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Abstract

Relative pose estimation using the 5-point or 7-point
Random Sample Consensus (RANSAC) algorithms can fail
even when no outliers are present and there are enough in-
liers to support a hypothesis. These cases arise due to nu-
merical instability of the 5- and 7-point minimal problems.
This paper characterizes these instabilities, both in terms
of minimal world scene configurations that lead to infinite
condition number in epipolar estimation, and also in terms
of the related minimal image feature pair correspondence
configurations. The instability is studied in the context of
a novel framework for analyzing the conditioning of min-
imal problems in multiview geometry, based on Rieman-
nian manifolds. Experiments with synthetic and real-world
data reveal that RANSAC does not only serve to filter out
outliers, but RANSAC also selects for well-conditioned im-
age data, sufficiently separated from the ill-posed locus that
our theory predicts. These findings suggest that, in future
work, one could try to accelerate and increase the success
of RANSAC by testing only well-conditioned image data.

1. Introduction

The past two decades have seen an explosive growth of
multiview geometry applications such as the reconstruction
of 3D object models for use in video games [!], film [19],
archaeology [28], architecture [22], and urban modeling
(e.g., Google Street View); match-moving in augmented re-
ality and cinematography for mixing virtual content and real
video [ 1]; the organization of a collection of photographs
with respect to a scene known as Structure-from-Motion
[27] (e.g., as pioneered in photo tourism [2]); robotic ma-
nipulation [16]; and meteorology from cameras in automo-
bile manufacture and autonomous driving [22]. One key
building block of a multiview system is the relative pose
estimation of two cameras [15,35]. A methodology that is
dominant in applications is RANSAC [29]. This forms hy-
potheses from a few randomly selected correspondences in
two views, e.g., 5 in calibrated camera pose estimation [26]
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Figure 1. The typical relative pose estimation can fail catastroph-
ically, even with a large number of correspondences (100 cor-
respondences shown in the figure) all of which are inliers. (a)
Ground truth epipolar geometry. (b) Erroneous estimated epipolar
geometry from the 7-point algorithm and LO-RANSAC [8]. The
prime cause of such failure is numerical instability as shown in
this paper.

and 7 in uncalibrated camera pose estimation [31, 33], and
validates these hypotheses using the remaining putative cor-
respondences. The chief stated reason for using RANSAC
is robustness against outliers, see [3, 5, 24]. The pose of
multiple cameras can then be recovered in either a locally
incremental [30] or globally averaging manner [18]. This
approach has been quite successful in many applications.

There are, however, a non-negligible number of scenar-
ios where this RANSAC-based approach fails, e.g., in pro-
ducing the relative pose between two cameras. As an exam-
ple, when the number of candidate correspondences drops
to say 50 to 100 correspondences, as is the case for images
of homogeneous and low textured surfaces, the pose esti-
mation process fails. Similarly, when there is repeated tex-
ture in the scene, there is a large number of outlier candidate
correspondences and again the process can fail. It is curious
why the estimation should fail, even if only a few correspon-
dences are available: after all RANSAC can select 5 from
50 in (%) ~ 2.1 million combinations, so there are plenty



of veridical correspondences available if the ratio of outliers
is low. In an experiment with no outliers, either with syn-
thetic data (see Section 5) or real data (see Figure 1), the
process can still frequently fail! This is mysterious, unless
the role of RANSAC goes beyond weeding out the outliers.
Indeed, we will argue that a main role for RANSAC is to
stabilize the estimation process, without denying its role in
dealing with outliers. We will show that the process of es-
timating pose from a minimal problem is typically unstable
to the noise, with a gradation of instability depending on the
specific choice of 5 points or 7 points. The role of RANSAC
is to integrate non-selected correspondences to improve the
stability of the estimation process outcome: if a large num-
ber of non-selected candidate correspondences agree, then
the hypothesis is both free of outliers but — perhaps more
importantly — it is an estimate stable to typical image noise.

This paper inspects the general issue of numerical stabil-
ity in minimal problems in multiview geometry. We build
a framework that connects well-conditioned minimal point
configurations with the condition number of the inverse Ja-
cobian of a forward projection map. Using this framework,
we compute condition number formulas for the 5-point and
7-point minimal problems. Further, we investigate the is-
sue of ill-posedness, i.e. when the condition number is in-
finite. We obtain characterizations for a world scene to be
ill-posed, and requirements for a minimal image point cor-
respondences configuration to be ill-posed.

