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Abstract—As cyber-attacks against critical infrastructure be-
come more frequent, it is increasingly important to be able
to rapidly identify and respond to these threats. This work
investigates two independent system with overlapping electrical
measurements with the goal to more rapidly identify anomalies.
The independent systems include HIST, a SCADA historian, and
ION, an automatic meter reading system (AMR). While prior
research has explored the benefits of fusing measurements, the
possibility of overlapping measurements from an existing elec-
trical system has not been investigated. To that end, we explore
the potential benefits of combining overlapping measurements
both to improve the speed/accuracy of anomaly detection and
to provide additional validation of the collected measurements.
In this paper, we show that merging overlapping measurements
provide a more holistic picture of the observed systems. By
applying Dynamic Time Warping more anomalies were found
– specifically, an average of 349 times more anomalies, when
considering anomalies from both overlapping measurements.
When merging the overlapping measurements, a percent change
of anomalies of up to 785% can be achieved compared to a
non-merge of the data as reflected by experimental results.

Index Terms—Unsupervised Anomaly Detection, Electrical
Measurements, Dynamic Time Warping

I. INTRODUCTION

In recent years, cyber attacks in critical infrastructures have
become more frequent [1]–[4] and increased in complexity
and sophistication. Smart power grids are vulnerable to these
attacks in large part due to an increase in cyber-physical
connectivity in Supervisory Control and Data Acquisition
(SCADA) systems that are used to monitor and control parts
of the power grid [5]. While newer digital devices, even at the
edge of the grid such as micro-phasor measurement units (µ-
PMUs) [6], [7], can increase connectivity, control, and estima-
tion tasks used in power grid operation, they also increase the
risk from potential cyber threats [8]. An unobserved or hidden
cyber attack on the power grid can de-energize power system
components and aggregate operating conditions by causing
overloading and instability [9]. The 20151 Ukraine power grid
hack exemplifies the threat that cyber attacks can pose to
the power grid. Many consumers in Ukraine temporarily lost
power due to a cyber attack exploiting Windows vulnerability
CVE-2014-4114. A phishing email was opened that installed
BlackEnergy malware on the system. This was not a zero-day
vulnerability and the operator should have been aware of the

1https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-
ukraines-power-grid/

Fig. 1: Overview of Proposed Approach

vulnerability in the system and taken action beforehand [8].
While anomaly detection solutions would have not prevented
this attack, they would have alerted the operator about unusual
activity in the system, potentially allowing them to respond
more rapidly. Accordingly, anomaly detection identifies po-
tential issues in the system and can therefore enable operators
to respond to malicious activity as it happens [10]. Thus, it
allows for an early detection of cyber-intrusions, and can be
understood as an early warning mechanism [9]. In general,
anomaly detection refers to the problem of finding patterns in
data that do not conform to expected behavior, and it is being
widely used in different domains [11]–[14].

The objective of this paper is to develop improved tech-
niques for anomaly detection in smart power grids using
electrical measurements by which operators can be alerted
early of any abnormal activity, and action can be taken to
ameliorate from that state. Specifically, we present an approach
to improve the speed and accuracy of anomaly detection by us-
ing overlapping electrical measurements from two independent
systems taken at different points throughout the United States
Department of Energy Los Alamos National Laboratory’s
power grid. Our approach consists of three parts as illustrated
in Figure 1. First, we determine the overlapping measurements
by using Dynamic Time Warping (DTW). Then unsupervised
anomaly detection algorithms including autoregression, level
shift, and rolling average are applied to the overlapping
measurements. This approach differs from existing work (as
discussed in related work section) as the overlapping electrical
measurements used for anomaly detection are from a real
power grid. To the best of our knowledge, no existing work
has applied DTW as a way to improve anomaly detection. In
the final stage, we analyze the anomalies that were discov-
ered through merging the overlapping measurements, and we
compare them to their individual anomalies.

The main contributions of this paper are as follows:
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• We elaborate approaches used for dealing with overlap-
ping electrical measurements, in addition to verifying
them.

• We compare results of different unsupervised anomaly
detection algorithms applied on real-life electrical mea-
surements.

