


of veridical correspondences available if the ratio of outliers

is low. In an experiment with no outliers, either with syn-

thetic data (see Section 5) or real data (see Figure 1), the

process can still frequently fail! This is mysterious, unless

the role of RANSAC goes beyond weeding out the outliers.

Indeed, we will argue that a main role for RANSAC is to

stabilize the estimation process, without denying its role in

dealing with outliers. We will show that the process of es-

timating pose from a minimal problem is typically unstable

to the noise, with a gradation of instability depending on the

specific choice of 5 points or 7 points. The role of RANSAC

is to integrate non-selected correspondences to improve the

stability of the estimation process outcome: if a large num-

ber of non-selected candidate correspondences agree, then

the hypothesis is both free of outliers but – perhaps more

importantly – it is an estimate stable to typical image noise.

This paper inspects the general issue of numerical stabil-

ity in minimal problems in multiview geometry. We build

a framework that connects well-conditioned minimal point

configurations with the condition number of the inverse Ja-

cobian of a forward projection map. Using this framework,

we compute condition number formulas for the 5-point and

7-point minimal problems. Further, we investigate the is-

sue of ill-posedness, i.e. when the condition number is in-

finite. We obtain characterizations for a world scene to be

ill-posed, and requirements for a minimal image point cor-

respondences configuration to be ill-posed.

Much analysis for the degeneracy of two-view geometry

has already appeared, e.g., [14,17,20,23]. However, this lit-

erature has studied when there are multiple solutions to the

3D reconstruction problem. By contrast, we focus on when

there exists an unboundedly unstable solution. This analysis

is different from previous literature in its focus on minimal

problems, where one typically has multiple real solutions.

Thus, our theory applies to multiview geometry as it is used

in practice: minimal problems solved during RANSAC.

Along with this theoretical analysis, we propose a way

to measure the stability of a given minimal image point cor-

respondence set, namely, by measuring the distance from

one point on one image to a “degenerate curve” on this im-

age computed using the other point correspondences. This

distance gives a means of evaluating the stability of the

minimal hypothesis. Our proposal to gauge the stability

of a given hypothesis suggests a way to increase the speed

and the robustness of RANSAC: by only testing hypotheses

which come from sufficiently well-conditioned image data.

The rest of the paper is organized as follows. Section 2

reviews two classic problems for estimating the relative

pose, namely the 5-point problem for calibrated cameras

and 7-point problem for uncalibrated cameras. Section 3

introduces a novel theoretical framework for analyzing the

conditioning of an arbitrary minimal problems. Section 4

presents the specific results of our analysis for relative pose

estimation, characterizing ill-posed world scenes and im-

age data as well as proposing a potential way for testing

for well-conditioned image data. Finally, Section 5 shows

experimental results on synthetic and real data, as a proof-

of-concept for our theory and its connection to RANSAC.

2. Minimal Problems for Relative Pose Estima-

tion

This section reviews the relevant setup for the 5-point

and 7-point minimal problems. The terms in bold will be

used again in the general framework of the next section.

Essential Matrices and the 5-Point Problem: Let W de-

note world scene space, consisting of the relative pose be-

tween two calibrated pinhole cameras together with five

world points:

W = SO(3)×S
2× (R3)×5 = {(R, T̂,Γ1, . . . ,Γ5)}. (1)

Here SO(3) = {R ∈ R
3×3 : RR

⊤ = R
⊤
R = I} is the

group of rotation matrices, S2 = {T̂ ∈ R
3 : ∥T̂∥2 = 1} is

the unit sphere (representing the direction of the translation

in the relative pose) and Γi (for i ∈ {1, .., 5}) are the 3D

points. Meanwhile, let X denote the image data space,

consisting of five image point correspondences:

