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Abstract—The inclusion of Internet of Things (IoT) devices
is growing rapidly in all application domains. Smart Farming
uses IoT devices to increase efficiency and optimize farming
operations. These devices can be used in a cloud or edge
computing infrastructure which can provide remote control
of watering and fertilization, real time monitoring of farm
conditions, and provide solutions for more sustainable practices.
These improvements to efficiency and ease of use come with
added risks to security and privacy. Combining vulnerable
IoT devices with the critical infrastructure of the agriculture
domain broadens the attack surface for adversaries. Cyberattacks
in a large coordinated manner could disrupt the economy of
agriculture-dependent nations. To the sensors in a system, an
attack may appear as anomalous behaviour. Additionally, there
are possibilities of anomalies generated due to faulty hardware,
issues in network connectivity (if present), or simply abrupt
changes to the environment due to weather, human error, or
other unforeseen circumstances. To make these systems more
secure, it is imperative to detect such data discrepancies and
trigger appropriate mitigation mechanisms. In this paper, we
propose an anomaly detection model for Smart Farming using an
unsupervised Autoencoder machine learning model. We chose to
use an Autoencoder as our method of anomaly detection because
it attempts to reconstruct normal data with a low reconstruction
loss and anomalous data with a high loss. The high reconstruction
loss value for a data point indicates that the data is not like the
rest. Our model was trained and tested on data collected from our
greenhouse test-bed. Our proposed Autoencoder based anomaly
detection method achieved 98.98% and took 262 seconds to train
and has a detection time of .0585 seconds.

Keywords: Smart Farming, Anomaly Detection, Autoencoder,
Time-Series Data, Grove Sensors, Unsupervised Learning

I. INTRODUCTION

Smart farming is the implementation of IoT technology
in a traditional farm environment. Farms provide food, jobs,
and commerce across the globe. The addition of technology
to this system has the potential to reduce soil depletion by
monitoring crop growth patterns and reduce the amount of
fertilizer and water used by optimizing schedules for each
to match weather patterns and specific crop needs. Smart
farms also have the potential to improve crop yields, as well
as increase levels of sustainability [1]. Figure 1, shows an
end to end interaction among various entities involved in the
smart farming ecosystem. The result of a successful smart
farm would be decreased waste and increased output, all while
making the process easier for the farmer. However, farming is
a particularly critical sector due to the world’s dependency
on its physical output. A disruption in food supply would

have negative consequences on even a small farm and the
people who depend on its output. These consequences and
dependence become greater the larger the farm is. Disruptions
could come in the way of device failure, natural disaster, or
attack on the system.

There are different IoT devices that can be used within a
smart farming system including, but not limited to, sensors
for soil moisture level, temperature, humidity, etc., actuators
to control light level, air circulation, watering, fertilizer, and
many more. Smart farming devices are often exposed to
harsh conditions such as extreme heat and light, as well
as condensation build up or even flooding. Although the
price of IoT devices is low, making them affordable for
any level of farmer to use, they have inherent flaws and
limitations. Mostly have minimal or no security protocols and
overall low cost of hardware parts. This means that these
devices are easy to replace, but also sacrifice consistency
in readings, and as mentioned before, little or no privacy
and security mechanisms. IoT devices are highly susceptible
to failure and manipulation by attackers. An example of an
attack could be for an adversary to target a smart farming
infrastructure to disrupt food production simply to cause harm
or to gain financially by placing holding the systems hostage
and demanding a ransom before relinquishing control. Simply
by deploying IoT devices for smart farming purposes would
inherit different types of security risks that the farmers and
community previously would not have to worry about. Further,
with the exponential rise in the number of IoT devices in the
world has introduced new types/variations or degree of risks in
security and privacy. These devices often have unsatisfactory
security practices such as weak/guessable passwords, insecure
network services, etc.

A list of 10 of the biggest areas of insecurity in IoT
devices can be found in the OWASP IoT Top 10 document
[2]. To make IoT devices’ security flaws even worse, these
devices are also deployed on a massive scale, which means
that the vulnerability of a single sensor could be exacerbated
by using 10s or 100s of the same sensor on a large farm
[3]. IoT devices often have Bluetooth, WiFi, or other network
connectivity capabilities. This is what makes these devices
captivating and innovative. They allow the user to monitor
farm or greenhouse conditions remotely and, in advanced
scenarios, control actuation to ensure that optimal conditions
are upheld. However, network connectivity offers hackers a
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Fig. 1. Smart Farming Conceptual Architecture [5].

pathway to perform attacks and directly opens a farm up to
the dangers of the Internet. Apparently the aspects of smart
farming that make it beneficial, internet connectivity and use
of cheap IoT devices are also what put the system at risk.
This is because IoT devices make it possible for cyber attacks
to move past cyberspace and into the physical world [4]. In
addition, in connected systems like smart farming where data
reading can result in actuation of other devices, it is critical
to identify anomalous behaviour timely.

