
The Interplay of Femtoscopic and Charge-Balance Correlations

Scott Pratt and Karina Martirosova

Department of Physics and Astronomy and Facility for Rare Isotope Beams
Michigan State University, East Lansing, MI 48824 USA

(Dated: April 28, 2022)

Correlations driven by the constraints of local charge conservation have been shown
to provide insight into the chemical evolution and di↵usivity of the high-temperature
matter created in ultra-relativistic heavy ion collisions. Two-particle correlations
driven by final-state interactions have allowed the extraction of critical femtoscopic
space-time information about the expansion and dissolution of the same collisions.
Whereas correlations from final-state interactions mainly appear at small relative
momenta, a few tens of MeV/c, charge-balance correlations extend over a range of
hundreds of MeV/c. In nearly all previous analyses, this separation of scales is used
to focus solely on one class or the other. The purpose of this study is to quantitatively
understand the degree to which correlations from final-state interactions distort the
interpretation of charge-balance correlations and vice versa.

I. INTRODUCTION

Charge balance correlations are rather simple to understand. For each observed charge, there
exists either an additional opposite charge or one fewer charges of the same sign. Because charge
is locally conserved, the balancing charge should be found nearby in coordinate space, and because
of collective flow, this correlation is mapped onto relative momentum. A charge balance function
(BF) binned by relative rapidity and relative azimuthal angle describes the probability of finding
the balancing charge at some relative rapidity, �y, and relative angle ��.
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The like-sign subtraction e↵ectively identifies the location of the balancing charge on a statistical
basis. Thus, B(�y,��) represents the conditional probability density for finding a balancing charge
(either an opposite charge or the lowered chance of observing a charge of the same sign) separated
by �� and �y given the observation of a charge somewhere in the detector. BFs can also be
indexed by hadron species, Bh|h0(�y,��). This then describes the probability of first observing a
hadron species h

0 or h̄
0, then finding a particle of opposite charge of species h or h̄. Due to the

experimental di�culty in identifying hadrons which have decayed, the choice of h and h
0 is often

confined to pions, kaons, protons, and their antiparticles.
Even if two balancing charges are emitted from nearly the same point in coordinate space,

they will separate in momentum space due to thermal motion. This separation in momentum
space would be of the order of a few hundred MeV/c, or equivalently . 0.5 radians or units of
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rapidity. If the balancing charges were created early and had the opportunity to di↵use far from
one another in coordinate space, their final separations in momentum space might extend to twice
that amount. The mean width of the BF, h��i or h�yi, i.e. the average separation of balancing
charges, provides insight into the di↵usivity or of the chemical evolution. Because h�yi is relatively
more sensitive to whether the particles were created early than h��i [1], one can constrain both
the chemistry and di↵usivity by BFs by analyzing BFs in terms of both �y and �� [2–4]. This
sensitivity is amplified by considering BFs indexed by hadronic species. For example, because
strangeness is largely produced early in the collisions, kaon BFs, BK|K(��,�y), are especially
useful for extracting the di↵usivity [4]. Numerous varieties of BFs have now been measured in
heavy-ion collisions both by the STAR Collaboration at the Relativistic Heavy Ion Collider (RHIC)
[5–18] and by the ALICE Collaboration at the Large Hadron Collider (LHC) [19–26]. At lower
energies, the NA49 Collaboration has also measured BFs at CERN SPS energies [27, 28]. Detailed
theoretical models describing the dynamics of charge correlations, superimposed onto state-of-the-
art dynamical descriptions of the bulk evolution, have been able to quantitatively reproduce several
features of measurements at both RHIC and the LHC [4, 29–31]. The inferred di↵usivity and
chemistry from comparing models to data appears consistent with expectations from lattice gauge
theory [32–34].

Correlations at small relative momentum are dominated by the e↵ects of final-state interactions
(FSI). The correlations provide detailed spatial and geometric information describing the emission
of final-state hadrons. Analyses of this class of correlations is often referred to as femtoscopy.
Femtoscopic correlations are typically predicted through the Koonin formula [35, 36],

Cab(~pa, ~pb) ⌘
Nab(~pa, ~pb)

Na(~pa)Nb(~pb)
, (2)

⇡
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Here, sa(r, ~p) describes the probability of emitting a hadron of type a from space-time point r with
momentum ~p, and �(~q,�~r) is the outgoing wave function for two particles with relative separation
~r and relative momentum ~q = (~p1�~p2)/2, as measured in the center-of-mass of the pair frame. The
primed coordinates represent the positions of emission in that frame. The function Sab(~r) represents
the probability that two particles, one of type a and one of type b, are emitted at points separated
by ~r in the two-particle center-of-mass frame. It is often referred to as the “source function”, though
that is a misnomer because it does not represent the probability density of the emission function.
More accurately, if you assume ~q

0 is small, its dependence on ~r represents the probability that two
particles moving with the same velocity in the asymptotic state would be separated by ~r. Generally,
the goal of femtoscopic analyses is to extract information about Sab(~r) from measurements of Cab(~q).

There are variants of this formula, but they tend to all become equal in the limit that ~q is small
[37]. The correlation would be unity if the relative wave function were that of a plane wave, but
due to final-state interactions and symmetrization of the outgoing wave function, |�(~q),~r)|2 di↵ers
from unity and provides a correlation which is stronger when the relative positions, ~r, are smaller.
Thus, one gains insight into the spatial extent of s(r, ~p). For identical pions, the wave function is
symmetrized. If one neglects the Coulomb and strong interaction between the pions the squared
wave function is then

|�(~q,~r)|2 = 1 + cos(2~q · ~r), (3)

and one can Fourier transform the correlation function to determine the source function, as long as



3

one assumes that there is little dependence of Sab on q. One could then extract both size and shape
information about Sab(~r).

The space-time characteristics of the emission provide insight into the equation of state [38, 39].
For example, if the equation of state is soft, the expansion is slow and there is an evaporative
nature to the emission. In that case, two pions of identical velocity, ~v, might be separated by a
large distance due to one pion being emitted early and the other coming late. The spatial separation
is large along the direction of ~v, while being more compact in the other directions. A more explosive
source would result in a more compact spread. Further, for pions with higher velocity, compared
to the expansion velocity, emission is increasingly confined to the surface of the expanding fireball.
This results in source sizes that fall with increasing transverse momentum [40].

Femtoscopic correlations are driven by three types of FSI: symmetrization or anti-symmetrization
of wave functions of identical particles, strong interaction, and Coulomb repulsion. Symmetrization
e↵ects extend out to relative momenta of 1/R, where R ⇠ 5 fm is a typical characteristic size.
This contribution to the correlation largely vanishes for |~q| & 50 MeV/c. Strong interactions at low
relative momentum are especially important because of the reduced phase space of the background.
The two-proton correlation function has a peak at q ⇠ 22 MeV/c. The e↵ect of strong interactions
at higher relative momentum tends only to appear for well defined resonances, but those resonances,
unlike the pp peak at q ⇠ 22 MeV/c, are typically included in BF analyses. The third class of FSI
derives from the Coulomb interaction. For the Coulomb interaction the correlation extends to larger
relative momentum, because the squared wave function behaves as 1 ±me

2
/q

2
R at larger q. This

is small due to the factor e2, but it becomes the dominant source of FSI at large q. Compared to
correlation functions, BFs have an extra factor describing the background probability of observing
a particle in the bin. If binning by the magnitude of the relative momentum, Qinv, this factor grows
quadratically with Qinv due to phase space. Thus, compared to correlations functions, at least
visually, BFs tend to magnify the strength of the Coulomb tail. Thus, special care must be given to
Coulomb correlations when considering the e↵ects of FSI on BFs. This includes accounting for the
fact that any charged particle is accompanied by an oppositely charged balancing particle, which
e↵ectively screens the Coulomb interaction with third bodies [41].

