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A B S T R A C T

We present a safe-by-design trajectory planning and tracking framework for nonlinear dynamical systems
using a hierarchy of system models. The planning layer uses a low-fidelity model to plan a feasible trajectory
satisfying the planning constraints, and the tracking layer utilizes the high-fidelity model to design a controller
that restricts the error states between the low- and high-fidelity models to a bounded set. The simplicity of
the low-fidelity model enables the planning to be performed online (e.g. using Model Predictive Control) and
the tracking controller and error bound are derived offline (e.g. using sum-of-squares programming). This
error bound is then used by the planner to ensure safety for the combined planner–tracker system To provide
freedom in the choice of the low-fidelity model, we allow the tracking error to depend on both the states and
inputs of the planner. The goal of this article is to provide a tutorial review of this hierarchical framework
and to illustrate it with examples, including a design for vehicle obstacle avoidance.
1. Introduction

Modern engineering systems such as autonomous vehicles and un-
manned aerial vehicles (UAVs) must operate subject to complex safety
and performance requirements in changing environments. Designing
controllers that meet such requirements in real-time may be compu-
tationally intractable, e.g., due to large system dimension or nonlin-
earities in a high-fidelity dynamical model of the system. The planner–
tracker framework (Herbert etal, 2017; Kousik, Vaskov, Bu, Johnson-
Roberson, & Vasudevan, 2020; Rosolia & Ames, 2021; Singh, Chen,
erbert, Tomlin, & Pavone, 2020; Singh, Majumdar, Slotine, & Pavone,
017; Smith, Yin, & Arcak, 2019; Tedrake, Manchester, Tobenkin, &
oberts, 2010) addresses this challenge with a layered architecture
here a lower-fidelity ‘‘planning" model is employed for online plan-
ing and a ‘‘tracking" controller, synthesized offline, keeps the tracking
rror between the high-fidelity (‘‘tracking") model and the planning
odel within a bounded set. System safety is then guaranteed if the
lanner constraints, when augmented by the tracking error bound, lie
ithin the safety constraints.
There is a choice to be made when defining the tracking error

etween the planner and tracker systems. In Singh et al. (2020), Smith
t al. (2019), Yin, Bujarbaruah, Arcak, and Packard (2020), the track-
ing error depends on only the planner/tracker states. In Meyer, Yin,
Brodtkorb, Arcak, and Sørensen (2020), which studies a ship control
problem, the tracking error is generalized to also depend on the planner
input. This is achieved by accounting for the jumps in the error variable
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that are induced by jumps in the zero-order hold input between time-
steps. Including the planner input in the error definition allows for
a lower-order planning model whose states mimic the tracker position
states while the planner inputs correspond to the tracker velocity states.
Smith et al. (2019) and Meyer et al. (2020) further make a connection
between the layered planner–tracker architecture and the notion of
abstractions introduced in Girard and Pappas (2009). In doing so, they
also eliminate the restrictive geometric conditions in Girard and Pappas
(2009), also implicit in Singh et al. (2020), which require that the
set where the tracking error vanishes be invariant. Removing this re-
quirement and allowing the tracking error to depend on planner inputs
greatly expand the applicability of the planner–tracker framework.

In this tutorial we introduce a broad framework which encompasses
those earlier results while further generalizing the error definition
compared to Meyer et al. (2020). In addition, the framework described
here is not restricted to a particular planner. Indeed, unlike the com-
putationally heavy symbolic design method used for planning in Meyer
et al. (2020), the numerical example presented here uses the popular
choice of Model Predictive Control (MPC), which is appropriate for
real-time implementation.

Although MPC is often used for both planning and control, un-
der mismatch of planning model and the plant, the MPC optimiza-
tion problem must be robustified. Feasibility and stability proper-
ties of robust MPC have been studied in Kothare, Balakrishnan, and
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Fig. 1. Online implementation and offline synthesis of the planner–tracker control scheme.
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Morari (1996), Mayne, Rawlings, Rao, and Scokaert (2000) and sub-
sequent publications. For linear systems, Tube MPC (Bujar-
baruah, Rosolia, Stürz, Zhang, & Borrelli, 2020; Chisci, Rossiter, &
appa, 2001; Fleming, Kouvaritakis, & Cannon, 2014; Goulart, Kerri-
gan, & Maciejowski, 2006; Langson, Chryssochoos, Rakovic, & Mayne,
2004; Muñoz-Carpintero, Cannon, & Kouvaritakis, 2013; Raković &
Cheng, 2013; Raković, Kouvaritakis, Cannon, Panos, & Findeisen, 2012;
Raković, Levine, & Açikmese, 2016) is a widely used approach that
solves a computationally efficient convex optimization problem for
robust control synthesis. Although Tube MPC design with feasibility
and stability properties are proposed for nonlinear systems in Allgöwer
and Zheng (2012), Cannon, Buerger, Kouvaritakis, and Rakovic (2011),
öhler, Müller, and Allgöwer (2018), Köhler, Soloperto, Müller, and
Allgöwer (2021), Koller, Berkenkamp, Turchetta, and Krause (2018),
Yu, Maier, Chen, and Allgöwer (2013), control synthesis can become
ither too conservative, or computationally demanding.
Another related work is (Majumdar & Tedrake, 2017), in which
ultiple tracking controllers and error-bound funnels are computed
or a library of nominal trajectories. By contrast, the planner–tracker
ramework presented here generates a single tracking controller and
an accommodate any trajectory from the planner, not just one that
elongs to a pre-specified library.
The remainder of the paper is organized as follows. Section 2 in-

roduces the high-fidelity tracking model and the low-fidelity planning
odel and defines a simple tracking error that depends only on the
lanner/tracker states. We build intuition with this simple error model
nd present the method for constructing a tracking controller and
n error bound using sum-of-squares (SOS) programming. Section 3
eneralizes the tracking error definition to additionally depend on
he planner input and extends the results in Section 2 to handle this
eneralized error. In Section 4, we demonstrate the method on a vehicle
bstacle avoidance example, and we provide concluding remarks in
ection 5.

otation

S𝑛 denotes the set of 𝑛-by-𝑛 symmetric matrices. S𝑛+ and S𝑛++ de-
ote the sets of 𝑛-by-𝑛 symmetric positive semi-definite and positive
efinite matrices, respectively. For 𝜉 ∈ R𝑛, R[𝜉] represents the set of
olynomials in 𝜉 with real coefficients, and R𝑚[𝜉] and R𝑚×𝑝[𝜉] denote
ll vector and matrix valued polynomial functions. The subset 𝛴[𝜉] ∶=
𝑝 = 𝑝21 + 𝑝

