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We investigate the physics case for a dedicated trigger on a low mass, hadronic displaced vertex at the
high luminosity LHC, relying on the CMS phase II track trigger. We estimate the trigger efficiency with
a simplified simulation of the CMS track trigger and show that the L1 trigger rate from fake vertices, B
meson decays and secondary interactions with the detector material can likely be brought down to the
kHz level with a minimal set of cuts. While it would with any doubt be a severe experimental challenge
to implement, we conclude that a displaced vertex trigger could open qualitatively new parameter space

for exotic Higgs decays, exotic B decays and even direct production of light resonances. We parametrize
the physics potential in terms of a singlet scalar mixing with the Standard Model Higgs and an axion-like
particle with a coupling to gluons, and review a number or relevant models motivated by the hierarchy
and strong CP problems, Dark Matter and baryogenesis.

Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

With its high luminosity upgrade, the LHC will be capable of
delivering up to 7 times its current luminosity to ATLAS and CMS,
which implies a corresponding increase of the number pile-up ver-
tices per bunch crossing. Both ATLAS [1] and CMS [2] will undergo
substantial upgrades to enable them to handle this increasingly
challenging environment. One of the most important innovations is
the introduction of tracking information into the level-1 (L1) trig-
ger decision making. The CMS collaboration will accomplish this by
making use of double layered sensors in the outer tracker, which
detect track “stubs” rather than individual hits. By correlating both
sensors, the tracker can then assign an approximate pr to each
stub, such that the computationally expensive track fitting can be
restricted to stubs satisfying pr > 2 GeV. This innovation makes
track reconstruction feasible at the L1 trigger, though necessarily
with a somewhat worse resolution as compared to off-line track
reconstruction.

Interestingly, this method also enables the CMS track trigger to
reconstruct displaced tracks with impact parameters up to about
10 cm [2,3], which can be used to search for displaced jets [3-5]
and low mass, displaced dimuon resonances [6]. Both signatures
are supported by very strong theory motivation, as low mass,
long-lived particles (LLP) are rather generic ingredients for hidden
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sector models. Specifically, so far the displaced jet topology has
been studied for exotic Higgs decays [3] and axion-like particles
(ALPs) [7]. A displaced dimuon vertex trigger on the other hand
can be a very powerful probe of low mass extended Higgs sectors,
by leveraging exotic B-meson decays [6,8].

In this work, we combine both ideas and investigate the
physics potential of a hypothetical trigger on a displaced, multi-
track hadronic vertex. Of the L1 track trigger applications listed
above, this would clearly be the most difficult to implement, given
the combinatorical challenge when attempting to reconstruct such
a vertex at the trigger level. It is therefore paramount to estab-
lish (i) a strong physics case for this type of trigger and (ii) that
manageable background rates can be achieved, assuming the ver-
tex reconstruction challenge can be met. Our goal with this paper
is to address both questions and to motivate further experimental
studies in this direction.

To parametrize the potential of a displaced vertex trigger, we
study two simple benchmark models which encode the salient fea-
tures of a vast class of beyond the Standard Model (SM) scenarios.
In the first model we consider the most minimal extension of the
SM Higgs sector by adding a single, real scalar field whose most
general lagrangian reads

1. 1
LsD —Emﬁs2 — uSH'H — 5ASHS2HT1~1 — Vine(S), (1)

where Vi (S) contains the singlet self-interactions. As we detail
in Sec. 2, the spontaneous and/or explicit breaking of the approxi-
mate Z,-symmetry S — —S (through the second term in Eq. 1 or
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Fig. 1. Left: Projected number of events collected by a CMS L1 displaced vertex trigger at HL-LHC for the scalar model, fixing BR[h — SS] = 1%. shaded gray regions represent
existing limits from LSND [9], LHCb [10], the ATLAS [11] (“mu-ROI") and CMS (“H7p+2DV") [12]. The dashed gray curves are projections for Belle II [13], FASER 2 [14],
MATHUSLA [15] and CODEX-b [16]. The blue dashed curve is the projected reach of the CMS track trigger in the dimuon channel [8]. The yellow lines represent theory
priors from naturalness (Eq. 7 in Sec. 2.1), perturbativity (Eq. 9 in Sec. 2.1) and the Fraternal Twin Higgs scenario (Eq. 20 in Sec. 3.1). The two red lines represent the
XENONIT limit [17] and the neutrino floor in an example Dark Matter model [18], where we fixed m, /ms =3 (Sec. 3.3). Right: Projected number of events collected by
a CMS L1 displaced vertex trigger at HL-LHC for the ALP model. shaded gray regions represent existing limits, assuming E/N = 8/3 (see Sec. 2.2), from diphoton searches
at ATLAS and CMS [19], the diphoton cross section measurements at ATLAS and CMS [20] and at LHCb [21], the boosted dijets search at CMS [22] and the Y decays at
Babar [23]. The dashed gray curves are projections for Belle II [21], and HL-LHC [20]. The regions above the dashed yellow lines have colored fermions below 2 TeV in the
KSVZ UV completion (Eq. 13 in Sec. 2.2) or heavy Higgses below 500 GeV in the DFSZ UV completion (Eq. 14 in Sec. 2.2). The region above the dashed dark green lines
shows where the ALP can solve the strong CP problem even if the PQ symmetry is broken by operators with dimension A =5, 6 (Eq. 22 in Sec. 2.2). Above the dashed dark
red line standard Dark Matter freeze-out can be realized in a perturbative model (Sec. 3.3).

through singlet potential Vi (S).) induces a mixing between the S
and the SM Higgs, parametrized by the mixing angle 6. The latter
sets the lifetime of the singlet, which has a dominant branch-
ing ratio into hadrons in most of the parameter space. The Z;-
preserving quartic (Asy) controls the exotic Higgs decay h — SS.
Given that the SM Higgs is an exceptionally narrow particle, the
branching ratio for this process can be large even for very small
values of Asy.
As a second benchmark, we study an axion-like particle (ALP)
which couples primarily to gauge bosons
29 Qs @ -

1
LqeD —Emaa

E aem a -
- —— — —FF, 2
81 fq N 8w f, )

where coupling to massive gauge bosons are mostly irrelevant in
the ALP mass range of interest. N and E are the anomaly coeffi-
cients for the gluon and photon couplings respectively. To simplify
the notation in the crucial second term in Eq. 2, we have absorbed
N in the definition of the f;. The rational number E/N therefore
sets the model dependent strength of the coupling to photon pairs
relative to that to the gluons. The gluon coupling dominates the
ALP width as long as E/N < 8(ats/0tem)? =~ 4 x 103, where the fac-
tor of 8 accounts for the color factor enhancing the gluon partial
width. This upper bound is certainly satisfied in model of grand
unification where E/N ~ O(1) (see for instance [24]). Moreover,
for low /5, the gluon-gluon luminosity at the LHC is so enor-
mous that there is still an appreciable cross section for pp — a+ X
(where X stands for one or more jets) even for extremely high val-
ues of the decay constant f,. In part of the parameter space, this
means that a can decay through displaced hadronic vertex, while
still being abundantly produced at the LHC in processes such as
pp—~>a-+j.

The event yield for our proposed trigger is shown in Fig. 1 for
both models, where we have fixed the quartic Asy by choosing
the branching ratio of h — SS to be 1%. This benchmark value for
the exotic Higgs branching ratio will be difficult to exclude just
with precision measurements of the Higgs couplings at the HL-
LHC [25-27]. We find that up to 10% events could be recorded,
and the trigger could cover between 3 and 4 orders of magnitude

in the mixing angle sy. Hunting directly for exotic Higgs decays
in this manner provides then an experimental avenue that is very
complementary with the Higgs precision program.

