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Seismic hazard assessments, which guide mitigation strate-
gies for the public and financial risk transfer for industry, are 
generally based on long-term or slowly changing earthquake 

rates. However, megathrusts and other large mainshocks cause the 
hazard to depart abruptly from its average behaviour, including the 
occurrence of damaging aftershocks and progressive mainshocks1,2. 
Observations that subduction aftershocks are concentrated in or 
along the periphery of the rupture surface3–6 contrast with obser-
vations that aftershocks surround or extend well beyond the rup-
ture7–11. The duration of megathrust aftershock sequences is also 
debated: from several years11,12 to a decade or more11,13.

To improve seismic hazard assessments, seismologists seek to dis-
tinguish aftershocks from background earthquakes, and to forecast 
aftershock distribution and temporal decay, by using approaches 
such as the Epidemic Type Aftershock Sequence14 and its prede-
cessors. These models assume that mainshocks produce seismicity 
rate increases, with the greatest increases close to or on the rupture 
surface. The alternative approach views aftershocks as promoted 
by Coulomb stress transfer, locating where the mainshock rupture 
increased the shear stress on surrounding faults, or unclamped 
them15. However, as seismic networks have improved, it has become 
evident that mainshocks can also reduce the seismicity rate on 
faults on which the Coulomb stress imparted by the mainshock 
has decreased16,17. Here, we show that the disparate observations 
of megathrust aftershocks can be explained by a single Coulomb 
hypothesis, which can be used both to forecast aftershocks and to 
hunt for prehistoric megathrusts.

Observed spatiotemporal pattern of megathrust 
aftershocks
Within five years of the M ≥9 shocks that have struck since 1960, 
aftershocks on the high-slip portions of the rupture surface had 
largely shut down (Fig. 1). This includes the 2011 M 9.0 Tohoku, 

1964 M 9.2 Prince William Sound, 2004 M 9.2 Sumatra and 1960 
M 9.5 Valdivia earthquakes. For Valdivia the aftershocks appear to 
have shut down within months, whereas for the others they shut 
down within 1–3 yr. For all these events, a surrounding annulus of 
seismicity activated immediately, and continues to be active today, 
up to 60 yr later.

Due to Japan’s high-quality seismic network, the 2011 M 9.0 
Tohoku earthquake furnishes the best event to probe more deeply. 
In Fig. 2a, we compare the seismicity during the period 5–10 yr 
after the mainshock with the background period, chosen to be as 
long as possible above the magnitude of completeness18, in this 
case 13 yr preceding the mainshock. The seismicity rate in the core, 
which coincides with the area of peak coseismic slip19, has dropped 
by a factor of three to five below the background rate. The Omori 
aftershock decay slope p is also steeper and the earthquake magni-
tudes smaller in the rupture zone than in the surrounding region 
(Extended Data Fig. 1). A smaller disc of seismicity rate drop is seen 
at the site of the M 7.9 aftershock, which struck 30 min after the 
mainshock (Fig. 2a).

The core is surrounded by a zone of enhanced seismicity 
(‘corona’) whose rate increased over the background by a factor of 
two to five, in an area five to ten times larger than the core. The 
corona appears immediately; its extent 2 d after the mainshock 
is only slightly smaller than 5 yr later (Extended Data Fig. 2a,b). 
There were 22 MJMA ≥6.7 earthquakes (JMA, Japan Meteorological 
Agency) in the corona during the decade after the mainshock, but 
only four or five in the same area in the decade beforehand, so the 
corona is a robust feature not just for M ≥3 shocks, but for large, 
damaging ones as well.