2
2 +⋯ + 𝑝2𝑀 ∶ 𝑝1,… , 𝑝𝑀 ∈ R[𝜉]} of R[𝜉] is the set of sum-of-

quares polynomials in 𝜉. Unless defined otherwise, notation 𝑥𝑗 denotes
variable 𝑥 used in the 𝑗’th iteration of an iterative algorithm. The
ymbol ‘‘≤’’ represents component-wise inequality.
139
. Problem setup

In this section we describe the hierarchical approach to safe-by-
esign trajectory planning and control that consists of two layers: a
lanning layer, which uses a low-fidelity ‘‘planning’’ model, and a
racking layer, with a high-fidelity ‘‘tracking’’ model. The planning
odel might be a model with a lower state dimension than the tracking
odel or a linearization of the tracking model to reduce the compu-
ational burden of planning. By analyzing the dynamics of the error
etween these two systems’ states, we will show how we can bound
his error by synthesizing an appropriate tracking controller. In this
rticle, the controller and corresponding error bound are designed via
OS programming.
The online implementation and offline synthesis of the planner–

racker control scheme are summarized in Fig. 1. We begin with a
igh-fidelity tracking model and a low-fidelity planning model, each
ith state and input constraints. Defining an appropriate error variable,
, between the two models, and using the error dynamics and the
lanner/tracker constraints, we design a tracking controller and derive
tracking error bound. This bound takes the form of a set  such that
(𝑡) ∈ . If the planner constraints, when augmented by , still satisfy
he tracking constraints, then the tracking system is safe: it will satisfy
ll constraints with the synthesized controller. Otherwise, the planner
onstraints are shrunk and the process is repeated.

.1. High-fidelity tracking model

The high-fidelity model is of the form:

𝑥̇(𝑡) = 𝑓 (𝑥(𝑡), 𝑤(𝑡)) + 𝑔(𝑥(𝑡), 𝑤(𝑡)) ⋅ 𝑢(𝑡), (1)

ith state 𝑥(𝑡) ∈  ⊆ R𝑛𝑥 , disturbance 𝑤(𝑡) ∈  ⊆ R𝑛𝑤 , bounded
ontrol 𝑢(𝑡) ∈  ⊆ R𝑛𝑢 , 𝑓 ∶ R𝑛𝑥 × R𝑛𝑤 → R𝑛𝑥 , and 𝑔 ∶ R𝑛𝑥 × R𝑛𝑤 →
𝑛𝑥 × R𝑛𝑢 . The sets  and  are the constraint sets imposed on the
tates and control inputs in the high-fidelity model, respectively.

.2. Low-fidelity planning model

The low-fidelity model, which is a simplified version of (1), is of the
form:

̇̂𝑥(𝑡) = 𝑓 (𝑥̂(𝑡), 𝑢̂(𝑡)), (2)

where 𝑥̂(𝑡) ∈ ̂ ⊆ R𝑛̂𝑥 , 𝑢̂(𝑡) ∈ ̂ ⊆ R𝑛̂𝑢 , and 𝑓 ∶ R𝑛̂𝑥×𝑛̂𝑢 → R𝑛̂𝑥 . The sets ̂
and ̂ are constraint sets enforced by the planning layer. The control

input for the low-fidelity model, computed via the planning algorithm
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of choice, is assumed to be a zero-order hold signal with sampling time
𝑇𝑠 > 0. This means:

𝑢̂(𝑡) = 𝑢̂(𝜏𝑘), ∀𝑡 ∈ [𝜏𝑘, 𝜏𝑘+1), with 𝜏𝑘 = 𝑘 ⋅ 𝑇𝑠, (3a)

𝑢̂(𝜏𝑘+1) = 𝑢̂(𝜏𝑘) + 𝛥𝑢̂(𝜏𝑘+1), (3b)

where 𝛥𝑢̂(𝑡) is the change in the control input between sampling
periods (also referred to as the ‘‘input jump"), restricted to a set 𝛥̂ ⊆
R𝑛̂𝑢 .

Note that the planning model does not depend directly on the
tracker state 𝑥, in contrast to reduced order methods where planning
is done on a lower dimensional state that is a projection of the true
higher dimensional state (Löhning, Reble, Hasenauer, Yu, & Allgöwer,
2014).

Remark 1. The planner–tracker synthesis framework is applicable
to any planning algorithm that is able to bound 𝑥̂(𝑡), 𝑢̂(𝑡), and 𝛥𝑢̂(𝑡).
For example, this framework has been applied to different planning
algorithms, using Nonlinear MPC in Smith et al. (2019), Yin et al.
(2020), signal temporal logic (STL) in Pant, Yin, Arcak, and Seshia
(2021), and discrete abstraction in Meyer et al. (2020).

2.3. Error dynamics

The goal is to design a controller for the high-fidelity tracking
model (1) to track a reference trajectory planned using the low-fidelity
planning model (2). In order to do so, we proceed by deriving the
evolution of the error between (1) and (2). Since 𝑛̂𝑥 ≤ 𝑛𝑥 in general,
we define a 1 map 𝜋 ∶ R𝑛̂𝑥 → R𝑛𝑥 , called the comparison map, and we
define the tracking error as:

𝑒(𝑡) = 𝑥(𝑡) − 𝜋(𝑥̂(𝑡)). (4)

f the planning model is simply a linearization, we may select 𝜋 to be
the identity map, but our primary interest is in the case where 𝑥̂ is
of lower dimension and 𝜋 lifts it to the dimension of 𝑥. We will first
describe the method with this simple error definition to build intuition
before generalizing the error definition in Section 3, where 𝜋 is allowed
to also depend on 𝑢̂.

Differentiating (4) with respect to time (dropping time arguments
to improve readability), and eliminating the variable 𝑥, we obtain:

𝑒̇ = 𝑥̇ − 𝜕𝜋
𝜕𝑥̂

⋅ ̇̂𝑥

= 𝑓 (𝑥,𝑤) + 𝑔(𝑥,𝑤) ⋅ 𝑢 − 𝜕𝜋
𝜕𝑥̂

⋅ 𝑓 (𝑥̂, 𝑢̂)
|

|

|

|𝑥=𝑒+𝜋(𝑥̂)
,

= 𝑓𝑒(𝑒, 𝑥̂, 𝑢̂, 𝑤) + 𝑔𝑒(𝑒, 𝑥̂, 𝑤) ⋅ 𝑢, (5)

where we have defined:

𝑓𝑒(𝑒, 𝑥̂, 𝑢̂, 𝑤) = 𝑓 (𝜋(𝑥̂) + 𝑒,𝑤) − 𝜕𝜋
𝜕𝑥̂

⋅ 𝑓 (𝑥̂, 𝑢̂),

𝑔𝑒(𝑒, 𝑥̂, 𝑤) = 𝑔(𝜋(𝑥̂) + 𝑒,𝑤). (6)

In this section, we consider controllers of the form

𝑢(𝑡) = 𝜅(𝑒(𝑡), 𝑥̂(𝑡), 𝑢̂(𝑡)), 𝜅 ∈  (7)

here the set  ∶= {𝜅 ∶ R𝑛𝑥 × R𝑛̂𝑥 × R𝑛̂𝑢 →  } defines a set of
admissible error-state feedback control laws. Plugging in this controller,
the closed-loop dynamics become

𝑒̇ = 𝑓𝑒(𝑒, 𝑥̂, 𝑢̂, 𝑤) + 𝑔𝑒(𝑒, 𝑥̂, 𝑤) ⋅ 𝜅(𝑒, 𝑥̂, 𝑢̂). (8)

Our goal is to design a control law 𝜅 and an associated error bound 
that is ideally as small as possible.