The event yield for the ALP model on the other hand is proba-
bly marginal, due to the still rather short lifetime of the ALP. This
likely generalizes to other scenarios for which the LLP is heav-
ier than the B-meson and for which both production and decay
controlled by a single interaction. In this sense, the ALP model is
likely already the most optimal benchmark for this class of mod-
els, because of the dominance of the gluon parton distribution
functions for low partonic center of mass energies. On the other
hand, the ALP model is still a useful proxy for less minimal mod-
els, in which the lifetime and production cross section of the LLP
are not controlled by a single parameter. Indeed, both models are
to be viewed as straw man models for more complete scenarios
which address the naturalness of the electroweak scale, the strong
CP problem, the origin of the Dark Matter or the present baryonic
asymmetry. In Sec. 3 we explain how the phenomenology of these
more complete frameworks can be mapped onto our simple bench-
mark models, hereby establishing the strong theory motivation for
this experimental effort. In Secs. 4 and 5 we discuss respectively
our simulation framework and background calculations, arguing
that a rate well below 10 kHz can likely be achieved with a mini-
mal set of cuts. We close with additional results and an outlook in
Sec. 6.

2. Benchmark models

In this section we provide more details on both benchmark
models, with a special focus on their most natural parameter space
and their various production modes.

2.1. Alight real singlet

The first model is the most minimal extension of the SM, with
only one new, real degree of freedom S, one mass parameter (ms)
and two coupling constants (u,Ays). The lagrangian is given in
Eq. 1 and the resulting mass squared matrix of the Higgs-singlet
system is



Y. Gershtein, S. Knapen and D. Redigolo

2
m v(u + AsHSo) )

M= h - , 3

(v(u—i—ksyso) m2 + Iasuv? + V! (so0) (3)

n

where in the limit of small mixing, My >~ m} = 2iyv? and
Moy >~ m% are the mass eigenstates corresponding to the SM Higgs
and the singlet S. sg is the singlet vacuum expectation value (VEV)
and v =246 GeV is the VEV of the SM Higgs.

Here we are interested in the light singlet regime where ms <
my /2, which means that the mixed quartic coupling will induce
the exotic Higgs decay h — SS with branching ratio

Thoss My
BR[h—)SS]%—_%T, (4)

Chobp 6YpAn
where we expanded for ms <« my. yp ~2 x 1072 and Ay ~ 0.13
are respectively the bottom Yukawa and SM Higgs quartic cou-
plings. The extremely narrow width of the SM Higgs implies that
BR[h — SS] = 0.01, as assumed in Fig. 1, corresponds to a small
quartic

)\.SH%1.7X1073. (5)

The value of this quartic has two important theoretical conse-
quences that we illustrate in turn.

First, the quartic back-reacts on the SM Higgs potential and
sets the cutoff A of a possible, natural UV completion for the la-
grangian in Eq. 1. The most divergent contribution is the infamous
mass correction to the SM Higgs mass

ASH A2
1672
where A is a proxy for any expected mass threshold of the un-
specified UV theory. Setting Smi, ~ m%_, implies A < 38 TeV which
is easily outside the reach of the LHC. In other words, the hierar-
chy problem introduced by coupling S to the Higgs is much less
severe then hierarchy problem corresponding to the SM top quark.
A similar cut-off dependence arises in the analogous correction to
ms, but it can easily be UV completed without directly observable
consequences.

Second, a non-zero Asy induces an irreducible, tree-level con-
tribution to the singlet mass in Eq. 3. This means that fine tuning
in the lower right block of Eq. 3 is needed if JAsyv? > m%. Nu-
merically, we can write mg as

BR[h — SST\ /4 A2
BRI = 551 « (2 ,
0.01 0.1

) (6)

2
(SmH ~

ms ~ 2 GeV x ( (7)
where A = m%/(%ASHvz) is a measure of the degree of fine tun-
ing in My,. In other words, for ms <2 GeV, more than 10% fine
tuning is needed given our benchmark value for Asy. This lower
bound leaves most of the relevant parameter space in Fig. 1 open.
The remaining couplings of S to the SM are induced by the
off-diagonal terms in Eq. 3, which mix the singlet with the SM
Higgs with a small angle 6. The dependence of the mixing angle
on the underlying theory parameters depends on whether the ap-
proximate S <> —S parity is primarily broken by the u parameter
in Eq. 1, or by the dynamics of Vi, (S). We will refer to these two
cases as induced Z, breaking and direct Z, breaking respectively.
Using the common shorthand notation sy = sin6, we can write

mv Asuv? _ v
M =l =551, So=—7+3
Sp = Maz| _ ) 2ms ms (8)
m?2 sy vms 50— _Ms
V2is m2 0= "/2xs

where the first and second line refer respectively to the induced
and direct Z, breaking. The second equation on the second line
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serves as the definition of the effective singlet quartic As. By tak-
ing ; < v, the induced Z, breaking scenario allows for arbitrarily
small values of the mixing angle sy, without fine tuning. This is
simply a manifestation of the fact that w is a technically natural
parameter. In the direct Z, breaking scenario on the other hand,
the singlet quartic As is bounded from above by perturbativity,
which implies a lower bound' on sy

_ ms 4
>] 6 R
S0 210 X(lcev)x<m>’ ©)

as indicated by the diagonal yellow line on Fig. 1.
Assuming no other dark sector decay channels are open, the
mixing angle sy fixes the singlet width as

[s(ms) = s3 x Ty(ms), (10)

with T'y(ms) the width of the SM Higgs evaluated at mass ms.
Especially for ms ~ GeV, the form of I';(ms) is very complicated
and subject to large theory uncertainties. For ms < 1.0 GeV, the
width can be estimated using chiral perturbation theory and dis-
persion methods, as most recently updated by Winkler [29]. For
ms 2 2 GeV, perturbative calculations can be used, though still
subject to sizable uncertainties. In the intermediate regime we
must currently rely on an interpolation. In Fig. 2 we provide a
minor update to the analysis in [29] by including the NLO QCD
correction to the width and the running of quark masses, as cal-
culated in [28]. This has an O(1) effect on the upper boundary
condition of the interpolation region, and thus also has some im-
pact on the regime where interpolation is needed.

Direct singlet production in association with a jet does not lead
to interesting displaced jet signatures: The signal strength is only
large enough for sy > 10~* and in most of this regime the singlet
decays more or less promptly. We therefore find no substantial vi-
able region associated with the pp — Sj process, in sharp contrast
to the ALP case. Concretely, from the left-hand panel of Fig. 2 we
see that the partial width to gluons is subdominant for ms > 4
GeV, which means that for a fixed gluon coupling (i.e. for a fixed
direct production at the LHC) the scalar will decay more promptly
than the ALP. This results in the small but non-zero event yield
shown in the right-hand panel of Fig. 1. We will return to this ar-
gument in Sec. 2.2.

Below the B meson threshold, the light singlet S can be probed
through exotic B decays. One possible channel is B — SX;, gen-
erated through an electroweak penguin [31-33] and with signal
strength controlled by sg. A second channel is B — SSX;, also
generated through an electroweak penguin [34] but with signal
strength controlled by Asy. The branching ratios of the two pro-
cesses are

2
BR(B — SX;) =3 x 10 (=) (11)
—11 ASH 2
BR(B— SSX9) =3 x 1071 ( =55 ) (12)

where we neglected O(1) factors distinguishing between exclu-
sive and inclusive channels [35]. For the values of the quartic
considered here, the dominant channel is B — SX; as long as
sp >3 x 1078, As shown in Fig. 1, the exclusive searches for
Bt — K*putp~ [10] and B® — K*utpu~ [36] at LHCb already
exclude the region where sy > 1073 and further improvements are

! Two upper bounds on sy can also be derived from (i) insisting that M in Eq. 3
is a positive definite matrix and (ii) from the naturalness of radiative correction to
As, induced by Asy. While neither is relevant for the parameter space considered
here, they are important for very low mass scalars [30].
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Fig. 2. Left: Estimated branching ratios for the scalar benchmark, derived from perturbative calculations in [28] and dispersive calculations in [29]. Right: Lifetime for the

scalar benchmark, in comparison with the result in [29].

expected from the full LHCb dataset and from Belle2 [13,37]. The
implementation of a displaced dimuon vertex trigger at CMS would
moreover allow to probe the region further down to sg ~ 10~4
[6,8]. Probing lower mixing angles would require dedicated exper-
iments such as FASER 2 [14], MATHUSLA [15], CODEX-b [38] or
SHiP [39]. (The latter, not shown on Fig. 1 is similar to the reach
of MATHUSLA, but restricted to ms < mp — mg.)