A cross-section through the rupture shows that the core and 
corona extend throughout the lithosphere, to a depth of at least 
50 km (Fig. 3a). The Coulomb stress change imparted by the main-
shock to aftershock focal mechanisms indicates that most of the 

Central shutdown and surrounding activation  
of aftershocks from megathrust earthquake  
stress transfer
Shinji Toda   1 ✉ and Ross S. Stein   2 ✉

Megathrust earthquakes release and transfer stress that has accumulated over hundreds of years, leading to large aftershocks 
that can be highly destructive. Understanding the spatiotemporal pattern of megathrust aftershocks is key to mitigating the 
seismic hazard. However, conflicting observations show aftershocks concentrated either along the rupture surface itself, along 
its periphery or well beyond it, and they can persist for a few years to decades. Here we present aftershock data following the 
four largest megathrust earthquakes since 1960, focusing on the change in seismicity rate following the best-recorded 2011 
Tohoku earthquake, which shows an initially high aftershock rate on the rupture surface that quickly shuts down, while a zone 
up to ten times larger forms a ring of enhanced seismicity around it. We find that the aftershock pattern of Tohoku and the three 
other megathrusts can be explained by rate and state Coulomb stress transfer. We suggest that the shutdown in seismicity in 
the rupture zone may persist for centuries, leaving seismicity gaps that can be used to identify prehistoric megathrust events. 
In contrast, the seismicity of the surrounding area decays over 4–6 decades, increasing the seismic hazard after a megathrust 
earthquake.

Nature Geoscience | www.nature.com/naturegeoscience

mailto:toda@irides.tohoku.ac.jp
mailto:ross@temblor.net
http://orcid.org/0000-0002-3913-5303
http://orcid.org/0000-0001-7586-3933
http://crossmark.crossref.org/dialog/?doi=10.1038/s41561-022-00954-x&domain=pdf
http://www.nature.com/naturegeoscience


Articles NaTUrE GEoSCIEnCE

20 40 60

140° E 144° E

40° N

35° N

First 5 yr after
2011 Tohoku M 9.0

M 9.0 slip (m)
over 10 m

at depths of 0–50 km

9
M

8
7
6
5
4
3

140° E 144° E

Following 5 yr
(2016–2021)

105

   1964.24 M = 9.3

140° W156° W 152° W 148° W 144° W

56° N

58° N

60° N

62° N
First 21 months after
1964 Alaska M 9.2

M 9.2 slip (m)
over 2 m

at depths of 0–70 km

9.0

M

8.0

7.0

6.0

5.0

4.5

156° W 152° W 148° W 144° W 140°W

0 100 km

2018 M 7.9

2016 M 7.1

1999
M 7.0

1989
M 7.0

1988 M 7.8

1987 M 7.9

2018 M 7.1

1979
M 7.1

Following 52 yr
(1967–2019)

0 10 20 30

2010
M 7.8

2004
M 9.2

2005
M 8.6

15° N

10° N

5° N

0°

2009
M 7.5

First 5 yr after
Sumatra M 9.1

M 9.1 slip (m)
at depths of 0–40 km

9.0
M

8.0
7.0
6.0
5.0
4.5

0 100 200 km

2012
M 8.6

2012
M 8.2

Following 11 yr
(2010–2021)

75° W

0 10 20 30

First 3 yr after
Valdivia M 9.5

M 9.5 slip (m)
at depths of 0–65 km

9.0
M

8.0

7.0

6.0
5.0
4.5

45° S

40° S

75° W95° E 95° E

0 100

Following 47 yr
(1963–2010/02/26)

1000 200

Hypocentre depth (km)

a b

c

e f g h

d

Fig. 1 | Aftershocks of M ≥9.0 megathrust ruptures since 1960. a,b, 2011 Tohoku: M ≥3.0 shocks from JMA; slip from ref. 19. c,d, 1964 Prince William 
Sound: M ≥4.5 shocks from ref. 43 for first 21 months, and from the Advanced National Seismic System (ANSS) afterwards; slip from ref. 44. e,f, 2004 
Sumatra: M ≥4.5 shocks from ANSS, with M ≥7.0 events labelled; slip from ref. 45. g,h, 1960 Valdivia: M ≥4.5 shocks from ANSS; slip from ref. 24, with three 
isolated patches of slip below 75 km, probably numerical artefacts, not shown. Seismicity on the rupture surface shut down within 5 yr, whereas seismicity 
in the surrounding corona lasts up to 50 yr. In each case, we plot seismicity near or above the magnitude of completeness for the period shown.
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aftershocks were brought closer to Coulomb failure (Fig. 3b) by the 
mainshock, suggesting that the corona is a product of stress transfer 
from the core to surrounding faults20. The stress imparted to the 
aftershocks is largely positive (Fig. 3b), promoting failure, whereas 
stress imparted to the background (pre-M 9) mechanisms is largely 
negative (Fig. 3c), inhibiting failure. This means that a different set 
of faults was activated by the mainshock than beforehand. This is 
possible because there are diverse mechanisms in the descending 
Pacific plate, the overlying forearc (distance <100 km) and the outer 
rise (distance >175 km in Fig. 3b).