Much analysis for the degeneracy of two-view geometry
has already appeared, e.g., [14,17,20,23]. However, this lit-
erature has studied when there are multiple solutions to the
3D reconstruction problem. By contrast, we focus on when
there exists an unboundedly unstable solution. This analysis
is different from previous literature in its focus on minimal
problems, where one typically has multiple real solutions.
Thus, our theory applies to multiview geometry as it is used
in practice: minimal problems solved during RANSAC.

Along with this theoretical analysis, we propose a way
to measure the stability of a given minimal image point cor-
respondence set, namely, by measuring the distance from
one point on one image to a “degenerate curve” on this im-
age computed using the other point correspondences. This
distance gives a means of evaluating the stability of the
minimal hypothesis. Our proposal to gauge the stability
of a given hypothesis suggests a way to increase the speed
and the robustness of RANSAC: by only testing hypotheses
which come from sufficiently well-conditioned image data.

The rest of the paper is organized as follows. Section 2
reviews two classic problems for estimating the relative
pose, namely the 5-point problem for calibrated cameras
and 7-point problem for uncalibrated cameras. Section 3
introduces a novel theoretical framework for analyzing the
conditioning of an arbitrary minimal problems. Section 4
presents the specific results of our analysis for relative pose

estimation, characterizing ill-posed world scenes and im-
age data as well as proposing a potential way for testing
for well-conditioned image data. Finally, Section 5 shows
experimental results on synthetic and real data, as a proof-
of-concept for our theory and its connection to RANSAC.

2. Minimal Problems for Relative Pose Estima-
tion

This section reviews the relevant setup for the 5-point
and 7-point minimal problems. The terms in bold will be
used again in the general framework of the next section.

Essential Matrices and the 5-Point Problem: Let VV de-
note world scene space, consisting of the relative pose be-
tween two calibrated pinhole cameras together with five
world points:

W =380(3) x $? x (R*)** = {(R,T,Ty,...,T5)}. (1)
Here SO(3) = {R € R¥*3 : RR" = R'TR = [} is the
group of rotation matrices, S2 = {T € R? : || Ty = 1} is
the unit sphere (representing the direction of the translation
in the relative pose) and I'; (for ¢ € {1,..,5}) are the 3D
points. Meanwhile, let X denote the image data space,
consisting of five image point correspondences:

X = (]R2 XRQ)XS :{(717’71)7"'7(757’75)}7 (2)

where 7; € R? and 7; € R? represent corresponding points
on the two image planes. Next, let ® denote the forward
map, projecting the given world points via the calibrated
cameras [ 0] € R3*% and [R T] € R34, j.e.,

¢(R7T7F17"'7F5) :(<717§/1)7"'7(,757’75)); (3)

where v; = 7(I;) and 3; = 7(RT; +T) where 7 is projec-
tion of the 3D points onto 2D images. The relation between
corresponding points on the two images is captured via es-
sential matrix E as 47 Ey = 0, where E € R3*3. Thus,
we define the epipolar space as the manifold of real essen-
tial matrices, which are characterized by ten cubic equations
vanishing [9] or in terms singular values as follows:

YV ={EcPR3*%) :2EE"E — tr(EET)E = 0,det(E) = 0}
={E € P(R3*3) : 01(E) = 02(E) > 03(E) = 0}. )

Last, the epipolar map Y is defined as computing an es-
sential matrix from a world scene using the relative pose:

v (R,T,Fl,...,r5) = E =[T]yR € P(R*3). (5)

Here [T], € R3*3 is the usual skew matrix representation
of cross product with the vector T € R3, asin[15, Sec. 9.6].



Then, 5-point problem is the task of determining the pos-
sible essential matrices E' given the five image point pairs,
i.e., computing W(®~1(.)). In [26], David Nister devel-
oped a solver for this problem. It boils down to computing
the real roots of a degree 10 univariate polynomial, giving
< 10 real solutions for the essential matrix.