Definition 1 (Tracking Error Bound). Given the closed loop error dy-
namics (8), we say that a set  is a tracking error bound (TEB) from an
initial set  if

𝑒(0) ∈ , 𝑥̂(𝑡) ∈ ̂ , 𝑢̂(𝑡) ∈ ̂ , 𝑤(𝑡) ∈  ∀ 𝑡 ≥ 0
140
⇒ 𝑒(𝑡) ∈  ∀ 𝑡 ≥ 0. (9)

The initial set  will be constructed together with the TEB . In
Theorem 1 in Section 2.4,  and  will be identical, while in Theorem 2
n Section 3.4,  ⊆ .

As we will see in the next subsection, we aim to minimize the
olume of the set  when designing the tracking controller 𝜅; however,
e do not emphasize asymptotic behavior of the error 𝑒(𝑡) since we do
ot need perfect tracking of the planning model. Indeed we allow the
ynamics (8) to depend on 𝑥̂ besides 𝑢̂ and 𝑤, and we do not require
he right-hand side to vanish when 𝑒 = 0. The benefit of this relaxed
pproach, as alluded to in the Introduction, is to remove restrictive
eometric constraints from the selection of the map 𝜋 and controller
that would render the set 𝑒 = 𝑥 − 𝜋(𝑥̂) = 0 invariant and attractive.

.4. Computing the TEB and tracking controller

The TEB  and the tracking controller 𝜅 can be obtained with the
elp of the following theorem, which gives conditions under which the
rror can be constrained to lie within a certain sublevel set of a storage
unction 𝑉 (𝑒).

heorem 1. Given the error dynamics (5) with 𝑓𝑒 ∶ R𝑛𝑥 × R𝑛̂𝑥 × R𝑛̂𝑢 ×
R𝑛𝑤 → R𝑛𝑥 , 𝑔𝑒 ∶ R𝑛𝑥 × R𝑛̂𝑥 × R𝑛𝑤 → R𝑛𝑥 , and 𝛾 ∈ R, ̂ ⊆ R𝑛̂𝑥 ,
̂ ⊆ R𝑛̂𝑢 ,  ⊆ R𝑛𝑤 , if there exists a 1 function 𝑉 ∶ R𝑛𝑥 → R and
𝜅 ∶ R𝑛𝑥 × R𝑛̂𝑥 × R𝑛̂𝑢 → R𝑛𝑢 such that

𝜕𝑉 (𝑒)
𝜕𝑒

⋅
(

𝑓𝑒(𝑒, 𝑥̂, 𝑢̂, 𝑤) + 𝑔𝑒(𝑒, 𝑥̂, 𝑤) ⋅ 𝜅(𝑒, 𝑥̂, 𝑢̂)
)

< 0,

∀𝑒, 𝑥̂, 𝑢̂, 𝑤, s.t. 𝑉 (𝑒) = 𝛾, 𝑥̂ ∈ ̂ , 𝑢̂ ∈ ̂ , 𝑤 ∈  , (10)

hen the sublevel set 𝛺(𝑉 , 𝛾) ∶= {𝑒 ∈ R𝑛𝑥 ∶ 𝑉 (𝑒) ≤ 𝛾} is a TEB as in
efinition 1 with  =  = 𝛺(𝑉 , 𝛾).

Proof. The theorem is proved by contradiction. Assume there exist
a time 𝑡2 > 0 and a trajectory 𝑒(⋅) such that 𝑒(0) ∈ 𝛺(𝑉 , 𝛾) but 𝑒(𝑡2) ∉
𝛺(𝑉 , 𝛾), i.e., 𝑉 (𝑒(𝑡2)) > 𝛾. Since 𝑉 (𝑒(0)) ≤ 𝛾, by continuity of 𝑉 there
exists 𝑡1 such that 0 ≤ 𝑡1 < 𝑡2, 𝑉 (𝑒(𝑡1)) = 𝛾, and 𝑑

𝑑𝑡𝑉 (𝑒(𝑡))|𝑡=𝑡1 ≥ 0. (If
all crossings of 𝑉 (𝑒(𝑡)) = 𝛾 satisfied 𝑑

𝑑𝑡𝑉 (𝑒(𝑡)) < 0, then 𝑉 would not be
continuous.) This contradicts (10). □

It is straightforward to augment the statement above to ensure
a bound on the input. Adding the following constraint ensures 𝑢 =
𝜅(𝑒, 𝑥̂, 𝑢̂) ∈  :

𝛺(𝑉 , 𝛾) ⊆ {𝑒 ∈ R𝑛𝑥 ∶ 𝜅(𝑒, 𝑥̂, 𝑢̂) ∈  } ∀𝑥̂ ∈ ̂ , 𝑢̂ ∈ ̂ . (11)

Furthermore, if a user-specified initial error set 0 is known, then
adding the set constraint

𝛺(𝑉 , 𝛾) =  ⊇ 0 (12)

will ensure that 𝑒(𝑡) ∈  for all 𝑡 ≥ 0. As a practical consideration, we
add such a constraint when searching for 𝑉 and 𝜅.