In this paper, we focus on detecting anomalous behaviour
of different sensors deployed in a smart farming ecosystem.
Determining anomaly in this critical and time sensitive domain
is imperative to curtail and limit the cyber risk and provide
an opportunity for activating/deploying relevant security mit-
igation solutions. In addition, some sensor readings result
in action from other devices, for example, a low moisture
reading will result in actuate a water sprinkler. Therefore, it is
critical to timely identify even a slightest anomalous behaviour
(which could be because of a faulty sensor, or cyber attack)
to prevent large scale damage to ecosystem. Our goal is to
implement machine learning to accurately and quickly detect
anomalies that could be the result of device failure, accidental
interference, or by attacks. We envision that by exploring
anomalous behavior and mitigation techniques, we can make
smart farming safer to use and expand the work being done
in this domain. The entire overview of our approach is as
follows: The first step was to select sensors, set up a test envi-
ronment, and collect data. The data we collected from sensors
deployed in a greenhouse were independent from any network

connectivity. This was done to focus on collecting data that
represents normal, healthy conditions within the greenhouse.
Although we do not study the effects of potential attacks or
anomalies due to network connectivity, our model would still
be able to detect anomalies because we trained solely on non-
anomalous data. At this point, deployment in commercial farm
settings is beyond the scope of our research, and we are only
focused on developing a model which can detect anomalies.
Therefore, we leave the possibility of connectivity up to future
work. After data collection, we processed the data to prepare
it for ingestion into a machine learning model. We chose to
use Autoencoder1, because it uses a neural network to encode
data into a low dimension and then decode it, attempting to
minimize reconstruction loss. It’s able to perform anomaly
detection by checking the magnitude of the reconstruction loss
[6]. In other words, the Autoencoder’s inability to reconstruct
particular data implies that the data is anomalous. Using this
method we were able to achieve high accuracy and train and
predict quickly as elaborated in the later sections. Our success
using this model encourages us to test other deep learning
models in the future and compare their metrics.

The main contributions of this paper as as follows:
• We developed a scalable smart farming environment and

collected data from different sensors. We also highlight
some challenges faced and solutions we designed.

• We designed and injected anomalous scenarios along with
some natural anomalies encountered in our smart farming
environment.

• We trained and tested an Autoencoder model which is an
unsupervised artificial neural network.

• We demonstrated how an Autoencoder model can per-
form well with promising results.

The remainder of the paper is organized as follows: Section
II discusses the related works in anomaly detection and
security issues in smart farming. We introduced the deployed
smart farming architecture in Section III elaborating on the
different sensors, hardware, and software used to conduct our
experiments. Section IV highlights the entire data collection
and processing stages along with the different anomalies
injected into the system. Description of the Autoencoder
machine learning model and its architecture is done in Section
V. The results generated by the model are discussed in Section
VI followed by conclusion and future work in Section VII.

II. RELATED WORK

The exponential rise in the number of internet-connected de-
vices has raised security concerns, especially in the agriculture
sector, as farmers will not be able to bear the potential loss and
damage to crops. Gupta et al. [5] developed a comprehensive
survey of issues in the security and privacy of the Internet
of Things in 2020. The paper covers the architecture of a
smart farm environment in-depth and potential real world
attack scenarios. It focuses on smart farming in its mature
form, in which devices are interconnected with one another

1https://blog.keras.io/building-autoencoders-in-keras.html
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and also connect to the internet. Jeba et al. collected pH and
moisture data from soil sensors connected to an Arduino, then
visualized the data using ThingSpeak. Thingspeak provides a
way to visualize and monitor farm conditions through the use
of WiFi. In our deployed architecture, we collected data locally
using a Raspberry Pi, acting as a smart edge-based system
[7]. Sontowski et al. [8] described various types of network
attacks that could be orchestrated on smart farms. The authors
also targeted a smart farming test bed with a Denial of Service
(DoS) attack. This attack and the others described in the paper
are ways an attacker can manipulate or harm the system. The
approach presented in our work will be able to identify certain
behavior in the form of anomalies and later potentially report
the findings to the user.