Fundamental Matrices and the 7-Point Problem: For
the case of uncalibrated pinhole cameras, the world scene
space WV is the space of the relative poses together with
seven world points:

W =R KR (R3)*7 = {P,P,Ty,...,T7)}. (6)

Here I'; (for ¢ € {1,..,7}) are the 3D points and P and
P are the 3 x 4 projection matrices representing the two
cameras, which are defined to be P = K[R/|T] where K
is the intrinsic matrix of the camera. Then, the image data
space X is the space of seven image point correspondences,
ie, X = {(v1,71)s---,(¥7,77)}. The forward map &
is defined to project the world points via the uncalibrated
cameras via

<I>(P,75,F1,..,F7) = ((715’71)7"')(777:}/7))5 (7N

where v, = 7(PT;) and 4, = 7(PT;) with 7 the pro-
jection from 3D to 2D image. The relation between image
correspondences is described by a 3 x 3 rank-2 fundamental
matrix F' via47 F~,; = 0. Here the epipolar space consists
of the manifold of real fundamental matrices i.e.,

Y = {F € P(R**?) : rank(F) = 2}. ®)

The epipolar map ¥ sends a world scene to the fundamen-
tal matrix associated to the projection matrices [ 15, Eq. 9.1].

Then, the 7-point problem is the task of determining
the possible fundamental matrices F' given the seven image
point pairs, i.e., computing W(®~1(-)). The solutions are
obtained by computing the real roots of a cubic univariate
polynomial, see [15, Sec. 11.1.2].

3. Theoretical Framework

In this section, we present a novel theoretical framework
for analyzing the numerical stability of minimal problems in
multiview geometry, which generalizes the notation defined
in Section 2. The relevant mathematical structure are Rie-
mannian manifolds, which we use to describe the totality
of world scenes, image data, and epipolar quantities to be
estimated. Riemannian geometry helps, because it allows
us to discuss intrinsic distances. Our approach uses tangent
spaces, differentials, and the inverse function theorem.

We build on the theory of condition number and ill-posed
inputs initiated by Demmel [ 10], and then extended by Bur-
gisser [7]. We tailored the theory to the setting of minimal
problems, where there exist world scenes “in-between” the
input image data and the output epipolar quantities.

3.1. Spaces and Maps

Let W, X, Y be Riemannian manifolds, with geodesic
distances dyy (-, ), dx (-, ), dy (-, -), tangent spaces denoted
by TW,w), T(X,z), T(Y,y) for points w € W, x € X,
y € Y, and inner products on said tangent spaces denoted
by (Do (Vo (5 7)y,,- In applications to multiview
geometry, we refer to these as

* W the world scene space;
* X the image data space;
¢ Y the epipolar space.

We restrict to the case dim()V) = dim(X’) to model mini-
mal problems in multiview geometry. See Remark | below.
Next, assume we are given a differentiable map ® from
world scenes to image data whose domain is an open dense
subset of YW. We indicate the situation using a dashed

right arrow:
S:W--» X. ©)]

Assume that the image ®(Dom(®P)) contains an open dense
subset of the codomain X’; we summarize this property by
calling ® dominant. We call ¢ the forward map.

Furthermore, assume that we are provided with a differ-
entiable map from world scenes to epipolar matrices, again
defined only on an open dense subset of W:

W --» . (10)

Again, assume ¥ is dominant. We call W the epipolar map.

Now given image data x € X, we call a function © :
X 2 Dom(©) — W a 3D reconstruction map locally
defined around z if Dom(©) is an open neighborhood of
in X and O is a section of the forward map, that is

(I)O@:idDom(@)~ (11)

In this case, composing © with the epipolar map gives a
(locally defined) map from image data to the epipolar space:

S: =900 :X DDom(0) = Y. (12)

We call S a solution map (locally defined around x). The
name makes sense because, in minimal problems in vision,
the quantity we want to compute is typically an epipolar
matrix/tensor while the input is typically image data.

Remark 1 Assume the above setup. Then minimal prob-
lems in multiview geometry are modeled as follows: given
image data x € X, we want to compute all compatible real
epipolar matrices/tensors, that is

V(@ z) = {T(w) :weW,d(w) =2} CY. (13)

These solutions become hypotheses in RANSAC. When we
call a problem “minimal”, what we mean is the following.