X =
(
R

2 × R
2
)×5

= {(γ1, γ̄1), . . . , (γ5, γ̄5)}, (2)

where γi ∈ R
2 and γ̄i ∈ R

2 represent corresponding points

on the two image planes. Next, let Φ denote the forward

map, projecting the given world points via the calibrated

cameras [I 0] ∈ R
3×4 and [R T̂] ∈ R

3×4, i.e.,

Φ
(
R, T̂,Γ1, . . . ,Γ5

)
= ((γ1, γ̄1), . . . , (γ5, γ̄5)), (3)

where γi = π(Γi) and γ̄i = π(RΓi+T̂) where π is projec-

tion of the 3D points onto 2D images. The relation between

corresponding points on the two images is captured via es-

sential matrix E as γ̄TEγ = 0, where E ∈ R
3×3. Thus,

we define the epipolar space as the manifold of real essen-

tial matrices, which are characterized by ten cubic equations

vanishing [9] or in terms singular values as follows:

Y = {E ∈ P(R3×3) : 2EE⊤E − tr(EE⊤)E = 0, det(E) = 0}

= {E ∈ P(R3×3) : σ1(E) = σ2(E) > σ3(E) = 0}. (4)

Last, the epipolar map Ψ is defined as computing an es-

sential matrix from a world scene using the relative pose:

Ψ
(
R, T̂,Γ1, . . . ,Γ5

)
= E = [T̂]×R ∈ P(R3×3). (5)

Here [T̂]× ∈ R
3×3 is the usual skew matrix representation

of cross product with the vector T̂ ∈ R
3, as in [15, Sec. 9.6].



Then, 5-point problem is the task of determining the pos-

sible essential matrices E given the five image point pairs,

i.e., computing Ψ(Φ−1(·)). In [26], David Nister devel-

oped a solver for this problem. It boils down to computing

the real roots of a degree 10 univariate polynomial, giving

≤ 10 real solutions for the essential matrix.

Fundamental Matrices and the 7-Point Problem: For

the case of uncalibrated pinhole cameras, the world scene

space W is the space of the relative poses together with

seven world points:

W = R
3×4×R

3×4×(R3)×7 = {P, P̄,Γ1, . . . ,Γ7)}. (6)

Here Γi (for i ∈ {1, .., 7}) are the 3D points and P and

P̄ are the 3 × 4 projection matrices representing the two

cameras, which are defined to be P = K[R|T̂] where K
is the intrinsic matrix of the camera. Then, the image data

space X is the space of seven image point correspondences,

i.e., X = {(γ1, γ̄1), . . . , (γ7, γ̄7)}. The forward map Φ
is defined to project the world points via the uncalibrated

cameras via

Φ(P, P̄,Γ1, ..,Γ7) = ((γ1, γ̄1), . . . , (γ7, γ̄7)), (7)

where γi = π(PΓi) and γ̄i = π(P̄Γi) with π the pro-

jection from 3D to 2D image. The relation between image

correspondences is described by a 3×3 rank-2 fundamental

matrix F via γ̄T
i Fγi = 0. Here the epipolar space consists

of the manifold of real fundamental matrices i.e.,

Y = {F ∈ P(R3×3) : rank(F ) = 2}. (8)

The epipolar map Ψ sends a world scene to the fundamen-

tal matrix associated to the projection matrices [15, Eq. 9.1].

Then, the 7-point problem is the task of determining

the possible fundamental matrices F given the seven image

point pairs, i.e., computing Ψ(Φ−1(·)). The solutions are

obtained by computing the real roots of a cubic univariate

polynomial, see [15, Sec. 11.1.2].

3. Theoretical Framework

In this section, we present a novel theoretical framework

for analyzing the numerical stability of minimal problems in

multiview geometry, which generalizes the notation defined

in Section 2. The relevant mathematical structure are Rie-

mannian manifolds, which we use to describe the totality

of world scenes, image data, and epipolar quantities to be

estimated. Riemannian geometry helps, because it allows

us to discuss intrinsic distances. Our approach uses tangent

spaces, differentials, and the inverse function theorem.

We build on the theory of condition number and ill-posed

inputs initiated by Demmel [10], and then extended by Bur-

gisser [7]. We tailored the theory to the setting of minimal

problems, where there exist world scenes “in-between” the

input image data and the output epipolar quantities.

3.1. Spaces and Maps

Let W,X , Y be Riemannian manifolds, with geodesic

distances dW(·, ·), dX (·, ·), dY(·, ·), tangent spaces denoted

by T (W, w), T (X , x), T (Y, y) for points w ∈ W , x ∈ X ,

y ∈ Y , and inner products on said tangent spaces denoted

by ⟨·, ·⟩W,w, ⟨·, ·⟩X ,x, ⟨·, ·⟩Y,y . In applications to multiview

geometry, we refer to these as

• W the world scene space;

• X the image data space;

• Y the epipolar space.