Though smaller, the 2003 M 8.2 Tokachi-oki earthquake also 
exhibits a core shutdown and corona activation (Extended Data 
Fig. 3b). Like Tohoku, the Tokachi-oki core resembles the high-slip 
zone, the core shuts down by a factor of three to five below the back-
ground rate, and the rate of corona seismicity is three to five times 
higher than the background rate. Although network detection for 
the 2010 M 8.8 Maule aftershocks is much poorer, a core and corona 
are possible there, too (Extended Data Fig. 3a).

Forecasting these seismicity changes from Coulomb stress 
transfer
The theory of rate and state friction21 coupled with Coulomb stress 
transfer15,16 provides a framework for interpreting these observations, 
and for forecasting future seismicity. In rate–state friction under 
conditions of constant tectonic loading, Coulomb stress increases 
amplify the background seismicity rate, and stress decreases dimin-
ish it, with both effects decaying with time. Areas with a high back-
ground seismicity rate thus respond to small stress changes, whereas 
in areas with low seismicity rates the stress changes have little effect. 

We use earthquake focal mechanisms as proxies for active faults in 
an attempt to capture their complexity and heterogeneity22. We tune 
the model by adjusting the background rates so that the predicted 
seismicity changes caused by the Tohoku mainshock and all M ≥6.5 
aftershocks that struck during the first 5 yr match the observations 
(Methods). The forecast resembles the observed seismicity, captur-
ing the core and the corona, with a spatial regression coefficient 0.61 
and a regression slope of 0.67 for the 14,433 non-zero 0.06° cells.

The time evolution of seismicity in the core and corona can be 
generalized by a mean stress increase in the corona and a mean 
stress decrease in the core (Fig. 4). To capture the heterogeneity 
of source fault slip and the diversity of receiver fault geometries23, 
we use Monte Carlo simulation, represented here by the s.d. of the 
stress change (Extended Data Fig. 4 gives the full suite of realiza-
tions). Even though the mean stress drops in the core, with a suf-
ficiently large s.d. some core faults receive a stress increase, causing 
a sudden seismicity rate increase (Extended Data Fig. 1c). However, 
these sites are rapidly consumed, resulting in a delayed shutdown. 
A much briefer delayed shutdown was seen in a lobe of calculated 
stress decrease of the 1992 M 7.3 Landers earthquake17. The general-
ized seismicity time histories in Fig. 4 resemble the observations. If 
the stress drop in the M 9.5 earthquake were ~50% larger than the 
others20,24, its behaviour25 would also match the generalized curves. 
The model has elements in common with the Scholz seismicity 
spacetime diagram26 (Extended Data Fig. 4e), and with the Mogi 
doughnut27,28, although we regard the core and corona as postseis-
mic rather than precursory phenomena.

Our model omits several processes that could modify the curves 
in Fig. 4. Dynamic stress triggering could elevate the aftershock 
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rate in both the core and corona, particularly in the first ~10 d 
(ref. 29). Viscoelastic relaxation probably intensifies and prolongs 
the corona, because coseismic tractions exerted at the base of the 
crust broaden the stress distribution during the first few decades30,31. 
Postseismic creep, which like seismicity is driven by stress transfer 
from the rupture, probably contributes to the corona, but not to the 
core (Extended Data Fig. 3). For Tohoku32 and Sumatra33, postseis-
mic creep occurs only in the corona, and is small and patchy, with a 
magnitude of ~3% of the coseismic slip; for Maule, creep occurred 
downdip of the core with ~10% of the coseismic slip; for Tokachi, 
postseismic creep occurred throughout the corona at ~15% of the 
coseismic slip34, and so plays a larger role. Since only negligible creep 
is detected in the cores of these earthquakes, the temporal transition 
from aftershocks to shutdown is probably unrelated to creep.