For x in an open dense subset of X, the output ¥(®~1(x))
is a finite set (and not always empty). Often minimality
is a consequence of additional structure, which is not re-
quired for much of this paper. Typically W, X, can be
viewed as quasi-projective algebraic varieties and ®, ¥
are algebraic functions [13]. Then due to the assumption
dim(W) = dim(X") and the dominance of ®, general facts
in algebraic geometry imply that generic fibers of ® are fi-
nite sets, so the problem is minimal. See e.g. [12, Def. 2].

We want to analyze how sensitive the output of the solution
map S(x) is to realistic levels of noise in the input . We
want to develop quantitative condition number formulas and
describe the locus of ill-posed inputs, where a solution map
may not even exist locally or has infinite condition number.

3.2. IllI-Posed Locus

Given image data x € & and a prescribed world scene
w € W such that ®(w) = x, the next lemma shows there
exists a unique continuous 3D reconstruction map © with
©(z) = w. Further, © is continuously differentiable (C'1).

Lemma 1 Assume that the forward map ® is C', and that
at the world scene w € VWV the forward map differentiates to
an isomorphism on tangent spaces. That is, the differential

D®(w) : TIW, w) — T(X, (w)) (14)

is a linear isomorphism. Then there exist open neigh-
borhoods U of w in W and V of ®(w) in X such that
® : U — V is bijection, the inverse function is C', and

D ((®l)™") (®(w)) = (DR(w))"".  (19)

The lemma follows from the inverse function theorem for
manifolds [21]. In words: if the forward Jacobian D®(w) is
invertible, then the forward map @ is locally invertible and
its local inverse is differentiable with Jacobian (D®(w)) .
We now come to a central concept in our framework:

Definition 1 We say that a world scene w € W is ill-posed
if the differential D®(w) is not invertible. We say that im-
age data © € X is ill-posed if there exists a world scene
w € ®71(x) such that w is ill-posed.

I1l-posed world scenes are those failing the condition in the
above lemma; therefore, a priori we do not know if the
forward map is locally invertible around ill-posed world
scenes. Meanwhile ill-posed image data are those such that
there is at least one compatible world scene that is ill-posed;
hence, there could be problematic behavior around an ill-
posed world scene (We emphasize that other world scenes
in ®~1(x) need not be ill-posed). In a moment, we will see
that all of the numerical instabilities in minimal problems
must occur at (or near) the ill-posed scenes and image data.

3.3. Condition Number

Our other central theoretical concept is the condition
number. We first explain this quite generally (and intu-
itively), following [7, Ch. 14]. To this end, let G : X D
Dom(G) — Y be any map defined on an open neighbor-
hood of z in X.

Definition 2 The condition number of G at x is defined by

dy (G(@), G(x))

d(G,x) == i 5 e~ 16
R -
dx (Z,2)<

In a slogan: the condition number captures the limiting
worst-case amplification of input error in z that the func-
tion G can produce in its output G(z), when distances are
measured according to the intrinsic metrics on X and ).

If G is differentiable, we have a more explicit formula.

Lemma 2 If G is differentiable then the condition num-

ber of G at x equals the operator norm of the differential
DG(x): T(X,z) = T(Y,y), ie.

cond(G,z) = max ||DG(z)(z)| =: ||DG(x)|, (17)

#€T(X,x)
l&]l=1
where the two norms in the middle quantity are induced by
the Riemannian inner products (-,-) x o and (-, )y G (z)-

This is [7, Prop. 14.1], and proven using Taylor’s theorem.
The lemma reduces computing the condition number of a
differentiable map to computing the leading singular value
of its Jacobian matrix written with respect to orthonormal
bases on the tangent spaces T'(X, ) and T(Y, G(z)).

Here we are most interested in the condition number of
solution maps for minimal problems as in Eq. (12). Putting
the previous two lemmas together with the chain rule gives:

Lemma3 LetS =900 : X 2 Dom(O) — Y be a solu-
tion map as in (12) defined around the image data x € X.
Let w = ©(x) € W be the corresponding world scene. As-
sume that w is not ill-posed, i.e. D®(w) is invertible. Then,
the condition number of S at x is finite and given by

cond(S, z) = || DY (w) o D®(w) . (18)

In particular, cond(S,z) can be infinite only if x is ill-
posed.