We restrict to the case dim(W) = dim(X ) to model mini-

mal problems in multiview geometry. See Remark 1 below.

Next, assume we are given a differentiable map Φ from

world scenes to image data whose domain is an open dense

subset of W . We indicate the situation using a dashed

right arrow:

Φ : W 99K X . (9)

Assume that the image Φ(Dom(Φ)) contains an open dense

subset of the codomain X ; we summarize this property by

calling Φ dominant. We call Φ the forward map.

Furthermore, assume that we are provided with a differ-

entiable map from world scenes to epipolar matrices, again

defined only on an open dense subset of W:

Ψ : W 99K Y. (10)

Again, assume Ψ is dominant. We call Ψ the epipolar map.

Now given image data x ∈ X , we call a function Θ :
X ⊇ Dom(Θ) → W a 3D reconstruction map locally

defined around x if Dom(Θ) is an open neighborhood of x
in X and Θ is a section of the forward map, that is

Φ ◦Θ = idDom(Θ) . (11)

In this case, composing Θ with the epipolar map gives a

(locally defined) map from image data to the epipolar space:

S := Ψ ◦Θ : X ⊇ Dom(Θ) → Y. (12)

We call S a solution map (locally defined around x). The

name makes sense because, in minimal problems in vision,

the quantity we want to compute is typically an epipolar

matrix/tensor while the input is typically image data.

Remark 1 Assume the above setup. Then minimal prob-

lems in multiview geometry are modeled as follows: given

image data x ∈ X , we want to compute all compatible real

epipolar matrices/tensors, that is

Ψ(Φ−1(x)) = {Ψ(w) : w ∈ W,Φ(w) = x} ⊆ Y. (13)

These solutions become hypotheses in RANSAC. When we

call a problem “minimal”, what we mean is the following.



For x in an open dense subset of X , the output Ψ(Φ−1(x))
is a finite set (and not always empty). Often minimality

is a consequence of additional structure, which is not re-

quired for much of this paper. Typically W,X ,Y can be

viewed as quasi-projective algebraic varieties and Φ, Ψ
are algebraic functions [13]. Then due to the assumption

dim(W) = dim(X ) and the dominance of Φ, general facts

in algebraic geometry imply that generic fibers of Φ are fi-

nite sets, so the problem is minimal. See e.g. [12, Def. 2].

We want to analyze how sensitive the output of the solution

map S(x) is to realistic levels of noise in the input x. We

want to develop quantitative condition number formulas and

describe the locus of ill-posed inputs, where a solution map

may not even exist locally or has infinite condition number.

3.2. Ill­Posed Locus

Given image data x ∈ X and a prescribed world scene

w ∈ W such that Φ(w) = x, the next lemma shows there

exists a unique continuous 3D reconstruction map Θ with

Θ(x) = w. Further, Θ is continuously differentiable (C1).

Lemma 1 Assume that the forward map Φ is C1, and that

at the world scene w ∈ W the forward map differentiates to

an isomorphism on tangent spaces. That is, the differential

DΦ(w) : T (W, w) → T (X ,Φ(w)) (14)

is a linear isomorphism. Then there exist open neigh-

borhoods U of w in W and V of Φ(w) in X such that

Φ : U → V is bijection, the inverse function is C1, and

D
(
(Φ|U )

−1
)
(Φ(w)) = (DΦ(w))

−1
. (15)

The lemma follows from the inverse function theorem for

manifolds [21]. In words: if the forward Jacobian DΦ(w) is

invertible, then the forward map Φ is locally invertible and

its local inverse is differentiable with Jacobian (DΦ(w))−1.

We now come to a central concept in our framework:

Definition 1 We say that a world scene w ∈ W is ill-posed

if the differential DΦ(w) is not invertible. We say that im-

age data x ∈ X is ill-posed if there exists a world scene

w ∈ Φ−1(x) such that w is ill-posed.

