typical huff-n-puff operation in enhanced oil recovery 
(EOR) or a push-and-pull tracer test in groundwater surveillance. In those applications, the observed pres-
sure change during the injection period is often in the range of 10–30 MPa (J. Li et al., 2016).

The physical model is designed to investigate coupling between geomechanics and transport in fractured 
porous media during both injection and withdrawal episodes. Since the pore pressure is coupled to both the 
tracer velocity and the effective stress, we can use this model to probe the coupling between transport and 
deformation processes to extract possible physical mechanisms arising from such coupling. This will allow 
us to address questions such as how poroelasticity affects the mixing and spreading of solute transport and 
how flow-transport coupling, manifested through viscous fingering, impacts stress state and fracture stabil-
ity. We use the same model to examine how stress changes dictate permeability evolution and how transport 
metrics are modulated by fracture mechanics.

We make the following assumptions, which are appropriate for the physical problem at hand: (a) slightly 
compressible fluid, (b) small strain, (c) quasi-static equilibrium, (d) linear elasticity, (e) single-phase flow, 
(f) isotropic material behavior, (g) isothermal system, and (h) first contact miscibility between the fluids. 
Given our focus on groundwater transport problems with low values of induced stresses compared to, for 
example, hydraulic fracturing problems, we make additional assumptions regarding the fracture behavior: 
(i) mechanical equilibrium in the domain is governed by the deformation of matrix only, and the fracture 
deformation is limited to stress-dependent changes in the fracture aperture, (j) the gradient of fracture pore 
pressure normal to the fracture is negligible. Assumption (i) suggests that volumetric strain occurs only in 
the host matrix and not in the fractures. Thus, the fracture pressure is coupled only to the matrix pressure 
perturbation and not coupled directly to the mechanical deformation of the matrix. Input parameters such 
as the well injection rate and the matrix permeability are selected such that the likelihood of fracture prop-
agation or nucleation is negligible. Therefore, in this study, dynamic propagation of fracture is not consid-
ered and stress-dependent changes in fracture aperture are modeled via constitutive equations such as the 
Bandis model (Bandis et al., 1983). As the fractures are generally very thin and highly permeable compared 
to the surrounding host rock, assumption (j) is generally valid.

3.  Mathematical Model
We consider single-phase flow and tracer transport through a poroelastic and deformable solid in two di-
mensions. Below, we present the governing equations in the strong form for both fracture and matrix do-
mains. The equations will be converted into the respective weak forms and discretized. We adopt a contin-
uum representation of a macroscopic model of the poroelastic medium, where fluid and solid are viewed as 
overlapping continua (Coussy, 2004). Equations of quasi-static equilibrium, solid and fluid mass conserva-
tion, and advective-diffusive transport govern the system's behavior in space and time under the imposed 
initial and boundary conditions as well as the applicable constitutive laws for the solid, fluid, and tracer 
components. We will cast the problem into a formulation where the primary unknowns are as follows: the 
excess pressure in the matrix domain, the excess pressure in the fracture domain, the excess displacement 
in the matrix, the normalized concentration of tracer in the matrix, and the normalized concentration of 
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tracer in the fracture domain. Here, “excess” is defined as the difference between a quantity's current value 
and its reference value; see Section 3.6.

3.1.  Fluid Mass Conservation

The 2D model in the Cartesian domain has an area   ( )x yE L L  , where xE L  and yE L  are the dimensions in 
the E x and E y directions. We denote the closed boundary of the domain by E  . The initial matrix porosity is 0E  , 
and the matrix permeability mE k  is assumed to be isotropic and constant in time. Subscript 0 indicates the 
initial condition and superscripts E m , E w and E f  denote matrix, well, and fracture domains respectively. The 
initial fracture permeability 0

fE k  is the same for all fractures so that the dependence of permeability on stress 
can be compared easily. The domain is saturated with a fluid of density  fE  , compressibility fE C  , and viscosity 
 fE  . The fluid mass conservation equations for single-phase slightly compressible flow under infinitesimal 
deformation in the matrix and fracture domains are

 
       

 
1 ,

m
m mf mwv

m
p
t tM

 mv� (1)


        


1 ,

f
f fm ff fw

f
p
tM

fv� (2)

where E p is the pore fluid pressure (  mE p  in matrix and fE p  in fracture), t  is time, 1 0 0/M C K
f s

    ( )/  is the 
inverse Biot modulus,   1 ( / )dr sE K K  is the Biot coefficient indicating the degree of cementation between 
grains, drE K  is the drained bulk modulus of rock, sE K  is the bulk modulus of solid grains,   (1/ ) /f f fE C d dp 
is the fluid compressibility from the equation of state, E v is the Darcy fluid velocity vector relative to the 
solid skeleton, and vE   is the volumetric strain. The E  terms indicate the mass flux transfer from fracture to 
matrix (superscript E mf  ), matrix-to-fracture (superscript E fm ), fracture-to-fracture (superscript E ff  ), well to 
matrix (superscript E mw ), and well-to-fracture (superscript E fw ).  fE  is the nabla vector operator in the fracture 
domain, that is, along the 1D fracture mesh that is embedded in a 2D matrix mesh. So, the tangential di-
vergence of an arbitrary vector quantity E κ , that is,  fE κ , in the fracture domain can be related to the diver-
gence  E κ in the matrix domain via the projection operator as follows:        ( ) :f f fE dκ I n n κ , 
where fE n  is the fracture surface unit normal and E dI  is the identity tensor. The tangential gradient operator 
can be defined similarly. We assume that the Biot coefficient and porosity values are the same for matrix 
and fracture domains. Viscosity and density of the pore fluid are also assumed to be the same in the fracture 
and matrix domains. The main distinction between fracture and matrix domains lies in the permeability 
contrast between the two media. Ignoring gravity and buoyancy effects, the Darcy velocities in the matrix 
and fracture domains are


 ( ),

( )

m
m

m
f

k p
c

mv� (3)


 ( ),

( )

f
f f

f
f

k p
c

fv� (4)

where  ( )fE c  is the concentration-dependent fluid viscosity. The fluid pressure experiences perturbations 
that stem from pressures at the domain boundaries, fluid flux (mass rate per unit area) across interfaces 
between the three domains (fracture, well, and matrix), fluid source/sink terms at the center well (mass rate 
per unit volume), and the volumetric strain rate which changes the fluid storage capacity of the medium. 
Below we discuss the closure relations for the E  functions.

3.2.  EDFM Formulation

3.2.1.  Fracture-Matrix Intersection

In EDFM formulation, pressures in the fracture and matrix domains are coupled to each other via the mass 
transfer functions. For closure purposes, these terms need to be expressed in terms of the pressures in the 
two domains. We write the matrix-to-fracture transfer function E  as

  ( ),fm fm fm m fCI p p� (5)
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where  fmE  is the fluid mobility calculated as the harmonic average of the matrix cell mobility and the frac-
ture segment mobility at their interface, fmE CI  is the connectivity index between a matrix cell and a fracture 
segment, and it represents the geometrical complexity of this intersection. The fracture-to-matrix flux is 
assumed to be equal and opposite in sign:   mf fmE  . After both the matrix and the fractures are meshed 
(see the numerical model section below), the discrete form of the connection mobility is

 
 




,
2 m f

fm i k
i k m f

i k
� (6)

and the connectivity index is


 

,
,

,
,i kfm

i k
i k

D
CI

d� (7)

where subscript i denotes a matrix cell, subscript E k denotes a fracture segment, ,i kE D  is the length fraction 
of fracture segment E k inside matrix cell i ,   ,i kE d  is the calculated distance between matrix cell and fracture 
segment. This approach to couple fracture and matrix guarantees that the total flux between matrix and 
fracture is conserved.

3.2.2.  Fracture-Fracture Intersection

Fracture-fracture interaction is captured via the transfer function  ffE  . The flux between two fracture seg-
ments E k and l  , either belonging to the same fracture or different fractures that intersect, is defined as:

  ( )ff ff f f
kl kl l kp p� (8)

 ff
klE  is the harmonic average of the fluid mobilities in fracture segments E k and l  and it is calculated similar to 

Equation 6. The fracture mobilities are defined similar to Moinfar et al. (2013):


 

 
 

12f f f f
f
k f f

f f

k w k k
x x

� (9)

Here, fE w  is the fracture aperture, which is calculated from the fracture permeability fE k  using the cubic law. 
 fE x  is the length of the fracture segment along the fracture tangent direction.

3.2.3.  Fracture-Well Intersection

The flux terms mwE  and  fwE  represent fluxes from well-to-matrix and well-to-fracture domains, respectively.  
Well-intersecting fractures are expected to impact the flow significantly. We define  fwE  using the Peaceman 
well model (Peaceman, 1978)

  ( ),fw fw w fWI p p� (10)

where the well index fwE WI  is calculated as in Moinfar et al. (2013)

 





    

  
     

2 2

2

0.14
ln

f f
fw

f f
f

w

k wWI
L h

s
r

� (11)

In this equation, fE L  is the fracture length in the cell, fE w  is the fracture aperture, fE h  is the fracture height 
(assumed to be equal to the thickness of the horizontal aquifer in the z-direction), wE r  is the wellbore radius, 
and E s is the wellbore skin due to near-wellbore effects such as precipitation, formation damage, non-Darcy 
pressure drop, etc.