3.4. Relation Between Ill-Posed Loci and Condition
Number

As shown in Lemma 3, the condition number at x € X
of a varying epipolar matrix/tensor can be infinite only if =
is ill-posed as in Definition 1. If z is ill-posed, the corre-
sponding world scene w = ©(z) € W such that DP®(w)



is rank-deficient might suffer unboundedly large relative
changes as = changes. Further, Lemma 1 implies that the
number of real 3D reconstructions is locally constant for in-
puts € X which are not ill-posed. In other words, there
can only be a change in the number of real epipolar matri-
ces/tensors when the image data  crosses over the ill-posed
locus. Thus, the ill-posed locus captures the “danger zone”
where at least one of the solutions to the minimal problem
can be unboundedly unstable, and also where real solutions
can disappear into (or reappear from) the complex numbers.

In [10], Demmel proved that in some cases, the recipro-
cal of the distance to the ill-posed locus equals the condi-
tion number. For example, this was shown for the problem
of matrix inversion. Here, we do not prove a quantitative
relationship between the distance to the ill-posed locus and
the condition number for solving minimal problems in com-
puter vision as such. But we do numerically demonstrate a
close relationship in the case of essential and fundamental
matrix estimation in the experiments in Section 5.

4. Main Results

We now present our main theoretical results regarding
the instabilities of relative pose estimation, by applying the
framework in Section 3 to the minimal problems in Sec-
tion 2. Due to space limitations, the proofs (and certain
explicit formulas) will appear in the supplementary materi-
als.

4.1. Condition Number Formulas

Here we apply the formula (18) based on singular values
of the Jacobian matrix to the 5-point and 7-point problems.
This yields condition number formulas for essential and
fundamental estimation. The expressions are valid if the so-
lution maps passes through non-ill-posed world scenes; in
fact they only depend on said world scene. We display the
explicit Jacobian matrices in the supplementary materials.

Proposition 1 (Condition number for ) Consider the 5-
point problem in Section 2. Let x € (R? x R?)*5 be given
image data, and w € SO(3) x S? x (R®)*5 a compati-
ble world scene which is not ill-posed. Then there exists a
unique continuous 3D reconstruction map © locally defined
around x such that ©(x) = w, and an associated uniquely
defined solution map S = VU o © from image data to essen-
tial matrices. The condition number of S can be computed
as the largest singular value of an explicit 5 x 20 matrix
whose entries are functions of w. This matrix naturally fac-
tors as a 5 X 20 matrix multiplied by a 20 x 20 matrix.

Proposition 2 (Condition number for F') Consider the 7-
point problem in Section 2. Let v € (R? x R?)*7 be given
image data, and w € R3*** x R3*4 x (R*)*7 a compati-
ble world scene which is not ill-posed. Then there exists a

unique continuous 3D reconstruction map © locally defined
around x such that ©(x) = w, and an associated uniquely
defined solution map S = WV o © from image data to essen-
tial matrices. The condition number of S can be computed
as the largest singular value of an explicit 7 x 28 matrix
whose entries are functions of w. This matrix naturally fac-
tors as a 7 x 28 matrix multiplied by the inverse of a 28 x 28
matrix.

4.2. IlI-Posed World Scenes

Here we derive geometric conditions for a world scene to
be ill-posed for the 5-point or 7-point problem. Our charac-
terizations are in terms of the existence of a particular type
of quadric surface in R3, are which should satisfy certain
properties related to the given world scene.

g

(a) () \ ()

Figure 2. An illustrative example of an ill-posed world scene in
the calibrated case. Red and blue pyramid represents two cam-
eras. Magenta points represent the given world points. The green
surface is the quadric surface satisfying the three conditions in
Theorem 1. (a) and (b) shows two different view angles. Last,
a zoomed-out view (c) shows an orange plane perpendicular to the
baseline whose intersection with the quadric surface is a circle.

Theorem 1 (Ill-posed world scenes for ) Consider

the 5-point problem in Section 2. Let w =
(R,T,Ty,...,T5) € SO@3) x $* x (R*)*® be a
world scene such that ®(w) exists where ® is as in Eq. (3).
Then w is ill-posed, i.e. D®(w) is rank-deficient, if and
only if there exists a quadric surface @ C R® such that:

e Q passes through the given world points T, ..., T's;
e Q contains the baseline of the given relative pose;

* and intersecting Q with any normal affine plane to
produces a circle.