Ill-posed world scenes are those failing the condition in the

above lemma; therefore, a priori we do not know if the

forward map is locally invertible around ill-posed world

scenes. Meanwhile ill-posed image data are those such that

there is at least one compatible world scene that is ill-posed;

hence, there could be problematic behavior around an ill-

posed world scene (We emphasize that other world scenes

in Φ−1(x) need not be ill-posed). In a moment, we will see

that all of the numerical instabilities in minimal problems

must occur at (or near) the ill-posed scenes and image data.

3.3. Condition Number

Our other central theoretical concept is the condition

number. We first explain this quite generally (and intu-

itively), following [7, Ch. 14]. To this end, let G : X ⊇
Dom(G) → Y be any map defined on an open neighbor-

hood of x in X .

Definition 2 The condition number of G at x is defined by

cond(G, x) := lim
δ→0+

sup
x̃∈X

dX (x̃,x)<δ

dY (G(x̃), G(x))

dX (x̃, x)
. (16)

In a slogan: the condition number captures the limiting

worst-case amplification of input error in x that the func-

tion G can produce in its output G(x), when distances are

measured according to the intrinsic metrics on X and Y .

If G is differentiable, we have a more explicit formula.

Lemma 2 If G is differentiable then the condition num-

ber of G at x equals the operator norm of the differential

DG(x) : T (X , x) → T (Y, y), i.e.

cond(G, x) = max
ẋ∈T (X ,x)
∥ẋ∥=1

∥DG(x)(ẋ)∥ =: ∥DG(x)∥, (17)

where the two norms in the middle quantity are induced by

the Riemannian inner products ⟨·, ·⟩X ,x and ⟨·, ·⟩Y,G(x).

This is [7, Prop. 14.1], and proven using Taylor’s theorem.

The lemma reduces computing the condition number of a

differentiable map to computing the leading singular value

of its Jacobian matrix written with respect to orthonormal

bases on the tangent spaces T (X , x) and T (Y, G(x)).
Here we are most interested in the condition number of

solution maps for minimal problems as in Eq. (12). Putting

the previous two lemmas together with the chain rule gives:

Lemma 3 Let S = Ψ ◦Θ : X ⊇ Dom(Θ) → Y be a solu-

tion map as in (12) defined around the image data x ∈ X .

Let w = Θ(x) ∈ W be the corresponding world scene. As-

sume that w is not ill-posed, i.e. DΦ(w) is invertible. Then,

the condition number of S at x is finite and given by

cond(S, x) = ∥DΨ(w) ◦DΦ(w)−1∥. (18)

In particular, cond(S, x) can be infinite only if x is ill-

posed.

3.4. Relation Between Ill­Posed Loci and Condition
Number

As shown in Lemma 3, the condition number at x ∈ X
of a varying epipolar matrix/tensor can be infinite only if x
is ill-posed as in Definition 1. If x is ill-posed, the corre-

sponding world scene w = Θ(x) ∈ W such that DΦ(w)





(P, P̄,Γ1, . . . ,Γ7) ∈ R
3×4 × R

3×4 × (R3)×7 be a

world scene such that Φ(w) exists where Φ is as in Eq. (7).

Then w is ill-posed, i.e. DΦ(w) is rank-deficient, if and

only if there exists a quadric surface Q ⊆ R
3 such that:

• Q passes through the given world points Γ1, . . . ,Γ7;

• and Q contains the baseline of the given relative pose.

Here the baseline ℓ is the world line passing through the

two camera centers.

Now the conditions on the quadric surface are the same

as in Theorem 1, except the third condition (stemming from

calibration) is absent. Our proofs for Theorems 1 and 2 both

proceed by unwinding the requirement that there exists a

nonzero kernel vector for the forward Jacobian matrix.

4.3. Ill­Posed Image Data

Here we describe the locus of ill-posed image data for the

5-point and 7-point problems. These results rely heavily on

the polynomial structure present in both minimal problems

(as mentioned in Remark 1). Specifically the proofs use

known facts from algebraic geometry due to Sturmfels [34].