There also are a number of searches which can probe this
model above the B meson threshold, for our specific choice Asy.
(We refer to [40] for a more complete study of the full parame-
ter space.) Concretely, there are two searches for displaced objects
which do already have (limited) sensitivity: ATLAS performed a
powerful search for anomalous activity in the muon chambers, us-
ing a dedicated trigger (“mu-ROI” in Fig. 1) [11]. In addition, the
CMS search relying on an Ht cut plus two displaced vertices in
the tracker (“Hp+2DV”) [12] has some sensitivity for the higher
end of the ms range. For phase II, it has been argued that the tim-
ing detector and high granularity calorimeters will add substantial
additional sensitivity [41,42]. A dedicated displaced vertex trigger
would be complementary to all these strategies, as it can probe
shorter lifetimes than the muon chambers and would have higher
signal yield than triggers relying on MET, Hr or a VBF tag.

Aside from the aforementioned displaced searches, one may
wonder whether various prompt searches already have sensitivity
in the high sy region. In this regime, low mass dimuon resonances
[43] can be sensitive to single S production through gluon fusion.
Similarly, there exist a number of relevant searches for prompt ex-
otic higgs decays, most notably in the h — bbuu channel [44]. In
all such cases one however must either pay the branching ratio of
S — uu (see Fig. 2) at least once in the signal rate or content with
very large hadronic backgrounds. As a result, we find that these
searches are not yet constraining the parameter space in Fig. 1.

Before concluding this section it is important to note that the
formulas derived in this section assume that the singlet couplings
to the SM are exactly those of a lighter SM Higgs boson univer-
sally rescaled by the mixing angle sy. Large deviations from this
assumption occur in models where the coupling of the singlet to
the SM is driven purely by higher dimensional operators. A promi-
nent example would be the one of a light dilaton [45,46] where
the coupling to fermions can be suppressed compared to the one
into gluons by carefully engineering how the SM yukawas are gen-
erated by the conformal sector dynamics [47,48].

2.2. Alight ALP

The second benchmark model, in Eq. 2, describes the SM inter-
actions of a pseudo-Nambu-Goldstone boson (pNGB) of a sponta-

neously broken Peccei-Quinn (PQ) symmetry which has a non-zero
mixed anomaly with the QCD gauge group [49,50]. The sponta-
neous breaking of such a symmetry is a necessary requirement in
axion solutions of the SM strong CP problem, and predicts an ALP
with anomalous coupling to gluons. The anomalous ALP coupling
to photons is controlled by the mixed anomaly with the U(1)em
and will also be generically non-zero. As a consequence of the ap-
proximate shift symmetry acting on the ALP, the hierarchy my; < fg
is technically natural. We briefly discuss two different UV comple-
tions of the ALP lagrangian in Eq. 2, which differ by the type of
states we expect to be present in the UV.

In the class of UV completions put forward by Kim, Shifman,
Vainshtein and Zakharov (KSVZ) [51,52], the ALP is embedded in a
complex scalar singlet ® which couples to heavy, colored fermions.
The latter are charged under the PQ symmetry such that the model
is defined by

- Voo
Lxsvz D g+PY Yy, o= 2T giave

7 ;
where in this setup the singlet VEV (v,) is related to the ax-
ion decay constant, defined in Eq. 2, by v = 2Nf,. The anomaly
coefficients N and E can be related to the multiplicity and the
representation of the fermions: N = quzw C3(Ry) and E =
qrq va Qz(Rw), where C3 is the color index of the fermion rep-
resentation Tr(R‘f/,Ri’,,) = C3(R1/,)8“b and Q (Ry) its electromagnetic
charge. We can set the PQ charge gpg = 1 without loss of gener-
ality. As a well-motivated example, we take Ny flavors of heavy
fermions in the 5 + 5 representation of the SU(5) GUT group,
which implies N = Ny /2 and E = 4/3Ny. The coupling g, sets
the mass of the fermions my = ﬁNg*fa.

At fixed fy, a larger multiplicity Ny or a strong coupling g,
will make the colored fermions heavier, leaving the light ALP as
the main phenomenological target of this setup. In the right-hand
panel of Fig. 1 we indicate where the colored fermions would lie
below 2 TeV for g, fixed at its unitary bound g, =4m/,/Ny, as-
suming Ny = 1. As we see, ALP searches into diphotons will be
able to probe a portion of the parameter space where the colored
fermions are out of reach of the LHC.

In models following the Dine-Fischler-Srednicki-Zhitnitsky (DFSZ)
setup [53,54] the SM Higgs sector is extended to a two Higgs dou-
blet model (Hy, Hq), plus a complex scalar singlet (®). The singlet
couples to the two electroweak Higgs doublets through

(13)

Lprsz D AHyHg®? (14)

fixing again the PQ charge of the singlet to be gpg = 1 the
PQ charges of the two Higgses are fixed in this model: qy, =
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Fig. 3. Production cross section for an ALP in association with a jet, computed with
Madgraph@NLO [56,57] for different fiducial cuts. The axion decay constant is fixed
here to f; = 10% GeV which is the typical size of the decay constant required for
the ALP to decay displaced (see Eq. 17).

—2cos? B, qH,; = —2sin? B, where tang = Vy/vq with v, 4 the
VEVs of Hy 4. The DFSZ ALP couples to the SM fermions through
their couplings to the Higgs doublets. Here we take a type Il two
Higgs doublet as an example. The SM fermions that are heavier
than the ALP can be integrated out and contribute to the gluon
and the photon anomaly, while the couplings to the light quarks
and leptons are a new phenomenological feature of this setup.
For my < mg < m; we have N = cos 82 and E = 8/3cos 2 from
the top contribution. The axion decay constant f, is directly re-
lated to the mass of a heavy, CP-even Higgs bosons in this setup
through my ~ 24/A, fo. The LHC bounds on these extra Higgs dou-
blets are mild relative to the bounds on new, colored fermions,
which means that the DFSZ ALPs can generally have a lower decay
constant than KSVZ ALPs. In Fig. 1 we indicate the regime where
the CP Higgs bosons would roughly lay below 500 GeV, again sat-
urating the unitarity bound A, = 1672,

The ALP width into two gluons and two photons is given by
o

2 3
em Mg

Y 7 N2 25673 f2°

3 2
m, E° «

2, (15)
where Kgg is the k-factor accounting for NNLO corrections to the
gluon width [55]

s o\ 2 3 B1

Keg =1+ S —|—(—>E CEa+ ), 16

o8 2t () EalgEat g, (16)
where Eq = 97/4 — 7N;/6, Bo = 11/4— N;/6 and 1 =51/8 —
19N /24 and «s is evaluated at mg. Ny is the number of quarks
with mass below m,. Numerically, the k-factor ranges from 3.5 at
mg =5 GeV to 2.5 for my =20 GeV. From Eq. 15 we see explicitly
that the gluon width dominates the total width as long as E/N <
Kgg8(ats /ctem)? = 10%. The axion lifetime therefore scales as

2 3
10 GeV
€Ty~ 0.2 cm Ja ¢ , (17)
106 GeV Ma

where in this simplified formula we neglected the k-factor depen-
dence on the ALP mass. We see that for a decay constant as large
as 10 GeV the ALP can produce a displaced vertex.