A fourth type of interaction a↵ects both charge-balance and femtoscopic correlations. That is
annihilation. Within the context of a BF, annihilation is simply a negative source for pair creation.
This leads to a dip in the BF at small relative momentum. However, if the annihilation involves
particles, e.g. a proton and an anti-proton that would not have interacted with other particles had
they annihilated, the annihilation might have been considered as part of the final-state interaction
wave function. For example, Eq. (2) could apply a relative wave function calculated from a complex
optical potential [42, 43]. In optical models of elastic scattering, the imaginary part of the potential
accounts for the absorption, i.e. the inelastic channels. Here, that component would account for the
annihilation of pp̄ into mesons. Accounting for annihilation is complicated by the fact that particles
can be regenerated. i.e., if a baryon and anti-baryon can decay to five hadrons, five hadrons can
combine to form a baryon anti-baryon pair [44–47]. At chemical equilibrium, the rate and the
inverse rates are equal. But at final breakup, chemical equilibrium no longer holds and annihilation
is more prevalent. Given the complexity and di�culty of including annihilation, it will not be
considered in this manuscript, but instead is being pursued in a separate study.

Femtoscopic correlations are constructed to be dimensionless quantities, whereas BFs have units
of density per unit rapidity, relative angle, or relative momentum. This comes from the fact that
Eq. (2) has two powers of Nh(~p) in the denominator whereas the definition of BFs in Eq. (1) has
one power. The next section describes how charge-balance correlations and femtoscopic correlations
are related.

The basic theory of charge balance calculations is reviewed in Sec. III while Sec. IV presents
algorithm for calculating BFs from a blastwave calculation. The theory and method for accounting
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for the screening of Coulomb interactions is presented in Sec. V. Results of calculations illustrating
how correlations from FSI distort BFs are given in Sec. VI while Sec. VII shows how femtoscopic
correlations at small relative momentum are a↵ected by charge balance correlations. A summary,
Sec. VIII, is followed by two appendices, reviewing classical Coulomb correlations and the blast-
wave fitting procedure respectively.

II. RELATING CHARGE-BALANCE AND FEMTOSCOPIC CORRELATIONS

Femtoscopic correlations are nearly always analyzed as a function of relative momentum. Typ-
ically, the range of relative momentum under consideration is 0 < q . 100 MeV/c. By focusing
on small relative momentum, one can better justify the approximation that the particles interact
mainly with one another between the last interaction and the detector. In contrast, BFs are usu-
ally analyzed as a function of relative rapidity or relative azimuthal angle. They are sometimes
binned by relative momentum, in which case the range of relative momenta tends to be in the
range of several hundreds of MeV/c, which is the range of the thermal smearing of the space-time
correlations.

Whereas femtoscopic correlations are constructed by dividing the two-particle distribution by an
uncorrelated two-particle distribution, BFs are created by dividing by one single-particle distribu-
tion. Thus, BFs can be thought of as a “conditional distribution”, i.e. given the observation of a
charge, what is the probability of finding more charges of the opposite sign than of the same sign
as a function of relative rapidity or relative azimuthal angle. The two forms are related by factors
of the multiplicity,

B(p1|p2) =
1

2
C+�(p1, p2)

dN+

dp1
+

1

2
C�+(p1, p2)

dN�

dp1
� 1

2
C++(p1, p2)

dN+

dp1
� 1

2
C��(p1, p2)

dN�

dp1
. (4)

The variables p1 and p2 could be any measure of the momentum. As an example, to obtain BFs
binned by relative rapidity, p2 might refer to any momentum in the detector and p1 could refer to
the relative rapidity. The quantity dN±/dp1 would then represent the number of charges of type ±
that would have the desired relative rapidity in a single event in the absence of correlation.

Similarly, one can generate correlation functions from BFs, but only the di↵erences between
same-sign and opposite sign correlations, and only for the case that the correlations are unchanged
if positive and negative particles are switched, i.e. C+� = C�+ and C++ = C��. In that case

Copp. sign(p1, p2)� Csame sign(p1, p2) =
2B(p1|p2)

dN�/dp1 + dN+/dp1
. (5)

For a cylindrically symmetric boost-invariant distribution, which will be assumed throughout this
paper, one can derive simple relations when the BF is binned by �y,�� or Qinv,

Bh|h0(�y) =

✓
dNh+

dy
+

dNh�

dy

◆
[Ch,h0,opp.sign(�y) + Ch,h0,same.sign(�y)] , (6)

Bh|h0(��) =
2Ymax

⇡

✓
dNh+

dy
+

dNh�

dy

◆
[Ch,h0,opp.sign(��) + Ch,h0,same.sign(��)] ,

Bh|h0(Qinv) = 2YmaxPh,h0(Qinv)

✓
dNh+

dy
+

dNh�

dy

◆
[Ch,h0,opp.sign(Qinv) + Ch,h0,same.sign(Qinv)] .

Here, Ymax is the range of the acceptance in rapidity, �Ymax < y < Ymax. The expressions are
built on the assumption that the correlation functions are corrected for the acceptance in rapidity,
meaning that for any charge with rapidity y1, all charges with rapidities y2, within the range of
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y1 � 2Ymax < y2 < y1 + 2Ymax are assumed to have been measured. The dependence on Ymax is
especially important for Bh|h0(��). If one were to increase the range in rapidity the correlations
binned by �� would be diluted as would the charge balance functions. As long as correlations in
Qinv and�y do not extend beyond 2Ymax, B(Qinv) and B(�y) are largely independent of Ymax. Here,
�y and �� refer to the absolute values of relative rapidity and relative azimuthal angle. Otherwise,
the first two expressions in Eq. (6) would include an extra factor of 1/2, and the remaining half
the strength would be found at negative values of �y and ��. The relative momentum Qinv is the
magnitude of the relative momentum, |~p � ~p

0|, in the frame of the pair. Finally, Ph,h0(Qinv) refers
to the probability density of any two particles being separated by Qinv, where the second particle
is randomly boosted so that its rapidity is uniformly found in rapidity acceptance as described
above. Because Ph,h0 will fall inversely with Ymax, the product YmaxPh,h0(Qinv) in the expression for
Bh|h0(Qinv) in Eq. (6) is independent of Ymax once Ymax is large enough to capture all the pairs for
the specific Qinv.