A seminal work by Chandola et al. [9] titled ”Anomaly
Detection: A Survey” offers a comprehensive study of types
of data, anomalies, and techniques for detection. It also details
all domains in which anomaly detection has been used. This
detailed survey provided the authors of this paper with much
of their fundamental understanding of the topic. Several papers
[10]–[17] offered specifics on anomalies in smart ecosystems.
In smart farming, the sensors used in a connected farm are
often exposed to harsh environments. The conditions make the
devices prone to failure, malfunction, attacks, tampering, etc.
Any of these conditions could cause abnormal device readings,
which would be considered anomalous compared to normal
data [18]. The low cost of IoT devices in general and the
associated implications are further elaborated in later sections
of this paper.

Kotevska et al. [19] from Oak Ridge National Laboratory
created an algorithm called ”Kensor” which aims to achieve
detection of normal and abnormal behavior, except instead
of individual sensor data they explored co-located/coordinated
sensors. These sensors are located in close proximity to one
another and the combined collected data from each is used
to paint a picture of normal or abnormal. This algorithm
offers a solution to more interconnected systems than ours.
However, the inclusion of co-located or coordinated sensors
aids the anomaly detection tool in its performance and will
be considered in future work. Guo et al. [20] proposed a
model called ”GRU-based Gaussian Mixture VAE system”
for anomaly detection in multivariate time-series data. GRU
(Gated Recurrent Unit) cells are used to discover correlations
among time sequences. Gaussian mixture means that the model
combines several Gaussian distributions rather than the more
common distribution, Gaussian single-modal. The authors
found that this model outperformed traditional Variational
Autoencoders (VAEs) in tests on accuracy and F1 score. Yin
et al. [21] tested a Convolutional Neural Network (CNN) for
anomaly detection on time-series data. The authors found that
the resulting metrics were promising and achieved a desirable
result in anomaly detection. BigClue Analytics [22] is a
middle-ware solution that offers data approximation, sampling,
parallel processing, and anomaly detection in a low-latency
scenario. Our focus is not currently in low-latency solutions.
However, this would be useful for systems already ”online”.

Fig. 2. Overview of Deployed Architecture

They tested statistical algorithms, as well as linear regression,
signal decomposition, and other methods of anomaly detec-
tion. The authors also mention several downfalls of statistical
methods for time-series anomaly detection including: missed
subtle outliers, inability to detect multiple consecutive outliers,
lack of predicted values, etc. In our work, we chose not to
use a statistical machine learning method for our system for
these and other reasons mentioned in Section V. The BigClue
Analytics paper chose to use a smart greenhouse as their use
case as well. Their interval of sampling was much longer than
ours at every 15 minutes, and we believe that this amount
of time is too long to wait between samples. They also only
evaluated temperature and humidity data, whereas we look
at several more sensor outputs. Lastly, ARIMA [23] was
suggested as a popular time-series analysis technique that we
intend to explore in our future work. All of these related works
offered solutions that helped us refine our choices involving
model selection. We will consider some of the approaches in
our future work.

Throughout our literature review, we found that there is
an overall lack in studies done on the behavior of specific
sensors. We wanted to contribute to the understanding of IoT
sensors for smart farming by creating a working environment
and collecting a large set of data. We will also be publishing
the dataset for public use. Since smart farming is a relatively
new domain, we found that efforts to improve the systems
and/or detect anomalies were lacking. This is what we hope
to offer with this paper and future work.

III. EXPERIMENTAL SETUP, CHALLENGES ENCOUNTERED
AND SOLUTION APPROACHES

The architecture of our deployed smart farm ecosystem is
shown in Figure 2. We used Grove Sensors2, a Raspberry Pi
Zero3, a Grove Base Hat to connect the sensors to the Pi, an
ORIA Temperature Sensor/Hygrometer, and basic peripheral
hardware items including a monitor, keyboard, and mouse.
The Grove sensors used were to collect data on air quality
(Grove - Air Quality Sensor v1.3), light readings (Grove -
Light Sensor), and soil moisture values (Grove - Capacitive

2https://www.seeedstudio.com/category/Sensor-for-Grove-c-24.html
3https://www.raspberrypi.org/products/raspberry-pi-zero/



3393

Soil Moisture Sensor (Corrosion Resistant)). The ORIA sen-
sor was chosen for its Bluetooth connectivity capability and
accompanying smartphone application SensorBlue. The device
was placed in our greenhouse environment and when the
smartphone with the SensorBlue app was close to the device,
it would dump all of the accumulated data to the app via
Bluetooth which was then later exported and formatted into
a CSV file. This was helpful in allowing us to select the
exact date range that we used for the Grove sensors, and for
which we want to process the data. The Raspberry Pi Zero was
chosen because it is widely available and cost effective with all
the connectivity capabilities needed in a smart farming system.
It also works well with the Grove Base Hat which is necessary
for connecting to sensors. All of the peripheral hardware we
used was for starting and stopping data collection, and later
for moving the datasets to our personal machines.