3.3.  Linear Momentum Balance

The linear momentum balance equations for a fluid-saturated rock under quasi-static equilibrium and in 
absence of body forces are

   ,m 0σ� (12)
where  ,m m m mE p dσ σ I  is the Cauchy total stress tensor, and ,mE σ  is the effective stress tensor. The bulk 
density of the matrix can be written as       (1 )m m

b f sE  , where  fE  is the fluid density, sE  is the solid 
grain density, and mE  is the Eulerian porosity of the matrix in the current configuration. A sign convention 
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where the normal stresses are positive in tension and negative in compression is used. The 2D domain 
represents a thin layer of rock, thus a state of plane stress is assumed. In the compact engineering notation, 

   T[ , , ]xx yy xyE σ  ,  T[ , ,2 ]xx yy xyE      , and  T[1,1,0]E dI  are the stress, strain and identity vectors in 2D, re-
spectively. Substituting the effective stress into Equation 12, we obtain

    , .m m mp 0σ� (13)

Solving the flow and the geomechanics equations simultaneously implies a full monolithic coupling be-
tween the two sub-problems. In the mechanics sub-problem, the pore pressure gradient acts as an equivalent 
body force that drives changes to the rock deformation and stress state. In the flow sub-problem, the matrix 
volumetric strain rate acts as an equivalent fluid source, or fluid storage capacity change, causing changes 
in the pore pressure. Assuming a linear elastic behavior of the rock, E σ D , where    T( )/2E  u u  is the 
infinitesimal strain tensor defined as the symmetric gradient of the displacement vector. In the plane stress 
configuration, the isotropic drained elasticity tensor E D can be written as




 

 
 

  
   

2

1 0
1 0

1 0 0 (1 )/2

ED� (14)

where E E and E  are drained Young's Modulus and Poisson's Ratio of the isotropic elastic material model. The 
volumetric effective stress is related to the volumetric strain as 

v dr v
K    , where    /(2(1 )(1 2 ))drE K E  

in 2D. Mass conservation of the solid component yields the porosity evolution equation in terms of the vol-
umetric strain m

vE   and the fluid pressure mE p  (Bonazzi et al., 2020; Coussy, 2004):

    
 

     
 

( ) (1 ) .
m

m m m m m
v

dr

p
K

� (15)

3.4.  Advective Dispersive Transport

The Advection Dispersion Equations (ADE) for modeling tracer transport through matrix and fracture do-
mains are

    
      


( )m m

m m m m mf mw
d

c c D c
t

mv� (16)

     
       


( )f f

f f f f f ff fm fw
d

c c D c
t

fv� (17)

where mE c  and fE c  are the dimensionless normalized local concentrations of the tracer in the matrix and the 
fracture, and dE D  is the hydrodynamic dispersion coefficient assumed to be a constant. E  represents differ-
ent transport fluxes across interfaces between the fracture, matrix, and well domains. During the injection 
episode, the well acts as a tracer source. We use an exponential model for the concentration-dependent 
viscosity of the mixture,

   (1 )
1( ) ,R c

f c e� (18)

where  mE c c  in the matrix and  fE c c  in a fracture, and 


 0

1
logeE R  is the log viscosity ratio of the in situ 

fluid viscosity 0E  and the injected tracer viscosity 1E  . When mE c  or fE c  is between 0 and 1, the viscosity of the 
mixture is higher than the viscosity of injected tracer and lower than the in-situ fluid viscosity, for positive 
values of E R . Here, we assume that the mixture density is independent of the tracer concentration.

3.5.  Fracture Mechanics Model

The Bandis model is a widely used empirical model to provide a constitutive relationship between the 
state of stress and rock joint closure, which can be related to fracture hydraulic properties, that is, perme-
ability (Barton et al., 1985). The Bandis model is based on a comprehensive laboratory investigation of the 
deformation behavior of a wide variety of natural unfilled joints under different loading/unloading and 
repeated load cycle conditions (Bandis et al., 1983). The model is especially accurate for rough joints and 
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fractures for which simpler models that assume smooth contacts often overestimate the shear strength 
(Barton & Choubey, 1977). For each fracture segment with normal direction fE n  , the effective normal stress 

f f
n   σ n n  , shear stress f f

n    σ n n  , and shear slip displacement hE  are critical inputs to calculate 
the mechanical aperture of the segment. These equations are used to dynamically update the normal and 
shear stresses acting on the fracture segments using the matrix stress tensor output of the geomechanics 
solver and the known surface normal vectors of the segments. The slip displacement on a fracture segment 
is calculated using the displacement vectors of neighboring matrix nodes on either side of the fracture 
segment. The fracture permeability is updated based on the cubic law for flow between two parallel plates, 
which yields the following update relation

 
   

 

2
f f h

r
hr

ak k
a

� (19)

where hE a  is the hydraulic aperture, and subscript E r indicates the reference value. The reference time is taken 
to be the end of the initialization period of a simulation (see initialization details below). Therefore, the 
reference permeability f

rE k  is a function of the initial permeability f
iE k  and the reference stresses at the end of 

initialization. Hydraulic aperture depends on the mechanical aperture and the ratio of shear displacement 
to peak shear displacement of each fracture segment (Barton et al., 1985; Olsson & Barton, 2001). Each frac-
ture segment can cross multiple matrix cells, resulting in different aperture changes along its length because 
of the spatially changing stress tensor and slip vector corresponding to the matrix cells that the fracture seg-
ment intersects. The mechanical aperture of a fracture segment is the square root of the harmonic mean of 
the squared aperture of its individual parts. The mechanical aperture of a fracture segment is measured by:

    0m n sa a a a� (20)

where 0E a  is the initial mechanical aperture under zero excess effective normal stress,  nE a  is the change in 
mechanical aperture due to normal stress perturbation, and  sE a  is the change in mechanical aperture due to 
shear-induced dilation. Hysteresis in the stress-deformation behavior has not been properly accounted for 
in existing models. Here, we implement a hysteretic stress-deformation model that captures the difference 
in fracture aperture change between the loading and unloading stages of rock under compression. This 
model also accounts for an expected fracture permeability decrease when the well changes from injection to 
withdrawal, shown by lines with circle and triangle markers respectively in Figure 2. Injection corresponds 
to decreased compression and hence unloading of the rock, and production corresponds to loading. Based 
on the foundational work by Barton et al. (1985), the dependence of mechanical aperture on normal stress 
change is calculated as:
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where iE V  is the irrecoverable closure that contributes to the hysteretic behavior and 
n
  is the incremental 

normal effective stress between consecutive time steps. niE K  , mE V  , and iE V  are defined in the caption of Figure 2 
and readily calculated using empirical correlations in Barton (1982). Our implementation has notable im-
provements compared to the original model in evaluating peak shear displacement (  peakE  ), post-peak shear 
strength (B-C in the top right quadrant of Figure 2), aperture closure at small shear displacement, and 
fracture surface degradation. The model parameters are functions of the input parameters of the original 
Bandis model, which are the joint roughness coefficient (JRC), joint compressive strength (JCS), and Un-
confined Compressive Strength UCS. JRC determines the shear strength of unfilled hard rock joints. It can 
be estimated by comparing the appearance of a discontinuity surface with standard profiles published in 
Barton (1982). JCS signifies the degree of weathering of the rock joint and can be estimated by the use of 
the Schmidt rebound hammer test. If the joints are completely unweathered, then JCS will be equal to the 
UCS of the unweathered rock. As the joints get weathered and weakened, JCS decreases accordingly. In 
addition to modeling the aperture closure dependency on the fracture normal stress, we also incorporate a 
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shear-related physical mechanism that alters hydraulic aperture. We take into consideration the reduction 
of post-peak shear strength from fracture surface degradation and shear-induced dilation. The shear-in-
duced dilation is formulated as a function of hE  (Asadollahi & Tonon, 2010):
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where E x and E dx are dummy variables of integration,  peakE  is the peak shear displacement,  ,v peakE a  is the peak 
shear-induced dilation, JRCpE  is the peak joint roughness coefficient, and log refers to base-10 logarithm. 
These parameters are readily calculated based on the correlations given in Asadollahi and Tonon (2010). 
The shear-induced effect is integrated during the injection episodes only, with the parameters tuned to yield 
a reasonable relative change in permeability based on the experimental work of Ye and Ghassemi (2018). 
Fractures tend to slip during the injection period when the effective normal compression on a fracture de-
creases. One of the limitations of our model is a lack of feedback from fracture slip to stress relaxation, that 
is, the coupling between fracture dynamics and mechanical equilibrium (Equation 13) is one-way only (Fig-
ure 3). This can be justified based on the computational expense of solving the nonlinear contact problem 
on each of the fractures, many of which intersect each other, coupled to the equilibrium equations. One-
way coupling has been used successfully in other transport studies (e.g., Sweeney & Hyman, 2020). The cou-

Figure 2.  The modified Bandis model to model nonlinear fracture mechanics in response to dynamically evolving 
normal and shear stresses (S. Li et al., 2017). The top left quadrant shows the behavior of a fracture in tension with niE K  
denoting the initial normal fracture stiffness. The bottom right quadrant shows a fracture in compression, displaying 
the initial mechanical aperture 0E a  under zero excess effective normal stress, the maximum aperture of the fracture 
under compression (  mE V  ), and the change in mechanical aperture  nE a  due to normal stress perturbation. Hysteresis 
within a loading-unloading cycle on the fracture is shown with the triangle marker (loading or withdrawal period) and 
the circle marker (unloading or injection period) lines. The upper right quadrant shows the dependence of shear stress 
( E  ) on shear displacement ( hE  ). The mobilization of JRC is divided into the pre-peak and post-peak periods, separated 
by point E B corresponding to peak shear displacement  peakE  and peak shear strength  peakE  . As the shear displacement 
increases to the residual shear displacement resE  , the residual shear strength resE  is slowly reached at points E C and E D 
(upper right quadrant).
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pling from fracture slip to domain-wide stresses can be important for long 
fractures slipping across their entire length and for propagating fractures, 
where an accurate calculation of induced seismic event time and magni-
tude may require an estimation of stress relaxation (Jha & Juanes, 2014; 
Meguerdijian & Jha, 2021; X. Zhao & Jha, 2021). To resolve this partially, 
we imposed a limit on the maximum number of times a fracture segment 
is capable of slipping, and we set this limit to be equal to the number of 
sub-segments this fracture is divided into when intersecting the matrix 
mesh cells. Figure 2 illustrates our fracture mechanics model.