III. REVIEW OF CHARGE BALANCE CORRELATIONS

A hadron of type h with charge qhu, qhd and qhs (where u, d, s refers to the up, down and strange
charges) must be accompanied by balancing charges, carried by the altered distributions of other
hadrons. Here, we show what number of hadrons �Nh0 result from the existence of �Nh. This is
represented by h0|h where

�Nh0 = h0|h�Nh. (7)

First, we express �Nh0 in terms of a small chemical potential for a thermal system. We find the three
chemical potentials, µu, µd and µs, necessary to produce the correct amount of balancing charge.
The number of hadrons of species h0 is altered by the presence of a hadron h according to

�Nh0 = hNhi
µaqh0a

T
, (8)

where qha is the charge of type a on a hadron of type h, with a = u, d or s. This is a thermal argument
where the number of hadrons of a species h0 is altered by a factor eµaqh0a/T ⇡ 1 + µaqh0a/T .

Summing over all the charges from all the hadrons h0 should yield the charge that balances that
carried by h,

�qha =
X

h0

�Nh0qh0a (9)

=
X

h0

hNh0iµb

T
qh0bqh0a

= V �ab

µb

T
,

µa

T
= � 1

V
�
�1
ab
qhb.

Here, the charge susceptibility of a non-interacting gas is

�ab =
1

V
hQaQbi =

X

h

hnhiqhaqhb, (10)

or equivalently, the charge correlation for a non-correlated hadron gas is confined to charges within
the same hadron. This then provides the altered number of hadrons of type h0 due to the existence
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of a single hadron of type h,

�Nh0 = �
X

ab

�
(�1)
ab

hnh0iqh0aqhb, (11)

= h0|h�Nh,

h0|h = �hnh0i
X

ab

�
�1
ab
qh0aqhb.

Here, hnhi is the mean density of hadrons of type h. The kernel h0|h = �h0|h̄ because h and its
antiparticle h̄ have opposite charges. Thus, for any BF,

Z
dp

0
Bh0|h(p

0|p) = 1

4

⇥
h0|h + h̄0|h̄ � h0|h̄ � h̄0|h

⇤
. (12)

One can quickly check to see that if one were to sum the normalizations over all h0 multiplied by
qh0a, one would indeed find the charge qha,

X

h0

qh0a

Z
dp

0
Bh0|h(p

0|p) = 1

4

X

h0

qh0a

⇥
h0|h + h̄0|h̄ � h0|h̄ � h̄0|h

⇤
(13)

=
X

h0

X

h

qh0ahnh0iqh0a0�
�1
a0bqhb

= �aa0�
�1
a0bqhb

= qha.

The expressions above ignore decays. Decays can be included by altering the kernels h0|h to
include both the contribution where h

0 and h come from the same decaying parent, and the case
where two charges correlated as described by the kernel  above then decay to h

0 and h. If a hadron
H decays into a set of channels cH , where each channel has a branching ratio bcH , and if the number
of hadrons of type h coming from the particular channel is mcH

, the contribution to the kernel
K(h0|h) from decays is

K
(d)
h0|h =

1

hhNhii
X

H

hNHibcHmcH ,hmcH ,h0 , (14)

hhNhii =
X

H,cH

hNHimcH ,hbcH .

The channels cH include the case where a particle is stable, i.e. where H = h and there are no
additional products. The notation hhNhii signifies that this is the multiplicity after decays have
taken place, whereas hNhi signifies the density at the time hadrons were created with balancing
charge assigned according to the arguments above.

One can then add in the contribution from correlations from charge balance at hadronization to
find the complete kernel, K,

Kh0|h = K
(d)
h0|h (15)

+
1

hhNhii
X

H,cH ,H0,c
H0

H0|HhNHibcHmcH ,hhNH0ibc
H0mc

H0 ,h0 .

The normalization of the BF with decays included is

Zh0|h =
1

4

�
Kh0|h �Kh0|h̄ +Kh̄0|h̄ �Kh̄0|h.

 
. (16)
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For use later on, a function is defined that is symmetric in h and h
0,

Wh0|h ⌘ hhNhii
hhNii Kh0|h (17)

=

8
<

:
X

H,cH

hnHi
hni bcHmcH ,hmcH ,h0 +

X

H,cH ,H0,c
H0

hnHihnH0i
hni2 wH0,HbcHmcH ,hbc

H0mc
H0 ,h0

9
=

; ,

wH0,H =
⇥
hni(qHa�

�1
ab
qH0b)

⇤
.

Here, hnHi is the density of hadrons of species H and hni is the net hadron density, at the time
chemical equilibrium is lost. hhNhii/hhNii is the ratio of hadrons of type h to total hadrons in the
final state,

hhNii =
X

h

hhNhii. (18)

IV. CALCULATING BFS FROM BLAST WAVE MODEL

By inspection of the expression for Wh0|h in Eq. (17) and the way in which it relates to Kh0|h
in Eq. (17), one can see that the BFs can be generated by a two step process. In the first
step the contribution from decays, the first sum in Eq. (17), is calculated. This is performed by
creating a hadron H at Tc, then emitting the descendents of H from the same point in coordinate
space according to the blast wave prescription. One increments the BF using all pairs of hadrons
descending from the same original hadron H. In the second step, one calculates the correlation
deriving from the preexisting correlation between two hadrons H and H

0 at Tc. One places all
descendents of H at one point, and all descendents of H 0 at a second point. The two points are
correlated in coordinate space according to parameters �R and �⌘. The preexisting correlation is
then projected onto all pairs of particles involving one hadron from H and one from H

0. Here, the
species h0 and h are typically chosen to be of opposite sign, so that the BF is positive represents the
enhancement for finding an opposite charge. Examples are ⇡+

⇡
�
, K

+
K

�
, pp̄, ⇡

+
K

�
, ⇡

+
p̄ and K

+
p̄.

The BFs can be generated for specific species, Bh0|h, by following the method enumerated below.

1. Beginning with a list of hadrons, their masses, degeneracies and charges, one calculates the
charge susceptibility matrix at the temperature Tc, the last temperature for which chemical
equilibrium was maintained. This involved calculating the density of each species, then using
Eq. (10) which provides the susceptibility, or charge fluctuation, for an non-interacting hadron
gas. Using that susceptibility, one calculates WHH0 according to Eq. (17).

2. The contribution to the BF from decays, the first term in Eq. (17), is calculated using
Monte Carlo sampling. First, a number of initial hadrons, Nmc, are generated. A species
H is chosen proportional to hnHi/hni which is calculated at temperature Tc = 150 MeV.
All decay products of H with lifetimes less than 100 fm/c are then chosen according to the
branching ratios. The decay products are then all placed in coordinate space at a position r

according to the blastwave prescription. That point is generated by first picking the transverse
coordinates x and y according to a uniform distribution up to some radius R. That coordinate
is then incremented by a random Gaussian step characterized by the parameter �R. For this
contribution, the additional Gaussian step is chosen to maintain consistency with the second
contribution described below. Once the position is known, the transverse velocity is given by
the blast wave parameters U? and R,

ux = U?
x

R
, uy = U?

y

R
. (19)
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Here, ui refers to the relativistic velocity, ui = vi/
p
1� v2. Each product is then assigned a

di↵erent momentum according to the final freezeout temperature Tf = 100 MeV, and collective
flow, U? = 1.092 as described in the blast wave description provided in the Appendix. Because
of boost invariance, all particles can be placed at the position z = 0. Decays with lifetimes
greater than 100 fm/c are then simulated. If any two species h and h