The signal events for the ALP model where generated at lead-
ing order with Madgraph [56] and decayed with Pythia 8 [58].
We normalized this sample to fixed order? NLO cross section for

2 We verified that matching up to two jets does not lead to relevant differences
in efficiency and worked for simplicity with the fixed order cross section.
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pp — a + j, as computed with Madgraph@NLO [56,57]. This is
shown in Fig. 3, where for reference we also show the cross sec-
tions for the fiducial cuts used in [7]. The corresponding k-factor
for this process is ~~ 2 in the full mass range under consideration.’
Fig. 3 and Eq. 17 make it clear that at most O(100) long-lived
ALPs could be produced at the HL-LHC, which explains the limited
signal yield in Fig. 1.

We now comment on exotic Higgs decays into a pair of ALPs.
These are induced by the dimension six operator

CaH

(p0)?
Lh-ap = —5 HTH—o—

v "

which respects the ALP shift-symmetry. The branching ratio is

r 2c2. vA
BR[h — aa] ~ "% = —all = 2
Chpp 3N* fg Vi

which implies that BR[h — aa] >~ 0.01 can be obtained for f; ~
1 TeV and cgy >~ O(1). For values of the ALP decay constant which
leads to displaced jet signatures (see Eq. 17), the signal rate from
Higgs decays is very suppressed unless the decay constant con-
trolling the gluon width is taken to be very different from the
one controlling the operator in Eq. 18. Achieving c.y > N2 is in
principle possible since this hierarchy is protected by a symme-
try, however it is fair to say that vanilla ALP scenarios would not
lead to Higgs decay to long-lived ALPs. It is worth noting that this
is very different from the singlet case, because the ALP couples to
the SM mainly derivatively and its mixing with the Higgs is there-
fore parametrically suppressed by mg / faz. In practical terms, this
means that a substantial model building effort is needed to en-
hance cai/N? in Eq. 18. In the singlet case on the other hand, we
have shown in the previous section that a large hierarchy between
Asy and s is completely natural.

Finally, the ALP could also be produced in B decays, in partic-
ular in DFSZ style models, see e.g. [59,60]. (In KSVZ style models
this process takes place either at two loops [61] or through the
ALP-WW coupling [62], and the reach is somewhat less promis-
ing.) Due to the B meson’s large cross section and exceptionally
small width, it is possible to produce a sizable sample of long-lived
ALPs at the LHC through an exotic B meson decay. A displaced,
hadronic vertex trigger would have the advantage that one does
not need to pay the branching ratio of the ALP to muons, which
tends to be very small in most models. We leave this case for a
future study.

(19)

3. Theory motivation

In this section we review the theory motivation for the sim-
plified benchmark models in the previous section, and low mass,
displaced vertices in general. Some of the models we review make
a concrete prediction in the parameter space shown in Fig. 1.

3.1. Hierarchy problem

Neutral naturalness models The non-observation of colored top
partners at the LHC has revived the interest in a class of mod-
els where the top partners are charged under a dark SU(3), rather
than under the SM color group. The great ancestors of these mod-
els are the Twin Higgs [63,64], folded supersymmetry [65] and the
quirky little higgs [66], which can all be seen as examples of a
broader class of “neutral naturalness” models [67-70]. All these

3 Notice that our k-factor differs from the one of Ref. [7], which was taken from
the NLO corrections to o (pp — a). The latter process has a very small efficiency
and it is less well suited to assign a reliable k-factor.
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models relax the fine-tuning of the electroweak scale by introduc-
ing an extended Higgs sector together with non-trivial dynamics
in a hidden sector. As a consequence, an experimental smoking
gun of these scenarios are exotic higgs decays into a dark parton
shower, followed by a dark hadronization process. The resulting
spray of dark sector hadrons can decay to the standard model
through displaced vertices. In this sense, neutral naturalness mod-
els are themselves examples of a broader class of a hidden valley
models [71,72]. (See [73] for a recent review of dark shower phe-
nomenology.)

The phenomenology of the fraternal Twin Higgs model [69] in
particular was studied in great detail [69,74] and can be summa-
rized as follows: The SM Higgs decays to dark sector bottom quarks
(b’) with branching ratio Br[h — b’b’] ~ v2/ f%, where f is the VEV
of the twin Higgs.* The b’ subsequently shower and hadronize, and
eventually produce a number of dark glueballs. The lightest glue-
ball is known to be a CP-even scalar [76] and can be identified
with S in the simplified model in Sec. 2.1. Because most h — b’b’
decays are expected to produce one or more 0T+ glueballs, we
roughly identify Br[h — b’b’] ~ Br[h — SS]. With this identifica-
tion, the slice of the parameter space plotted in Fig. 1 corresponds
to v/f =1/10, which is considered to be rather fine tuned region
of the Twin Higgs construction already. In other words, the event
rate in the natural parameter space of the fraternal Twin Higgs is
likely higher than the rate we assumed in Fig. 1.

The glueball lifetime is controlled by its mixing with the SM
Higgs, which is given by [69]

3.06m3v

>~ 20
2472 f2m? (20)

N

so that at fixed f, the mixing is predicted in terms of the mass
of the glueball (mg). This relation is shown by the yellow line in
Fig. 1. Along the dotted line, mg is too low to be accommodated in
the fraternal twin Higgs without substantial fine-tuning. It can be
realized however by adding more matter to the dark sector, as in
the vector-like twin Higgs [70].

Crucially, the presence of a dark shower decouples the gluebal-
I's production and decay rates, such that its lifetime can be para-
metrically enhanced without suppressing its production rate. Our
identification of this rather complicated scenario with the simple
benchmark model in Sec. Eq. 2.1 necessarily neglects O(1) the-
ory uncertainties in the event yield. However these uncertainties
do not affect the qualitative result that a displaced vertex trigger
would be a major asset in the search for neutral naturalness mod-
els.

Composite Higgs models In composite Higgs models, the Higgs bo-
son is a pseudo Nambu-Goldstone boson (pNGB) of a global sym-
metry, which is broken spontaneously by a strong sector in the UV.
Depending on the size of the symmetry group in the model, addi-
tional light pNGB’s may be present, which one can identify with
the ALP benchmark. The ALP decay constant f; is of the same or-
der as the compositeness scale of the model, which must be ~ few
TeV to preserve naturalness. As we have seen in Sec. 2, for f; ~ 1
TeV, the ALP is copiously produced at the LHC, though it typically
decays promptly. Searches for prompt ALPs decaying to yy or 7t
therefore tend to be the most promising, be it in direct produc-
tion [20,21,77] or in the exotic h — aa decay [78].

On the other hand, arguments have been presented in favor of
pushing the compositeness scale to 2> 10 TeV, which reduces ten-
sion with electroweak precision bounds, at the cost of moderate

4 The Twin Higgs itself could also be within the reach of the LHC, depending the
value of the twin quartic [75].
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amount of fine tuning [79]. In this case, any additional pNGBs aside
the Higgs could have macroscopic lifetimes [80].

Supersymmetry A generic pNGB arising in low energy SUSY-
breaking is the R-axion related to the spontaneous breaking of
the U(1) R-symmetry [81,82]. The R-symmetry is universally as-
sociated to the N =1 SUSY algebra as the only abelian symmetry
that does not commute with the supercharges and has to be bro-
ken to realize a phenomenologically viable SUSY spectrum with
(large) Majorana gaugino masses. The R-axion can behave like a
DESZ ALP or a KSVZ ALP, depending on the R-charge assignment
of the MSSM fields [82]. Moreover, the values of the R-axion de-
cay constant can be related to the mass of the messengers, which
can easily be of the order of 10° TeV in vanilla gauge mediation
scenarios [83,84].