• We conjecture that merging overlapping measurements
for anomaly detection gives a more holistic view and finds
more anomalies.

The rest of the paper has been organized as follows. In Sec-
tion II, the paper explores related works and their significance.
In Section III, background information and preliminaries are
provided for a better understanding of our implementation
described in Section IV and V. A conclusion is provided and
possible future work approaches are mentioned in Section VI
and Section VII, respectively.

II. RELATED WORK

A neuro-inspired architecture called Hierarchical Tempo-
ral Memory (HTM) was developed to perform unsupervised
anomaly detection [15]. HTM learns sparse distributed tem-
poral representation of sequential data which is shown to
achieve competitive scores for real-time anomaly detection
compared to state-of-the-art approaches. Anomaly detection
is also performed on unlabeled electrical measurements (µ-
PMU) from the smart grid. HTM was able to capture spatial
and temporal anomalies in the µ-PMU data from the power
grid. While electrical measurements (µ-PMU data) were used
for this approach, the anomaly detection is real-time, involves
hierarchical temporal memory, but does not include overlap-
ping electrical measurements as proposed in our work.

Researchers have used dynamic time warping (DTW) re-
lated to the power grid; however, Elafoudi et al. [16], [17]
apply it to smart meter readings for lowering the complexity
of power disaggregation. Ausmus et al. [17] apply DTW
to electric utility data to cluster the electric utility net data
based on the distance measure to improve operation for the
next day. None of these papers apply DTW with the goal to
improve anomaly detection. Another work by Diab et al. uses
DTW for anomaly detection [18]. Instead of using electrical
measurements, it used network traffic data to detect network
anomalies. The network traffic is decomposed into control
and data planes. Based on the DTW distance between these
two, the network activities are classified as either benign or
anomalous. The goal of Zheng’s et al.’s work [19] is to detect
road anomalies based on acceleration data. The data windows
of various length are compared with DTW. Anomalies are
automatically identified by machine learning algorithms, and
the types are distinguished with DTW. Their method improved
the time consumption of a random forest filter. Although, this
work uses DTW and has a similar goal of improving the speed
of anomaly detection, it uses road acceleration data and not
electrical measurements.

Autoregressive, rolling average, and level shift processes
are common anomaly detection approaches. In Zhou’s and
Li’s work [20] multilevel autoregression is applied on network

Fig. 2: Overview of Dataset

traffic for anomaly detection. This method proved to be
successful by correctly detecting more than 95% of network
anomalies. Often, autoregressive processes and rolling average
are combined as illustrated in [21] and [22]. Schmidt et al.
[21] apply the ARIMA algorithm, which is a combination
of autoregression and rolling average, on real-time cloud
monitoring data. Yaacob et al. [22] use ARIMA for network
anomaly detection. Solomentsev et al. [23] apply level shift
detection during radar operation, while Geng and Lai [24]
apply it on sensor networks.

In summary, the related work does not address the chal-
lenge of improving anomaly detection based on overlapping
electrical measurements, the core idea of our proposed work.

III. PRELIMINARIES AND BACKGROUND

A. Dataset

The data set used for this paper originates from Los Alamos
National Laboratory’s power grid from two independent over-
lapping electrical measurement systems: ION and HIST. HIST
is a SCADA historian and records all of the data measured
by the SCADA system. ION is an automatic meter reading
(AMR) system that pulls electrical metering information from
different meters and records them. As a result, the SCADA
system does not measure all of the ION points, while the ION
system does not measure all of the SCADA points. Therefore,
they are two separate systems that share measurements for
some meters, but not all of them. The data set was collected
in December 2020 and contains 744-756 ION data points and
534,686 HIST data points for each time series. HIST data
is collected at a higher frequency (approximately every 5
seconds) while ION is collected at a much lower frequency
(approximately every hour). As illustrated in Figure 2, a subset
of measurement points are common to both systems and are
therefore said to be overlapping.