Here the baseline { C R3 is the world line passing through
the two camera centers, i.e. { = Span(—RTT).

The second requirement implies that Q is a ruled quadric
surface (i.e., covered by an infinity family of lines). Mean-
while, the third item is a non-standard condition implying
that Q must be special within the set of ruled quadric sur-
faces, namely it must be a so-called “rectangular quadric”
[23]. See Figure 2 for visualizations of Theorem 1.

Theorem 2 (Ill-posed world scenes for F') Consider
the 7-point problem in Section 2. Let w =



(P,P,T1,...,T7) € R¥>* x R¥>** x (R®)*7 be a
world scene such that ®(w) exists where ® is as in Eq. (7).
Then w is ill-posed, i.e. D®(w) is rank-deficient, if and
only if there exists a quadric surface Q C R3 such that:

e Q passes through the given world points Ty, ..., T'z;
e and Q contains the baseline of the given relative pose.

Here the baseline { is the world line passing through the
two camera centers.

Now the conditions on the quadric surface are the same
as in Theorem 1, except the third condition (stemming from
calibration) is absent. Our proofs for Theorems 1 and 2 both
proceed by unwinding the requirement that there exists a
nonzero kernel vector for the forward Jacobian matrix.

4.3. IlI-Posed Image Data

Here we describe the locus of ill-posed image data for the
5-point and 7-point problems. These results rely heavily on
the polynomial structure present in both minimal problems
(as mentioned in Remark 1). Specifically the proofs use
known facts from algebraic geometry due to Sturmfels [34].

Compared to [34], the main contribution of this subsec-
tion is that we obtain viable computational schemes for ac-
tually visualizing the loci of ill-posed image data. For both
the cases of fundamental and essential matrices, we give
methods based on numerical homotopy continuation [32]
to solve polynomial equations. Implemented in the Julia
package HomotopyContinuation.jl [6], these terminate on a
desktop computer in ~ 10 and ~ 30 seconds, respectively.
Details are given in the supplementary materials.

Theorem 3 (Ill-posed image data for E) Consider the 5-
point problem in Section 2. Let ((v1,%1),---,(75,75)) €
(R? x R?)*5 be image data. Then x is ill-posed, i.e. there
exists some compatible world scene which is ill-posed, only
if a certain polynomial P in the entries of v1,%1,...,75
vanishes. This polynomial has degree 30 separately in each
of the points v1, . ..,7%s. In particular, if we fix numerical
values for 1,71, - . . , Y5 but keep 75 € R? as variable, then
(generically) P specializes to a degree 30 polynomial just in
ys, and its vanishing set is a degree 30 curve in the second
image plane. Moreover given the values for v1,51,...,7s,
we can compute an explicit plot of this curve in R? by plot-
ting the real roots of the curve intersected with various ver-
tical lines swept across the second image plane.

We call the curve in Theorem 3 a 4.5-point curve, be-
cause it is specified by four-and-a-half image point pairs,
namely v1,71,- .., 75. See Figure 4 for sample renderings.

Theorem 4 (Ill-posed image data for F) Consider the 7-
point problem in Section 2. Let ((71,%91);- -+, (Y7,77)) €

(R? x R%)X7 be image data. Then x is ill-posed, i.e. there
exists some compatible world scene which is ill-posed, only
if a certain polynomial P in the entries of ¥1,91,.--,77
vanishes. This polynomial has degree 6 separately in each
of the points v+, ...,%. In particular, if we fix numeri-
cal values for ~1,%1,--.,7Y; but keep 4, € R? as vari-
able, then (generically) P specializes to a degree 6 polyno-
mial just in 7,, and its vanishing set is a degree 6 curve
in the second image plane. Moreover given the values
Jor v1,%1,.. ., we can compute an explicit plot of this
curve in R? by plotting the real roots of the curve inter-
sected with various vertical lines swept across the second
image plane.

We call the curve in Theorem 4 a 6.5-point curve, be-
cause it is specified by six-and-a-half image point pairs,
namely v;,7;, .. .,77. See Figure 4 for sample renderings.

5. Experimental Results

Our experimental results are mostly on synthetic data,
although at the end of this section some illustration is shown
on real data.