Some SUSY scenarios also predict exotic Z® decays. One of the
most straightforward ones arises in R-parity violating (RPV) super-
symmetry with a light, bino-like lightest supersymmetric particle
(LSP). If the colored superpartners are inaccessible at the LHC, the
bounds on such a )210 can be very mild, and even myo ~1 GeV

is still allowed. However, to prevent such a light X10 from over-
closing the universe, R-parity must be violated, rendering )Z? un-
stable [85]. The decay of )Z]O will go through a heavy, off-shell
sfermion, and therefore often occurs displaced, even for relatively
large RPV couplings. In addition, the current LHC bounds permit a
higgsino as light as ~ 150 GeV [86], as long as the wino is kine-
matically inaccessible. In this scenario, the mixing of the )210 with
the higgsino can be large enough to induce an observable branch-
ing ratio for 20 — x9x? [87,88]. Given that the final states could
be fully hadronic and that the partonic center-of-mass energy is
merely ~ myo, this scenario will benefit greatly from a dedicated
displaced vertex trigger.

Cosmological solutions We first discuss the relaxion mechanism,
which is the prototypical cosmological solution to the hierarchy
problem [89]. In this setup, the VEV of the SM Higgs is driven
towards a small value by cosmological evolution of a light scalar
field, the relaxion. Relaxion models behaves parametrically as the
singlet models with induced Zj-symmetry breaking discussed in
Sec. 2. Moreover, a single scale u, controls both the quartic cou-
pling with the Higgs and the relaxion mass, such that mé ~ AsHV?

with Asy = ;le)/fz where f is the relaxion decay constant. For the
value of Asy chosen in Fig. 1, the relaxion mass will be roughly
around ~ 10 GeV. Moreover, requiring the relaxion to address the
(little) hierarchy problem one obtains

2
m m 2
sin@:—?—ZZ.leO’l( ¢ )( ! ) (21)

m2 v 10Gev/) \10Tev

where f needs to be larger than the UV cutoff of the Higgs sector,
which we took to be 10 TeV in this expression. The above equation
shows that a successful relaxion mechanism is a fortiori associated
to a promptly decaying relaxion for my 2 1 GeV. This feature is
even more pronounced if one accounts for the suppression of the
relaxion mass compare to its mixing with the Higgs [30]. On the
other hand, for my <1 GeV CMS may have some sensitivity in the
displaced dimuon channel, by leveraging the production through
exotic B-meson decay.

A different cosmological solution of the hierarchy problem has
recently been proposed in Ref. [90]. Here, the idea is that the Higgs
mixes with a dilaton of a conformal field theory (CFT) which has a
large, negative vacuum energy. The flat dilaton potential, gets mod-
ified by the Higgs dynamics if the Higgs VEV is small enough and
develops a new vacuum where the cosmological evolution is stan-
dard. Hubble patches with a large Higgs VEV on the other hand
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will crunch immediately under the influence of the CFT's large
negative vacuum expectation value, and thus provide a form of an-
thropic selection. The existence of our Universe today can then be
related to the smallness of the Higgs VEV. The light dilaton in [90]
can be accessible at colliders, and its preferred mass range lies ex-
actly where a displaced vertex trigger could probe interesting new
parameter space.

3.2. Strong CP problem

Here we comment on the possibility that the ALP phenomenol-
ogy described in Sec. 2 could arise in QCD axion models addressing
the strong CP problem. While they are elegant and predictive solu-
tions to the strong CP problem, axion models generally suffer from
what is known as the axion quality problem. The quality problem
states that any sources of explicit breaking of the PQ symmetry
must be extremely small compared to the contribution from the
QCD sector. In particular, quantum gravity is expected to break the
PQ symmetry at the Planck scale (Mp;) with an order one coeffi-
cient. A successful solution of the strong CP problem thus implies
an upper bound on the axion decay constant

_1
fos (107 m2my=) 7 (22)

with A the dimension of the leading operator which breaks the PQ
symmetry. Using the relation my >~ Aécn / fq this implies

4
A A
fa<107% (#) Mp < 10° GeV, (23)
Pl

where in the last inequality we assumed A = 6, in analogy to
baryon number violation in the SM. This regime however suffers
from the rather unfortunate problem that it is already experimen-
tally excluded by rare meson decays [91] and the non-observation
of anomalous stellar cooling [92-94]. This leaves us with two pos-
sible avenues to salvage the axion solution to the strong CP prob-
lem: The most common approach is build more elaborate models
in the UV which forbid or suppress all dangerous operators (see
e.g. [95-98]), effectively raising A. This is the idea underlying all
searches for the low mass QCD axions, e.g. using high quality res-
onance cavities.

The second option is to attempt to raise m,; by breaking the
my =~ AéCD/fa relation. This can be accomplished by adding a
heavy dark sector which also contributes to the axion mass. This
is still a non-trivial model building exercise, as the phase of the
new contribution to the axion potential must be perfectly aligned
with that of the QCD contribution. Perhaps the simplest possibil-
ity is to introduce a mirror QCD sector [99-103]. The possibility of
probing this particular heavy axion model at the LHC was recently
studied in Ref. [7]. Alternative models modifies the running of the
QCD coupling constant at high energies [104-109] or embed the
color group in a larger product group [110]. Once accomplished
however, the strong CP problem can be solved with m, 2> GeV and
an f, which could be within reach of the LHC. The green curves
in Fig. 1 indicate the upper bounds on f, from Eq. 22, assuming
dimension A =5 and A =6.

3.3. Dark matter

The diversity of the SM forces can be taken as a motivation
to go beyond the standard WIMP paradigm by introducing new
forces that could control the Dark Matter freeze-out process. Both
the ALP and singlet benchmark model are frequently used as new
force mediators in this context, see e.g. [18,21,111-114]. If the me-
diator can decay to the Dark Matter, the signal at the LHC will
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typically be MET, associated with jets, leptons, photons or elec-
troweak gauge bosons, depending on the model. In this case, a
robust prediction of the signal rate is possible. If the mediator is
lighter than the Dark Matter, it does typically decay back to the
SM but there is no longer a direct connection between the media-
tor’s coupling to SM and the Dark Matter relic density. This is the
scenario towards which a displaced vertex trigger can contribute.

As long as the mediator is in thermal contact with the SM dur-
ing the Dark Matter freeze-out epoch, it has the potential to play a
role in setting the Dark Matter relic density. For the singlet bench-
mark, the most important process is SS <> f f scattering through
an off-shell Higgs boson, with f the SM fermions. Concretely, we
find that S always maintains thermal equilibrium with the SM as
long as there is a fermion species f for which

4
47'[mh

me 2 and  my >my, (24)

A2 Hm}Mpl
with Mp the Planck mass. This is easily satisfied everywhere in
the parameter space in Fig. 1, regardless of the value of sy. The
ALP model is able to maintain thermal equilibrium with the SM
down to T ~mq as long as

s

T

faNTVmaMPI, (25)

which is also satisfied everywhere in Fig. 1.

An exhaustive review of all relevant models that can explain the
Dark Matter abundance is well beyond our scope, and we instead
conclude this general discussion by mentioning a few selected ex-
amples. An elegant and minimal example was provided by Evans
et al. [18], where they extend the scalar benchmark in Eq. 1 with
a Majorana Dark Matter particle () which couples to the singlet
S as

1
Lsx D 5YxSXX (26)

and obtains its mass from the vacuum expectation value of S. Their
model has 4 independent parameters, my, ms, yy and sp, as they
set ;£ =0 in Eq. 1. This corresponds to the direct Z, breaking sce-
nario in Sec. 2.1. Here we will slightly generalize their setup by
allowing for u # 0, and thus gain Asy as a 5% independent pa-
rameter. One can fix y, by requiring that the x x — SS process
reproduces the correct Dark Matter relic abundance, using the cal-
culations in [18]. In Fig. 1 we have also fixed m, /mgs =3. Asy was
fixed by our choice of BR[h — SS], as explained in Sec. 2.1. The
lower and upper orange curves saturate respectively the XENON1T
limit [17] and the neutrino floor. The orange shaded region in
Fig. 1 is therefore ruled out for this model with these particular
choice for mg/m,. Interestingly, this also implies the region that
will be probed by the next generation of large Dark Matter de-
tectors coincides with the region that could be accessible to CMS.
While the model does not predict that the Dark Matter must live
in this specific region of parameter space, the prospect of a possi-
ble double discovery is nevertheless exciting.