Because the corona is evident within 2 d of the Tohoku shock, 
and grows only by about 10% in the next several months, it cannot 
be principally caused by afterslip or relaxation. If it were caused by 
dynamic stress, it would probably shrink after the first 10 d or so, 
which is not seen. Thus, static stress transfer seems the best explana-
tion for its existence.

Persistence of the core shutdown and corona seismicity
We attribute the conflicting megathrust aftershock observations in 
the literature principally to the different time periods and locations 
relative to the mainshock in which aftershocks were analysed. As 
a result, the transition from abundant aftershocks on the rupture 
surface to its shutdown was missed. Because the corona is as much 
as ten times the area of the core, there is a net hazard increase after 
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a megathrust that lasts for about half a century, typically spanning 
the outer rise to the coast. Megathrust aftershock zones, even when 
measured in the first few days, greatly overestimate their rupture 
areas10,35. Instead, the core area that emerges several years after the 
mainshock best corresponds to the primary rupture zone. Since 
the core is forecast to remain shut down for periods roughly cor-
responding to megaquake interevent times, the core shutdown has 
some resemblance to the seismic gap hypothesis36. However, in the 
gap hypothesis, the hazard drops with the occurrence of the main-
shock, opposite to what we find.

Our result may explain a 20-year-old enigma for large worldwide 
shocks11. By stacking over 100 M ≥7 mainshocks, Parsons found 
an aftershock duration of 10 or more years on faults that received 
a calculated shear stress increase, but only one year on faults that 
received a shear stress decrease. Parsons proposed that aftershocks 
on faults with stress decreases could be caused by dynamic trigger-
ing. However, these results could also be explained by our model: 
the stress decreases occur close to the mainshocks, at ~50 km 
from the centroids, while the stress increases occur ~75 km from 
the centroids. Therefore, the 1 yr aftershocks might lie principally 
in the core, with the 10 yr aftershocks in the corona. Our general-
ized curves and Parsons’s observations are juxtaposed in Extended  
Data Fig. 5.
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The agreement between the observed and modelled seismicity- 
rate changes in Fig. 2 for a 5 yr retrospective forecast period suggests 
that the rate–state Coulomb model exhibits forecast ability that 
could enhance hazard assessments. For example, four M ~7 earth-
quakes struck along the Tohoku coast in 2021–2022, all in corona 
areas of high forecast likelihood (Extended Data Fig. 1a). The seis-
micity rate at these epicentres has been undergoing an Omori decay 
since the M 9, with a rate approximately five times higher in 2021 
than the pre-M 9 background rate37. This suggests that the M ~7 
events are corona aftershocks.

The expected multicentury persistence of the core, if true, 
would mean that sites of preinstrumental and prehistoric mega-
thrust earthquakes appear as ‘holes’ in subduction seismicity. All 
four of the megathrusts in Fig. 1 are visible today as seismicity holes 
(Extended Data Fig. 6). While holes might also result from creep-
ing portions of subduction zones, creep is most often accompanied 
by seismicity rather than its absence38. Holes at or near the sites of 
coseismic slip are evident to various degrees for the still older 1952 
M ~8.8 Kamchatka, 1946 M 8.3 Nankai, 1944 M 8.1 Tonankai, 1906 
M ~8.8 Ecuador, 1868 M ~9.0 Arica (Peru–Chile), 1762 M ~8.8 
Arakan (Myanmar) and 1700 M ~9.0 Cascadia earthquakes (Fig. 5). 
While the lack of Cascadia seismicity has been attributed to com-
plete healing and locking of the megathrust39, its low seismicity rate 
and low aftershock productivity40 suggest that it could still be in a 
post-mainshock shutdown. Candidate prehistoric megathrust rup-
tures include a 700-km-long seismicity hole along the Commander 
section of the northwest Aleutian arc41, and a 300-km-long hole along 
the western Makran Trench42 (Extended Data Fig. 9). Seismicity 
holes might also mark the sites of historic M ~8 transform fault rup-
tures, such as the 1857 and 1906 San Andreas earthquakes26.
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Methods
Observed seismicity rate change. We employ two methods to enhance the 
representation of seismicity rate change in Fig. 2 (map view) and Fig. 3a 
(cross-section). To quantify a rate change in a cell, there must be at least one 
earthquake in the background (pre-mainshock) period, and at least one in the 
post-mainshock period. However, there are many cells where this condition is not 
met. Therefore, if there are earthquakes in the post-mainshock period but none in 
the background period, we use a muted red colour to represent an unquantifiable 
increase. For an unquantifiable decrease, we use a muted blue colour. These cells 
are not used in the spatial regression of the observed on modelled rate changes.