Finding generic functions 𝑉 and 𝜅 that satisfy constraints (10), (11),
and (12) is a difficult problem. Below we show how SOS programming
can be used to search for these functions by restricting to polynomial
candidates 𝑉 ∈ R[𝑒] and 𝜅 ∈ R𝑛𝑢 [(𝑒, 𝑥̂, 𝑢̂)]. Besides this restriction, we
make the following assumption:

Assumption 1. The mappings 𝑓𝑒 ∈ R𝑛𝑥 [(𝑒, 𝑥̂, 𝑢̂, 𝑤)] and 𝑔𝑒 ∈ R𝑛𝑥×𝑛𝑢
[(𝑒, 𝑥̂, 𝑤)] in error dynamics (5) are polynomials. Sets 0, ̂ , ̂ , and
 are semi-algebraic sets, i.e., there exists 𝑝0 ∈ R[𝑒] such that 0 =
{𝑒 ∈ R𝑛𝑥 ∶ 𝑝0(𝑒) ≤ 0}; with similar definitions for ̂ , ̂ , and  with
polynomials 𝑝𝑥̂ ∈ R[𝑥̂], 𝑝𝑢̂ ∈ R[𝑢̂], and 𝑝𝑤 ∈ R[𝑤]. The control constraint
set  is a hypercube  = {𝑢 ∈ R𝑛𝑢 ∶ 𝑢 ≤ 𝑢 ≤ 𝑢}, where 𝑢, 𝑢 ∈ R𝑛𝑢 .
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𝑢

By applying the generalized S-procedure (Parrilo, 2000) to the set
containment constraints (10), (11), and (12), and using the volume of
𝛺(𝑉 , 𝛾) as the cost function to minimize, we obtain the following SOS
optimization problem for finding 𝑉 and 𝜅:

min
𝑉 ,𝜅,𝛾,𝑠,𝑙

volume(𝛺(𝑉 , 𝛾))

s.t. 𝑠0 ∈ 𝛴[𝑒], 𝑠1→3 ∈ 𝛴[(𝑒, 𝑥̂, 𝑢̂, 𝑤)], 𝑙 ∈ R[(𝑒, 𝑥̂, 𝑢̂, 𝑤)]

𝑠4→9,𝑖 ∈ 𝛴[(𝑒, 𝑥̂, 𝑢̂)], 𝑖 ∈ {1,… , 𝑛𝑢} (13a)

−(𝑉 (𝑒) − 𝛾) + 𝑠0 ⋅ 𝑝0 ∈ 𝛴[𝑒], (13b)

− 𝜕𝑉
𝜕𝑒

⋅ (𝑓𝑒 + 𝑔𝑒 ⋅ 𝜅) − 𝜖𝑒⊤𝑒 + 𝑙 ⋅ (𝑉 − 𝛾) + 𝑠1 ⋅ 𝑝𝑥̂

+ 𝑠2 ⋅ 𝑝𝑢̂ + 𝑠3 ⋅ 𝑝𝑤 ∈ 𝛴[(𝑒, 𝑥̂, 𝑢̂, 𝑤)], (13c)
𝑢𝑖 − 𝜅𝑖 + 𝑠4,𝑖 ⋅ (𝑉 − 𝛾) + 𝑠5,𝑖 ⋅ 𝑝𝑥̂

+ 𝑠6,𝑖 ⋅ 𝑝𝑢̂ ∈ 𝛴[(𝑒, 𝑥̂, 𝑢̂)], 𝑖 ∈ {1,… , 𝑛𝑢}, (13d)
𝜅𝑖 − 𝑢𝑖 + 𝑠7,𝑖 ⋅ (𝑉 − 𝛾) + 𝑠8,𝑖 ⋅ 𝑝𝑥̂

+ 𝑠9,𝑖 ⋅ 𝑝𝑢̂ ∈ 𝛴[(𝑒, 𝑥̂, 𝑢̂)], 𝑖 ∈ {1,… , 𝑛𝑢}. (13e)

In the formulation above, SOS polynomials 𝑠1→3 and 𝑠4→9,𝑖 are
multipliers used in the generalized S-procedure, and 𝜖 > 0 is on
the order of 10−6. Constraint (13a) ensures that all the polynomial
multipliers are SOS. Constraint (13b) is a relaxation of (12) (for  =
 = 𝛺(𝑉 , 𝛾)), (13c) is a relaxation of (10), and together (13d) and
(13e) are a relaxation of (11) under the hypercube assumption for  .
The optimization (13) is non-convex as there are two groups of decision
variables 𝑉 and (𝜅, 𝑙, 𝑠4,𝑖, 𝑠7,𝑖) bilinear in each other. To tackle this prob-
lem, similarly to Yin, Arcak, Packard, and Seiler (2021, Algorithm 1),
we decompose it into two tractable subproblems to iteratively search
between the two groups of decision variables, as shown in Algorithm 1
in the Appendix.

We note that 𝑉 and 𝛾 always appear in the optimization as 𝑉 −𝛾, so
from a theoretical perspective there is no need for two separate opti-
mization variables. However, the variable 𝛾 is practical algorithmically
because in the subproblem where 𝑉 is fixed, we can minimize over 𝛾
via bisection to find the smallest level set of 𝑉 that forms a viable TEB

Remark 2. For simplicity, we define 𝑉 to be a function of 𝑒. How-
ever, in principle, we could have defined 𝑉 (𝑥, 𝑥̂), as is done in the
incremental stability literature, e.g., Angeli (2002).

2.5. Safety check

After synthesizing 𝑉 and 𝜅, we check the following safety condition
with  = 𝛺(𝑉 , 𝛾):

𝜋(̂)⊕  ⊆  . (14)

If (14) is satisfied, then the tracker state 𝑥 is guaranteed to satisfy state
constraints  and the design is considered successful. If (14) is not
satisfied, we shrink the planner sets ̂ and ̂ and repeat the process as
indicated in Fig. 1.

The details of how to shrink the sets ̂ and ̂ are not the focus of
this paper, but we refer the reader to Yin et al. (2020) for an in-depth
treatment. In Yin et al. (2020), the constraint sets are parameterized
by some parameter, and a bisection over this parameter is performed
to find the most permissive sets that still guarantee safety.

3. Generalized tracking error definition

So far, we have used a map 𝜋 that only depends on the planner
state 𝑥̂. However, as illustrated in the example below, this map may
fail to provide reference signals for all the tracker states. Therefore,
in Section 3.1, we move to a more general error definition that also
141

depends on the planner input 𝑢̂.
Example 1. As a simple illustration of why it is useful to include the
planner input 𝑢̂ in the error definition, consider the double integrator
tracking model

𝑥 =
[

𝑠
𝑣

]

, 𝑥̇ =
[

𝑣
𝑢

]

, (15)

where 𝑠 is the position, 𝑣 is the velocity, and 𝑢 is the acceleration input.
Let the planning model be a single integrator, where the only state
is the planner position (𝑥̂ = 𝑠̂) and the input is the planner velocity
( ̇̂𝑥 = 𝑣̂ =∶ 𝑢̂). Then, letting 𝜋(𝑥̂, 𝑢̂) = [𝑥̂; 𝑢̂], the error is

𝑒 = 𝑥 − 𝜋(𝑥̂, 𝑢̂) =
[

𝑠 − 𝑠̂
𝑣 − 𝑣̂

]

, (16)

which is the deviation of the planner and tracker positions and ve-
locities. Thus, by keeping 𝑒 small, we keep the planner and tracker
positions and velocities close to one another, which is desirable. On
the other hand, if we had used the naïve map 𝜋(𝑥̂) = [𝑥̂; 0], the error
would be [(𝑠 − 𝑠̂) 𝑣]⊤, and bounding the error would mean keeping
𝑣 close to zero, which is overly conservative and may not align with
planning objectives.