3.6.  Initial and Boundary Conditions

The coupled flow, transport, and geomechanics problem requires suitable 
boundary conditions for the three sub-problems. Referring to the physi-
cal model in Figure 1, we apply the following boundary conditions: zero 
normal displacement on the bottom and right boundaries, compressions 
on the left and top boundaries with a prescribed stress anisotropy due to 
regional tectonics, zero normal fluid flux on the left and right boundaries, 
fixed pressures on the top and bottom boundaries which may represent 
constant pressure of producing wells at those locations, and the natural 
outflux boundary condition for the tracer transport problem. The cyclic 
well in the domain is controlled by a prescribed injection rate injE q  until 
the tracer breaks through at the boundary. This is followed by a soaking 
period of 30 days when only the in situ fluid is injected. Finally, the tracer 
withdrawal episode is modeled by a prescribed well withdrawal rate prodE q  
for 90 days. Units of injE q  and prodE q  are volumetric rates per unit length in 
the third dimension.

Initialization of a coupled flow-transport-geomechanics problem, especially in low permeability rocks with 
highly conductive fractures, is a challenging task. This is also true during lab experiments involving such 
rocks, for example, initialization of pressure and concentration fields in a shale core subjected to coreflood-
ing can take days. The goal of initialization is to achieve mechanical and hydrostatic equilibria such that the 
initial strains and fluid fluxes inside the domain are zero in absence of sources/sinks (i.e., wells). Spatially 
uniform fields of pressure, concentration, stresses, and displacements, for example, zero excess pressure 
and displacements combined with initial stresses equal to boundary tractions, are prescribed as initial con-
ditions that are close to, but not exactly at, the equilibrium. During the initialization period of the simu-
lation, we solve the governing equations with the prescribed boundary compressions, initial conditions, 
body forces (in case of a 3D model), and initial rock-fluid properties to achieve the state of poromechanical 
equilibrium. No wells or tracers are active during the initialization period. The state variables, for example, 
pressure and stress, at the end of initialization become our reference state. Stress-dependent properties such 
as porosity and permeability fields also experience perturbations during initialization and change from 
their initial user-prescribed values. We define “excess” quantities, for example, excess pressure, at a time  
as the difference between the value at  and the value at the reference time. The cyclic well starts operating 
at the end of the initialization period with a fixed tracer concentration prescribed at the well location.

This completes the definition of the coupled problem. The governing equations to be solved are Equa-
tions 1, 2, and 13 (after substitution to express it in terms of displacements), Equations 16 and 17 subject to 
the initial and boundary conditions mentioned above. The constitutive equations for the fluid compressi-
bility, tracer viscosity, stress-strain relation, well connectivity, mass transfer fluxes, and fracture mechanics 
provide the necessary closure of the system of equations. It is a nonlinear system of coupled differential 
equations with multiple length and time scales that correspond to multiple physical mechanisms in the sys-
tem. As mentioned earlier, we select pore fluid pressures mE p  and fE p  , displacement vector E u , and concentra-
tions mE c  and fE c  as the primary unknowns of the problem. The effective stress E σ  , porosity E  , Darcy velocities 

E mv  and E fv  , fracture aperture hE a  , and permeability fE k  are the secondary variables which we update explicitly 
by post-processing the primary variables.

Figure 3.  Flow and geomechanics are coupled two-way through the 
strain-dependent porosity ( )vE   in the fluid mass balance equation 
(Equation 1) and the fluid pressure-dependent effective stress ( )E pσ  in the 
linear momentum balance equation (Equation 13). The flow and transport 
are coupled two-way through the concentration-dependent fluid viscosity 
 ( )fE c  and pressure-dependent velocity field ( )E pv  . Geomechanics is coupled 
one-way with fracture mechanics by providing the nodal displacement, 
stress, and strain tensors to the Bandis model for slip activation, slip 
magnitude calculation, and fracture aperture update. Fracture mechanics 
delivers updated stress-dependent permeability ( , )f

hk  nσ  to the flow 
solver based on shear slip hE  and normal dilation, which is dependent on 
the effective normal stress nσ  .
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4.  Numerical Model
Solving the coupled problem defined above requires a numerical discretization scheme that can honor the 
continuity requirements of the primary and secondary variables while allowing for multiple scales in the 
discrete system. Computational efficiency and robustness are the other two requirements on the numerical 
model because we intend to apply the model to aquifers with geometrically complex fracture networks, 
such as the one shown in Figure 1 with more than 20 fractures of arbitrary lengths and orientations inter-
secting each other. To satisfy these requirements, we use the finite volume method to discretize the flow and 
transport equations, and the Galerkin finite element method to discretize the mechanics equations (Jha & 
Juanes, 2014; Tran & Jha, 2020). We discretize the domain using an dE n  -dimensional uniform Cartesian mesh 
(   2dE n  for 2D case). The fractures are discretized uniformly on a separate  1dE n  dimensional mesh. The 
weak forms of the flow and mechanics equations are obtained by following the standard variational recipe: 
multiply the strong form by an appropriately defined smooth test function, integrate the equation over the 
domain, apply integration by parts and reduce the order of differentiation on the primary unknown, apply 
the divergence theorem, and impose Neumann boundary conditions (Tran & Jha, 2020). We use cell-cen-
tered piecewise constant pressure and concentration degrees of freedom and bilinear functions with nodal 
displacement degrees of freedoms. This choice satisfies the inf-sup condition because we consider a com-
pressible system with finite values of the solid grain compressibility 1/K

s
 and the fluid compressibility fE C  , 

which are typical of most subsurface formations and deep aquifers. The Darcy flux term in the flow equa-
tion is linearized using the two-point flux approximation. The advective flux term in the ADE is discretized 
using upwinding and the central finite difference is used to discretize the diffusive flux term. We use the 
first-order accurate Backward Euler method to implicitly integrate the flow equations in time. Finally, we 
obtain the linear system of equations to be solved at each time step.

4.1.  Coupling Strategy and Solution Scheme

Our coupled computational framework consists of four parts: geomechanics, flow, transport, and fracture 
mechanics (Figure 3). Each component is connected to at least one other component via a one-way or two-
way coupling link. The strength of coupling is dictated by different parameters: E  , E E , fE C  for flow-geome-
chanics coupling; E R , fE k  for flow-transport coupling; and JRC, JCS for fracture mechanics-geomechanics 
coupling.

We utilize a fully coupled simultaneous solution approach to solve for displacement and pressure fields at 
each time step (Jha & Juanes, 2007; Lewis & Sukirman, 1993; Tran & Jha, 2020). The matrix-vector system 
of linear equations becomes

   
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where E U  is the vector of nodal displacements from the finite element interpolation  TE u N U  , E N  is the 
matrix of bilinear shape functions; E mp  , E fp  , and E wp  are the vectors of cell-centered matrix pressure, fracture 
segment pressure, and well segment pressure unknowns respectively, E n is the previous time step, and  1E n  
is the current time step at which displacements and pressures are solved such that   1n nE t t t  . The global 
stiffness matrix is assembled from element stiffness matrices,

  T
i i i ii dK B D B� (24)

where E B is the strain-displacement matrix computed by applying the symmetric gradient operator to E N  , and 
i is the element or cell index. There are two kinds of transmissibility matrices in Equation 23. The global 
transmissibility matrix E A is assembled from interfaces between cells of a single medium, indicated by the 
superscript E m , E f  , or w in the equation. The global transmissibility matrix E T  is assembled from the individual 
interface transmissibilities between two different media, which are indicated by the two superscripts E mf  , 

E wf  , and E mw in the equation. See our earlier paper (Tran & Jha, 2020) for expressions of the transmissibility 
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matrices. The global storativity or compressibility matrix E S for either the matrix or the fracture is a diagonal 
matrix with components,   1/ii iiE S M d  . The flow-geomechanics coupling matrix at the element level is,

  T .i ii ddQ B I� (25)

The right-hand side of the weak form of the mechanics problem E uf  consists of traction (and body forces in 
case of a 3D model),

      T T
t d duf N σ N g� (26)

where tE  denotes Neumann boundaries of the domain with the prescribed tractions  T[0, ]HE σ  on the top 
boundary and  T[ ,0]hE σ  on the left boundary. The right-hand side of the weak form of the flow problem 

E pf  consists of prescribed fluxes and well terms. We solve Equation 23 using a direct solver. The Darcy veloc-
ity field is computed from the pressure solution. Next, the ADE is solved for the unknown concentrations. 
The flow-geomechanics problem is solved again at the same time step with the new concentration and fluid 
mobility fields. This process is repeated iteratively within an inner loop inside the time loop until pressure, 
concentration, and displacement solutions converge at the specified time step. The coupling between the 
poroelastic solver and the transport solver is implemented using a sequential one-way coupled approach. 
For the range of E R considered in this study, the transport-to-deformation coupling strength is expected to 
be weak because there is no direct effect of concentration on the mechanics Equation 13, and the effect of 
concentration on pressure is limited to fluid mobility. For the range of parameter values considered, the 
inner loop takes less than seven iterations to achieve convergence at any time step during the course of the 
simulation.