Initially, the sensors were deployed in a single house plant
to fine-tune parameters for data collection such as sampling
interval, boundary conditions, and time and date formatting.
After collecting data for 10 days indoors, we made changes to
the Python source code that controls the sensors. Next we were
able to move our sensors to the Shipley greenhouse owned by
Tennessee Technological University (TTU). This allowed us
to collect data in an environment where the temperature, light
conditions, and watering schedule of the plant in question were
more variable than they were indoors, providing a real-world
environment for data collection. Our collaboration with the
agricultural department of TTU was instrumental in helping
us collect data for our model. Scientists there also provided
us with the watering and light schedules so that when we
observed the data we would be able to identify patterns
of behavior. These schedules in turn helped us determine
the types of values that would merit labeling an event as
anomalous or not. A photo of the deployment set-up in a
plant is shown in Figure 3. Further expansion of this work
could involve placing sets of sensors in several plants and
connecting them all to a central Raspberry Pi. This would
allow more precise comparisons of data and more accurate
anomaly detection.

A. Hardware and Sensors Deployed with Limitations

Grove sensors, though capable of sensing within our neces-
sary accuracy, are on the low end of the price range, analogous
to any smart farming deployment. The sensors we used all
cost less than $10, which are what will likely be used in
a real ecosystem. Through extensive periods of exposure to
heat and moisture, the sensors were prone to disruptions. The
environment inside the greenhouse was consistently in the
90°range. Several times throughout the data collection period,
the sensors disconnected from the Raspberry Pi temporarily,
stopping the stream of data. In order to prevent this and
collect data continuously, the sensors and the Pi were enclosed
in a box and stored away from direct sunlight and near
air circulation. Unfortunately, this also caused several issues
which are discussed below.

Fig. 3. Data Collection Set-Up at Shipley Greenhouse

Another issue with IoT devices is their interconnectivity.
In our case, all of the Grove sensors are connected to the
Raspberry Pi through a Grove Base Hat. There are several
vulnerabilities associated with this aspect of the system. Each
sensor connects to ports on the Grove Base Hat with 4-pin
cables. These cables fit into the ports loosely and are easily
disconnected. If one sensor’s connection is compromised and
stops collecting data, and the rest of the sensors continue
to collect, all of the data will be associated with different
points in time. A benefit to the connectivity between devices is
that if each Grove sensor shows the same anomalous pattern,
it could be clearer where the anomaly originated, likely in
the Grove Base Hat, the Raspberry Pi, or somewhere further
upstream. Another physical vulnerability is that we stored the
Raspberry Pi and sensor set-up inside a plastic container, as
mentioned above. The cables were fitted through the top and
then placed on or around the plant we used for the experiment.
The sensor cables were prone to unplugging during set-up and
we sometimes did not know until we went back to the farm to
look at the data we collected. More snug fitting cables could
make connectivity more reliable and so could creating a higher
quality storage box for the devices.

It must be noted that the issues highlights in this discussion
are specific to our deployment, and we believe in more realistic
settings such concerns will be taken care in advance. Our
goal in this paper is not to discuss or highlight architectural
limitations, but to propose a novel solution to detect anomalies
in smart farming ecosystems.

B. Sensor Source Code Modifications

We deployed the Grove sensors using the Python source
code files available with each Grove product. These can be
accessed through GitHub4. We altered several sections of the
source code to better suit our system. One of the changes we