A second complicating factor in the rate-change map is aftershock zones or 
seismic swarms that took place during the background period, which appear 
as blue discs in Extended Data Fig. 7a because they had abnormally high rates 
before the mainshock. These are unrelated to the impact of the subsequent 
Tohoku mainshock on seismicity. To mask these effects, we calculate the COV 
of the interevent times of the background seismicity in every cell. Typical stable 
background seismicity has COV ≈ 1, whereas seismic swarms and aftershock 
sequences exhibit COV ≥ 3, as shown in Extended Data Fig. 7b. Therefore, we mask 
areas with COV ≥ 3 (Extended Data Fig. 7c) in Fig. 2b and Fig. 3a. Masked areas 
appear neutral grey and are identified as such.

Maximum Coulomb stress change imparted to focal mechanisms. We calculate 
the stress imparted to focal mechanisms22 in Fig. 2b, as illustrated in Fig. 3c,d and 
Extended Data Fig. 8a, rather than to mapped faults, idealized planar faults or 
optimally oriented faults. Although the faults on which such earthquakes strike 
can be small (M ≥3.0 for Tohoku), we believe that these mechanisms provide 
a richer and more realistic indication of the distribution, geometry and rake of 
active faults, and so more faithfully capture their true complexity. Even nominally 
straight, isolated and high-slip-rate faults exhibit astonishing complexity when 
viewed by their focal mechanisms, by double-difference relocated seismicity or 
by seismic reflection. This complexity has many roots, including diverse fault 
orientations caused by the stress evolving over geologic time; by fault bends, breaks 
and junctions; by fault obliquity to the plate motion and by contrasting crustal 
properties and the presence of crustal fluids.

Although focal mechanisms may better reflect the three-dimensional and 
fractal nature of fault networks than do simple continuous surfaces, for non-zero 
fault friction there is nodal plane ambiguity because the Coulomb stress is not 
the same on the two planes of each mechanism. Therefore, here we assume a 
0.4 friction coefficient15 and report the stress change on the plane on which the 
Coulomb stress is most positive, which we refer to as the maximum Coulomb 
stress change. Since stress increases are coloured red, this introduces a ‘red’ bias, 
which carries two intrinsic benefits. The first is that calculation of seismicity-rate 
change, with which the stress changes are compared in Fig. 3, is also red biased, 
because it is easier to measure a seismicity-rate increase than a decrease, as one 
can only measure rate decreases if there are a sufficient number of quakes in the 
pre-mainshock period. The second benefit is that, by using the plane with the most 
positive stress change, focal mechanisms with stress decreases (‘blue beachballs’) 
must lie in the stress shadow; the stress decrease cannot be an artefact of 
nodal-plane selection. Thus, the predominance of blue beachballs in Fig. 3c means 
that the background fault population was indeed inactivated by the mainshock 
stress; these faults were shut down.

Forecast seismicity rate change. For the retrospective forecast shown in Fig. 2b, 
we use finite fault models for the mainshock rupture and the M ≥6.5 earthquakes 
that struck during the first 5 yr after the mainshock (Extended Data Fig. 8b) as 
the source for the imparted stress, or if finite fault models are not available the 
most plausible rectangular fault using the empirical relations54. For ‘receiver faults’, 
the planes on which we resolve the imparted stress, we use focal mechanisms of 
background shocks as proxies for active faults, calculating the imparted stress 
at their hypocentres. NIED (National Research Institute for Earth Science and 
Disaster Resilience) F-net provides focal mechanisms for M ≥3.0 events in Japan. 
However, even for the dense Japanese seismic network, the distribution of focal 
mechanisms is relatively sparse. Therefore, we densify the data with ‘synthetic’ focal 
mechanisms in this manner: for shocks without a mechanism, we assign the closest 
mechanism, which acts to both densify and smooth the receiver faults.