5.  Model Verification and Benchmarking
In recent literature, EDFM has been successfully validated against traditional methods of fracture mode-
ling, for example, EDFM's pressure solutions are compared to pressure solutions from discrete fracture net-
work simulations of multiphase flow in complex fracture networks (Hajibeygi et al., 2011; Shakiba, 2014). 
Further validation studies have been conducted using both a fine-grid simulation and a semi-analytical 
solution (Jansen et al., 2018; Shakiba, 2014). We conducted two model verification studies, shown in Figures 
S1 and S2 in Supporting Information S1, where we compare our EDFM pressure solution with a commer-
cial multiphysics simulator solution and an analytical solution, respectively. Below we present results from 
benchmarking on the Mandel consolidation problem to verify poroelastic coupling in our framework.

5.1.  Mandel-Cryer Effect

To test the accuracy of poroelastic coupling in our computational framework, we applied the framework to 
the classic Mandel problem. An elastic, isotropic, homogeneous rock slab that is infinitely long in the z-di-
rection is constrained between two frictionless, impermeable rigid plates (Figure 4). Due to the symmetry 
of the problem, the computational domain can be limited to the upper right quadrant (shaded gray in the 
panel [a] of Figure 4) with size x yE L L  . The sudden application of compression at the boundary results in a 
positive excess pressure and linear displacements in the domain, also known as the undrained deformation, 
because the pore fluid does not have sufficient time to drain yet. The vertical left and right boundaries at 
  xE x L  (or dimensionless x-coordinate  1dE x  ) are free to deform at ambient pressure, which allows the 

fluid to drain over time. This implies that  0E x  can be modeled as a roller boundary condition. The analyt-
ical expressions of pressure, displacement, and stress are given in the literature (Abousleiman et al., 1996; 
Castelletto et al., 2015). Figure 4b shows the dimensionless pressure profile along the horizontal distance 
in the shaded domain at four dimensionless time steps. The dimensionless pressure dE p  is obtained by nor-
malizing the pressure by  0 (1 )/(3 )u xE p FB L  where   2/( ( / ))drE B K M  is the Skempton coefficient 
and          (3 (1 2 ))/(3 (1 2 ))uE B B  is the undrained Poisson's ratio. At early times (   0.1dE t  ), the 
 xE x L  boundary becomes softer due to pressure dropping from fluid drainage at that boundary. The stress 

is transferred inwards into the domain, which is a stiffer region than the drainage boundary. This caus-
es the pressure near the  0E x  boundary to increase above the undrained pressure value, that is,  1dE p  , 
which is known as the Mandel-Cryer effect. Next, we discuss results from a few representative numerical 
simulations.
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6.  Results
All simulation cases below follow the same operational sequence for the cyclic well: the well starts injecting 
tracer until the tracer breaks through at either the top or bottom boundary, then the well injects the in-situ 
fluid for the 30-day soaking period, and finally, the well withdraws fluids for the 120-day withdrawal period. 
The withdrawal rate is set at 1.5 times the injection rate, which is typical in a push-and-pull test.

6.1.  Base Case

We define a base case using the values of the mesh, initial condition, and boundary condition parameters 
shown in Table 2, together with the material parameter values shown in Table 3. Some of these values are 
taken from a published tracer flowback case study (J. Li et al., 2016). Utilizing the proposed computational 
framework, we analyze the base case results to identify the key characteristics of flow, transport, and ge-
omechanical behavior.

6.1.1.  Transport Response in a Coupled Flow-Geomechanics Framework

The tracer distribution in the matrix (colored contour lines) and fracture (colored straight lines) are moni-
tored at three selected time steps: end of injection which is also the tracer breakthrough time, end of soak-
ing, and end of 30-day withdrawal (Figure 5). During injection, the effect of the fracture network becomes 
evident as the tracer advects along the fractures that intersect the wellbore. Some amount of tracer directly 
enters the matrix due to diffusion. Tracer diffusion is also observed across the fracture-matrix interfaces, 
especially the ones situated within the viscous fingers of tracer that protrude outward from near-well frac-
tures. Among the fractures that intersect the well, there exists a preferential direction for the movement of 
the tracer based on the orientation of the fractures. Due to the coupling between the tracer viscosity and the 
pressure field, this preferential transport controls how much the fracture permeability changes with the in 
situ stress field. The more favorably aligned a fracture is to the regional principal stress directions (in this 
case, fractures oriented quasi-parallel to HE S  , that is, orthogonal to hE S  ), the more penetrating the fracture's 
tracer distribution is. In fact, the tracer breaks through at the bottom boundary by flowing through the most 
vertically oriented fracture in the bottom right of the domain (panel [a] of Figure 5). During the soaking 
period, since there is no additional tracer injected, the tracer concentration field displays a more spread-
out distribution in the aquifer with smaller tracer concentration values around the well. The main trans-
port mechanism is diffusion across matrix-fracture and matrix-matrix interfaces, which contributes to less 
pronounced tracer fingers. The pressure field is continuous but not necessarily smooth across a fracture, 
demonstrated by the kinks in the pressure contours as seen by the bottom panels in Figure 5. During the 

Figure 4.  (a) The Mandel problem setup with the origin of the x-y coordinate system positioned at the center of a plane 
strain 2D slab of dimension 2 2x yE L L  . Symmetry allows modeling of a quarter of the slab, producing a computational 
domain of size x yE L L  . The system is under a compressive vertical force denoted as 2E F applied instantaneously at 
 0E t  . (b) The dimensionless pressure p p/ 0 versus the dimensionless x-coordinate x x L

d x
 /  at different dimensionless 

times dE t  . The lines show the simulation results and the dots are the analytical solutions. The simulation agrees with the 
analytical result and captures the Mandel-Cryer effect at the early time step of  0.05dE t  .
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tracer withdrawal period, the fracture network again shows its impact on the tracer distribution as displayed 
by the increased spacing between the tracer contours, despite a lower value of the concentration gradient 
inside the fracture compared to the injection period.

The tracer retrieval data is available in most tracer survey studies, which 
can yield useful information, if used correctly. The tracer retrieval curve 
can be used to deduce fracture morphology (J. Li et al., 2016), especially if 
the fracture network is complex with spatially non-uniform fracture den-
sity (number of fractures per unit length or volume), orientation, and per-
meability. The temporal characteristics of tracer retrieval curves at various 
locations along the horizontal well are shown in Figure 6. During the early 
period of injection (   5E t  day), concentration around the well rises sharply 
to reach a peak level of  0.5wE c  , and the fractures intersecting the well are 
saturated with the tracer. Then the tracer level increases at a much slower 
rate and the tracer slowly diffuses into the matrix through matrix-matrix 
or fracture-matrix interfaces. As expected, during the soaking period when 
the well does not inject any tracer, the tracer concentration level at the well 
drops sharply to zero. The soaking period shows minimal differences in cw 
values between different well locations due to a lack of tracer injection into 
the domain during this period. During withdrawal, a more gradual build-up  

Parameter Symbol Value

Number of cells in the x-direction xE N 100

Number of cells in the y-direction yE N 100

Number of cells in the z-direction zE N 1

Domain length in the x-direction xE L 200 m

Domain length in the y-direction yE L 200 m

Domain length in the z-direction zE L 75 m

Top boundary compression HE S 82 MPa

Left boundary compression hE S 50 MPa

Initial excess pressure  0E p 0 MPa

Initial pressure 0E p 35 MPa

Prescribed top and bottom boundary pressure outE p 35 MPa

Well injection rate injE q 7.4 × 5 310 mE  /sec/m

Well production rate prodE q 11.1 × 5 310 mE  /sec/m

Poisson's ratio E 0.27

Solid grain density sE 2,650 kg/  3mE

Drained bulk modulus (matrix and fracture) drE K 21.9 GPa

In situ fluid viscosity 0E 1.2 × 310E  Pa-sec

Injected tracer viscosity 1E 0.16 × 310E  Pa-sec

Fluid density  fE 1,000 kg/  3mE

Matrix permeability mE k 5 millidarcy

Initial fracture permeability 0
fE k 1,256 darcy

Initial matrix porosity 0
mE 0.1

Fracture porosity  fE 0.1

Unconfined compressive strength UCS 150 MPa

Table 2 
Simulation Parameters

Parameter Symbol Value

Drained Young s modulus E E 25.55 GPa

Biot modulus E M 16.9 GPa

Diffusion coefficient dE D 2 × 7 210 mE  /sec

Fluid compressibility fE C 0.5 ×  9 110 PaE

Biot coefficient E 0.5

Log viscosity ratio E R 2

Joint compressive strength JCS 130 MPa

Joint roughness coefficient JRC 8

Table 3 
Base Case Parameters
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Figure 5.  Top row: Tracer concentrations in fractures and in the matrix at three successive time steps of the base 
case model: (a) at tracer breakthrough ( BTE t  ) which is also the end of injection period, (b) at the end of the chase fluid 
injection period (soaking), and (c) 30 days into the withdrawal period. The well is denoted by the blue horizontal line. 
Matrix concentration mE c  is shown via contours drawn at an increment of 0.1. Fracture concentration fE c  is shown via 
colored straight lines drawn along the fracture length. Both follow the same color scale shown on right. The shape 
and size of the contours are controlled by the connectivity of the well to the fractures and by the transport processes. 
Bottom row: corresponding excess pore pressure distribution at the three selected time steps. Different color scales have 
been used for the push and pull periods to account for the sign reversal of the excess pore pressure during push and pull 
periods.

Figure 6.  Evolution of the tracer concentration at three selected points along the well. The curves at the right and 
left ends of the well are similar during the injection period while the middle point shows a higher concentration due 
to a higher fracture density near the center. The soaking period does not show any distinction among the three curves 
because the tracer is neither injected nor withdrawn. The withdrawal period curves are more separated from each other 
compared to the injection period because both advection and diffusion processes feel the fracture morphology deeper in 
the aquifer during later periods.
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is observed as the tracer returns to the well. Transport is non-uniform along the length of the well due to a 
non-uniform fracture density along the length of the well. This is true in our study as indicated by Figure 1: 
the left and right thirds of the wellbore have fewer fractures compared to the middle third of the well. Since 
fractures contribute significantly to the advective transport, which is away from the well during injection and 
toward the well during withdrawal, the middle point curve shows a higher peak concentration during injec-
tion and a lower peak concentration during withdrawal compared to the curves at the endpoints (Figure 6).