0 both appear in the
final products an array is incremented according the their relative momentum, rapidity or
azimuthal angle. The array represents the first term in function Wh0|h in Eq. (17). It
is binned by whichever kinematic variable is being considered, e.g. relative rapidity. One
also increments a counter of Nh and Nh0 . After su�cient sampling, the binning of Wh0|h is
translated into a binning of Zh0|h according to Eq.s (16) and (17), which involves dividing by
a factor hhNhii/hhNii. The array is also divided by Nmc. This then provides the contribution
to Bh0|h from decays. It should be emphasized that this contribution to decays does not
accurately reproduce the invariant mass distribution because it assumes that all products of
decays with lifetimes less than 100 fm/c rescatter. For example, in a more realistic model,
some ⇢ mesons would decay into final state pions with neither pion rescattering. The relative
rapidity or relative angle distributions of a ⇢ decay are not much di↵erent than those from
rescattered products because the decay energy a ⇢ is similar to the thermal energy, but the
di↵erence would be more pronounced if binned by relative momentum. The contribution
from decays where both products emerge unscathed is often considered part of the final-state
interaction. For example, the K

+
K

� outgoing wave function can be modified to include �

decays. Given that the focus here is is mainly on how femtoscopic correlations distort charge
balance functions, this approximate picture is su�cient.

3. The contribution to Bh0|h from the second term in Eq. (17) is then calculated. This also is
calculated with a Monte Carlo procedure. First, two particles are generated independently,
species H and H

0. They are chosen according to the thermal weights consistent with the
temperature Tc. Decay products for each particle are then chosen according to the branching
ratios. The transverse spatial coordinates are chosen by first picking a common point ~r

according to a uniform distribution in transverse coordinate space up to a radius R. From
that point, two di↵erent points, one for the products h, of H, and the second for the products
h
0 of H 0 are found by taking Gaussian random steps relative to ~r. The steps in transverse

space are characterized by �R, whereas the steps in spatial rapidity are characterized by �⌘.
The two sets of particles are then generated close to one another, with the descendants of
H separated from the descendants of H 0 by an amount determined by �⌘ and �R. Again, at
this point decays with lifetimes greater than 100 fm/c are not yet performed. Any additional
decays are then simulated. At this point, the momenta of particles descending from a single
hadron as described in (1) are the same as those coming from either H or H

0 here. Along
with the final momenta, the positions of the last interactions are stored for the purpose
of calculating correlations from FSI. The array representing Wh0|h is then incremented, but
the array elements are not incremented by unity, but instead by WHH0 . Again, the array
for Nh is incremented. Finally, the array is divided by Nmc and the factor hhNhii/hhNii.
Whereas the contribution described in (2) represents the correlation from the decays of a
single hadron created at Tc, the contribution described in (3) represents how two hadrons
that were correlated at the Tc project that correlation onto their descendants.

Finite acceptance is only crudely taken into account by ignoring any pairs with relative rapidity
greater than 2Ymax, with Ymax = 0.9, corresponding to the STAR acceptance. This ignores the pt

dependence of the acceptance and e�ciency. Even if experiments were to correct for acceptance
and e�ciency, this calculation would be questionable due to the fact that low pt particles are not
measured and because the low pt cuto↵ depends strongly on rapidity, especially for heavier particles.
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Much more realistic models of BFs have been construced and analyzed, e.g. [4, 30, 31]. These
more sophisticated treatments account for the di↵erence between the distance scales over which
strangeness, electric charge or baryon number are conserved. Decays are more realistically taken
into account and experimental acceptance and e�ciency are considered in detail. More sophisticated
treatments can lead to BF widths changing by a few tens of percent from the models used here.
But the much simpler, much less numerically intensive, model used here is su�cient to satisfy the
goal of this study, which is to understand the degree to which FSI and BF correlations must be
simultaneously considered. Comparison with experimental data is not the immediate goal of this
study.

V. SCREENING FINAL-STATE COULOMB INTERACTIONS

Correlations from FSI can be calculated according to a number of methods, which tend to become
equal when the relative momentum is small [37]. For larger relative momenta, the main method
is to generate a pair of hadrons, independent of one another, with momentum ~p1 and ~p2, from
space-time coordinates x1 and x2. One then increments a two-particle distribution by an amount
|�hh0(~q,~r)|2. The distribution is typically binned by relative momentum, but could be binned by
some other variable such as relative rapidity. Here, ~q and ~r refer to the relative momentum and
position in the center-of-mass of the pair. Because q 6= 0, the relative position depends on the
time at which ~r is calculated. Here, it is assigned the value corresponding to the separation of the
two trajectories at a time half way between the two emissions, and ~q and ~r are calculated in the
pair’s rest frame. The correlation function is then the average of |�|2 within each bin. This method
provides a realization of Eq. (2).

The squared wave functions di↵er from unity due to the symmetrization, or anti-symmetrization,
of the wave functions, the strong interaction, and the Coulomb force between the two particles.
Symmetrization and anti-symmetrization e↵ects are typically unimportant for q & 50 MeV/c. Aside
from resonant interactions, e.g. ⇢0 ! ⇡

+
⇡
�, the strong interaction is most manifest at small relative

momentum due to the lack of competing phase space. Other resonant interactions certainly provide
peaks, but those are usually considered within the context of charge balance correlations. Coulomb
interactions are relatively weak in magnitude, but extend over larger relative momentum. For large
q the squared wave functions can be considered classically [48], and when averaged over direction
depend on q as

|�(~q,~r)|2 ⇡ 1.0� 2µz1z2e2

q2r
. (20)

A classical expression also exists to account for the dependence on the angle between ~q and ~r [48],
and is presented in Appendix B. The same- and opposite-sign correlation functions have oppositely
signed contributions from Coulomb correlations. Thus, they reinforce one another when construct-
ing a BF. For more central collisions, the correlation functions weaken due to the 1/r dependence
above. However, when translating a correlation function to a BF, a factor of the multiplicity arises.
The radii roughly scale as (dN/dy)1/3, so the Coulomb contribution to the BF should increase
with multiplicity, roughly as (dN/dy)2/3. Thus, Coulomb e↵ects might provide non-negligible con-
tributions to the BF, even if their contribution to the correlation function is below a tenth of a
percent.