3.1. Modified error dynamics

As motivated above, we will use a more general 1 map 𝜋 ∶ R𝑛̂𝑥 ×
𝑛̂𝑢 → R𝑛𝑥 to provide better reference trajectories for the tracking

model, as was done in Meyer et al. (2020) for the first time. For further
generality, in this article we redefine the error state as

𝑒 = 𝜙(𝑥, 𝑥̂, 𝑢̂)(𝑥 − 𝜋(𝑥̂, 𝑢̂)), (17)

where we add the 1 map 𝜙 ∶ R𝑛𝑥 ×R𝑛̂𝑥 ×R𝑛̂𝑢 → R𝑛𝑥×𝑛𝑥 which provides
additional flexibility, as will be demonstrated in Section 4.

Assume that for each 𝑒, 𝑥̂, 𝑢̂, there exists a unique 𝑥 satisfying (17),
and denote this inverse as

𝑥 = 𝜈(𝑒, 𝑥̂, 𝑢̂). (18)

The error dynamics resulting from (17) are

𝑒̇ = 𝑓𝑒(𝑒, 𝑥̂, 𝑢̂, 𝑤) + 𝑔𝑒(𝑒, 𝑥̂, 𝑢̂, 𝑤)𝑢 − ℎ𝑒(𝑒, 𝑥̂, 𝑢̂) ̇̂𝑢, (19)

where

𝑓𝑒(𝑒, 𝑥̂, 𝑢̂, 𝑤) ∶=
{

𝜕𝜙
𝜕𝑥
𝑓 (𝑥,𝑤) +

𝜕𝜙
𝜕𝑥̂
𝑓 (𝑥̂, 𝑢̂)

}

(𝑥 − 𝜋(𝑥̂, 𝑢̂))

+ 𝜙(𝑥, 𝑥̂, 𝑢̂)
{

𝑓 (𝑥,𝑤) − 𝜕𝜋
𝜕𝑥̂
𝑓 (𝑥̂, 𝑢̂)

}

|

|

|

|𝑥=𝜈(𝑒,𝑥̂,𝑢̂)
, (20)

𝑔𝑒(𝑒, 𝑥̂, 𝑢̂, 𝑤) ∶=
{

𝜕𝜙
𝜕𝑥

(𝑥 − 𝜋(𝑥̂, 𝑢̂)) (21)

+ 𝜙(𝑥, 𝑥̂, 𝑢̂)
}

𝑔(𝑥,𝑤)
|

|

|

|𝑥=𝜈(𝑒,𝑥̂,𝑢̂)
,

and ℎ𝑒 can be computed but is not written explicitly since it multiplies
̇̂ , which is zero within sampling periods.
Note that the planner input is applied in a zero order hold fashion

within each sampling period as described in (3). As the tracking error
dynamics (19) have a term containing ̇̂𝑢 (unlike (5)), these dynamics
change discontinuously at each sampling instant 𝜏𝑘. Therefore, we
break up the error analysis into two parts. In Section 3.2, we bound
the error within a single sampling period [𝜏𝑘−1, 𝜏𝑘). In Section 3.3, we
bound the error jump across sampling periods from 𝜏−𝑘 to 𝜏

+
𝑘 induced by

the input jump 𝛥𝑢̂𝑘. This two-part approach can be visualized in Fig. 2.

3.2. Analysis within sampling periods

Since the signal 𝑢̂ is piece-wise constant, within a single sampling
period we have

̇
𝑢̂(𝑡) = 0, ∀𝑡 ∈ [𝜏𝑘−1, 𝜏𝑘). (22)
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Therefore, the error dynamics (19) during the time interval [𝜏𝑘−1, 𝜏𝑘)
re:

𝑒̇ = 𝑓𝑒(𝑒, 𝑥̂, 𝑢̂, 𝑤) + 𝑔𝑒(𝑒, 𝑥̂, 𝑢̂, 𝑤)𝑢. (23)

e want to enforce the boundedness of the error state during [0, 𝑇𝑠) by
ntroducing a tracking controller

𝑢(𝑡) = 𝜅(𝑡, 𝑒(𝑡), 𝑥̂(𝑡), 𝑢̂(𝑡)), (24)

hich is now defined by a time-varying, error-state feedback control
aw 𝜅 ∶ R × R𝑛𝑥 × R𝑛̂𝑥 × R𝑛̂𝑢 → R𝑛𝑢 . We use a time-varying controller
and a time-varying storage function 𝑉 in this section for additional
lexibility. In particular, we may find a storage functions whose level
ets shrink as time increases. The main idea is that if the level set at
he end of the sampling period is sufficiently smaller than the level set
t the beginning of the sampling period, then this size difference can
ccommodate the error jump across sampling periods as in Fig. 2.
Below we provide conditions on 𝜅 and 𝑉 for bounding the error in

level set of 𝑉 within each sampling period, where now each level set
f 𝑉 is a funnel in (𝑒, 𝑡) space.

roposition 1. Given the error dynamics (23) with mappings 𝑓𝑒 ∶
𝑛𝑥 × R𝑛̂𝑥 × R𝑛̂𝑢 × R𝑛𝑤 → R𝑛𝑥 , 𝑔𝑒 ∶ R𝑛𝑥 × R𝑛̂𝑥 × R𝑛̂𝑢 × R𝑛𝑤 → R𝑛𝑥 , and
∈ R, 𝑇𝑠 > 0, ̂ ⊆ R𝑛̂𝑥 , ̂ ⊆ R𝑛̂𝑢 ,  ⊆ R𝑛𝑤 , suppose there exists a 1

unction 𝑉 ∶ R × R𝑛𝑥 → R, and 𝜅 ∶ R × R𝑛𝑥 × R𝑛̂𝑥 × R𝑛̂𝑢 → R𝑛𝑢 , such that
𝜕𝑉 (𝑡, 𝑒)
𝜕𝑒

⋅ (𝑓𝑒(𝑒, 𝑥̂, 𝑢̂, 𝑤) + 𝑔𝑒(𝑒, 𝑥̂, 𝑢̂, 𝑤) ⋅ 𝜅(𝑡, 𝑒, 𝑥̂, 𝑢̂))

+
𝜕𝑉 (𝑡, 𝑒)
𝜕𝑡

< 0, ∀𝑡, 𝑒, 𝑥̂, 𝑢̂, 𝑤, s.t. 𝑡 ∈ [0, 𝑇𝑠),

𝑉 (𝑡, 𝑒) = 𝛾, 𝑥̂ ∈ ̂ , 𝑢̂ ∈ ̂ , 𝑤 ∈  . (25)

Define the funnel 𝛺(𝑉 , 𝑡, 𝛾) ∶= {𝑒 ∈ R𝑛𝑥 ∶ 𝑉 (𝑡, 𝑒) ≤ 𝛾}. If 𝑒(0) ∈ 𝛺(𝑉 , 0, 𝛾),
then 𝑒(𝑡) ∈ 𝛺(𝑉 , 𝑡, 𝛾) for all 𝑡 ∈ [0, 𝑇𝑠).