4https://github.com/Seeed-Studio/grove.py
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made to each file was to save the data we collected locally.
We decided to store the data this way because the greenhouse
we used for our project did not have reliably functioning
WiFi, which could be the case in a real smart farm as well.
Storing locally gave us a way to have access to the data and to
leave the sensors running without worrying that a lost internet
connection could be contributing to any discrepancies in the
data. Although, attacks using internet connectivity [8] and or
signal connectivity issues would cause anomalous spikes in the
data in a true smart farm environment, we ignore such attacks
here in order to gain an understanding of what the collected
data should look like with as few interruptions as possible.
The data was stored locally as a CSV file to make processing
easier later in the project. Along the same lines, we removed
any non-numeric data being stored by the sensors. The numeric
readings were often originally saved with a descriptor such as
”High Pollution” for the air quality sensor or ”Dry” in the
case of the soil moisture sensor. These descriptors could not
be processed in our model in any meaningful way so they were
removed. We also changed the interval of sampling for each
Grove sensor to every 60 seconds. Initially, the sensors were
set to collect every tenth of a second. This produced too many
data points within the time we allotted for data collection.
It also created an issue in matching all the sensor outputs
together. Changing the interval to 60 seconds meant that we
could group all reading by the minute they were collected.
We found no issue in reducing the number of samples in
terms of lost specificity among changes in the data. However,
the temperature and humidity sensor stores one data point
every 10 minutes. It did not have source code that we could
access, so we made an alternative change, as elaborated in
the data processing subsection IV-B. The last general change
made was to the time and date formatting. We used the
time.asctime() function in Python to ensure we could
separate data points in the CSV file for processing [24]. Each
Grove sensor’s source code had individual changes made to
them as outlined below.

1) Air Quality Sensor: For the most part, the sensors’
readings are categorized using if-else loops. The air qual-
ity sensor has two groups that readings can fall into: “High
Pollution” and “Air Quality OK”. Originally the threshold
for a High Pollution reading was a value of 100 or more.
The information page5 for this sensor said it is responsive
to a variety of harmful gases. The specific gas that causes
the reading cannot be determined, only that the level of the
harmful gas is high. We performed several tests to see how
easy it would be to reach a 100 reading. We exposed the sensor
to a can of wood stain, which contains potent toxic gases.
This raised the reading to around 130. This led us to alter the
threshold for “High Pollution” to a lower value, specifically
40, because exposure to harmful gases similar to wood stain
would be damaging to the plants. Setting the threshold at
40 allowed us to see when there were small but out-of-the-

5https://www.seeedstudio.com/Grove-Air-Quality-Sensor-v1-3-Arduino-
Compatible.html

ordinary changes in the air quality.
2) Light Sensor: The light sensor contains a photo-resistor

which detects changes in light intensity in the environment.
The brighter the light is, the lower the resistance of the
sensor is. Lower resistance means that a higher voltage can be
achieved, making the sensor value high in bright conditions
and low or even zero in the dark. We found that our data
reflected this well. The sensors read values between 0 and 10
in the hours of the night and up to 640 in the brightest part
of the day. The readings produced clear separations between
night and day, so we didn’t change anything regarding the
thresholds for this sensor.

3) Capacitive Moisture Sensor: As the name suggests, this
sensor uses changes in capacitance to determine the level of
moisture in soil. The readings are counter-intuitive because
the more moisture is detected in the soil, the lower the
output reading. The sensor initially had two groupings: “Wet”
and “Dry”. We performed several tests and determined that
the readings would be better separated into three groups.
Originally the threshold for a “Dry” reading was a value
between 0 and 300 and “Wet” reading was anything greater
than 300. When we started our initial set-up and testing of the
sensors, we found that when the sensor was exposed to soil
that had just been fully watered, it produced a “Dry” reading.
Several tests were performed to make sure that this was not
a fluke. Ultimately we decided we would need to alter the
code to switch the values around to achieve consistency in the
readings and environment. After changing the values in this
way, we also found that the values of 0 up to 600 did not
fully encompass what we wanted them to. First, the sensor
was placed in the soil approximately 6 inches away from the
plant. This meant that when the irrigation system turned on
for the plant, the sensor would be exposed to running water.
This produced values over 1900. This led us to changed the
threshold for a “wet” reading to anything greater than 1900,
“Moist” to between 1300 and 1900, and ”Dry” to any reading
less than 1300. Although ultimately we removed the language
descriptors from the data before processing, adding in the third
grouping helped us understand the sensor readings better.

IV. SMART FARMING DATA AND ANOMALOUS
BEHAVIOUR

Data produced from Grove Sensors is time-series data. Time
series data is a collection of quantities that are assembled over
even intervals in time and ordered chronologically [4]. Infor-
mation collected from any ”smart” environment is considered
actionable, in that it can be used to make decisions and take
actions on critical systems [6]. This means that the actuation
processes are directly affected by all the data in a system.
Reducing anomalous patterns and alerting the user when data
is out of the ordinary is imperative to keep smart systems
running smoothly. The trouble in identifying anomalies in
sensor data is that ”normal” can look different every day and,
oftentimes, several times within one day. On a sunny day with
high light and temperature readings, you would expect all
the data for the day to flow together seamlessly. However,
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Fig. 4. Data Collected Over 11 Non-Consecutive Days

a thunderstorm could suddenly blow through, and cause a
decrease in light and temperature readings. This would be
considered anomalous, but not in a harmful way. On a day with
no storms, a quick decrease in the same sensor measurements
would be considered anomalous and potentially harmful or
incorrect. Detection of anomalies, both harmful and benign, is
the goal of this work.