An interesting observation is an increase in separation between the three curves during the withdrawal pe-
riod compared to injection. This points to hysteresis in advective transport through a medium with discrete 
fractures. Here, hysteresis refers to the observation of different concentrations at a point as the direction 
of flow reverses, for example, due to switching the well from injection to withdrawal. Hysteresis in diffu-
sion-dominated transport is well-understood because the effect of diffusion on the concentration gradient at 
a point is monotonic with time, even if the flow direction reverses. However, hysteresis in advection-domi-
nated laminar flow (high Peclet number and low Reynolds number) is a topic of research and has many ap-
plications in the mixing industry, for example, in microfluidics. Our study setup allows us to observe, quan-
tify and control the magnitude of hysteresis in tracer transport through a fractured aquifer. Separation of the 
three concentration profile curves, which correspond to regions with three different fracture densities, also 
suggests that these observables have a diagnostic use. If such E c versus  data is acquired in the field by zonal 
fluid sampling along the wellbore at multiple time steps, the curves can be used to quantify the fracture den-
sity in the aquifer away from the well. This is valuable because electrical resistivity-based fracture logging 
tools sense only 1–6 inches away from the wellbore. The fracture density in the left and right segments of the 
well are similar, yet there exists a slight difference between the two tracer retrieval curves. This is due to the 
difference in the fracture orientations of these two segments: the orientations are more orthogonal to HE S  in 
the left segment than in the right segment (Figure 6). The variation in fracture orientation determines the 
action of the stress tensor on these discontinuities, resulting in different permeability changes and a varia-
tion in the tracer retrieval curves. The impact of fracture permeability and orientation on the tracer retrieval 
curve will be revisited in later sections because they are strongly related to the stress field.

6.1.2.  Stress Response to Pressure Coupling

Next, we analyze how induced stresses in the aquifer vary with time and space during the episodic trans-
port. The isotropic part of the deformation (volumetric expansion or contraction) is quantified by m

vE   
which is controlled by the effective volumetric stress 

v

m,  , which is related to the total volumetric stress 
  trace( )/m

v dE nmσ  as   
v

m

v

m m m
p  ,  . The deviatoric part of deformation is controlled by the von Mises 

stress   23m
VME J  , where 2E J  is the second invariant of the deviatoric stress tensor ( )m

vE m
dσ I  with E dI  is 

the identity tensor (Tran & Jha, 2020). To characterize the state of stress in the domain, three different stress 
quantities are chosen: effective volumetric stress 

v

m,  for isotropic deformation, von Mises stress  m
VME  , and 

poroelastic shear stress invariant 
MCE I  for shear-induced rock failure and plasticity. With the effective stress 

, mσ  denoted in Voigt engineering notation as [ , , ]  
xx yy xy
   T  , the von Mises stress for the plane stress con-

dition is defined as follows:

     
VM xx yy xx yy xy
        



( ) ( ) ( )

/
2 2 2

1 2

3� (27)

The excess poroelastic shear stress 
MCE I  is calculated as a function of the first and second stress invariants 

1E I  
and 

2E J  , representing the invariant form of the Mohr-Coulomb (MC) yield function (Borja, 2013).

I
v

m

1 2
   ,

� (28)

J
xx yy xx yy xy2

2 2 2 21

6

         [( ) ]    � (29)

    2 1
1 sin arctan( ) ,
3MC sI J I� (30)

where sE  is the static frictional coefficient of the host rock. The temporal evolution of excess pressure and stress 
quantities are shown in Figure 7 at three locations: near the midpoint of the well (left diagram), the center of the 
upper half of the domain (middle diagram), and near the top boundary (right diagram). At the very beginning 
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of the injection period, pressure rises due to the introduction of tracer fluid in a low permeability reservoir. The 
pressure then stabilizes and starts decreasing slightly because the injected tracer has a lower viscosity than the 
in situ fluid it displaces in the domain. The pressure plateaus during much of the soaking period as no addi-
tional tracer is introduced. Then during the withdrawal period, the excess pressure turns negative, meaning the 
pressure is lower than the initial pressure. This is expected as the fluids drain from the domain into the well. 
The negative excess pore pressure continues to decrease throughout the withdrawal period as more tracer is 
displaced from the domain and replaced by the viscous resident fluid encroaching from the boundaries.

Quantities characterizing the stress state evolve synergistically with the excess pore pressure in the matrix 
(Figure 7). Temporal evolution of the volumetric, deviatoric (von Mises), and Mohr-Coulomb first invariant 
stresses follow the excess pressure trend closely, confirming that the pressure field is driving the coupled dy-
namics of the system. During the injection period, pore pressure is higher than the initial pressure (positive 
excess pore pressure or   0E p  ), leading to a decrease of the effective volumetric stress, which means the 
host rock becomes more tensile. Because of the sign convention of the compressive state of the reservoir  
( 

v

m ,
0 ), this means that the excess effective volumetric stress is positive ( 

v

m ,
0 ) as shown by the lines 

with the diamond marker in Figure 7. A similar argument can be made during the withdrawal period. As 
the rock becomes more volumetrically compact during production, the 

v

m,  behavior mirrors the trend of 
E p . Investigating the rich and complex spatial and temporal evolution of 

v
  is important in practical appli-

cations. For example, in designing a new infill hydraulically fractured well, an optimal strategy is to choose 
drilling targets in a low compressive stress environment to facilitate the opening of stimulated fractures (Guo 
et al., 2019). Besides the reversal of excess volumetric stress and excess pore pressure between injection and 
withdrawal periods, excess Von Mises stress and excess poroelastic shear stress are positive throughout these 
two episodes due to their definitions in Equation 30. Near the injection well, the Von Mises stress is very close 
to the excess effective volumetric stress because the excess shear stress is small compared to the excess effec-
tive normal stress (   

xy xx
   ) and the stress state is almost isotropic (   

xx yy
   ) (panels [a and b] of 

Figure 7). Under these conditions, Equation 27 becomes    
VM xx xy xx
     [( ) ( ) ]

/2 2 1 2
3  . However, as we 

move away from the center of the domain to regions where the excess pressure perturbation is minimal and 
the magnitude of 

xy
  grows in comparison to 

xx
  , 

VM
  dominates 

v
  . This suggests that shear-induced 

deformation becomes dominant away from the well as shown in the separation of the curves with triangle and 
diamond markers. This can be explained by less tension (quantified by 

1E I  ), or the increasing prominence of 
remote shear components (quantified by 

2E J  ), or both, as we move away from the injection well. The injec-
tion-induced rock expansion around the injection well is accompanied by slight compression at the boundary.

The directional re-alignment of maximum and minimum horizontal principal stresses due to pressure 
perturbation is of importance for the optimal design of a hydraulic fracturing job and well trajectory lay-
out. When an existing well is operated cyclically as an injector and producer, the operator has to estimate 
the change in the principal stress direction, so a future drilling well can be placed and oriented optimal-
ly in the field. For example, in ultralow permeability shale or sandstone formations that require hydrau-

Figure 7.  The temporal evolution of excess pore pressure ( E p ) in the matrix, excess effective volumetric stress ( 
v
  ), and excess Mohr-Coulomb stress 

Invariant (   MCE I  ) at different locations in the domain, which are marked in the inset figures in the bottom left. The locations are (a) near the midpoint of the 
well, (b) center of the upper half of the domain, and (c) near the top boundary. Pressure (star marker), Mohr-Coulomb stress invariant (black marker), Von 
Mises stress (blue marker), and effective volumetric stress (diamond marker) evolve with time as the well goes through tracer injection, soaking (or chase fluid 
injection), and withdrawal episodes.
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lic fracturing to boost wellbore injectivity/productivity, the objective is 
to align the well along the minimum principal stress direction, so that 
the fractures orthogonal to the wellbore can open up easily against the 
minimum compression. In these scenarios, a rigid approach to drilling 
wells without any consideration to the dynamically evolving stress field is 
guaranteed to yield unfavorable stress-alignment conditions and sub-op-
timal performance of the wells. Figure 8 shows the rotation angle  SHE  of 
the maximum principal stress HE S  , describing a reorientation of the local 
principal stress field. We observe regions on the two sides of the well with 
opposite changes in the stress orientation (red and blue shades), and we 
observe larger changes of  SHE  near the left boundary compared to those 
near the right boundary (lighter shades). This can be explained by the 
contribution of anisotropic fracture network orientation (predominantly 
oriented Northwest-Southeast) to the non-uniform movement of tracer, 
perturbing the pressure field correspondingly. More tracer invasion in the 
Northwest (NW) and Southeast (SE) corners leads to a pore fluid mixture 
of lower viscosity and less pressure drop away from the injection well 
(Figure 5). This results in the reorientation of HE S  in the NW-SE regions 
to be more aligned with the predominant fracture orientation, coinciding 

with the direction of the slowest change of pore fluid pressure. In addition, fluid-solid poroelastic coupling 
results in the occurrence of small shear stress perturbation (which is also observed in Figures 16 and 17) 
during injection, further augmenting the reorientation of principal stresses locally.