In addition to the background seismicity rate, focal mechanisms and 
mainshock finite fault models, in the seismicity-rate equation21 the earthquake 
forecasts depend on three parameters: the aftershock duration (the time until the 
quake rate decays back to the pre-mainshock rate) ta, a constitutive parameter 
multiplied by the effective normal stress Aσ, and the tectonic stressing rate ·τ. These 
parameters have the following relation:

ta =
Aσ
·

τ
. (1)

At least two parameters are required to implement rate–state formulations. 
Here we assume ta = 20 yr, implying an interevent time of ~1,000 yr, roughly typical 
of megaquakes, and Aσ = 0.5 bar, which was found by fitting the observed number 
of aftershocks to the forecast number. Although the rate–state parameters (ta and 
Aσ) are probably heterogeneous, we take them to be uniform, a simplification.

In rate–state friction, large stress increases close to the rupture surface yield 
unrealistically high calculated seismicity rate immediately after the mainshock 
because of the exponential terms in the seismicity-rate equation. As a result, we 
would predict far too many near-fault aftershocks. To overcome this, we impose an 
arbitrary maximum stress change of 5 bar.

To incorporate successive stress changes imparted by multiple mainshocks, we 
use the expression for seismicity rate, R, as a function of the state variable γ under 
a tectonic shear stressing rate τ̇r from ref. 21, as implemented in refs. 55,56. Under 
constant shear stressing rate, the state variable reaches the steady state

γ0 =
1
τ̇r
. (2)

In the absence of a stress perturbation, the seismicity rate is constant. R is then 
equivalent to the background rate r, because R is calculated from

R =
r
γτ̇r

. (3)

An earthquake imposes a sudden stress step ΔCFF (Coulomb failure function), 
and γn − 1 changes to a new value γn:

γn = γn−1 exp
(

−ΔCFF
Aσ

)

. (4)

To find the seismicity rate at the time of the stress step, we substitute the new 
state variable in equation (4). A stress increase on a fault causes γ to drop, so the 
fault slips at a higher rate, yielding a higher seismicity rate. Conversely, a sudden 
stress drop causes γ to jump, lowering the seismicity rate. The seismicity-rate 
change is transient and eventually recovers, corresponding to an evolution of γ, 
which for the next time step Δt is given by

γn+1 =

[

γn −

1
τ̇r

]

exp
[

−Δt τ̇r
Aσ

]

+
1
τ̇r
. (5)

The duration of the transient is inversely proportional to the fault stressing rate 
τ̇r. The lower γ is at the time of a new stress jump, the more strongly the seismicity 
rate will be amplified.

To map the forecast seismicity rate, we smooth R with a vertical cylinder of 
radius 20 km at each grid point, and then calibrate the effect of the overlapping 
cylinders. The larger the radius, the smoother the map. To compare the modelled 
rate with the observed rate, we use the same smoothing radius for consistency.

To increase the fidelity of the forecasts, we use the first 5 yr as a learning 
period50. This period compares the observed and forecast changes in seismicity rate 
of M ≥3 earthquakes associated with the 16 M ≥6.5 earthquake sources, including 
the M 9.0 mainshock, during the period. The data–model misfit is then minimized 
by modifying the background rate for each calculation cell (see explanation in Fig. 
10 in ref. 50). An alternative would be to vary ta or Aσ, but we found that correcting 
the background rate renders more stable results.