If two charged particles, with momenta ~pa and ~pb and charges Za and Zb, interact via the Coulomb
interaction at large relative momenta, one can ask whether the interaction should be screened by
the fact that both a and b are accompanied by balancing charges. For large relative momenta or
large relative rapidity or large relative angle, particles are likely to separated far in coordinate space
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because of the collective flow. For example, if two particles are separated by a unit of rapidity
in momentum space, they were likely emitted from points separated by approximately one unit
of spatial rapidity, i.e. separated by ⇡ 20 fm at the breakup of the collision. In the limit that
these separations are large, balancing charges should perfectly screen the Coulomb interaction,
because particle b should see both a and the balancing charge of a. In [41] the screening e↵ect was
crudely estimated with a pion gas, and it was seen that without screening the Coulomb interaction
noticeably distorted the BF, but that after accounting for screening the Coulomb e↵ect only a↵ected
the first few bins of relative rapidity. Here, we improve on that picture by accounting for the fact
that the balancing charges are spread across all species of particles. For example, the existence of
a positive kaon not only promotes the existence of a negative kaon, but also promotes more or few
pions, protons, or their antiparticles. Decays, which were neglected in the previous study, are taken
into account here. Finally, in this study distortions from FSI are also calculated for pp̄ and K

+
K

�

BFs.
For the standard algorithm described above, an uncorrelated pair, a, b, is generated then weighted

with |�ab(~q,~r)|2. The two-particle distribution is then assigned a weight, which, if the particle did not
interact, would be unity. To include screening, one must alter the weight to include the interaction
with accompanying particles,

Cab � 1 ⇡
⇥
|�ab(~qab,~rab)|2 � 1

⇤
+
X

a0

Ka0|a
⇥
|�a0b(~qa0b,~ra0b)|2 � 1

⇤
(21)

+
X

b0

Kb0|b
⇥
|�ab0(~qab0 ,~rab0)|2 � 1

⇤
+
X

a0b0

Ka0|aKb0|b
⇥
|�(~qa0b0 ,~ra0b0)|2 � 1

⇤
.

This expression accounts for all the interactions between the particle a and its accompanying bal-
ancing cohort and between the particle b and its cohort. Final-state interactions within a cohort
are ignored, aside from those that were responsible for the kernel K. For a given particle a there
are many more particles in other cohorts than in the same cohort. The indices a, a0, b, b0 reference
all the information of a specific particle including its type, momentum and position. The usual
Koonin equation would ignore the latter three terms in Eq. (21).

One might have chosen a di↵erent form for the correlation weight Cab in Eq. (21). An obvious
choice might be to take the product of the four wave functions rather than the sum. In the limit that
the wave functions are near unity the choices become identical. For Coulomb or strong interactions,
the variation of |�ab|2 from unity is indeed small except in a small region of phase space where
qab < 50 MeV/c, and the chance that for some sets of particles that multiple values of q are not
small, the two choices should be similar. For identical particle interference, the form of |�|2 could
be 1± cos(qr). The oscillating piece is not small, but for most pairs qr is large and the oscillations
simply provide noise. Thus, the final answer should not be significantly dependent on exactly how
Eq. (21) is chosen.

When qab is large, weights are dominated by Coulomb interactions. In this case the kernel weights
combined with the fact that the factors [|�|2 � 1], which are proportional to the ratios of charges,
should lead to a cancellation. Physically, this can be considered as screening. If the particle b

has a large relative momentum to a, one expects that the balancing cohort to a should cancel the
interaction. In contrast, for small relative momentum a and b would spend significant time under
one another’s influence, and the e↵ects of the cohorts should disappear.

To generate the correlations described by Eq. (21) one needs to sum over all hadron species a0

and b
0 that accompany a and b. The particles a0 are first generated according to their final yields,

i.e. they are chosen with probability p
0 = hhNh0ii/hhNii. The positions of a and a

0 are chosen in
a correlated manner in the same manner described for calculating BFs in Sec. IV. The additional
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weights, Wh0|h, defined in Eq. (17) are used to modify the correlation weights in Eq. (21),

C
0
ab
� 1 ⇡

⇥
|�ab(~qab,~rab)|2 � 1

⇤
+
X

a0

Ka0|a
⇥
|�a0b(~qa0b,~ra0b)|2 � 1

⇤
Wa0a (22)

+
X

b0

Kb0|b
⇥
|�ab0(~qab0 ,~rab0)|2 � 1

⇤
Wb0b +

X

a0b0

Ka0|aKb0|b
⇥
|�(~qa0b0 ,~ra0b0)|2 � 1

⇤
Wa0aWb0b.

An array is calculated to represent the numerator of the correlation function. Based on the momenta
of a and b the appropriate bin is chosen, then incremented by C

0
ab
. A separate array is used for the

numerator, but it is incremented by unity. Finally, the correlation function is found by dividing the
numerator’s array by that of the denominator. The correlation for a given bin thus represents the
average of C 0

ab
for pairs, a, b, that fit that bin.

In some cases the particles a and b described above are unstable, i.e. they decay after being
emitted from the fireball which is chosen for any decays with lifetimes greater than 100 fm/c. This
might include long-lived states like the ⌘ meson. In that case the weight C

0
ab

described above is
used to increment the bins defined by any decay products of a with and decay products of b.

VI. RESULTS: DISTORTIONS TO BFS FROM FINAL-STATE INTERACTIONS

Femtoscopic correlation functions were first generated with the blast-wave model. Blast-wave
parameters were chosen to fit the spectra and pion source sizes. The fitting procedure for choosing
the blast-wave parameters is described in Appendix A. They were Tc = 150 MeV, Tf = 100 MeV,
U? = 1.092, R = 13.4 fm and ⌧ = 13.4 fm/c. It should be emphasized that the blast-wave model is
crude. Fitting to blast-wave models tends to result in shorter breakup times than seen in much more
realistic hybrid models which incorporate both a hydrodynamic stage and a microscopic hadronic
simulation. However, these parameters do roughly reproduce both the spectra and like-sign pion
femtoscopic correlations, so they are well suited for the purpose of this study, which is to gauge the
importance of these e↵ects in BF analyses. The parameters representing the spread of the charge
correlation in coordinate space were set to �⌘ = 0.5 and �R = 3.0 fm. These are defined in Sec.
IV and in Appendix A. These last two parameters crudely reproduce experimental BFs, with the
emphasis on being crude. The spread should be significantly broader for pp̄ and K

+
K

� BFs than
for ⇡

+
⇡
� BFs. The two spreads describe how balancing charges, which were already separated

at chemical freezeout, are separated at kinetic freezeout. This separation encapsulates both the
original separation at Tc and the additional spread during the hadron phase. In contrast, if two
balancing particles come from the same decay during the hadron phase, their emission is assumed
to occur at the same point. Even though this is a rather simple picture, a rough picture is su�cient
for gauging the e↵ect of femtoscopic correlations on BFs. The calculations presented here required a
large amount of statistics due to the small size of the e↵ect and the noise related to the inclusion of
cross-correlations from balancing charges. The number of pairs generated for the calculations here
exceeded 1012, which would have made using a more sophisticated, and slower, model untenable.