6.1.3.  Effect of Flow Properties on Fracture Dynamics and Stress Coupling

Based on the prescribed initial stress field and fracture orientations, an initial distribution of fracture per-
meabilities in the domain is calculated using empirical correlations from Barton et al. (1985). In the ini-
tialization step, fracture orientation contributes to the fracture permeability distribution, which is shown 
by the black line with the square marker in Figure 9. Depending on how favorable a fracture's orientation 
is to the anisotropic stress field due to the applied boundary condition, each fracture segment responds 
differently to the stress field. The empirical cumulative distribution function (ECDF) of the fracture per-
meability is shown in Figure 9 at selected time steps. In our method, each fracture is composed of multiple 
fracture sub-segments that experience different stress states based on the stress states of the matrix nodes 
surrounding a sub-segment. This generates assorted permeability changes for the segments. When injec-

tion starts, besides the aperture opening due to decreasing effective com-
pression, shear-induced dilation causes additional opening of fracture 
aperture (Asadollahi & Tonon, 2010). Therefore, the rich complexity of 
the stress field explains the spatial heterogeneity of fracture permeability 
despite the tight range of reference starting values (Figure 9). Because of 
the reduction in normal effective stress and the effect of shear-induced 
dilation, the fracture permeability values during the injection period 
(curve with the star marker) is approximately 17%E  higher compared to 
those during the withdrawal period (curve with the diamond marker). 
During injection, shear stress accumulates until shear slip is activated 
on a particular fracture sub-segment based on the Mohr-Coulomb failure 
criterion (i.e., fracture shear stress exceeds the product of fracture effec-
tive normal stress and the static frictional coefficient   f

s n

f ,  ). The 
shear-induced dilation effect during injection is larger on fractures with 
higher post-initialization values of kf. Therefore, the spread of permeabil-
ity range is amplified in the injection period compared to the withdrawal 
period.

The temporal evolution of fracture permeability is governed by both 
fracture orientation and excess effective normal stress acting on the frac-
ture surfaces (Figure 10). On panel (a) of Figure 10, three representative  
fractures are chosen from the segments that slipped during the course 

Figure 8.  Change in direction, SHE  (degrees), of the maximum horizontal 
stress HE S  , measured from its initial direction along the y-axis. A positive 
angle means the principal stress rotates counter-clockwise while a negative 
angle indicates clockwise rotation. The dashed lines indicate the new 
HE S  direction, which is different in different compartments. Green thick 

lines are the embedded fracture network. The thick blue line is the well 
trajectory. Two time steps are shown: (a) at the end of injection and (b) at 
the end of withdrawal.

Figure 9.  Empirical cumulative distribution function (ECDF) of the 
fracture permeability fE k  after initialization (square marker), at the end of 
injection (star marker), and at the end of withdrawal (diamond marker). 
Fracture permeabilities increase during injection and decrease during 
withdrawal. The two inset figures show the spatial distributions of fE k  at 
the respective timesteps: injection in the right inset and withdrawal in the 
left inset. The insets use different color scales to highlight the different 
fractures activated during different episodes–injection and withdrawal.
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of injection. All fractures start with a constant and prescribed value of fE k  that changes during the model 
initialization step discussed above, which appears as the first drop in fE k  (Figure 10a). Then, during the injec-
tion period, before any shear slip occurs, fE k  increases very slowly because the effective normal compression 
decreases slowly. The permeability trend exhibits an abrupt jump due to a shear slip event with the timing 
and magnitude of the event depending on the fracture orientation and the stress state. Fractures that are 
more favorably aligned (or quasi-parallel to the vertical HE S  , i.e., smaller  fE  ) experience a larger increase in 
their stress-dependent permeability because their apertures open up against the minimum horizontal prin-
cipal stress hE S  . The larger the angle, the smaller the fracture opening is due to increasing effective normal 
stress and a smaller shear-induced dilation. As a result, the evolution of fE k  can be split into two periods with 
the corresponding mechanisms: the inter-slip period when the effective normal stress dictates fE k  and the co-
slip period when the shear slip dictates fE k  . Interestingly, these shear slip events can be physically connected 
to microseismic episodes, if additional related studies are pursued. Finally, a sharp drop of fracture perme-
ability between injection and withdrawal is expected owing to the sign reversal of the excess pore pressure. 
To increase the confidence in our fracture dynamics model, the quantitative trends of fracture permeability 
versus stress magnitude, stress history, and slip displacement are checked against existing literature (Lamur 
et al., 2017; Watanabe et al., 2008). As observed in panel (b) of Figure 10, only a narrow range of fracture 
orientation experience shear slip (between 25E  and 50E  ). Slipped segments show higher permeability change 
compared to unslipped segments mainly due to the shear-induced dilation effect. Among the slipped seg-
ments, permeability change is highest for fractures of lower orientation angles (   25 30E  ) and higher 
values of the excess effective normal stress 

n

f,  (denoted as red filled squares in Figure 10b).

7.  Sensitivity Analysis
To better understand the coupling mechanisms between transport and 
deformation processes in an aquifer, whose properties can vary over a wide 
and/or uncertain range, we perform a sensitivity analysis to investigate 
the influence of key rock-fluid properties on different outputs of the Base 
Case defined above. As the outputs of the coupled simulation can be clas-
sified into flow (e.g., pressure), transport (e.g., degree of mixing), and ge-
omechanics (e.g., stresses) categories, so the rock-fluid properties can also 
be classified into the corresponding categories that control the flow-ge-
omechanics coupling strength (Biot coefficient E  , fluid compressibility  

fE C  , rock's Young modulus E E ), flow-transport coupling strength (log vis-

Figure 10.  The temporal evolution of fracture permeability and its dependence on fracture orientation  fE  . The fracture orientation  fE  (degrees) is defined as 
the angle between the fracture plane and the initial HE S  direction (i.e., true North). It ranges from  90E  (clockwise from true North) to 90E  (counter-clockwise 
from true North). The true North is the direction of HE S  in Figure 1. Panel (a) plots the permeability of three representative fracture segments that slipped and 
experienced shear-induced dilation during the injection period. The legend shows different orientations of each fracture segments. The horizontal time axis is 
plotted on a log scale to illustrate the early injection period better. The mini-panel shows the locations of the fracture segments that are plotted. Panel (b) plots 
fracture permeability and orientation for all fracture segments. The circle markers represent unslipped segments and square markers denote slipped segments. 
The points are color-coded by the absolute magnitude of excess normal effective stress acting on the fracture segments 

n

f,  .

Parameter Low  base  high Unit

Biot coefficient E  0.2 0.5 0.9E
Fluid compressibility fE C  0.4 0.5 1E 1GPaE
Log viscosity ratio E R  0 2 2.5E
Young Modulus E E  10 25.55 50E MPa

Joint compressive strength  120 130 150E MPa

Joint roughness coefficient  8 8 20E
Diffusion coefficient dE D       8 7 52 10 2 10 2 10E 2 1m sE

Table 4 
Sensitivity Parameter Values
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cosity ratio E R , diffusion coefficient dE D  ), and geomechanics-fracture mechanics coupling strength (JRC, JCS). 
Table 4 lists the range of investigation of these sensitivity parameters. The base case values are in the middle 
of the sensitivity range except for JRC, because JRC is empirically constrained by the original Bandis model 
based on the magnitude of in-situ stresses, which also narrows the sensitivity range of JCS.

7.1.  Poroelasticity and Fracture Dynamics Affect Mixing and Spreading

Here, we investigate how different types of coupling lead to changes in the solute transport behavior. Spread-
ing and mixing are critical transport phenomena, which can be quantified using the tracer breakthrough 
time BTE t  and the domain-averaged degree of mixing at breakthrough,  BTE  (Jha et al., 2011a, 2011b, 2013; Tran 
& Jha, 2020). The degree of mixing E  can be defined in terms of the matrix concentration field:

   ( ) 4( (1 )),m m
d dt c c� (31)

where    0/dE  and the overbar indicates volume averaging. E  ranges from 0 to 1, with   0E  representing 
an unmixed state and   1E  representing a completely mixed state between injectant and resident fluids. 
The tornado plot in Figure 11 shows the range of magnitude change (in percentage) of BTE t  and  BTE  , com-
pared to the base case, for all sensitivity parameters. We observe different levels of impact on BTE t  and  BTE  
for parameters belonging to different types of the coupling mechanism. For all cases except in one scenario, 
we observe a monotonous relation between each sensitivity parameter listed in Table 4 and the macroscop-
ic transport metrics BTE t  and  BTE  . There exists a non-monotonous trend in the relationship between Biot 
coefficient E  and BTE t  , which means tracer breakthrough is fastest in a moderately consolidated reservoir. 
This nonlinearity may partly stem from the quadratic relationship between E  and the incremental porosity 
change mE  expressed in Equation 15. For an incompressible system, or in the drained deformation case, the 
Biot coefficient can be interpreted as the change in porosity for a unit change in the volumetric strain (Tran 
& Jha, 2020). This phenomenon is also likely because E  is present in both the fluid mass balance equation 
and the mechanics linear momentum balance equation, which complicates its effect on the pressure field 
and results in a nonlinear relationship with the transport metrics. For the range of E  we examined (from 
0.2 to 0.9), changes in BTE t  and  BTE  are apparently small (approximately 6%E  ) but could be significant for a 
real site where the absolute breakthrough time is in the order of months, meaning a 6% error margin could 
translate into an error in the estimated BTE t  of the order of a week. In those cases, it will be costly to ignore 
the coupling in the model. Besides, here, the degree of mixing is taken to be the average value for the whole 

Figure 11.  Tornado plot of the percentage change of breakthrough time BTE t  (panel [a]) and degree of mixing  BTE  (panel 
[b]) compared to the base case of different sensitivity parameters listed on the y-axis. From bottom to top on the vertical 
axis: Biot Coefficient E  , Fluid Compressibility fE c  , Young Modulus E E , Log Viscosity Ratio E R , joint roughness coefficient, 
joint compressive strength, Diffusion Coefficient dE D  . Red columns to the left show reduction while blue columns to the 
right show increase of either the breakthrough time or the degree of mixing compared to the base case. The two values 
on the two ends of each sensitivity bar indicate the corresponding values of each sensitivity parameter, with units 
shown in Table 4.
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domain, which may provide only low resolution information in a fractured aquifer where tracer generally 
accumulates around the major fractures. We will have a better look at the impact of mechanical coupling on 
the spatial distribution of the tracer in the next section.