In a similar spirit, the ALP model can be easily extended to a
minimal model of Dark Matter freeze-out. For instance, we may
add a Dirac Dark Matter candidate, charged under the U(1)pq in
the KSVZ model of Eq. 13 [21]. The interaction is then

Loy DYy ®xx + he (27)

where the mass of the Dark Matter is my = +/2y,Nf, with N
the anomaly coefficient’ as defined in Sec. 2.2. The dominant

5 The appearance of N in this equation is an artefact of the normalization we
chose for f, in Eq. 2.
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Dark Matter annihilation processes are yx x — aa and x x — gg.
Whichever dominates, depends on the value of N. For N =1/2,
corresponding to one heavy flavor, and fixing y, < 4w, we indi-
cate in Fig. 1 the range of f; where the correct Dark Matter relic
abundance can be obtained.

Both benchmarks can also play a role in more exotic freeze-
out mechanisms: For example, D’Angolo et al. have shown that
sub-GeV thermal Dark Matter candidates can exist through the
coannihilation [113] or coscattering [114] of a compressed mul-
tiplet of dark sector particles, for which they used the singlet
benchmark model as a mediator. These mechanisms are also well
known in the context of for higher mass Dark Matter candidates,
and their displaced signatures at the LHC were studied in detail
in [115-117]. Given the compression of the spectrum, a displaced
vertex trigger may well contribute substantially for Dark Matter
candidates well above 100 GeV, something we leave for a future
study.

3.4. Baryogenesis

The presence of out-of-equilibrium dynamics in the early uni-
verse is necessary condition for generating the observed baryon
asymmetry. It is therefore natural to consider a relatively small
coupling in a hidden sector, which can be responsible for a par-
ticle species decaying out-of-equilibrium before the onset of Big
Bang Nucleosynthesis (BBN). While a baryogenesis mechanisms at
very high energy scales can be fairly easily constructed, there are a
number of schemes which are explicitly tied to energy scales that
are accessible to the LHC. In those models, displaced vertices are a
generic expectation.

For example, in WIMP baryogenesis [118,119] an electroweak
state freezes out in the early universe, much like a classic WIMP.
Unlike the standard WIMP however, it is allowed to decay to a SM
state carrying baryon number and another stable particle, which
will be the Dark Matter. If this decay occurs sufficiently slowly, the
baryon asymmetry can be generated. As it turns out, the neces-
sary lifetimes correspond to displaced decays at the LHC. So far
the main focus has been on high mass scenarios, partially inspired
by supersymmetry, for which the MET and/or Hrt triggers are ad-
equate. A displaced vertex trigger could however open a comple-
mentary, low mass parameter space.

In a more recent example, the baryon asymmetry is gen-
erated through the CP-violating oscillations of heavy flavor SM
baryons [120,121] or mesons [122,123]. (See [124] for a super-
symmetric implementation.) Concretely, the first ingredient is a
massive, non-relativistic particle, which decays out-of-equilibrium
to the SM b quarks at a low temperature. The b quarks subse-
quently hadronize to heavy flavor mesons and hadrons, which start
to oscillate due to the CP violating phase in the SM CKM matrix.
Finally, a new, exotic decay mode of the B-mesons into SM baryons
and a dark sector then generates the asymmetry. The dark sector
states can be stable, or decay back to the SM, depending on the
specific model. In the latter case, its decay must however occur
through an operator with rather high dimension, which predicts
a macroscopic lifetime. This scenario is likely difficult to detect,
since the unstable hidden sector state must be lighter than mp. On
the other hand, the experimental constraints on such a decay are
currently very limited and given the huge bb cross section, a very
large number of events could be collected by a displaced vertex
trigger, even if the trigger efficiency itself is relatively small.

4. Simulation framework
For this study we rely on a toy simulation of the CMS L1 track

trigger, as developed and described in [3,6], with minor modifica-
tions, which we describe below.
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Fig. 4. The track reconstruction efficiency of our toy detector simulation as a func-
tion of the transverse impact parameter of the track (|dp|), compared with the
efficiency found by the CMS collaboration [4]. Tracks were generated with a par-
ticle gun, uniform in |n| < 1, and were required to have 5 reconstructed stubs. The
error bars on the CMS result represent the bin size in which the efficiency was re-
ported.

4.1. Track reconstruction

Our toy tracking detector consists out of 6 cylindrical layers
located at the radii of the CMS phase II outer tracker [125], for
In| < 2.4. A track is propagated in the 3.8 T magnetic field, starting
from the location of the decay vertex from which the track origi-
nated. In a realistic experimental setup, a charged particle would
undergo multiple scattering in the detector material, slightly de-
flecting its trajectory and hereby degrading the vertex resolution.
To model this, we deflect each track when passing through a layer
with an angle drawn from a gaussian distribution centered around
zero with width 4 -10~%/pr [126,127]. For this purpose, also the
4 layers of the inner tracker have been included, though they are
otherwise “dark” from the point of view of the L1 track trigger. See
[6] for a quantitive estimate of the impact of multiple scattering on
the vertex reconstruction in our toy simulation.

Once the track has been propagated, the intersections with all 6
layers of the outer tracker are found, and for each intersection the
azimuthal offset is computed. Only “stubs” for which the offset is
consistent with a prompt, pr > 2 GeV track are kept. We demand
that at least 5 stubs per track pass this selection. All such surviv-
ing stubs are subsequently smeared with the expected resolution
for the layer in question [126]. Finally, the hits are fit to a 5 pa-
rameter helix, allowing the track to originate away from the beam
line. The reconstruction efficiency is most impacted by the pr of
the track, its transverse impact parameter (dp) and the number of
stubs required in the track.

In Fig. 4 we used a particle gun to compare the track re-
construction efficiency obtained with our toy simulation with the
efficiency reported by the CMS collaboration [4]. The agreement
is excellent for low impact parameters, though the toy simula-
tion is somewhat underperforming for high impact parameters.
The signal trigger efficiencies we report in Sec. 6 are in this sense
conservative estimates. Moreover, the background which is most
sensitive to the tracking efficiency is the B meson background
(Sec. 5.2). This background is however restricted to very low dp,
for which the toy simulation is performing well, as we will see in
Fig. 6.
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4.2. Vertex reconstruction

We employ a very simplified vertexing algorithm, deliberately
avoiding any y2-minimizations and/or numerical solutions for in-
tersecting trajectories, as these operations are likely computation-
ally prohibitive at the L1 track trigger. After the tracks have been
reconstructed, our simplified vertex algorithm proceeds as follows:

i) The two hardest tracks of the candidate vertex are selected to
seed the algorithm.

ii) For these two tracks, their intersections in the transverse
plane are found, if they exist. If the tracks do not intersect
in the transverse plane, the transverse location of the candi-
date vertex is chosen to be the point on the line connecting
the centers of the circles for which the distance to each circle
is equal. The distance of a track to the candidate vertex in the
transverse plane is recorded in the variable Ay, which is set
to 0 if intersections are found.

iii) For each candidate vertex in the transverse plane, the distance
along the z-direction between both tracks is computed. If two
intersections were found in step (ii), the one with the smallest
distance in the z-direction is chosen, with the z-coordinate of
the candidate vertex being the midpoint between both tracks.
The distance in the z-direction between a tracks and the ver-
tex candidate is recorded in the variable A,.°
Having defined the location of the candidate vertex by inter-
secting the two hardest tracks, we compute subsequently Ayy
and A; for the remaining tracks, without updating the vertex
location. Only tracks satisfying Ayy < 0.1 cm and A; < 0.5 cm
are assigned to the vertex. We further demand that all tracks
satisfy |dp| > 0.1 cm, to remove tracks originating from the
beam line.

v) Only vertices with 4 or more tracks are being kept.

iv

—

Better performance can likely be obtained by numerically find-
ing the most optimal vertex location using the information of all
tracks associated with the vertex candidate, rather than just the
two hardest tracks. While speed is of course not an issue for our
simple toy simulation, it would however likely be the most im-
portant bottleneck in a real life experimental implementation. We
therefore deliberately refrain from using numerical optimization
routines, and for all steps laid out above, closed form analytic ex-
pressions exist as a function of the track parameters, substantially
speeding up the algorithm.