Using the methods described in Sec. V, femtoscopic correlations were calculated. To reduce noise
in the femtoscopic correlations below a tenth of percent, over a trillion pairs were analyzed. Because
particles were sampled according to their multiplicities, correlations for kaons or protons were noisier
than for pions. Figure 1 shows the contribution to BFs from FSI. Calculations are displayed both
with and without screening. For results without screening correlation functions were calculated
using Koonin’s equation, Eq. (2), which neglects how FSI between two particles a↵ect correlations
those other particles involved in balancing the charges of the first two. If not for screening, a non-
negligible contribution would be present in the ⇡ � ⇡ BFs and extend to larger relative rapidity or
relative azimuthal angle. BFs were generated by multiplying regular correlation functions by the
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FIG. 1. Contributions to BFs from femtoscopic correlations are shown as a function of relative rapidity
in panels a (pp), b (KK) and c (⇡⇡). The kaon and proton BFs are a↵ected marginally, and only in
the first two bins. The contribution never exceeds more than 0.02. The contribution to the ⇡⇡ BFs are
more substantial and extend further in rapidity. The femtoscopic contributions are displayed without (red
circles) and with (blue squares) screening. The screening mainly a↵ects results at larger relative rapidity,
and significantly lowers the femtoscopic contribution to the ⇡⇡ BF. The right-side panels, d-f, show the
same behavior when binned by relative azimuthal angle.

multiplicity of uncorrelated particles in the same bins. Because pions have higher multiplicity, the
e↵ect on the BFs was more noticeable. After the inclusion of screening the distortion to the BFs
are only in the first few bins, at small relative rapidity or angle. For ⇡⇡ the contributions in the
first bin are negative due to the positive contribution from the same-sign correlation function due
to identical-particle statistics. For slightly larger relative momentum femtoscopic e↵ects are mainly
from the Coulomb interaction. The Coulomb contribution to the correlation functions are negative
for same-sign correlations and positive for opposite-sign correlations. The BF contribution, which is
constructed by subtracting the same-sign correlation from the opposite-sign correlation, is positive.

To gain insight into whether the distortions to the BF from FSI are significant, the femtoscopic
contribution, with screening included, is added to the main contribution from charge balance.
The calculation for the main charge balance is a rather crude model, and should not be taken
seriously to better than 10-20%, but is su�cient for gauging the relative strength of the femtoscopic
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FIG. 2. The contribution to the BF (blue squares) is shown against the simple BF from local charge
conservation only (red line), along with the sum of the two contributions (black circles). The e↵ects of
femtoscopic correlations are modest, but noticeable, for the ⇡⇡ BFs. The dip at small relative momentum
derives from the positive correlation from identical-particle interference in the same-sign correlation func-
tions. The slight positive corrections is due to final-state Coulomb interactions. The same behavior is seen
in BFs binned by relative rapidity (left-side panels) and relative azimuthal angle (right-side panels).

contributions. Calculations of the BFs with and without the femtoscopic contributions are displayed
in Fig. 2.

Figures 1 and 2 address the first questions posed for this study. BFs are modified slightly, but
noticeably, by femtoscopic correlations. Those contributions are mainly in the first several bins of
relative rapidity or relative azimuthal angle. Whereas the ⇡⇡ BFs are noticeably a↵ected, albeit
modestly, the modifications to the pp and KK BFs are negligible. The Coulomb contribution to
the femtoscopic correlation functions are of similar magnitude for ⇡⇡, KK and pp correlations, but
BFs involve multiplying correlations by the multiplicity of background pairs in a given bin, which
is a significantly smaller factor for protons and kaons. Thus, it was not surprising that the e↵ects
are larger for ⇡⇡ balance functions.

The shape of the modification for the ⇡⇡ BF was also as expected as it was seen in [41]. The
magnitude of the e↵ect is reduced compared to the calculation in [41], but that calculation had
ignored the e↵ect of long-lived decays, which reduces the magnitude of the femtoscopic correlation.
The dip for the bins with lowest relative rapidity or angle was due to identical-particle interference
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for same-sign pions. The rise for the next few bins is due to the Coulomb interaction. As shown in
Fig. 1 this part of the e↵ect was significantly dampened by the inclusion of screening e↵ects. The
fact that each charge is accompanied by balancing charge of the opposite sign e↵ectively screens
the charge, unless the relative momentum is so small that the screening charges have little chance
of standing between the charges of interest. If the calculations had been performed at lower beam
energy, Coulomb e↵ects would have been smaller. This is because Coulomb forces are long range
and thus a given charge a↵ects a greater number of other charges when there are more charges
present.

By accounting for the FSI weights of balancing particles, the distortions to the BFs from Coulomb
e↵ects is significantly muted. Further, by applying these weights to and from balancing partners,
the correct normalization was restored. Even for FSI from identical particles, the normalization
would have been incorrect if only the Koonin contribution to the BFs had been considered. For
identical-particle statistics, symmetrization a↵ects only those other pions within a similar bin of
phase space, a number which is set by the local phase space density. Thus, if the average phase
space density if 5%, there tends to be an overall enhancement of 0.05 to the area underneath the
BF. If the calculations were repeated for less central collisions, the net contribution to the BF from
symmetrization would be similar, but it would be spread out over larger relative momentum because
larger source sizes lead to more extended correlation functions. The dip for small �y and small ��

would then be less pronounced.
One clear result of these calculations is that FSI distortions are nearly negligible for pp and

KK BFs. This is important because those BFs play crucial roles in understanding the chemical
evolution and di↵usivity of the matter created in heavy-ion collisions.

VII. RESULTS: DISTORTIONS TO FEMTOSCOPIC CORRELATIONS FROM
CHARGE-BALANCE CORRELATIONS

The e↵ect of charge-balance correlations are typically neglected in calculations of correlations for
femtoscopic purposes. Here, we investigate the degree to which that is justified. First, femtoscopic
correlations were calculated from the blast wave model as described in Appendix A. Correlations
were found for both ⇡

+ and ⇡
� pairs. BFs were then calculated for the simple parametric model

described in Appendix A. The di↵erence between the like-sign and opposite-sign correlations from
BFs is then

Copp. sign(Qinv)� Csame sign(Qinv) =
1

dN⇡/dQinv
B(Qinv), (23)

Q
2
inv ⌘ �(p1 � p2)

2
.

Here, dN⇡/dQinv is the number of pion pairs of the same sign separated by Qinv divided by the
number of pions of that same sign.

Figure 3 displays femtoscopic correlations alongside those for BFs. The factor dN⇡/dQinv scales
as Q

2
inv at low Qinv due to phase space. For this reason the e↵ect of charge balance is muted

at low relative momentum, and the e↵ect never rises above the half-percent level. This level of
distortion is negligible given the current precision with which identical-pion femtoscopy is being
analyzed. Because BFs are constructed by taking the di↵erence between opposite-sign and like-sign
correlations, it is di�cult to assign that correlation specifically to either Csame sign vs Copp. sign. For
charge balance from decays late in the reaction, one expects most of that strength to appear in the
opposite-sign correlation. However, charge balance correlations from equilibrated systems, before
final decays, tends to be split evenly between the opposite-sign and same-sign pieces if the systems
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FIG. 3. The contribution of charge-balance e↵ects (red line) is much smaller than the femtoscopic corre-
lation (blue squares) at small relative momentum. The net correlation is thus little changed. Because BFs
provide the di↵erence between opposite-sign and same-sign correlations, and because the e↵ect was small,
only the di↵erence between Copp. sign and Csame sign correlations were analyzed. The same calculations
are shown in both panels, with the vertical scale in panel (a) being magnified to show the size of the
contribution from final-state interactions.

are large [49, 50]. Luckily, given that the contributions are so small, it does not matter what fraction
of it should be assigned to the same-sign vs. opposite-sign correlation functions.