B. Dynamic Time Warping

The DTW algorithm is utilized to identify the overlapping
measurements. It finds the similarity between two time series
by calculating the distance between them. The lower the
distance, the more similar the two time series are to each
other. DTW involves a non-linear optimal alignment which
ensures that similar time series match each other even if they
are out of phase on the x-axis or require compression or
expansion. This is different from Euclidean distance, where
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the i-th point in one time series is aligned with the i-th
point in the other (one-to-one mapping). Instead, the DTW
algorithm can make one-to-many mappings between points
[25]. To find the best alignment, the DTW applies a warping
function which minimizes the distance between the two time
series. In our case, DTW is implemented to account for the
difference in frequency between the two systems as well as
any potential minor discrepancies in clock synchronization.
DTW has applications in many domains such as robotics, data
mining, and manufacturing [26].

C. Unsupervised Anomaly Detection

Unsupervised anomaly detection is executed on the overlap-
ping electrical measurements. Anomaly detection, also called
outlier detection, is applied in various fields to find irregulari-
ties within data. Anomaly detection approaches slightly differ
depending on the data set, for example, a time series will
have modified algorithms compared to a multidimensional data
facet [27]. The anomaly detection algorithms implemented
in this paper to compare anomalies between the overlapping
time series include autoregression (AR), level shift (LS), and
rolling average (RA). All of these algorithms are statistical
unsupervised anomaly detection approaches, which means
they are used to find outliers within unlabeled time series data
sets.

1) Autoregression (AR): AR looks at autoregressive behav-
ior changes to detect anomalies. AR models are used for time
series analysis. Basically, linear regression is applied on the
current data series and predictions for future values are created
based on past values. Similar to linear regression, the outcome
variable (Y) at a certain point in time is related to the predictor
variable (X). However, for AR models past values of (Y) are
factored into predicting (Y). Therefore, behavior is modeled
based on past data [28], [29].

2) Level Shift (LS): Level shift detects level shift outliers,
which are often represented by a step function. These outliers
occur when a sudden change in the mean level move an outlier
and its following data onto a new level. This can be seasonal
or not. Level shift is often used when the data has a lot of
outliers, because it is not as sensitive to spikes in data. It
works by taking two sliding windows and comparing their
median values to detect a shift of values [28].

3) Rolling Average (RA): Rolling average or Moving Av-
erage is similar to the AR model. However, instead of using
past values of (Y) to predict (Y), past forecast errors are used
to predict (Y) [28].

IV. DYNAMIC TIME WARPING

A. Implementation

To determine similarity among the two different systems
- HIST and ION, the DTW algorithm is used. Due to the
overhead of the traditional DTW, we instead chose to use the
fastDTW [26] implementation from the DTAIDistance library.
Additionally, several sampling strategies were implemented to
reduce run-time as opposed to using each time series in its
entirety.

Run Number HIST step size ION step size Run-time (s)
1 100 2 2318.6
2 1000 1 616.7
3 1000 2 342.8
4 2000 2 222.6
5 3000 4 108.6
6 5000 7 65.7

TABLE I: Step Size Running Times.

Run Number Point Amount Run-time (s)
7 100 24.3
8 200 38.6

TABLE II: Point Amount Running Times.

Run Num-
ber

Date
Range

HIST step
size

ION step
size

Run-time
(s)

9 3 days 50 1 191.8

TABLE III: Date Range Running Times.

We considered three approaches to obtain a viable sample
of the data:

1) Step size, which includes collecting data points at dif-
ferent steps, and examples can be seen in Figure 3,
illustrated in the top-right graph for each overall result
in (a)-(d),

2) Certain amount of points, for example, collecting the
first 100 points, and

3) Range of dates, for example, a day’s worth of data.
1) Step Size: For step-size, we collected a total of 6 runs,

which are depicted in Table I. DTW can handle sequences of
different lengths to the same ability as equal length sequences.
In fact, there is no significant difference in accuracy between
equal-length sequences and variable-length sequences [30].
Therefore, the step-size was reduced as much as possible
to include the most points without regard to the measured
frequencies. However, the smaller the steps, the more data
points, and the longer the DTW algorithm takes to compare
all of the time series.

2) Amount of Points: For certain amount of points, we
completed two runs total, where we took the first 100 and
200 points as illustrated in Table II. Similar to the step runs,
as the amount of points increase, the run-time increases, too.