Proof. The proof is a simple modification of the proof of Theorem 1,
where now 𝑉̇ (𝑡, 𝑒(𝑡)) ∶= 𝜕𝑉 (𝑡,𝑒)

𝜕𝑒 𝑒̇(𝑡) + 𝜕𝑉 (𝑡,𝑒)
𝜕𝑡 contains the additional 𝜕𝑉 ∕𝜕𝑡

term from (25). □

emark 3. Although Proposition 1 is stated for the first sampling
eriod [0, 𝑇𝑠), it can be used for any other sampling period [𝜏𝑘, 𝜏𝑘+1)
ith 𝜏𝑘 = 𝑘⋅𝑇𝑠. Let 𝑒(𝜏𝑘) ∈ 𝛺(𝑉 , 0, 𝛾). Then we have 𝑒(𝜏𝑘+𝑡) ∈ 𝛺(𝑉 , 𝑡, 𝛾),
or all 𝑡 ∈ [0, 𝑇𝑠), under the control signal 𝑢(𝜏𝑘 + 𝑡) = 𝜅(𝑡, 𝑒(𝜏𝑘 + 𝑡), 𝑥̂(𝜏𝑘 +
), 𝑢̂(𝜏𝑘 + 𝑡)).

.3. Analysis across sampling periods

Next, we focus on the effect of the input jump 𝛥𝑢̂ at each sampling
nstant 𝜏𝑘 as in (3b). From (17), 𝛥𝑢̂ induces a jump on the error. Let 𝜏−𝑘
and 𝜏+𝑘 denote sampling instant 𝜏𝑘 before and after the discrete jump,
respectively, and for simplicity use the notation 𝑒+𝑘 ∶= 𝑒(𝜏+𝑘 ). Then we
have

𝑒+𝑘 = 𝜙(𝑥+𝑘 , 𝑥̂
+
𝑘 , 𝑢̂

+
𝑘 )(𝑥

+
𝑘 − 𝜋(𝑥̂+𝑘 , 𝑢̂

+
𝑘 ))

= 𝜙(𝑥−𝑘 , 𝑥̂
−
𝑘 , 𝑢̂

−
𝑘 + 𝛥𝑢̂+𝑘 )(𝑥

−
𝑘 − 𝜋(𝑥̂−𝑘 , 𝑢̂

−
𝑘 + 𝛥𝑢̂+𝑘 ))

= 𝜙(𝜈(𝑒−𝑘 , 𝑥̂
−
𝑘 , 𝑢̂

−
𝑘 + 𝛥𝑢̂+𝑘 ), 𝑥̂

−
𝑘 , 𝑢̂

−
𝑘 + 𝛥𝑢̂+𝑘 )

⋅ (𝜈(𝑒−𝑘 , 𝑥̂
−
𝑘 , 𝑢̂

−
𝑘 + 𝛥𝑢̂+𝑘 ) − 𝜋(𝑥̂

−
𝑘 , 𝑢̂

−
𝑘 + 𝛥𝑢̂+𝑘 ))

=∶ ℎ(𝑒−𝑘 , 𝑥̂
−
𝑘 , 𝑢̂

−
𝑘 , 𝛥𝑢̂

+
𝑘 ). (26)

We refer to ℎ as the jump function, as it reflects how the error may jump
from the end of one sampling period to the beginning of the next, due
to the jump in the input.

We introduce the additional condition below to characterize the
error jump induced by the control jump 𝛥𝑢̂ in terms of the funnel
142

𝛺(𝑉 , 𝑡, 𝛾).
Fig. 2. Illustration of Theorem 2, with initial error set  = 𝛺(𝑉 , 0, 𝛾), funnels 𝛺(𝑉 , 𝑡, 𝛾)
over two sampling periods, bounded error jumps at sampling times, and TEB .

Proposition 2. Given 𝛾 ∈ R, 𝑇𝑠 ∈ R, ̂ ⊆ R𝑛̂𝑥 , ̂ ⊆ R𝑛̂𝑢 , 𝛥̂ ⊆ R𝑛̂𝑢 ,
ℎ ∶ R𝑛̂𝑥 ×R𝑛̂𝑥 ×R𝑛̂𝑢 ×R𝑛̂𝑢 → R𝑛𝑥 , if there exists a function 𝑉 ∶ R×R𝑛𝑥 → R
satisfying

𝑉 (0, ℎ(𝑒, 𝑥̂, 𝑢̂, 𝛥𝑢̂)) ≤ 𝛾, (27)
∀𝑥̂ ∈ ̂ , 𝑢̂ ∈ ̂ , 𝛥𝑢̂ ∈ 𝛥̂ and ∀𝑒 s.t. 𝑉 (𝑇𝑠, 𝑒) ≤ 𝛾

then for all 𝑒−𝑘 ∈ 𝛺(𝑉 , 𝑇𝑠, 𝛾), 𝑒+𝑘 ∈ 𝛺(𝑉 , 0, 𝛾).

Proof. Suppose 𝑒−𝑘 ∈ 𝛺(𝑉 , 𝑇𝑠, 𝛾), i.e., 𝑉 (𝑇𝑠, 𝑒−𝑘 ) ≤ 𝛾. By Eq. (26),
𝑒+𝑘 = ℎ(𝑒−𝑘 , 𝑥̂

−
𝑘 , 𝑢̂

−
𝑘 , 𝛥𝑢̂

+
𝑘 ). Thus by Eq. (27), 𝑉 (0, 𝑒+𝑘 ) ≤ 𝛾, i.e., 𝑒+𝑘 ∈

𝛺(𝑉 , 0, 𝛾). □

Remark 4. For the special case 𝜙(𝑥, 𝑥̂, 𝑢̂) = 1 and 𝜋(𝑥̂, 𝑢̂) = 𝜃(𝑥̂)+𝑄𝑢̂ for
some 𝑄 ∈ R𝑛𝑥×𝑛̂𝑢 , the 𝑥̂ and 𝑢̂ terms cancel, and so (27) simplifies to

𝑉 (0, 𝑒 −𝑄𝛥𝑢̂) ≤ 𝛾, ∀𝛥𝑢̂ ∈ 𝛥̂ , ∀𝑒 s.t. 𝑉 (𝑇𝑠, 𝑒) ≤ 𝛾.

3.4. Combining within- and across-sample analysis

We next combine the conditions for within- and across-sample error
boundedness from Propositions 1 and 2, respectively, to obtain the
main result on the boundedness of the error at all time, formulated
below and illustrated in Fig. 2.