A. Data Collection Phase

We began data collection at the greenhouse in the first
week of April in 2021. We used our understanding of the
weather (based on historical data) in the Middle Tennessee
region during the spring to help us understand what normal
readings should be. In the first phase, the sensors collected
data for 7 days and were stopped. This was the first time
all of the sensors had run simultaneously in an outdoor real
environment and with the changes we made to the interval of
collection in the source code as discussed in previous section.
Each sensor collected a data point every 60 seconds. Roughly
10,100 data points were collected for the first phase. At this
time, we started processing this data for our ML model. In
the month of May, we began the second phase of collection.
After processing the first dataset, we decided it would be
beneficial to train the machine learning model we chose with
more data. This time the sensors ran for 6 days and produced
approximately 7,200 data points. The total number of data
points collected was 17,349. We believe this dataset6 can be
used by the community interested in learning more about the
behavior of Grove and ORIA sensors, and working on smart
farming research.

As shown in Figure 4, the data translated well visually. The
light sensor provided extremely consistent readings, showing
distinct night and day times. Other sensors provided less

6Please send an an email to mgupta@tntech.edu, if you are interested in
working with the dataset.

distinct readings, but were generally consistent overall. There
are several factors worth mentioning here. For the first 7 days,
the moisture sensor fluctuated up and down daily. The change
over to the second collection set is distinguished by a sharp
peak and then a more level set of points for the next 6 days.
As shown in Figure 3, the moisture sensor is the only one
installed in the actual plant. The difference in readings in the
first and second set could be due to a different placement
location in the plant with reference to the irrigation system. It
could also be due to the orientation of the sensor, electrodes
facing the water supply or away from it. It is worth mentioning
that the orientation of each of the sensors has the potential to
drastically affect the sensor readings. We paid close attention
to this after we found the jump in the moisture data.

Creating this environment from scratch meant several things
about the data we received. First, this data is unlabeled. It
was taken directly from the sensors and then imported for
processing. As mentioned in Subsection III-B, we made small
adjustments to the number of data points collected by each
sensor so that they would all match up. However, we did not
individually label each data point as anomalous or not. With
over 17000 data points, this would have been incredibly time
consuming and difficult to achieve accuracy in. Therefore, the
model we selected needed to be able to process unlabeled
data, and an Autoencoder is capable of this, as discussed
in the next section. Also, the data falls into the time-series
category. Time is an attribute of these data points and implies a
correlation between neighboring points. This data is known to
contain multiple types of irregularities: contextual, global, and
collective [25]. Our dataset had predominantly contextual and
global outliers. Contextual means that the outlier is only out-
of-the ordinary for the time slot it was found in or among its
neighboring points. Global means the anomalous point would
be anomalous no matter where it was found in time, or with
reference to other points. The severe drop in Temperature data
in Figure 4 would be an example of both. No other data
points were this low in temperature, but even at the lowest
temperature, there were no other spikes this low.

B. Data Processing Phase

In order for our model to properly analyze our input data,
we had to preprocess the data before passing it into the
model. First, as mentioned in Subsection III-B, the interval of
collection between the Grove sensors and the ORIA sensors
were different. There was no built-in way to change the
ORIA collection interval. To keep the data points separated
by a minute, each temperature and humidity reading was
copied into each one minute slot encompassed by that ten
minute window. For example, on April 16 at 10:19 AM
the temperature reading was 85.44° F and the humidity was
36.90%. This reading was used for each minute from 10:19
AM until the next reading was taken at 10:29 AM. It would be
unlikely that a temperature or humidity change large enough
to trigger an anomalous reading could occur within these ten
minute intervals. Therefore, this is an alteration we felt was
relatively low risk. Next, we combined all the data from each
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TABLE I
ANOMALIES

Anomaly Measurement
Natural Anomalies

Temperature too Low < 54° F
Temperature Difference too Large |T1− T2| > 25° F

Air Measurement too High > 20
Potential Anomalies

Moisture too Low < 1300
Moisture too High > 1900

Light too High > 640
Light too Low < 0
Air too High > 40
Air too Low < 0

Temperature too High > 150° F
Humidity too High > 90
Humidity too Low < 0

of the individual sensors into a single data frame. This helped
us visualize data, ensure there were no null values from any
sensors, and allowed us to plot our readings more easily [26].