3) Date Range: For date range, one run was completed
including data over a period of three days, as can be seen in
Table III, instead of including four weeks of measurements.
However, this method took a long time compared to the others,
because each individual date had to be filtered beforehand by
checking if it is within the three day range. The additional
computation time is not included in the run-time listed in the
table. However, by reducing the date range to three days, we
were able to reduce the step size and include more data points.

B. Experimental Results

For each run, the DTW calculates the distance for each ION
and HIST pair and sorts them based on distance. The lower
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(a) First Ranked Match (b) Second Ranked Match

(c) Third Ranked Match (d) Fourth Ranked Match

Fig. 3: Top Four Results Step-size.
Each ranked match (a), (b), (c), and (d) includes four graphs. The top-left graph includes both measurements drawn together,
while the top-right graph draws their step-size sample. The bottom two graphs for each match show the actual measurements

drawn independent from each other.

the distance, the more similar the data. The DTW distance
results for the first 200 points stayed more stable in distance
compared to the step size and the three day range results due
to deviations in the data typically appearing later in the time
series. The first 200 points and step size results have several
of the same matches, while the top two results remain the
same. The three day results are not as similar as the other two
sample approaches, but they include some of the same top ten
results. The results of the runs are shown in Figure 4. Finally,
we decided to focus on the step size results as an accurate
similarity ranking due to its inclusion of the whole range of
data and manageable run-time.

To validate the results of the DTW for step size, we look at
the statistics for the top four matches and lowest-ranked four
matches ranked by the DTW, seen in Table IV and Table V.

The count for both the lowest and highest-ranked matches
is similar with HIST possessing about 640 times more points
compared to the ION measurements which is expected because
HIST is collected at a higher frequency. While the standard
deviation for the ION measurements for the top four matches
is zero because they form a straight line, the standard deviation
for the ION measurements for the lowest-ranked matches is
higher. This implies that the ION measurements for the lowest-
ranked matches are more spread out.

Merging the ION and HIST data points for all the matches
show that the four highest-ranked matches are more similar to
each other compared to the lowest-ranked four matches. The
standard deviation for the merged data for the top four matches
stays constant, while the standard deviation for the lowest-
ranked merged matches increases substantially compared to
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(a) step size 100 HIST, 2 ION

(b) three day range and step size

(c) first 200 points

Fig. 4: Top ten results of the different runs.

the individual standard deviations. This is because the HIST
and ION measurements for the lowest-ranked four matches
are less similar to each other and therefore the values will be
more spread out when the data is merged which also leads
to an increased data range. Based on these differences, we
were able to verify that the DTW ranked the measurements
correctly.

C. Discussion

The four most similar results from the DTW 100 and 2
step size are depicted in Figure 3. Most of the points for these
graphs are concentrated on y = 0, with some HIST outlier
points deviating from the axis. The ION measurements on the

measurement
name

count mean std min max

ION-4-3472 744 0 0 0 0
HIST-40-S 481302 0.0098 8.8 -2048 1792
Merged 481892 0.0098 8.8 -2048 1792
ION-5-139 739 0.013 0 0.013 0.013
HIST-40-S 481302 0.0098 8.8 -2048 1792
Merged 481896 0.0098 8.8 -2048 1792
ION-4-3472 744 0 0 0 0
HIST-44-S 481301 0.014 9.4 -2048 1748
Merged 481891 0.014 9.4 -2048 1748
ION-5-139 739 0.013 0 0.013 0.013
HIST-44-S 481301 0.014 9.4 -2048 1748
Merged 481895 0.014 9.4 -2048 1748

TABLE IV: Statistics Top Four Ranked Matches.