The main lesson taken from Fig. 3 is that femtoscopic analyses can safely ignore the contributions
from charge balance for central heavy-ion collisions. For peripheral collisions or for pp collisions, the
e↵ects are probably non-negligible. For small source sizes femtoscopic correlations can extend to
Qinv ⇠ 200 MeV/c and dN⇡/dQinv can be small. Also, for small systems other classes of correlations
also tend to interfere with the result, including momentum conservation. In fact, the validity of
the Koonin equation comes into question when the overall source size is not much larger than the
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inverse characteristic momentum [37].

VIII. SUMMARY

BFs represent the best means for addressing questions about chemical evolution in high-energy
heavy-ion collisions. In particular, one needs to evaluate the shape of the BF when binned by
rapidity. If the quark chemistry is equilibrated within the first fm/c, balancing charges can separate
by ⇠ 1 unit of spatial rapidity by the time hadrons are finally emitted from the fireball. This is
manifested by broad BFs, particularly for K

+
K

� and pp̄ BFs. However, two other classes of
phenomena also provide correlations that might potentially interfere with the interpretation of
BFs. The first is correlation from final-state interactions, which represents the topic of this paper.
The second is baryon-baryon annihilation, which is a topic for future study.

The contribution of femtoscopic correlations, i.e. those from final-state interactions, was esti-
mated in a previous study. But for that study, only pions were considered, long-lived decays were
neglected, and the distortions of BFs binned by relative azimuthal angle were not considered. Given
the importance of the shapes of the K

+
K

� and pp̄ BFs, it was felt that a new study was needed.
In the basic formulation, i.e. the Koonin formula, femtoscopic correlations enhance the emission
of like-sign pions due to the symmetrization of the two-particle outgoing wave function. This pro-
vides a negative contribution to the BF. Coulomb e↵ects enhance the emission of opposite-sign
pairs, whereas they discourage the emission of same-sign pairs. For pp or p̄p̄ pairs, a resonant-like
interaction at small relative momentum enhances the emission of same-sign pairs. However, the
net integral of the BF must be unchanged, because for every extra particle of a given charge, there
must exist exactly one extra particle of the opposite sign, regardless of FSI. If the emission of
same-signed pairs is enhanced by some e↵ect then the emission of opposite-sign pairs must also be
correspondingly enhanced to maintain the strict requirement of global charge conservation.

The issues described in the previous paragraph motivated the current study. An ambitious
model was developed where additional weight from final-state interactions was applied not only
to the interacting pair, but to any balancing partners. This required modeling how each charge
particle was accompanied by additional particles. For each charged particle a of hadron type h,
a probability was found for it to be accompanied by a hadron of type h

0. The additional hadron
a
0 was then placed in vicinity of a according to a parametric form of the correlation. The charge-

balance arguments from Sec. III show how one can consider a0 as being any hadron, then applying
a balancing weight w(a0|a) based on charge balance. The weight w(a0|a) takes into account charge
balance at the point of chemical equilibrium and decays to determine how the weight depends on the
the specific species a and a

0. The correlation of a and a
0 in momentum space was crudely modeled

by assuming a simple correlation in coordinate space that is mapped onto momentum space via a
blast-wave model. In addition to parameters to set the temperature and flow velocity, the blast
wave model had parameters describing how the emission points of a and a

0 would be correlated
in coordinate space. If one is considering the interaction weight of pion a with pion b, one must
also apply that weight to all the balancing partners of a, i.e. those denoted by a

0, with b and all
its balancing partners of b0. Because the charge of the balancing partners a

0 exactly cancel those
of a, the interaction weight for a and b is also applied to opposite sign pairs, albeit spread over a
wider range of relative momentum. This preserves the charge conservation constraint of the BF in
a way that more realistically accounts for how balancing charge is spread amongst di↵erent species
at di↵erent locations. Additionally, weights were projected through the chain of decays occurring
between a point where chemical occurred and when the particles are emitted. This rather long-
winded procedure is especially necessary for Coulomb interactions. Once a particle b is separated
from a by larger relative momentum, it is as likely to feel the interactions with the balancing particle
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a
0 as it is to be be influenced by a. Thus, the balancing charge e↵ectively screens the Coulomb

e↵ects for larger relative momentum.
The approach and methods described and developed herein were then applied to calculating the

femtoscopic contributions to ⇡
+
⇡
�, K+

K
� and pp̄ BFs. Significant e↵ects were only found for the

⇡
+
⇡
� case. Although the e↵ect on correlation functions is of similar strength for all three cases, the

translation to BFs involves a factor of the multiplicity, which is higher for pions than for kaons or
protons. The contribution to the ⇡+

⇡
� BF was confined to the first few bins in relative rapidity or

azimuthal angle, but would have extended further if screening e↵ects had not been included. The
size of the correction for conditions similar to central collisions of Au+Au at RHIC were modest
and somewhat smaller than what was found with the simpler model considered in [41].

The main conclusions of the study are that

1. Femtoscopic correlations should provide a modest dip in the ⇡+
⇡
� BF at small relative rapidity

or relative azimuthal angle, followed by a small enhancement at slightly larger values.

2. For K+
K

� or pp̄ BFs, the e↵ect of correlations from final-state interactions is negligible.

3. Correlation functions at small relative momentum used for femtoscopic purposes based on
final-state interactions can safely neglect the influence of charge-conservation e↵ects, at least
for central heavy-ion collisions.

These findings are reassuring. They validate the practice of treating femtoscopic and charge-
balance e↵ects separately, although one might wish to apply a small FSI correction to ⇡

+
⇡
� BFs.

The rather crude nature of the modeling here, especially the use of a blast-wave, should predict this
additional structure to the ⇠ 10% level, but give that the distorting e↵ects are at the five percent
level, calculating the distortion of a 5% e↵ect to ten percent accuracy should be su�cient to add
the corrections from a simple model to BF calculations from more sophisticated models.

As mentioned earlier, there is an additional e↵ect that might also complicate the interpretation
of BFs. Baryon annihilation depletes the pp BF at smaller relative momentum, relative rapidity
or relative angle. Combined with this study, a detailed estimate of how annihilation a↵ects BFs
should enable the confident interpretation of experimental BFs. This is crucial if BFs are to provide
a quantitative and rigorous means for extracting information about the chemistry and di↵usivity
of matter created in relativistic heavy-ion collisions.

Appendix A: Blast Wave Model

Charge conservation correlates balancing particles in coordinate space. The correlation is then
projected onto momentum space through collective flow. A blast wave model provides a simple
parametric means to describe final-state collective flow. For this study, a particularly simple blast
wave prescription is applied. More complicated prescriptions, that take into account phenomena
such as elliptic flow, exist [51]. In Bjorken coordinates [52], particles are all emitted at a fixed
proper time ⌧f . This is the time measured by an observer moving with a constant velocity from
the z = 0 plane at time t = 0 to the emission point. In terms of the laboratory time t and the
longitudinal coordinate z,

⌧ =
p
t2 � z2. (A1)

In terms of spatial rapidity,

⌘s =
1

2
ln

✓
t+ z

t� z

◆
, (A2)
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emission is given a Gaussian distribution corresponding to the finite rapidity range of emission at
RHIC,

dN/d⌘s ⇠ e
�⌘

2
s/2⌃

2
⌘ , (A3)

with ⌃⌘ = 1.8.
The distribution of emission points in the transverse plane is considered a constant up to some

maximum radius, R. The momenta is determined by a temperature Tf and a transverse collective
velocity parameterized by u?,

ui = u?
r

R
. (A4)