With this toy vertexing algorithm we have however left one im-
portant question unanswered: How can one efficiently identify the
set of tracks corresponding to a candidate vertex? This is important
given that a sizable number of fake, displaced tracks is expected in
each event, and the rapid combinatorical growth of the possible
combinations could be a major obstruction to implementing even
a primitive vertex algorithm on the trigger. A possible approach
could be to select the hardest displaced track(s) in the event and
define a corresponding region of interest in ¢ and n around the
hardest track, excluding all other tracks in the event. In the nec-
essary detail, this question is highly non-trivial, and can only be
addressed adequately through a more detailed study within the
CMS collaboration. It is not a priori obvious that a workable solu-
tion exists, subject to the latency constraints of the L1 track trigger.
The purpose of our toy simulation is therefore to provide the moti-
vation needed to justify allocating CMS resources to perform such
a study.

6 Note that in [6], the definitions of Ayxy and A differ with a factor of 2 from
the ones we use here, as both variables defined as the distances between the two
tracks defining the vertex, rather than the distance of the track to the vertex.
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5. Background rate

We consider three backgrounds which we expect to drive most
of the rate for a displaced vertex trigger:

e Secondary vertices from long-lived SM hadrons interacting
with the detector material,

e true displaced vertices from SM hadron decays and

o fake vertices from randomly crossing fake tracks.

Each background requires dedicated modeling, as we describe be-
low. Given the total L1 bandwidth of ~750 kHz after the phase II
upgrade, we consider rates <1 kHz as “acceptable” in this work.

5.1. Material interactions

In the current configuration of CMS, about 5% of all pions with
pr 25 GeV were found to create a secondary vertex in the tracker
[128]. Extrapolating to HL-LHC conditions, this corresponds to a
daunting rate of roughly 30 MHz. The selection criteria for the
tracks in this measurement were however less stringent than those
which will be imposed by the pr-modules in the L1 track trigger:
In [128] a vertex was required to have two (off-line) reconstructed
tracks with pr > 0.5 GeV each, while our selections demand at
least four tracks with pr > 2 GeV each. A reliable extrapolation
from this data is therefore not feasible, and we must perform a
simplified GEANT4 [129] simulation instead.

Concretely, we set up a particle gun where we fired 7+ par-
ticles at a slab of silicon with thickness of 1 cm, using the stan-
dard FTFP BERT physics list, based on the Fritiof [130-133] and
Bertini intra-nuclear cascade [134-136] models. The particle gun
was then used to compute the probability for the resulting sec-
ondary vertex to have at least four hard tracks, as a function of
the incident pion energy. For a given pseudo-rapidity (»), this can
then be converted in a pr-dependent efficiency by rotating the
system and rescaling the GEANT4 output to account for the true,
n-dependent material budget of the detector [126]. The resulting
efficiency curve is shown in the left-hand panel of Fig. 5 for two
values of n and three pr cuts on the outgoing tracks. For the
loosest pr requirement, the efficiency sharply turns on around 15
GeV, and plateaus around 30 GeV, where the differences between
the n-ranges can be attributed to the differences in material bud-
get. The plateau at high pr arises because the relevant process is
deep inelastic scattering on the nuclei. The cross section is there-
fore essentially geometric in this regime and thus independent of
the momentum of the incoming pion.

To estimate the total trigger rate, we simulate the rate for stable
SM hadrons with Pythia 8 [58,137], in the form of a weighted dijet
sample with a minimal pr > 5 GeV cut. The resulting spectrum
was conservatively normalized to a cross section of 68 mbn, the
total inelastic cross section at /s =13 TeV [138]. The combined
rate for all stable or long-lived SM hadrons is shown by the dashed
histogram in the right-hand panel of Fig. 5.

To estimate rate at which SM hadrons produce secondary ver-
tices which pass our selection cuts, we fold the efficiency obtained
by the GEANT4 particle gun against the hadron spectrum. The re-
sulting rates are shown in the solid histograms in the right-hand
panel of Fig. 5. For a minimal pr cut of 2 GeV per track, the in-
tegrated rate for this background is roughly 25 kHz. While this is
likely somewhat higher than what one may be able to accommo-
date comfortably, we stress that this estimate is very conservative
and should be understood as an estimated upper bound on the
rate. In particular, (i) for this background, no track reconstruction
efficiencies were accounted for, as this require the full CMS de-
tector simulation. Instead, we assumed that every track above the
threshold was reconstructed with 100% efficiency, regardless of its
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Fig. 5. Left: Efficiency for a hadron to create a secondary vertex with at least 4 tracks subject to the listed pr cuts, as estimated with a GEANT4 particle gun. The dashed
and solid lines represent different example values for the pseudo-rapidity of the incoming hadron, to illustrate the effect of the n-dependence of the material budget of
the detector. (See text for details.) Right: Inclusive rate for long-lived SM hadrons with |n| < 2.4 (black dashed) and estimated rate for secondary vertices from a hadron
interacting with detector material (solid) for different pr cuts on the outgoing tracks. The integrated rates for pr > 2 GeV, 3 GeV and 4 GeV are respectively 25 kHz, 5 kHz

and 1 kHz.

impact parameters. We moreover assume that the vertex quality re-
quirements in Sec. 4.2 are always satisfied for these background
events. (i) No material veto’ was attempted and (iii) from Fig. 5
one can see that the rate is primarily driven by hadrons with
pr 2 15 GeV. Such hard hadrons will typically not be isolated, pro-
viding an additional handle to reduce this background if needed.
Finally, the rate drops substantially when the threshold per track
is raised slightly, to 5 kHz (1 kHz) for pr >3 GeV (pr > 4 GeV).
We therefore present our subsequent results for those 3 different
threshold choices.

5.2. SM meson decays

First, we simulate an inclusive sample of Ks and K; samples
with Pythia 8 by generating a pr-weighted dijet sample, where
we subject the kaons to the fiducial cuts of pr > 8 GeV and || <
2.4. Conservatively normalizing this sample to the total measured
inelastic cross section of 68 mbn [138], this yields a rate of roughly
21 MHz for each species, which corresponds roughly one Kaon per
event. The dominant decay modes which feature 4 charged final
states are Ks — wtmw~eTe~ with branching ratio 4.79 x 10~ and
K, — m*eFvete~ with branching ratio 1.26 x 10~> [139]. Both
modes therefore yield rates < kHz, even before other fiducial and
reconstruction efficiencies are factored in. We therefore focus on
B-meson decays as the most dangerous hadron background.

We use Pythia 8 to simulate an inclusive sample of B-mesons,
which are subsequently processed through the toy detector simula-
tion described in Sec. 4. The sample is normalized to the inclusive
bb cross section, as calculated with FONLL [140-143]. Demanding
at least 4 tracks forming a vertex, the resulting rate is approx-
imately 50 kHz. Most tracks originating from B decays however
have small impact parameters, and a cut of |dg| > 1 mm for at
least 4 tracks in the vertex further drops the rate to roughly 130
Hz for the most loose pr cut (see Fig. 6). The rate moreover drops
substantially if the pr cuts are tightened, as shown in Table 1.
If needed, an additional cut on the transverse radius of the ver-
tex (Lyy) is extremely effective at reducing this background (see
e.g. [8]), at a minimal cost to the signal.