measurement
name

count mean std min max

ION-4-198 756 6.5x107 188 6.5x107 6.5x107

HIST-23-S 891237 -91.9 6.6 -99 100
Merged 891730 54631 1878654 -99 6.5x107

ION-4-198 756 6.5x107 188 6.5x107 6.5x107

HIST-17-S 891237 -565 46 -782 -465
Merged 891730 54159 1878668 -782 6.5x107

ION-4-198 756 6.5x107 188 6.5x107 6.5x107

HIST-16-S 891237 -628 47 -785 -538
Merged 891730 54096 1878670 -785 6.5x107

ION-4-198 756 6.5x107 188 6.5x107 6.5x107

HIST-24-S 891237 -2048 0 -2048 -2048
Merged 891730 52677 1878711 -2048 6.5x107

TABLE V: Statistics Four Lowest-Ranked Matches.

bottom left of each graph are a straight line while the HIST
points on the bottom right have more spikes. The DTW algo-
rithm matches them, because the HIST measurement points are
concentrated on the same line as the ION counterpart, but with
a few points that fall outside that line. The difference in pattern
between the time series when looking at the bottom two graphs
within each figure could mean one of two things, they could
be different measurements; or they are the same but the ION
measurements are not measured at a high enough frequency to
record the spikes that appear in their HIST counterpart. The
representative sample for the HIST measurements also does
not include all the spikes that the actual measurements have
because of the increased step size. This was the case with
all the different methods of choosing a representative sample.
Therefore, the HIST sample could have negatively affected
the results of the DTW algorithm, because it does not include
the entirety of spikes from the original data. The sample data
is drawn in the top right corner for each graph in Figure 3
and clearly shows less spikes compared to the actual HIST
measurement. After we obtained these results, we used the four
most similar matches from the DTW 100 HIST, 2 ION steps
for anomaly detection as illustrated in Figure 3 and Figure
4(a) (up to and including ION-5-139 and HIST-44-S).

V. ANOMALY DETECTION

A. Implementation

We took the top four matches of the DTW results and
applied autoregression (AR), level shift (LS), and rolling
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measurement
name

Rolling Aver-
age

Autoregression Level Shift

ION-4-3472 0 0 0
HIST-40-S 94 276 0
Merged 94 276 0
ION-5-139 0 0 0
HIST-40-S 94 276 0
Merged 832 274 4
ION-4-3472 0 0 0
HIST-44-S 221 804 6
Merged 221 804 4
ION-5-139 0 0 0
HIST-44-S 221 804 6
Merged 959 2269 16

TABLE VI: Number of Anomalies Top Four Matches.

average (RA) on them. Each anomaly detection algorithm
is used separately on each matched pair. The data of the
matched pairs are then combined into one time series to
provide the same context and to possibly reduce the run-time
of anomaly detection by running the algorithms on one time
series compared to two. After combining the data, anomaly
detection is applied on the time series as seen in Table VI.

B. Results

For the top four matches, up to 94 to 804 times more
anomalies were found when considering anomalies detected
by both overlapping measurements compared to looking at a
single measurement. These numbers depend on the anomaly
detection algorithm applied on the data. Most anomalies are
missed when only the ION measurements are considered
instead of both HIST and ION measurements. When merging
the data of the top four matches, a percent change of up to
182 to 785% in anomalies can be detected compared to not
merging the data. Merging the data therefore provides a more
holistic view, because more anomalies are detected. However,
identifying critical anomalies and false positives from the
detected anomalies is a challenge because the data set is
unlabeled. When looking at the number of anomalies, all ION
measurements have no anomalies because they are a straight
line or are close to forming a straight line. For the top four
anomaly matches, autoregression discovers the most anomalies
after rolling average, and then level shift. Level shift is less
susceptible to noisy data and therefore detects the least number
of anomalies. When the ION and HIST measurements were
combined for the top four matches, the amount of anomalies
either stayed the same or increased except for ION-4-3472
and HIST-44-S during level shift anomaly detection. This
supports the point that merging the measurements leads to
a more holistic view. The differences in anomalies among
DTW matches are displayed in Figure 5 and 6. Figure 5 has
anomalies mostly along its spikes. In comparison, Figure 6 is a
straight line with no deviations and therefore has no anomalies.