Theorem 2. If there exist 𝑉 and 𝜅 satisfying (25) and (27), define
 ⊂ R𝑛𝑥 such that

∪𝑡∈[0,𝑇𝑠)𝛺(𝑉 , 𝑡, 𝛾) ⊆ .

Then for all 𝑥̂(𝑡) ∈ ̂ , 𝑢̂(𝑡) ∈ ̂ , 𝛥𝑢̂(𝑡) ∈ 𝛥̂ , and 𝑤(𝑡) ∈  , the
error system (19) under control law 𝑢(𝑡) = 𝜅(𝑡, 𝑒(𝑡), 𝑥̂(𝑡), 𝑢̂(𝑡)) with 𝑡 = (𝑡
mod 𝑇𝑠) ∈ [0, 𝑇𝑠) satisfies:

𝑒(0) ∈ 𝛺(𝑉 , 0, 𝛾) =  ⇒ 𝑒(𝑡) ∈ , ∀𝑡 ≥ 0,

that is to say,  is a TEB from  achieved by the tracking control law 𝜅.

Proof. From Remark 3 and for all 𝜏𝑘 = 𝑘 ⋅ 𝑇𝑠, we have if 𝑒(𝜏𝑘) ∈
𝛺(𝑉 , 0, 𝛾), then 𝑒(𝜏𝑘 + 𝑡) ∈ 𝛺(𝑉 , 𝑡, 𝛾) and 𝑒(𝜏−𝑘+1) ∈ 𝛺(𝑉 , 𝑇𝑠, 𝛾). Then it
follows from Proposition 2 that 𝑒(𝜏+𝑘+1) ∈ 𝛺(𝑉 , 0, 𝛾). As a result, for all
𝑒(0) ∈ 𝛺(𝑉 , 0, 𝛾), we have 𝑒(𝑘 ⋅ 𝑇𝑠 + 𝑡) ∈ 𝛺(𝑉 , 𝑡, 𝛾) ⊆ , for all 𝑘 ≥ 0, and
𝑡 ∈ [0, 𝑇𝑠). □

Example 2. We now revisit the planner/tracker dynamics from Ex-
ample 1 and perform the analysis above to bound the error within and
across sampling periods. Instead of using SOS to search for a storage
function, we propose a fixed form of a controller, and we construct a
storage function that satisfies the conditions of Theorem 2 above.

Within sampling periods, ̇̂𝑢 = 0, so the open loop error dynamics are

𝑒̇ =
[

𝑠̇ − ̇̂𝑠
̇

]

=
[

𝑣 − 𝑣̂
]

=
[

𝑒2
]

. (28)

𝑣̇ − 𝑣̂ 𝑢 − 0 𝑢
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Selecting a state-feedback controller 𝑢(𝑒) = −𝑘1𝑒1−𝑘2𝑒2, the closed loop
error dynamics are

𝑒̇ =
[

0 1
−𝑘1 −𝑘2

]

𝑒 =∶ 𝐴𝑒. (29)

Because this is a LTI system, constructing a Lyapunov function is
straightforward. If there exists 𝑃 = 𝑃⊤ > 0 such that 𝑃𝐴 +𝐴⊤𝑃 < −𝛼𝑃
or some 𝛼 > 0, then it is simple to show that 𝑉 (𝑡, 𝑒) = exp(𝛼𝑡) ⋅ 𝑒⊤𝑃𝑒
atisfies 𝑉̇ (𝑡, 𝑒) < 0 for all 𝑒 ≠ 0. Hence, for any 𝛾 > 0, ∪𝑡∈[0,𝑇𝑠)𝛺(𝑉 , 𝑡, 𝛾)
forms a valid TEB from  = 𝛺(𝑉 , 0, 𝛾) by Theorem 2. We can examine
the form of the level sets to see how they shrink with time

𝛺(𝑉 , 𝑡, 𝛾) =
{

𝑒 ∈ R𝑛𝑥 ∶ 𝑒⊤𝑃𝑒 ≤ 𝛾
exp(𝛼𝑡)

}

. (30)

As 𝑡 increases, 𝑒 is forced to lie in smaller and smaller ellipsoids. Then
the jump condition is

(

𝑒 −
[

0
𝛥𝑢̂

])⊤

𝑃
(

𝑒 −
[

0
𝛥𝑢̂

])

≤ 𝛾 (31)

for all 𝛥𝑢̂ ∈ 𝛥̂ and 𝑒 s.t. 𝑒⊤𝑃𝑒 ≤ 𝛾
exp(𝛼𝑇𝑠)

,

meaning that if the error lies in the smallest ellipsoid at the end of
the sampling period, then for all values of 𝛥𝑢̂ the perturbed error will
lie in the largest ellipsoid at the start of the next sampling period, as
illustrated in Fig. 2.

The variable 𝑒 can be eliminated by maximizing the left hand side
of (31) over 𝑒 and observing that the optimizer 𝑒∗ is aligned with [0;𝛥𝑢̂].
Then (31) can be simplified to

𝛥𝑢̂⊤𝑃22𝛥𝑢̂ ≤ 𝛾
(

1 − exp(− 1
2𝛼𝑇𝑠)

)2
∀ 𝛥𝑢̂ ∈ 𝛥̂ (32)

where 𝑃22 ∈ R𝑛̂𝑢×𝑛̂𝑢 is the lower right block of 𝑃 . Furthermore, if 𝛥̂
s a polytope, condition (32) can simply be checked at the vertices of
𝛥̂ due to the convexity of the expression 𝛥𝑢̂⊤𝑃22𝛥𝑢̂.

Remark 5. As we saw in Example 2, it is not always necessary to use
a SOS tracking controller. SOS is a versatile option since it can handle
general polynomial systems, but for a given system, a practitioner may
wish to use a fixed controller or a fixed form of a controller with some
parameters to be determined. This fixed or parameter-dependent 𝜅 can
be plugged into the SOS optimization, rather than leaving 𝜅 as a totally
free decision variable. Then the SOS optimization can search for 𝑉 , 𝛾,
and any parameters in 𝜅 assuming the optimization remains convex in
these parameters. Otherwise, an iterative search can be performed over
the parameters of 𝜅.