C. Anomalies

In order to create anomalies, normal patterns in the data
have to be identified first. An anomaly is a pattern or instance
in the data that does not conform to a well-defined notion
of normal behavior [9]. Several anomalous instances occurred
naturally in the data. These were removed from the training
data set, but left in the testing data set. In Table I, these
are listed as ”Natural Anomalies”. An example of a naturally
occurring anomaly is that the temperature sensor has a reading
that is ”too low”. This means that based on a comparison to
the current high and low temperatures for Middle Tennessee
in April, a reading of less than 54° F would be too low to
be normal. It’s not so important that this value could never
be reached, but that it would be out of the ordinary to get a
reading that low. Since we set this floor value ourselves, it
would need to be changed based on the location of sampling
and time of year. The second section of anomalies is called
”Potential Anomalies”. These are also bounds on values that
we set manually. These statements such as ”Moisture too
Low” or ”Humidity too Low” are readings we would consider
anomalous. We selected the bounds for each sensor based on
what values we saw over the course of our experimentation.
We also injected some anomalies after collection to test the
performance of our model. We found that the model was able
to detect injected anomalies for all of our sensors. This once
again proves that even though we do not train the model with
anomalies included in the training data, our approach is still
able to detect anomalous readings for each of our devices. A
full list of these anomalies can be found in Table I.

V. ANOMALY DETECTION MODEL

In this work, our data collection resulted in a massive
amount of normal data samples and very few anomalies,
therefore it was suitable to train a model with only normal data
points and test it with a collection of normal points and the
few anomalies that occurred. As such, for anomaly detection,

Fig. 5. Visual Representation of Autoencoder Model [27]

we used Autoencoders [6], which is an unsupervised neural
network technique that learns how to compress and encode
data and how to reconstruct the data back from its reduced
representation to its original shape. It works by accepting a
given input, encoding it into a smaller size using a bottleneck
layer, and then decoding it into its original size. Figure 5
gives a visual representation of an Autoencoder model. It is
trained so that the model is able to ignore data that is not
crucial to reconstructing the original data as accurately as
possible. In addition, the compression feature of Autoencoders
helps significantly in dimensionality reduction which makes it
capable of processing large number of features, more so than
other unsupervised learning methods.

In order for the Autoencoder to function properly, it must
be trained on data that is scrubbed from any anomalous points
exceeding a defined threshold. This ensures that the model is
able to reconstruct the normal data with as little reconstruction
loss [20] as possible, while maximizing the reconstruction loss
of the anomalies contained within the testing dataset. Labeling
data points as anomalous or benign was achieved by checking
each of the data points’ attributes for conditions we considered
abnormal. The thresholds for this loop can be found in Table
I.

The testing data was visually chosen based on a time period
that appeared to contain a bulk of anomalous data points,
which spanned from April 10th to April 13th.

The values of data points collected from different sensors
are of different scales. For instance, the moisture sensor gave
measurements ranging from 1100 to 2000, whereas the the
air quality sensor yielded measurements ranging from 5 to 30
(see Figure 4). For this reason, the data was normalized using
Min-Max normalization [28] to create consistency among
the data. Performing normalization on input data has been
proven to drastically improve the accuracy of machine learning
models. The same parameters used for normalizing the training
data were also used to normalize the testing data.

Our model consists of a single input layer, three encoding
layers, a single layer for the latent space (aka bottle neck),
three layers for decoding, and a single output layer. A diagram
showing these basic features is shown in Figure 5 [27]. The
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Fig. 6. Reconstructed Testing Data Compared to Normal Testing Data

input for our model doesn’t represent images, but the principle
is the same. The model takes an input, encodes it using three
layers, then decodes it, and produces an output image. The
hope is that by inputting normal data, the model is able to
learn what normal behavior is, and recreate it. After the model
is trained, we must determine a classification threshold. The
hyper parameters such as learning rate, batch size, number of
nodes and epochs were determined by conducting a grid search
of various values of these parameters until the combination that
produced the most optimal results was found The model was
trained for 60 epochs, with a batch size of 8, a learning rate
of .000001, and a node size of 256.

For model training, the normal data is split into train and
validation data, 75%/25% respectively. As mentioned earlier,
we have a separate data set specifically for testing. The model
was trained using the training data, and the validation data
was used to determine the classification threshold which is
discussed later on in this section. Our model was trained in
262 seconds.