Compared to [34], the main contribution of this subsec-

tion is that we obtain viable computational schemes for ac-

tually visualizing the loci of ill-posed image data. For both

the cases of fundamental and essential matrices, we give

methods based on numerical homotopy continuation [32]

to solve polynomial equations. Implemented in the Julia

package HomotopyContinuation.jl [6], these terminate on a

desktop computer in ≈ 10 and ≈ 30 seconds, respectively.

Details are given in the supplementary materials.

Theorem 3 (Ill-posed image data for E) Consider the 5-

point problem in Section 2. Let ((γ1, γ̄1), . . . , (γ5, γ̄5)) ∈
(R2 × R

2)×5 be image data. Then x is ill-posed, i.e. there

exists some compatible world scene which is ill-posed, only

if a certain polynomial P in the entries of γ1, γ̄1, . . . , γ̄5
vanishes. This polynomial has degree 30 separately in each

of the points γ1, . . . , γ̄5. In particular, if we fix numerical

values for γ1, γ̄1, . . . , γ5 but keep γ̄5 ∈ R
2 as variable, then

(generically) P specializes to a degree 30 polynomial just in

y5, and its vanishing set is a degree 30 curve in the second

image plane. Moreover given the values for γ1, γ̄1, . . . , γ5,

we can compute an explicit plot of this curve in R
2 by plot-

ting the real roots of the curve intersected with various ver-

tical lines swept across the second image plane.

We call the curve in Theorem 3 a 4.5-point curve, be-

cause it is specified by four-and-a-half image point pairs,

namely γ1, γ̄1, . . . , γ5. See Figure 4 for sample renderings.

Theorem 4 (Ill-posed image data for F ) Consider the 7-

point problem in Section 2. Let ((γ1, γ̄1), . . . , (γ7, γ̄7)) ∈

(R2 × R
2)×7 be image data. Then x is ill-posed, i.e. there

exists some compatible world scene which is ill-posed, only

if a certain polynomial P in the entries of γ1, γ̄1, . . . , γ̄7

vanishes. This polynomial has degree 6 separately in each

of the points γ1, . . . , γ̄7. In particular, if we fix numeri-

cal values for γ1, γ̄1, . . . ,γ7 but keep γ̄7 ∈ R
2 as vari-

able, then (generically) P specializes to a degree 6 polyno-

mial just in γ̄7, and its vanishing set is a degree 6 curve

in the second image plane. Moreover given the values

for γ1, γ̄1, . . . ,γ7, we can compute an explicit plot of this

curve in R
2 by plotting the real roots of the curve inter-

sected with various vertical lines swept across the second

image plane.

We call the curve in Theorem 4 a 6.5-point curve, be-

cause it is specified by six-and-a-half image point pairs,

namely γ1, γ̄1, . . . ,γ7. See Figure 4 for sample renderings.

5. Experimental Results

Our experimental results are mostly on synthetic data,

although at the end of this section some illustration is shown

on real data.

Data Generation: We generate random valid configura-

tions consisting of the world scene (R, T̂,Γ1, . . . ,ΓN ),
intrinsic matrix K, and 2D point pairs on the im-

age plane (γ1, γ̄1, · · · , γN , γ̄N ) which are expressed as

(γ1, γ̄1, · · · ,γN , γ̄N ) in pixel units. Here N = 5 or

N = 7, depending on whether the camera is calibrated or

uncalibrated. We generate random instances as follows:

• R: The QR decomposition of a random 3 × 3 matrix with

i.i.d. standard normal entries gives an orthonormal matrix

sample;

• T̂: A uniformly sampled vector from the unit sphere with

radius as 1 meter;

• Γi: uniformly sampled points with depth in [1, 20] meters;

• K: chosen so that the image size is 640×480, focal length is

set to 32 millimeters, and principle point is the image center;

• (γi, γ̄i), and (γ
i
, γ̄

i
): projections of Γi onto two images.

We discard instances where any of the 2D points land

outside the image’s boundary or cases where 3D points lo-

cate at the back of the camera.

Instability Revelation: We first aim to demonstrate that

instabilities do empirically occur for both calibrated and

uncalibrated relative pose estimation minimal problems.

To this end, we generate 3000 synthetic minimal prob-

lems each for calibrated/uncalibrated as described above.