Here, ui represents the component of the four-velocity, ui = vi/
p
1� v2. Along the beam axis

the collective velocity is chosen to equal the spatial rapidity, y = ⌘s = sinh�1(uz). Particles were
generated stochastically. Final yields were scaled to reproduce the experimental number, so the
blast wave model only serves a a means to assign momenta and space-time coordinates to the
momenta. Species were chosen proportional to the multiplicity at the time of emission, hhNhii.
This multiplicity was determined by first generating particles proportional to their densities in an
equilibrated system at temperature Tc = 150, corresponding to the densities latest time at which
chemical equilibrium might have been maintained, hnhi. Particles were then decayed according to
their branching ratios. All decays with lifetimes less than 100 fm/c were simulated. The products
were then randomly placed in the blast-wave volume and assigned momenta consistent with the
final blast wave temperature and collective velocity. Any further decay was simulated.

hhNhii =
X

H,cH

hNHibcHmcH ,h. (A5)

where bcH is the branching ratio for a particular channel cH and mcH ,h is the number of hadrons of
type h in that channel. This prescription does ignore the fact that some short lived particles, like �
baryons or ⇢ mesons, might still exist at the final breakup. Though the number of such resonances
should be significantly fewer as compared to the earlier equilibrium, regeneration would suggest
that a number of such resonances would be emitted at the final time with all the decay products
escaping rescattering. But this should have little e↵ect on spectra because most of the resonances
are rather broad so that the final momenta di↵er only slightly compared to being re-thermalized.
Further, because the lifetimes are short, femtoscopic correlations are not strongly a↵ected.

Blast-wave parameters Tf , R, ⌧f , and U? were reproduced through comparison of simulated
models with experimental data from 200A GeV Au+Au collisions at RHIC. For the spectra cal-
culations MCMC generated hadrons were used to construct spectra, which were then compared
to experimental data from the PHENIX Collaboration [53]. A �-square minimization using the
software describe in [54] was applied to obtain the most-likely parameters which are listed in Sec.
VII. Fits are shown in Fig. 4 for kaons, protons and for pions. Modeling spectra produced a fit
of the parameters Tf and U? which were consequently utilized in the calculation of correlations to
evaluate the final two parameters, the transverse size R and the freeze-out time ⌧f . To generate the
correlation functions, values of ⌧f and R were used to generate CFs using the Koonin prescription.
CFs were then compared to experimental data from same-sign two-pion correlations functions mea-
sured by the STAR Collaboration [55]. The same minimization used to fit the spectra was utilized
to minimize the di↵erence between data and experiment while varying the parameters of interest,
with the best fit illustrated in Fig. 5. The final parameter values are mentioned in Sec. VII.
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FIG. 4. Spectra for pions, kaons and protons are compared to experimental results for central (0-5%
centrality) collisions of 200A GeV Au+Au collisions as a function of transverse momentum. Model results
(blue lines) roughly match PHENIX results (red circles).
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FIG. 5. Two-pion correlation function projections as a function of relative momentum are shown for
the model (blue lines) fit to data from the STAR Collaboration (red circles). Measurements are from
200AGeV Au+Au collisions in the 0-5% percent centrality range. The three projections are for relative
momentum along the beam axis (“CFlong”), parallel to the pair momentum in the longitudinal comoving
frame (“CFout”), and perpendicular to both the pair momentum and the beam axis (“CFside”).

Appendix B: Classical Expressions for the Squared Coulomb Wave Function

Here, we provide a slightly di↵erent form of the expressions derived in [48]. The relation between
the squared outgoing wave function and classical trajectories is

|�(q, r, cos ✓)|2classical =
����
d
3
q0

d3q
(q, r, cos ✓)

���� (B1)

=
q0

q

����
d cos ✓0
d cos ✓

���� .
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Here, ~q is the asymptotic relative momentum whereas ~q0 is the relative momentum at the time
of emission, when the separation was ~r. The angle ✓ is between the vectors ~q and ~r. Energy
conservation, q2/2µ = q

2
0/2µ + Z1Z2e

2
/r, or equivalently qdq = q0dq0, was used to simplify the

expression. Thus, |�|2classical describes how a phase space element d3q0 is focused into d
3
q.

To calculate the Jacobian, we consider a particle of mass µ at position ~r = rẑ has an initial
direction defined by ✓0 and a final direction described by ✓. From [48] one can see that conservation
of angular momentum, energy and the Lenz vector allow one to express cos ✓0 in terms of cos ✓,

cos ✓0 =
q

q0
cos ✓ � q

2q0

✏

(1±
p
1� 2✏/(1 + cos ✓))

, (B2)

q0

q
=

p
1� ✏,

✏ =
Z1Z2e

2
/r

q2/2µ
.

Thus, cos ✓0 can be expressed solely in terms of cos ✓ and ✏, the ratio of the initial Coulomb energy
to the total energy in the center-of-mass frame. For when the charges have opposite sign, the
interaction is attractive and ✏ < 0, whereas ✏ > 0 for same-sign pairs.

Calculating d cos ✓0/d cos ✓ and applying Eq. (B1) then gives the “classical” squared wave func-
tion,

|�(q, r, cos ✓)|2classical =
X

±
1± 1

�


✏

(1± �)(1 + cos ✓)

�2
, (B3)

� =

r
1� 2✏

1 + cos ✓
.

There are two solutions to the trajectories, because there are two initial angles that can reproduce
a given final angle. To understand the relation for |�|2classical it is useful to view the relationship
between cos ✓ and cos ✓0, which are illustrated for the attractive and repulsive cases in Fig 6. For
the repulsive case, there are final angles which are unreachable, because the Coulomb force diverts
those trajectories with cos ✓0 near �1.0. In both cases, there are points for which d cos ✓0/d cos ✓ are
divergent, but these divergences are integrable. Even though there are divergences as |�|2classical ! 1
for the repulsive case, if one averages |�|2classical over cos ✓, the result is below unity and

1

2

Z
d cos ✓ |�(✏, cos ✓)|2classical = q0

q
=

p
1� ✏ (B4)

for both the attractive and repulsive cases.
When applying classical approximations for the wave function in Koonin’s formula, one should

be mindful of the divergences shown in Fig. 6. They are integrable, and the expressions remain
tenable in a Monte-Carlo sampling procedure given su�cient sampling. However, the divergences
do bring along a good deal of noise, even for the small values of ✏ used in the studies here. In
the cases studied here, where the classical expressions are only applied for q > 500 MeV/c, typical
values of ✏ are ⇠ 0.001.
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FIG. 6. For large relative momenta classical expressions are applied for the squared relative wave
functions. The classical analogy of the squared wave functions are generated from the relation between the
final direction of the relative momenta and the initial direction. This is illustrated in the lower panels of
both figures where angles are relative to the original relative position. Because the squared wave function
depends on the Jacobian, d cos ✓0/d cos ✓, there are integrable poles in the wave function. The e↵ective
squared wave function, |�|2, depends on the final direction ✓ and on the ratio of the original potential
energy, Z1Z2e2/r. to the final relative energy, q2/2µ.
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