Modelled seismicity time series. The resulting stress changes on the background 
nodal planes imparted by the Tohoku earthquake are shown in Extended Data 
Fig. 2c,d. To simulate the time series of seismicity rate from such diverse stress 
changes on a group of heterogeneous receiver faults in rate–state friction (Fig. 
4), we generate a pseudorandom normal distribution of Coulomb stress changes 
on 10,000 receiver faults arbitrarily assigned mean and s.d. We then compute 
the evolution of state variable at each nucleation following equations (4) and (5), 
and update the seismicity rate at each time step using equation (3). In Fig. 4, we 
show only the curve of the mean of all time histories associated with the 10,000 
realizations, although there are a large range of rate curves in such Monte Carlo 
runs (Extended Data Fig. 4a). The s.d. values mimic the source and receiver 
fault diversity and the stress-change heterogeneity, which alters the time series 
of the mean curves. The effective Omori decay exponent increases with fault 
heterogeneity (and so with the resulting diversity of Coulomb stress changes), as 
shown in Extended Data Fig. 4c,d and in ref. 23. The steeper aftershock decay in the 
core than in the corona arises in the model from multiple adjacent stress increases 
in aftershocks, whereas aftershocks are more dispersed in the corona, and so fewer 
stress increases overlap.

Data availability
We used the USGS ANSS catalogue (https://earthquake.usgs.gov/earthquakes/
search/), the JMA catalogue (https://www.data.jma.go.jp/svd/eqev/data/daily_map/
index.html and https://www.data.jma.go.jp/svd/eqev/data/bulletin/eqdoc.html) 
and the NIED F-net focal mechanism catalogue (https://www.fnet.bosai.go.jp/
event/search). We also used a published 1960 Chile earthquake catalogue25, and 
a published 1960–1966 Alaska earthquake catalogue43. All seismic slip (‘finite 
fault’) models are published and cited; those also available from http://equake-rc.
info/SRCMOD/searchmodels/allevents/ include the 2003 Tokachi-oki57 and 2011 
Tohoku58 earthquakes (used for Coulomb calculations) and 1944 Tonankai53, 
1946 Nankai53 and 2010 Maule59 (used for display in figures). Seismic slip models 
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available only from publications include the 1700 M ~9.0 Cascadia52, 1762 
M ~8.8 Arakan49, 1868 M ~9.0 Arica, Peru–Chile51, 1906 M ~8.8 Ecuador50, 1952 
Kamchatka48, 1960 Valdivia24, 1964 Prince William Sound44 and 2004 Sumatra45 
earthquakes. Source data are provided with this paper.