Data Generation: We generate random valid configura-
tions consisting of the world scene (R7T,I‘1,...,FN),
intrinsic matrix K, and 2D point pairs on the im-
age plane (v1,%1,- - ,7v~n,7n) Which are expressed as
(Y1515 " »YnN,Yn) in pixel units. Here N = 5 or
N = 7, depending on whether the camera is calibrated or
uncalibrated. We generate random instances as follows:

* R: The QR decomposition of a random 3 x 3 matrix with
ii.d. standard normal entries gives an orthonormal matrix
sample;

«T: A uniformly sampled vector from the unit sphere with
radius as 1 meter;

* I';: uniformly sampled points with depth in [1, 20] meters;

» K: chosen so that the image size is 640 x 480, focal length is
set to 32 millimeters, and principle point is the image center;

* (v4,%:), and (y,,4,): projections of I'; onto two images.

We discard instances where any of the 2D points land
outside the image’s boundary or cases where 3D points lo-
cate at the back of the camera.

Instability Revelation: We first aim to demonstrate that
instabilities do empirically occur for both calibrated and
uncalibrated relative pose estimation minimal problems.
To this end, we generate 3000 synthetic minimal prob-
lems each for calibrated/uncalibrated as described above.
For each minimal problem instance, we add i.i.d. noise
to the image points drawn from the spherical Gaussian
N(0,0215) for different noise levels o. Then, we sepa-
rately solve the original and perturbed problems, and com-
pare them. We define an estimate to be unstable if either



of the following criteria holds: (i) Large error in the so-
lutions for the perturbed points: the error in the funda-
mental or essential matrix after normalization is defined by
e = mean(abs(abs(M./M) — 11")). Here *./” denotes
element-wise division, M is the ground-truth model, M is
the nearest estimated model, and 117 is the 3 x 3 matrix
with each element 1. Then (i) holds if e exceeds a thresh-
old 7. (ii) Change in the number of real solutions: this
behavior is troublesome because the true epipolar matrix
can disappear into the complex plane if there is a variation
in the number of real solutions.

Figure 3 (a) and (b) shows the fraction of the erroneous
estimations out of the 3000 instances at various small to
moderate noise levels and error thresholds. It is clear that
for random perturbations, the ratio of erroneous cases can-
not be ignored even when the noise is small. In practice,
given a sufficient number of correspondences, unstable in-
stances are weeded out by RANSAC through maximizing
the number of inliers. Even when all correspondences are
inliers, RANSAC is still needed to overcome the instabili-
ties of relative pose estimation.

Ratio of Erroneous Perturbations
Ratio of Erroneous Perturbations

(a) o (b :

Figure 3. Ratio of erroneous estimations out of 3000 random
synthetic minimal problems at different noise levels o and error
thresholds 7 for (a) Fundamental matrix and (b) Essential matrix.

Instability Detection: The methods described in Sec-
tion 4.3 are now applied to compute the 4.5-point degen-
erate curves for the uncalibrated case and 6.5-point curves
for the calibrated case. The scenario is that 4(6) correspon-
dences are fixed and for the 5th(7th) correspondence the
point on one image is fixed and the locus of all unstable
points is derived as a curve. Figure 4 shows several sam-
ple curves plotted on the second image plane along with the
given image points. For the uncalibrated case, the degree
of the 6.5-point curve is 6, while for calibrated case the de-
gree of the 4.5-point curve is 30. The curves split the im-
age plane into different connected components, wherein the
number of real solutions is locally constant. In the language
of [4], the curves are the “real discriminant loci”.

In another experiment, we separate the 3000 random
synthetic minimal problems into three categories: stable
cases, unstable cases, and the borderline cases (given that
the condition number is a continuous indication of the sta-

400 400
300 300 T~
200 200

100

(©) % zoo. 400 600 (d) 4

Figure 4. Sample results for the X.5-point degenerate curve in
Theorems 3 and 4. Correspondences used in computing the curve
are shown as green; the red points are the 5th/7th correspondence
for calibrated/uncalibrated relative pose estimation, respectively.
The red curve is the X.5-point curve computed using homotopy
continuation. Stability is directly correlated to distance of the sec-
ond point from the curve. (a) A stable configuration for uncali-
brated estimation. (b) An unstable configuration for uncalibrated
estimation. (c) A stable configuration for calibrated case. (d) An
unstable configuration for calibrated case.
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Figure 5. Histogram of distance from the last point to the degen-
erate curve sorted by: stable cases (green), unstable cases (red)
and borderline cases (blue). (a) Uncalibrated estimation. (b) Cali-
brated estimation. Stable and unstable categories are separated by
distance to the curve.