For each minimal problem instance, we add i.i.d. noise

to the image points drawn from the spherical Gaussian

N (0, σ2I2) for different noise levels σ. Then, we sepa-

rately solve the original and perturbed problems, and com-

pare them. We define an estimate to be unstable if either



of the following criteria holds: (i) Large error in the so-

lutions for the perturbed points: the error in the funda-

mental or essential matrix after normalization is defined by

e = mean(abs(abs(M̄./M) − 11
⊤)). Here “./” denotes

element-wise division, M is the ground-truth model, M̄ is

the nearest estimated model, and 11
⊤ is the 3 × 3 matrix

with each element 1. Then (i) holds if e exceeds a thresh-

old τ . (ii) Change in the number of real solutions: this

behavior is troublesome because the true epipolar matrix

can disappear into the complex plane if there is a variation

in the number of real solutions.

Figure 3 (a) and (b) shows the fraction of the erroneous

estimations out of the 3000 instances at various small to

moderate noise levels and error thresholds. It is clear that

for random perturbations, the ratio of erroneous cases can-

not be ignored even when the noise is small. In practice,

given a sufficient number of correspondences, unstable in-

stances are weeded out by RANSAC through maximizing

the number of inliers. Even when all correspondences are

inliers, RANSAC is still needed to overcome the instabili-

ties of relative pose estimation.

(a) (b)

Figure 3. Ratio of erroneous estimations out of 3000 random

synthetic minimal problems at different noise levels σ and error

thresholds τ for (a) Fundamental matrix and (b) Essential matrix.

Instability Detection: The methods described in Sec-

tion 4.3 are now applied to compute the 4.5-point degen-

erate curves for the uncalibrated case and 6.5-point curves

for the calibrated case. The scenario is that 4(6) correspon-

dences are fixed and for the 5th(7th) correspondence the

point on one image is fixed and the locus of all unstable

points is derived as a curve. Figure 4 shows several sam-

ple curves plotted on the second image plane along with the

given image points. For the uncalibrated case, the degree

of the 6.5-point curve is 6, while for calibrated case the de-

gree of the 4.5-point curve is 30. The curves split the im-

age plane into different connected components, wherein the

number of real solutions is locally constant. In the language

of [4], the curves are the “real discriminant loci”.

In another experiment, we separate the 3000 random

synthetic minimal problems into three categories: stable

cases, unstable cases, and the borderline cases (given that

the condition number is a continuous indication of the sta-

(a) (b)

(c) (d)

Figure 4. Sample results for the X.5-point degenerate curve in

Theorems 3 and 4. Correspondences used in computing the curve

are shown as green; the red points are the 5th/7th correspondence

for calibrated/uncalibrated relative pose estimation, respectively.

The red curve is the X.5-point curve computed using homotopy

continuation. Stability is directly correlated to distance of the sec-

ond point from the curve. (a) A stable configuration for uncali-

brated estimation. (b) An unstable configuration for uncalibrated

estimation. (c) A stable configuration for calibrated case. (d) An

unstable configuration for calibrated case.

(a)

(b)

Figure 5. Histogram of distance from the last point to the degen-

erate curve sorted by: stable cases (green), unstable cases (red)

and borderline cases (blue). (a) Uncalibrated estimation. (b) Cali-

brated estimation. Stable and unstable categories are separated by

distance to the curve.

bility). Here, an instance is sorted according to the the num-

ber of erroneous estimates among n = 20 perturbations,

denoted by n̂. If n̂ ∈ [0, n/3], we count the instance as

stable; if n̂ ∈ [2n/3, n], we count the instance as unstable;

and if n̂ ∈ [n/3, 2n/3], we count the instance as borderline.

In this experiment, we use τ = 0.5 and σ = 0.3. For the

uncalibrated case, the average distance from the 7th point

to the 6.5-point curve is 2.35 pixels among unstable cases,

while for the stable cases it is 22.12 pixels. For the cali-

brated case, the average distance from the 5th point to the

4.5-point curve is 0.32 pixels for unstable cases, while for

the stable case it is is 14.95 pixels. From these statistical

differences (see Figure 5), we observe that the stable and

unstable categories can be distinguished by thresholding on

the distance between the last point to the X.5-point curve.
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