Unlike normal machine learning models that generate pre-

dictions, passing data through the trained model does not
generate an actual prediction, and instead, it simply returns
the loss between the original data point, and the reconstructed
data point generated by the Autoencoder model. In order to
obtain an actual prediction, we take the loss returned from the
model and compare it to a predetermined threshold in order to
determine if the data point is anomalous or not. We used our
validation data, which contains no anomalous data points, to
determine the threshold by taking the average of the 5 highest
loss values that were generated. The average was taken in order
to prevent one abnormal loss value from skewing threshold
while also ensuring that the threshold is larger than the loss
generated by a normal data point. The testing dataset is used
to evaluate the performance of our model, where it is used
as an input to obtain its reconstruction loss. The loss values
are then checked against the predetermined threshold to be
classified as normal or anomalous.
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Fig. 7. Reconstruction Loss on Test Data

VI. EXPERIMENTAL RESULTS AND DISCUSSION

The results presented in this section test the performance
of the Autoencoder model. We evaluate our model using the
performance metrics: accuracy, precision, recall, and F1 score,
defined as follow:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score = 2× Precision×Recall

Precision+Recall

In our experiments, a positive outcome means an abnormal
activity was detected, whereas a negative outcome means a
normal activity was detected. True Positive (TP) refers to an
abnormal activity that was correctly classified as abnormal.
True Negative (TN) refers to a normal activity that was
correctly classified as normal. False Positive (FP) refers to
a normal activity that was misclassified as abnormal. and
False Negative (FN) refers to an abnormal activity that was
misclassified as normal.

The success of our model is based on measuring the
reconstruction error that is produced by any given data point.
Figure 6 shows an example of reconstructed data overlaid
the original data that was inserted into the model. In this
figure, extremely severe dips in temperature denoted by the
blue line (representing our original data) can be noticed. The
data reconstructed by the model, represented by the red line,
does not dip as much as the original data. This is because
our model was not able to reconstruct these points accurately
due to the fact that they are anomalies. The reconstruction loss
(i.e. different between the original and the reconstructed data),
where the model recognizes normal or abnormal behavior, is
shown in Figure 7. The figure shows a visualization of the
mean-squared-error (MSE) generated by the model after it was

given each data point within the test data set. The dotted red
line denotes the threshold determined as mentioned in Section
V. Each data point’s actual label is represented either by blue
color to denote a normal behavior or red color to denote an
anomaly and every data point that lies above the threshold
was classified as anomalous. This figure illustrates our model’s
capability to detect the majority of anomalies by measuring the
MSE produced by each data point.

Overall, as shown in Figure 8, our model was able to attain
high performance with over 90% in all metrics. The precision
is lower than the recall metric which shows that the model
produced slightly more false positives than false negatives. In
a smart farming environment, a higher rate of false positives
would not have a dramatic affect on the productivity of day to
day operations and would ensure a higher number of anoma-
lous situations are detected. A rather problematic situation
would be if there were more false negatives than positives. A
user would much prefer receiving an alert when nothing was
wrong than not receiving an alert and enabling potential harm
to occur to the crops and hardware. In the future, we hope to
further decrease the number of false positives and negatives
in order to fine-tune an overall more accurate model. This can
be done by using more training samples.

VII. CONCLUSION AND FUTURE WORK

Our approach has shown that smart farming anomaly de-
tection can be done at an extremely accurate level by using
an Autoencoder. Our approach would allow vast scalability by
only requiring non-anomalous data for training. Greenhouses
provide controlled environments that create consistent condi-
tions for crops and data collection. Environments such as this
are a perfect use case for our approach since the performance
of an Autoencoder can drastically improve when provided with
large amounts of non-anomalous data. Our approach shows
that it may not be entirely necessary for machine learning
professionals that are working on anomaly detection within
smart farming to be highly concerned with developing models
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Fig. 8. Performance Metrics for Autoencoder Model

that are trained using labeled data that contains both normal
and anomalous data.

In the future, we will explore more anomaly detection mod-
els in order to optimize the system’s performance. Once the
best model has been selected, the architecture could be brought
online to be used and tested with the added interactions of
Internet connectivity. By bringing the system online we will
have the ability to alert users of potential threats or anomalous
behavior. These alerts could be coupled with actuators such as
fertilization, watering, video monitoring, etc. The introduction
of cameras can be “used to calculate biomass development
and fertilization status of crops” [29]. They can also be used
to allow the system-user to monitor their property from afar.
We plan to introduce photo and video monitoring as one of
our next steps to improve security and broaden our scope.
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