Regarding the fluid compressibility, higher fE C  (more compressible fluid, weaker flow-geomechanical cou-
pling) leads to a faster breakthrough (Figure 11). Higher fE C  leads to lower Biot modulus and higher values 
of the pressure time derivative, that is, the fluid accumulation term. The Darcy velocity increases, especial-
ly in high permeability channels, which effectively reduces BTE t  . Regarding rock's modulus, lower E E (soft-
er rock, stronger flow-geomechanical coupling) leads to a faster breakthrough of the tracer. Compared to 
flow-geomechanics coupling parameters (  fE C  and E E ), fracture dynamics parameters (JRC, JCS) have a larger 
impact on transport: tracer breakthrough is retarded ( BTE t  increases) and the fluid mixing is enhanced (  BTE  
increases). This impact is physically intuitive in a fracture-dominated flow setting with a large permeability 
contrast between fracture and matrix (here the ratio is approximately  52 10E  ). Less smooth fracture surfaces 
(i.e., higher JRC) and less weathered joints (i.e., higher JCS) result in a slower breakthrough, mainly as a 
consequence of lower fracture permeability from less shear-induced dilation. Interestingly, we find out that 
joint strength due to weathering exerts a more prominent impact than joint asperity on the macroscopic 
transport behavior in fractured rocks. Flow-transport coupling strength parameter E R plays a less impactful 
role in controlling the variation of BTE t  and  BTE  because of its limited presence in the mathematical model 
of the coupled problem; see concentration-dependent viscosity Equation 18. The diffusion coefficient dE D  , 
which is varying over three orders of magnitudes, has the most significant impact on the transport behavior. 
A more diffusive tracer propagates slower in the fractures, breaks through later, and creates a longer mixing 
zone as the tracer diffuses across matrix-fracture interfaces and spreads through the aquifer. We observe a 
positive correlation between BTE t  and  BTE  because the longer the tracer stays in the domain before the break-
through, the longer is the contact duration between the tracer and in-situ fluids, which enhances mixing.

We further probe the effect of poroelastic coupling on transport metrics in terms of spatial distributions 
of the tracer cloud. In practical applications, there are several stress-altering processes such as drilling of 
a well, hydraulic fracturing, re-fracturing of a fractured well, fluid injection or production, heat injection 
or production during geothermal operations and steam injection, and natural or anthropogenic seismicity. 
The in-situ natural fracture network may also evolve (opening or healing of fractures) due to geochemi-
cal processes involving mineral dissolution and precipitation, which adds extra complexities to the evolu-
tion of the stress field. As we have shown, consideration of different degrees of geomechanical coupling 
strength is going to impact the extent of the injectant mixing zone as well as how fast the injectant breaks 
through at neighboring wells. The extent of the mixing zone and the degree of mixing between the tracer 
and in-situ fluids determine the efficiency of the injection operation and the quality of model calibration 
in tracer surveillance studies. In fractured aquifers, when the tracer breaks through at a well, changing the 
extent or degree of mixing becomes challenging because of the creation of a persistent pathway between 
the injection and pumping wells. Thus, a common objective in many operations is to maximize the degree 
of mixing or extend the mixing zone before any breakthrough occurs. Figure 12 illustrates how the Biot 
coefficient, which is a proxy for the degree of consolidation of the rock and also indicates the strength 
of flow-geomechanical coupling, modulates tracer distribution in the domain. When the aquifer is more 
consolidated, either naturally or becomes consolidated over time due to production-induced stresses, we 
observe a reduction of tracer concentration of up to 35%E  in the central mixing zone around the injector and 
along major fracture-matrix interfaces. 35%E  could be significant considering the cost of tracer injection. 
This observation supports the need to include proper geomechanical coupling while modeling transport in 
deformable aquifers.

Next, we revisit the behavior of the tracer retrieval curve and study how it is regulated by not only the frac-
ture morphology (Figure 6) but also the strength of flow-geomechanical coupling represented by E E and fE C  
(Figure 13). The actual field data is restricted to the tracer withdrawal period and is made dimensionless 
by normalizing the well concentration values with the peak concentration to allow comparison with our 
solution. More compressible fluid and more compressible rock suppress the peak of the tracer retrieval 
curve. After the peak, the decreasing slope portion of the curve (Figure 13) is modulated mainly by the frac-
ture morphology (fracture density and orientation), because the flow-geomechanical coupling parameters  
( E E and fE C  ) have a minor impact on the slope. These effects can provide critical guidance during the calibra-
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tion of the aquifer model via tracer retrieval data. The middle section of the well, with a denser and more 
favorably oriented fracture set, records lower values of the tracer peak concentration due to faster drainage 
of the tracer. For the ranges used in this sensitivity study, fE C  induces a larger relative change to the tracer 
peak than E E .

It is important to note that matching the simulated tracer profile to the observed profile is not the goal 
here. Instead, our emphasis is on understanding how different coupling parameters regulate the shape of 
the tracer retrieval curve. In practice, this understanding can be used to improve the qualitative agreement 

Figure 12.  Effect of Biot coefficient E  on the tracer concentration distribution. The thick horizontal line is the cyclic 
well and the thin black lines are the fracture planes. Difference between two concentration fields for (a)   0.5E  and 
  0.2E  and (b)   0.9E  and   0.2E  are shown at the breakthrough time. The loss of tracer concentration is intensified 
as the flow-geomechanical coupling strength increases with increasing E  .

Figure 13.  (a) Tracer retrieval curve data from a case study (J. Li et al., 2016). The inset figure shows the location of the well (thick blue line), fracture (thinner 
green lines), and tracer monitoring stations (midpoint of well and midpoint of the right well segment). The horizontal axis is the time elapsed from the start of 
the withdrawal period,  wdE t  , in days. Panels (b and c) show tracer retrieval curves during tracer withdrawal periods at different well locations for different values 
of the (b) fluid compressibility fE C  and (c) rock Modulus E E . Lower panels demonstrate the effect of flow-geomechanical coupling (different colors but same line 
styles) and fracture morphology (same colors but different line styles). All curves are shifted toward a common starting point on the horizontal axis for better 
visual comparison.
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between modeled and observed tracer curves in terms of their peak concentration and slope values. We 
examine the effect of fluid compressibility and rock stiffness on the temporal evolution of the degree of 
mixing (see Figure S3 in Supporting Information S1). These observations suggest that the classical defi-
nition of the flow-geomechanics coupling strength parameter (Armero & Simo, 1992; Tran & Jha, 2020), 

 
   

 
  

2 2

(1 )( )dr f dr

ME
K C K

 cannot properly quantify the strength of transport-geomechanics 

coupling in fractured porous media. This is because macroscopic transport metrics exhibit a nonlinear re-

lationship with E  . Also, different trends of  BTE  and BTE t  are observed if we increase E  by the same amount by 
changing different parameters in its definition. For example, decreasing fE C  retards tracer breakthrough and 
decreasing E E accelerates tracer breakthrough, although both lead to increasing E  (Figure 11).

Next, we make a deeper investigation into the effect of poroelastic coupling on fracture permeability via 
stress field because of the critical importance of fracture permeability in dictating flow and transport be-
havior in fractured porous media. Here, the effect of poroelastic coupling on the synergy between fracture 
dynamics and transport is demonstrated through the fracture permeability (  fE k  ) evolution during tracer 
injection and withdrawal (Figure  14). For the sensitivity range of input parameters used, we observe a 
larger separation of permeability trends in the injection compared to the withdrawal period, mainly be-
cause of the shear-induced dilation effect during injection. By the end of the withdrawal period, E E shows 
minimal impact on fracture permeability while fE C  and E  sensitivity yield approximately 5%E  change in fE k  . 
In comparison, across the same range of input, by the end of the injection period or tracer breakthrough, 

E E and E  contribute to about 16%E  variation while fE C  yields about 25%E  difference in fE k  . Rock that is more 
unconsolidated (higher E  ) and softer (lower E E ) elevates the high end of the permeability range while less 
compressible pore fluid (lower fE C  ) inhibits fracture permeability growth. The augmentation of fracture 
permeability at higher E  , higher fE C  , and lower E E explains the decrease in the tracer breakthrough time for 
these cases in Figure 11. Another factor that could be considered is the compliance contrast between the 
fractures and the host matrix. Fractures are often mechanically more compliant than the host rock. Thus, 
we perform a sensitivity study where the bulk modulus of fractures is lower than that of the matrix (Mur-
doch & Germanovich, 2006). Please refer to Text S4 and Figures S4–S7 in Supporting Information S1 for the 
result of fracture compliance study.