Code availability
The numerical methodology used in this study is described in Methods and in  
refs. 55,56. We used the Coulomb 3.3 software60–64 (software, tutorial files and 
user guide accessible via http://www.temblor.net/coulomb). For magnitude of 
completeness and aftershock decay calculations, we used ZMAP18 (http://www.
seismo.ethz.ch/en/research-and-teaching/products-software/software/ZMAP/ and 
https://github.com/swiss-seismological-service/zmap7).
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Extended Data Fig. 1 | Seismicity time series in the simplified corona and core areas. a, Map of the seismicity rate change. The 13 Feb M 7.1, 20 Mar M 
7.1, and 1 May M 6.9 earthquakes in 2021 are shown as stars. b, Time series of earthquakes in the corona. Notice that the post-M 9 rate in the core has 
remained low for twice the duration of the several low-rate preseismic periods. c, Time series of earthquakes in the core. We use quartiles to evaluate 
uncertainty because the rates are not normally distributed. d-e, Omori decay parameters fitted using ref. 18. Notice the smaller earthquakes and steeper 
decay (p exponent) in the core than in the corona.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Relationship between seismicity rate change and postseismic slip. a, Seismicity rate change for 2003 Tokachi-Oki, with 
coseismic57 and postseismic slip during the first year34. Here we compare the period 5-10 yr after the quake (2008/09/26 - 2011/03) to the 5.7-yr 
background period (1998/01/01-2003/09/25). b. Seismicity associated with 2010 Maule (ANSS M ≥ 4.5 catalog), with coseismic59 and postseismic 
slip61. c, Postseismic slip during the first 8 months after 2011 Tohoku32 superimposed on Figs. 1a and 2a. Panel a (right) adapted with permission from ref. 34, 
Springer Nature Limited. Panel b (right) reproduced with permission from ref. 59, John Wiley and Sons.
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Extended Data Fig. 3 | Corona growth with time, and Coulomb stress imparted to focal mechanisms in the core and corona. a–b, Two-day and 
two-month corona extent. c, Simplified core area with beachballs colored by maximum Coulomb stress change. Because for each mechanism, we take 
the nodal plane with the most positive (maximum) stress change, these results could be biased toward stress increases. Mechanisms from 1998/01/01 - 
2011/03/10, M ≥ 3, depth≤150 km, from F-Net catalog.
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Extended Data Fig. 4 | Model of seismicity evolution in a heterogeneous faulting environment. a, Simulated time histories given a standard deviation 
3 times larger than a mean stress decrease. ta is the aftershock duration in rate/state friction. Each curve is a mean of 10,000 Monte Carlo simulations. 
b, Time history given a standard deviation equal to a mean stress increase. c–d, Time histories under different assumptions for the mean and standard 
deviation of the stress changes. e, Figure from Scholz (1988)26. The concentration of longer-lasting aftershocks at the periphery resembles our corona, 
while the briefer aftershocks (A) that fade into quiescence (Q1) at a rate lower than the background (B) resemble our core. Panel e adapted with 
permission from ref. 26, Springer Nature Limited.
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Extended Data Fig. 5 | Comparison of our model with results of Parsons (2002). a, This study. b, Fig. 9 of Parsons (2002)11. For simplicity, we have 
colored the curves and removed the uncertainty bounds. Parsons reported that aftershocks with shear stress increases (red curve, b) tend to locate 25 km 
father from the moment centroids than aftershocks with the shear stress decreases (blue curve, b). Thus, the decreases could occur in or near the core, 
and the increases in or near the corona.
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Extended Data Fig. 6 | Seismicity holes evident today along major subduction zones for seismicity beginning after the megathrust in Fig. 1 struck.  
a, Japan Trench, b, Sunda Trench, c, Alaska-Aleutian Trench, d, Peru–Chile Trench. For c–d, we begin when the seismic catalog detection markedly improves 
in about 1976. All maps are at the same scale.
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Extended Data Fig. 7 | See next page for caption.

Nature Geoscience | www.nature.com/naturegeoscience

http://www.nature.com/naturegeoscience


Articles NaTUrE GEoSCIEnCE

Extended Data Fig. 7 | Seismicity holes associated with candidate historic or prehistoric megathrust earthquakes. a, The Commander (Komandor) 
Seismic Gap extends for 700 km along the northwest Aleutian Trench41, 60, where oblique slip is partitioned between subduction convergence and a parallel 
back-arc transform fault. b, The hole is most evident for subduction mechanisms6. c, The Makran Deformation Front (Makran Trench) appears to have two 
holes, the eastern hole at the site of a 1765 earthquake, and the western hole perhaps associated with the debated 1483 earthquake42, 61, 62.
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Extended Data Fig. 8 | Masking swarms and secondary aftershocks in the seismicity rate change map. a, All data. b, Map of coefficient of variation of 
seismicity inter-event times with site 1 for a seismic swarm and site 2 aftershocks of a secondary mainshock during the pre-M 9 period, and site 3, steady 
background seismicity. c, Same as a but with sites of COV ≥ 3 masked.
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Extended Data Fig. 9 | Schematic illustration of how seismicity rate changes are derived from stress imparted to focal mechanisms. a, Each focal 
mechanism is a proxy for a small-to-moderate fault on which that earthquake stuck (top panel in a). These earthquakes then receive coseismic stress 
from a nearby mainshock (second panel in a), some promoting failure (red) and some inhibiting failure (blue). The applied stress amplifies or diminishes 
the background seismicity rate (bottom panel in a), according the the seismicity rate equation21. Finally, to make a map of forecast seismicity as in Fig. 2b, 
the updated numbers on the focal mechanism plots in the bottom panel in a are spatially smoothed by a moving kernel on the grid nodes. This illustration 
is from ref. 56. b, Map of the Learning Period earthquakes (M ≥ 6.5 during 3-11-2011 to 3-10-2016) that are used in the model. Panel a reproduced with 
permission from ref. 45, Seismological Society of America.
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