bility). Here, an instance is sorted according to the the num-
ber of erroneous estimates among n = 20 perturbations,
denoted by 7. If n € [0,n/3], we count the instance as
stable; if 71 € [2n/3, n|, we count the instance as unstable;
and if 2 € [n/3,2n/3], we count the instance as borderline.
In this experiment, we use 7 = 0.5 and 0 = 0.3. For the
uncalibrated case, the average distance from the 7th point
to the 6.5-point curve is 2.35 pixels among unstable cases,
while for the stable cases it is 22.12 pixels. For the cali-
brated case, the average distance from the 5th point to the
4.5-point curve is 0.32 pixels for unstable cases, while for
the stable case it is is 14.95 pixels. From these statistical
differences (see Figure 5), we observe that the stable and
unstable categories can be distinguished by thresholding on
the distance between the last point to the X.5-point curve.
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Figure 6. Illustrative result indicating the stability of the degen-
erate curve under various noise shows remarkable stability of the
curve. (a) The degenerate curve of a stable uncalibrated configu-
ration. (b) The degenerate curve of an unstable uncalibrated con-
figuration. Curves for calibrated estimation are shown in the sup-
plementary materials.
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Figure 7. Histogram of the difference between two distances: from
the target point to the X.5-point curve without perturbation; and
from the target point to the X.5-point curve with perturbation on
the other points.

Stability of Instability: Here we show that the degenerate
curve is mostly stable to the presence of the noise so that our
idea is not only theoretically correct, but can also be used
in the practical setting of noisy images. Figure 6 shows
some examples of the X.5-curves when adding noise to the
corresponding points. The distribution of the log-difference
between distance from the point to the curve in the noiseless
and noisy case, Figure 7, showing the perturbation does not
drastically change the distance.

Illustration with Real Data: Based on the above, the
X.5-point curve can be used with real images to detect near-
degenerate minimal cases. To show this, we use image pairs
given by the RANSAC 2020 dataset [25] where standard
point correspondences are available. Figure 8 shows that for
a solution with large error compared to the ground-truth, the
remaining selected point is close to the degenerate curve.
More results are in the supplementary materials.

In another test with real data, we randomly took 1000
inlier minimal samples from each image pair in the dataset
that had more than 100 inlier correspondences. We found
that only 50% of these minimal configurations had large
distances to the degenerate curve, so about half were un-
stable. However, after running RANSAC on all inliers and
taking the winning hypothesis, we found about 90% of the
winning hypotheses had large distances to the curve. This
shows, indeed, that RANSAC selects stable configurations.

Figure 8. An example with real data to demonstrate an unstable
minimal configuration with all-inlier correspondences. (a) The
ground-truth epipolar geometry of a pair of images. (b) The closest
solution found by the 7-point algorithm give 7 inliers. (c) Zoomed-
in image showing that the remaining point is close to the degener-
ate curve, indicating that this is poorly-conditioned data.

6. Conclusion

In this paper, we developed a general framework for an-
alyzing the numerical instabilities of minimal problems in
multiview geometry. We applied this to the problem of rel-
ative pose estimation, namely, the popular 5-point and 7-
point problems. We derived condition number formulas,
and we characterized the ill-posed world and image scenes.

Numerical experiments on synthetic and real data and
supported our theoretical findings. We observed numeri-
cal instabilities for image data landing close to the 4.5- and
6.5-point degenerate curves, which are used to describe ill-
posed problem instances in Theorems 3 and 4.

This paper related the numerical instabilities of minimal
problems to the function of RANSAC inside SfM recon-
structions. Given all inlier data, RANSAC is still needed to
overcome the ill-conditioning of relative pose estimation.

In future work, we could apply our theory to other min-
imal problems, e.g., partially calibrated relative pose esti-
mation or three-view geometry. In addition, we would like
to develop a real-time means of recognizing and filtering
out poorly-conditioned image data. Such could be applied
before solving minimal problems and running RANSAC.
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