7.2.  Fingering and Fracturing Parameters Impact the Stress State

We examine and characterize the impact of flow-transport and transport-geomechanics coupling on the 
state of stress. This understanding is critical to improve the operational design of a cyclic injection/with-
drawal operation, for example, to maintain the mechanical integrity of the formation and to avoid reactiva-
tion of natural fractures. Here, we specifically focus on the effect of fracture dynamics and transport param-
eters on geomechanical quantities. While flow-geomechanics coupling has a more significant first-order 
impact on the stress state, flow-transport coupling through E R (i.e., viscous fingering) also exerts considera-
ble influence on the stress field as shown in Figure 15. The effect of fingering is more evident toward the end 
of the injection period when the tracer has invaded parts of the matrix (bottom panels of Figure 15). In case 
of no coupling from transport to flow, that is,  0E R  , we observe a flat trend line signifying there is no dy-

Figure 14.  Empirical cumulative distribution function (ECDF) of fracture permeability ( )fE k  plotted for different values of the (a) Biot coefficient E  , (b) fluid 
compressibility fE C  , and (c) rock's modulus E E . Injection and withdrawal responses are separated by plotting them as solid and dash lines, respectively.
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namic synergy between geomechanics and transport. As E R increases, curves between the root mean square 
(rms) of stress invariants (  

,MC rmsE I  and 2,rmsE J  ) and the transport metrics deviate downward, compared to the 
 0E R  case. For either cases, the discrepancy between  0E R  and  2.5E R  can amount up to 7%E  for 2,rmsE J  and 

5%E  for 
,MC rmsE I  . This emphasizes the need for properly considering this flow-transport coupling mechanism, 

especially in critically stressed rocks close to failure. Near the injection well, where a significant fraction of 
the tracer is present and the flow-transport coupling (viscous fingering) dominates, we observe lower values 
of the Mohr-Coulomb failure function. This suggests that shear failure is less likely to happen in regions 
with stronger flow-transport coupling.

During the withdrawal period (dashed curves in Figure 15), different E R curves start from different points 
near the bottom right corner of the plot. This horizontal offset between different curves for different E R is due 
to the difference in the degree of mixing ( E  ) and the average matrix concentration ( cm  ) at the start of the 
withdrawal period. Toward the end of the withdrawal period, the  0E R  curve flattens out, again suggesting 
negligible dependency between stress and transport parameters. However, with the advent of fingering at 
 0E R  , the curves deviate as they did during injection, and the impact of flow-transport coupling on the 

stress state becomes noticeable. We believe that the dependency of the stress state on transport metrics 
becomes stronger as the transport controlling parameter increases in value. We also believe that the above 
observation will hold true if viscous fingering is substituted with density-driven convective instability, 
which is commonly encountered during seawater intrusion into coastal aquifers (Huyakorn et al., 1987) 
and 2COE  -brine mixing during carbon sequestration in saline aquifers (Metz et al., 2005). In that case, the 
Rayleigh-Benard or Rayleigh-Taylor instability may substitute the Saffman-Taylor instability, and the densi-
ty contrast will substitute the viscosity contrast.

Finally, we look at how fracture mechanical properties (joint weathering and joint strength) influence the 
stability of fractures during injection and withdrawal (Figures 16 and 17). Because JCS and JRC values for 
an aquifer can be estimated from load testing experiments on core samples, our findings can be used to 
decide where and how the tracer should be injected to ensure the mechanical integrity of the subsurface. In 

Figure 15.  Effect of the log viscosity ratio E R , a transport parameter, on the stress state. (a) The root mean square of the square root of the second invariant of 
deviatoric stress tensor 2,rmsE J  is plotted against the degree of mixing E  . (b) The root mean square of Mohr-Coulomb stress invariant 

,MC rmsE I  is plotted against 
the domain-averaged concentration cm  . Evolution during the injection and withdrawal periods are shown via solid and dotted lines, respectively. The direction 
of time for each period is shown via arrows. The shaded regions are magnified in (c and d) for better visualization.
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Figures 16 and 17, the effective normal and shear stresses on a selected few fracture segments are plotted on 
the Mohr diagram to show their evolution with time and fracture properties. In a strike-slip faulting regime 
(i.e.,  h v HE S S S  where vE S  is the vertical principal stress), the difference between hE S  and HE S  determines the 
largest Mohr circle radius. Initially, in absence of any pore pressure perturbation, the initial stresses inside 
the domain balance the tectonic compressions on the boundary, which can be used to draw the initial Mohr 
circle. The initial stress states of the fracture segments (denoted by black squares in Figures 16 and 17) lie 
on the initial Mohr circle. The three squares are at different locations on the circle due to the difference 
in the fracture orientation. During injection, the normal effective compression 

n
  acting on the fracture 

segments decreases, which causes the points to move left toward the static frictional failure envelope. Mi-
nor movement along the shear stress axis is also observed because the injection-induced expansion of the 
aquifer applies shear traction on some fractures, the magnitude of which depends on their orientation. In 
the figure, some points cross the failure envelope because our fracture mechanics model is one-way cou-
pled to the domain equilibrium (Section 3.5) and does not impose a strong restriction on such crossings. 
The magnitude of change in the stress state determines the likelihood of slip on the fracture. The amount 
of shift varies depending on the values of fracture mechanics parameters, JRC and JCS. In a reservoir with 
over-pressured pore fluid or more pronounced stress heterogeneity, these 4–5 MPa stress changes could 
easily induce slip on fractures. In Figure 16, fractures with higher JCS, implying less weathered joints, have 
larger stress changes and thus are more likely to fail in the shear mode. During tracer withdrawal, the less 

Figure 16.  Evolution in the stress states (shear stress E  vs. effective normal stress 
n
  ) of three representative fracture 

segments is shown using a Mohr circle diagram. Three timesteps are shown–initial (black square), end of injection 
(solid circles), and end of withdrawal (asterisks)–for three different JCS values. The static failure envelope is plotted in 
red with the static frictional coefficient of 0.35. The shaded region in the top left diagram is shown in the right diagram 
with a zoom-in. The arrows indicate the direction of change in the stress, from the initial state, during injection and 
withdrawal.

Figure 17.  Stress states of three representative fracture segments are plotted in a Mohr diagram at different times: 
initial (black square), end of injection (solid circles), and end of withdrawal (asterisks) for different JRC values. The 
static failure envelope is plotted in red with the static frictional coefficient of 0.35. The shaded region in the top left 
diagram is shown in the right diagram with a zoom-in. The arrows indicate the directional change of stress state from 
the initial state during injection and withdrawal.
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weathered fractures move farther away from the failure envelope, suggesting that they are less likely to slip 
during this period. For fractures of different JRC, that is, different resistances to shear slip, the magnitude of 
poroelastic stress shifts are equally pronounced although the sensitivity spread of stress output among JRC 
values investigated is smaller than that of JCS (Figure 17). This suggests that, compared to the compressive 
strength, the resistance to shear has a less pronounced effect in governing fracture stability. Fractures with 
smaller JRC tend to move closer to the failure envelope during injection and farther during withdrawal. This 
implies that a fracture with lower shear strength is more likely to fail during injection.

8.  Conclusions
We proposed a novel multiphysics modeling framework to investigate the rich physical interchange be-
tween flow, geomechanics, transport, and fracture dynamics in naturally fractured aquifers. We show that 
successful integration of transport-geomechanical coupling in field-scale modeling studies of flow through 
fractured rocks can improve the prediction of macroscopic transport parameters: the tracer breakthrough 
time, the average and maximum concentrations of the tracer at a control plane, and the evolution of the 
degree of mixing with time. Additional contributions of the study are as follows:

1.	 �We utilized Embedded Discrete Fracture Modeling (EDFM) to model the fractured porous media and 
implemented an improved Bandis model to simulate fracture mechanics. Our EDFM-based framework 
allows modeling multiple randomly oriented intersecting fractures at a lower computational cost than 
many discrete fracture methods that require a conforming mesh.

2.	 �We characterized the effect of geomechanical coupling on key transport metrics and quantified the im-
pact of each coupling parameter on tracer breakthrough and degree of mixing. We find that parameters 
governing the fracture dynamics (JCS and JRC) have a higher impact on the spreading and mixing of 
tracer compared to parameters dictating the strength of flow-geomechanical coupling (Biot coefficient, 
fluid compressibility, rock's bulk modulus).

3.	 �Tracer retrieval curve characteristics, for example, the peak concentration, are modulated by both frac-
ture morphology and the strength of geomechanical coupling.

4.	 �Flow-transport coupling, via viscous fingering and fracture dynamics, alter the stress state and fracture 
stability in the domain. This is important to consider in critically stressed formations close to failure.

5.	 �We quantified the impact of flow-geomechanics coupling strength on the evolution of fracture 
permeability.

Our results suggest that the coupling between flow, transport, and geomechanics will be necessary to accu-
rately model the fate of an active tracer (which dynamically modifies the viscosity or density of the flow) 
during reservoir surveillance, contaminant remediation, or fracture characterization studies in deformable 
rocks. For shallower reservoirs (for example, in groundwater applications), we hypothesize that the cou-
pling between geomechanics and transport can become stronger when the rock is more stress-sensitive due 
to a lower degree of consolidation (higher Biot coefficient) and lower bulk modulus. The findings of this 
study could help motivate and inform the future design and deployment of sensors that can monitor small 
(  10E  %) changes in stress/strain fields that may arise from coupling with the flow and transport processes. 
An example of such high fidelity and precision measurement technique is Distributed Strain Sensing (DSS), 
which uses fiber optics technology to reliably detect small changes in stress/strain fields around a wellbore.

Our modeling framework assumes that the feedback from fracture slip to the matrix stress is via changes in 
fracture properties only. We neglect fracture slip-induced stress relaxation, which can become important in 
case of fractures/faults that rupture over a long distance or grow in length from their tips. A future exten-
sion of our work includes modeling the propagation and healing of fractures to capture the feedback from 
fracture deformation to stress. Extending the framework to enable the generation of synthetic microseismic 
events can also create new possibilities for assimilating microseismic monitoring data and calibrating the 
proposed multiphysics model. Finally, the proposed modeling framework can support multiphysics joint 
inversion endeavors (Jha et al., 2015) at monitoring sites with multiphysics data from InSAR/GPS satel-
lites, ground penetrating radar, and wells to estimate uncertain hydraulic and poroelastic properties of the 
subsurface.
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Data Availability Statement
Data set for Figure 13 panel (a) is available in J. Li et al. (2016). No other data is used in the study. Copyright 
permission to reuse Figure 2 is obtained from the Society of Petroleum Engineers (SPE).
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