C. Discussion

Since autoregression works by comparing its previous value
to the current one, the spikes should appear one at a time
which also highlights that the step size sample approach might

have easily missed the spikes because they are relatively rare.
However, the mismatch in anomalies highlights the need to
look at both HIST and ION measurements instead of only
looking at one of them. The spikes, which were identified
as anomalies, would have been missed by just looking at the
ION measurements. Additionally, using both HIST and ION
for anomaly detection increases the amount of data points and
decreases the time between measurements. Therefore, using
both measurements can increase the accuracy of anomaly
detection, because they provide a more holistic view of the
same measurement. The challenge with evaluating the ac-
curacy of the different anomaly detection algorithms is that
the data is unlabeled and it is unknown if the anomalies
that are identified by the anomaly detection algorithms are
cause for concern (i.e., ”critical”). Critical anomalies can
help with detecting cyber attacks or unusual activity in the
system, while naturally occurring anomalies are common to
the system. Further research needs to be done on how to
evaluate the anomaly detection models and how to identify
critical anomalies and false positives.

VI. CONCLUSION

Overall, this paper examines approaches used with over-
lapping electrical measurements from a power grid with
the goal of improving anomaly detection. While there were
challenges with the evaluation of the unsupervised anomaly
detection, it was demonstrated that merging the overlapping
measurements extends its time frame and provides a more
holistic view of the data. In general, this research identified
ways to incorporate overlapping measurements for unsuper-
vised anomaly detection. The DTW algorithm matched the
most similar measurements, and we were able to validate
the matching results by looking at the graphs and statistics
of the highest-ranked and lowest-ranked matches. By using
DTW, we were able to identify more anomalies. The number
of anomalies identified by the anomaly detection algorithms
differ among the overlapping measurement matches which
provide additional challenges that need to be addressed. The
difference in frequency between the two independent system
introduces challenges that are most likely impacting the DTW
results and the difference in anomalies. Overall, this work is
important, because anomaly detection mechanism can serve as
an early warning system when trying to detect cyber attacks.

VII. FUTURE WORK

Future work includes analyzing other statistical methods
that assess when the differences in anomalies are relevant
enough that the measurements are not the same. Especially,
investigating the mismatch between anomalies for the same
measurements, which could indicate certain types of data
tampering. In addition, exploring different ways to filter the
data before running DTW to reduce run-times and improve
the scalability of the approach. Using the pearson correlation
coefficient would be a possible option to find similar time
series within each system and then filter based on the results.
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Fig. 5: Autoregression HIST 40 S

Fig. 6: Autoregression ION 4 3472

Another possible area for future work includes determining
which anomaly detection algorithm is the most accurate one.
A possible approach would be to simulate an artificial anomaly
and see which algorithm detects it. If the zero measurements
are excluded from the overall data, a Denial-of-service (DoS)
attack can be inserted. A DoS attack is one of the most com-
mon threats to synchrophasor systems [31] and overwhelms
a PMU with bogus frames so that legitimate frames are lost,
delayed, denied, or dropped [32]. The consequences include
that the real-time measurements would be delayed or dropped.
For this case, we considered inserting zero measurements over
a time period of about six to eight seconds to indicate a
DoS attack. The zero measurements indicate dropped packages
during transmission and would show up when looking at the
database of sensor measurements. Ideally, both overlapping
measurements would more accurately identify the anomalies
and allow us to compare the accuracy of the different anomaly
detection algorithms.

The same could be done for a data integrity attack, which
includes tampering with the signal measurements units of
devices through interference, or changing calibration, forging
data, or even GPS spoofing [32]. We considered adding arti-
ficial anomalies, for example, adding noisy data points from
the Gaussian distribution. Because the HIST measurements
are already noisy due to the many spikes, adding the artificial
points would make it difficult to distinguish between the actual

attack and the occurring spikes. The cause for the spikes in
the data needs to be defined first to be able to include a data
integrity attack. If the spikes are naturally occurring noisy data
points due to poor calibration, these spikes could be removed
and then a data integrity attack can be inserted.

Evaluating our approach using overlapping measurements
on a labeled data set to confirm the effectiveness is another
direction of future work. One possible approach is generating
a synthetic data set and labeling it to change it to a supervised
anomaly detection problem which has more known methods.
However, the shape of the data needs to be explained, in
addition to defining the anomalies in more detail to make sense
with the shape.
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