7 Given that the pixel layers will not be available to the L1 trigger, the spacial
resolution on the vertex location is expected to be relatively poor [6]. A material
veto would therefore be less effective than in a full, offline analysis and we therefore
chose to not rely on it in our study.
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Table 1

Estimated rates for various backgrounds, for different choices of the minimum track
pr. The rate for the secondaries is to be understood as a conservative upper bound.

See text for details.

min track pr 2 GeV 3 GeV 4 GeV
secondaries (kHz) 25 5 1
B-mesons (kHz) 0.13 0.04 0.01
fake vertices (kHz) 0.04 0.01 0.004

10! 7
3 pr>2GeV
: [ pr>3GeV
| pr >4 GeV
1
10(] i :
;g
A
= 10—1 4
g
CE 1
1072 4 i
i
!
1073 ; ;
1073 1072 107t 100
g | (cm)

Fig. 6. Estimated L1 trigger rate from B-meson backgrounds, as a function of the
transverse impact parameter of the 4™ reconstructed track (\dg“ |), where the tracks

were ordered according to decreasing |dg|. We require |d[()4)\ > 0.1 cm, as indicated
by the dashed vertical line.

5.3. Fake vertices

Finally, to estimate the probability of 4 fake tracks forming
a vertex, we generated 107 pairs of fake tracks, uniformly dis-
tributed in the track parameters. (See [6] for details.) The pairs
of fake tracks where processed through the toy vertex reconstruc-
tion algorithm and discarded if the A, and A, parameters of the
candidate vertex failed our vertex quality requirements in Sec. 4.2.
The remaining two-track vertices are then pairwise compared with
one another, where we select only those pairs for which the dis-
tance between both vertices in the transverse and longitudinal
directions is compatible with the respective vertex resolution cuts.
Finally, all remaining candidate four-track vertices are again pro-
cessed through the algorithm in Sec. 4.2. With this method, the
probability of 4 random fake tracks forming a vertex is found to
be approximately 3 x 10~11,
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Based on the expected occupancy of the trigger system [144],
we assume on average 30 fake tracks per event. We thus compute
the average combinatorical enhancement factor per event to be

< Nfakes!
(Nfakes — 4)!4!

where the brackets indicates the Poisson weighted average, assum-
ing (nfikes) = 30. Combining this with the fake vertex probability,
we find the rate to about 40 Hz or lower (See Table 1), giving
a substantial buffer in case our estimate of 30 tracks per event
proves to be insufficiently conservative.

Finally, one may be concerned that a significant contribution
from the rate may come from real, 3-track vertices to which a
fourth, fake track is erroneously assigned. With the assumptions
laid out in Sec. 5.1 we find that the rate for a 3-track vertex from
hadronic interactions with the detector material is roughly 50 kHz
for a pr cut on the tracks of 2 GeV. Following Sec. 5.2, the rate
for a 3-track vertex from the K* — w*mx 7~ process is bounded
from above by roughly 30 kHz. We hereby imposed a truth-level
pr > 6 GeV cut for the KT and required it to decay within 30 cm
of the beamline, but no requirements were made on the kinemat-
ics of the individual pions. With O(30) fake tracks per event, the
rate for both cases therefore remains below 1 kHz if the probabil-
ity for a fake track to be associated with a real displaced vertex
is below ©(1073). This appears plausible, but in particular for
the vertices from material interactions, we cannot accurately es-
timate this probability without the full CMS detector simulation.
Our estimates of the rate for real, 3-track vertices are moreover
conservative, and in practice we expect that a O(1072) suppres-
sion could be sufficient. Should this process nevertheless prove to
be problematic, it can be suppressed further by tightening the pr
cuts on the tracks: In particular, by increasing the cut to 3 GeV (4
GeV), the rate for 3-track material interactions drops to 13 kHz (5
kHz). Similarly, increasing the pr cut on the K* to 9 GeV (12 GeV)
reduces the rate to 5 kHz (0.8 kHz).

>w3.4 x 104, (28)

6. Discussion and outlook

As we showed in the previous section, if a displaced vertex
could be reconstructed at the trigger level, the Hr > 100 GeV re-
quirement used in [3-5,7] may no longer be needed to bring the
background rate down to a manageable level. This in turn substan-
tially increases the signal efficiency for scenarios where the final
states are rather soft.

Fig. 7 illustrates this point for the ALP benchmark, where we
normalized all efficiencies to a sample with a 20 GeV cut on the
truth-level pr of the ALP. The trigger efficiency is (O(10%), which
we consider fairly decent for a signal this soft. We find that a dis-
placed vertex trigger would roughly be a factor of 3 improvement
over the displaced jet trigger with Hr > 100 GeV, as studied Hook
et al. [7].8 Hook et al. also provided a second, more speculative se-
lection consisting out of a single, displaced jet with pr > 30 GeV.
This selection unsurprisingly outperforms a displaced vertex trig-
ger, as the former only requires 3 displaced tracks vs 4 displaced
tracks for the latter. Given the high rate of pr > 30 GeV jets,
secondary vertices from material interactions and fake tracks, we
however suspect that the background rate for this proposal could
be prohibitive. In sum, Fig. 7 makes it clear that the reason for the
rather low signal yield in the right-hand panel of Fig. 1 is not re-
lated to the low reconstruction efficiency per se. Rather, both the
lifetime and the production cross section of the ALP are controlled
by fq and the lifetime is simply very short for values of f; which
yield interesting cross sections (see Eq. 17 and Fig. 3).

8 We thank Soubhik Kumar for providing us with this unpublished data.
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Fig. 7. Estimated L1 trigger efficiency for a CMS displaced vertex trigger for the
ALP model (solid). Also shown are the estimates based on the Hr > 100 GeV and
pr > 30 GeV selections from Hook et al. [7] All efficiencies were normalized to a
truth-level cross section with pr > 20 GeV cut on the ALP. (See text for details).
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Fig. 8. Estimated L1 trigger efficiency for a CMS displaced vertex trigger (solid blue).
Also shown is the projected efficiency for CMS L1 track jet trigger for displaced jets
[3,4], assuming 5 kHz rate (dashed blue) and the efficiency of the existing ATLAS
muon region of interest trigger (solid red) [11]. The dashed purple line indicates the
efficiency to trigger on an associated lepton in VH production, normalized against
the gluon fusion cross section.

This is in sharp contrast with the scalar model, where the life-
time and production rate are controlled by independent parameters,
sp and Agsy respectively. As a result, a displaced vertex trigger
could open a large portion of the parameter space where the mass
of the singlet is natural with respect to its quartic coupling with
the SM Higgs. We showed that the values of the mixing angles that
could be explored are further motivated by simple models of Dark
Matter freeze-out and neutral naturalness scenarios.

The model independent trigger efficiency for the h — SS topol-
ogy is shown Fig. 8, where a displaced vertex trigger would im-
prove on the displaced jet + Hry trigger by more than an order of
magnitude. For reference, we also include the efficiency for the ex-
isting ATLAS trigger which relies on anomalous activity in a region
of interest in the muon chamber (“muon ROI”) [11]. As expected,
both approaches are highly complimentary, as a trigger on a dis-
placed vertex in the tracker could cover shorter lifetimes.

We conclude by commenting on another opportunity for the
track trigger, which we intend explore in upcoming work [145].
Traditionally, Dark Matter searches rely heavily on the MET trigger,
which has low efficiency for low mass Dark Matter or soft produc-
tion modes. This is particularly so for inelastic Dark Matter models,
where the Dark Matter resides in a narrowly split multiplet. In-
elastic Dark Matter models predict a soft displaced vertex with a
moderate amount of MET, typically well below the current trig-
ger thresholds. Models of heavy neutral leptons produce a similar
signature. By identifying the displaced tracks with the track trig-
ger, CMS may be able to substantially lower the MET requirement,
while maintaining a manageable background rate. The implemen-
tation of such a trigger may allow CMS to probe a large portion
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of the parameter space of these models, complementing existing
proposals [146,147].
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