3.5. SOS optimization

Again, to use SOS optimization to search for 𝑉 and 𝜅, we restrict
them to polynomials: 𝑉 ∈ R[(𝑡, 𝑒)], and 𝜅 ∈ R[(𝑡, 𝑒, 𝑥̂, 𝑢̂)]. We further
assume that 𝑓𝑒(20), 𝑔𝑒(21), and the jump function ℎ(26) are polyno-
mials. In addition to Assumption 1, we assume 𝛥̂ = {𝛥𝑢̂ ∈ R𝑛̂𝑢 ∶
𝑝𝛥(𝛥𝑢̂) ≤ 0}, where 𝑝𝛥 ∈ R[𝛥𝑢̂]. Similarly to (11), we enforce tracking
input constraints 𝑢 ∈  via the constraint

{𝑒 ∈ R𝑛𝑥 ∶ 𝑉 (𝑡, 𝑒) ≤ 𝛾} ⊆ {𝑒 ∈ R𝑛𝑥 ∶ 𝜅(𝑡, 𝑒, 𝑥̂, 𝑢̂) ∈  },

∀(𝑡, 𝑥̂, 𝑢̂) ∈ [0, 𝑇𝑠) × ̂ × ̂ . (33)

By choosing the integral of the volume of 𝛺(𝑉 , 𝑡, 𝛾) over the time inter-
val [0, 𝑇𝑠] as the cost function, and applying the generalized S-procedure
to (12), (25), (27), and (33), we obtain the following optimization
roblem:

min
𝑉 ,𝜅,𝛾,𝑠,𝑙 ∫

𝑇𝑠

0
volume(𝛺(𝑉 , 𝑡, 𝛾))𝑑𝑡

s.t. 𝑠1→4 ∈ 𝛴[(𝑡, 𝑒, 𝑥̂, 𝑢̂, 𝑤)], 𝑠5→6 ∈ 𝛴[(𝑒, 𝛥𝑢̂)],

𝑙 ∈ R[(𝑡, 𝑒, 𝑥̂, 𝑢̂, 𝑤)], 𝑠 ∈ 𝛴[𝑒],
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𝑠7→14,𝑖 ∈ 𝛴[(𝑡, 𝑒, 𝑥̂, 𝑢̂)], 𝑖 ∈ {1,… , 𝑛𝑢}, (34a)

𝛾 − 𝑉 (0, 𝑒) + 𝑠0 ⋅ 𝑝0 ∈ 𝛴[𝑒], (34b)

−
( 𝜕𝑉
𝜕𝑡

+ 𝜕𝑉
𝜕𝑒

⋅ (𝑓𝑒 + 𝑔𝑒𝜅)
)

− 𝜖𝑒⊤𝑒 + 𝑙 ⋅ (𝑉 − 𝛾)

+ 𝑠1 ⋅ 𝑝𝑥̂ + 𝑠2 ⋅ 𝑝𝑢̂ + 𝑠3 ⋅ 𝑝𝑤 − 𝑠4 ⋅ 𝑡(𝑇𝑠 − 𝑡)

∈ 𝛴[(𝑡, 𝑒, 𝑥̂, 𝑢̂, 𝑤)], (34c)
− (𝑉 (0, ℎ(𝑒, 𝑥̂, 𝑢̂, 𝛥𝑢̂)) − 𝛾) + 𝑠5 ⋅ (𝑉 (𝑇𝑠, 𝑒) − 𝛾)

+ 𝑠6 ⋅ 𝑝𝛥 ∈ 𝛴[(𝑒, 𝛥𝑢̂)], (34d)
𝑢𝑖 − 𝜅𝑖 + 𝑠7,𝑖 ⋅ (𝑉 − 𝛾) − 𝑠8,𝑖 ⋅ 𝑡(𝑇𝑠 − 𝑡) + 𝑠9,𝑖 ⋅ 𝑝𝑥̂

+ 𝑠10,𝑖 ⋅ 𝑝𝑢̂ ∈ 𝛴[(𝑡, 𝑒, 𝑥̂, 𝑢̂)], 𝑖 ∈ {1,… , 𝑛𝑢}, (34e)
𝜅𝑖 − 𝑢𝑖 + 𝑠11,𝑖 ⋅ (𝑉 − 𝛾) − 𝑠12,𝑖 ⋅ 𝑡(𝑇𝑠 − 𝑡) + 𝑠13,𝑖 ⋅ 𝑝𝑥̂

+ 𝑠14,𝑖 ⋅ 𝑝𝑢̂ ∈ 𝛴[(𝑡, 𝑒, 𝑥̂, 𝑢̂)], 𝑖 ∈ {1,… , 𝑛𝑢}. (34f)

Note that the condition 𝑡 ∈ [0, 𝑇𝑠] is reformulated in (34e)–(34f) via the
nequality −𝑡(𝑇𝑠 − 𝑡) ≤ 0. The optimization is bilinear in two groups of
ecision variables 𝑉 and (𝜅, 𝑙, 𝑠5, 𝑠7,𝑖, 𝑠11,𝑖), and can also be solved using
lternating direction method similar to Algorithm 1 in Appendix.
After the funnel 𝛺(𝑉 , 𝑡, 𝛾) is found, the next step is to compute a

TEB  by solving a convex optimization:

min volume()
s.t. 𝛺(𝑉 , 𝑡, 𝛾) ⊆ , ∀𝑡 ∈ [0, 𝑇𝑠].

(35)

he set  is restricted to a semi-algebraic set in order to convert
he set containment constraint into a SOS constraint. Depending on
he parameterization of , different cost functions can be chosen. For
xample, if  is an ellipsoid,  = {𝑒 ∈ R𝑛𝑥 ∶ 𝑒⊤𝑃𝑒 ≤ 1}, where
 ∈ S𝑛𝑥++ is a decision variable, then − log det(𝑃) can be used as a
cost function. If  is a polytope,  = {𝑒 ∈ R𝑛𝑥 ∶ 𝐴𝑒 ≤ 𝑏}, where
𝐴 ∈ R𝑛×𝑛𝑥 is fixed, and 𝑏 ∈ R𝑛 is a decision variable, then ∑𝑛

𝑖=1 𝑏,𝑖
can be used as a cost function, where 𝑏,𝑖 is the 𝑖th element of 𝑏.

Once a TEB  is computed from the SOS optimization (34)–(35), we
can check the following safety condition, which is a generalized version
of (14):

𝜈(, ̂ , ̂ ) ⊆  . (36)

f (36) is satisfied, then the tracker state 𝑥 is guaranteed to satisfy state
onstraints  and the design is considered successful. If (14) is not
satisfied, we shrink the planner sets ̂ and ̂ and repeat the process.

4. Vehicle obstacle avoidance example

We now apply the planner–tracker control scheme to a vehicle
obstacle avoidance example. For the high-fidelity tracking model, we
use the dynamic bicycle model from Kong, Pfeiffer, Schildbach, and
Borrelli (2015):

𝑥̇1(𝑡) = 𝑥5(𝑡) cos(𝑥3(𝑡)) − 𝑥6(𝑡) sin(𝑥3(𝑡)),

𝑥̇2(𝑡) = 𝑥5(𝑡) sin(𝑥3(𝑡)) + 𝑥6(𝑡) cos(𝑥3(𝑡)),

𝑥̇3(𝑡) = 𝑥4(𝑡),

𝑥̇4(𝑡) =
2
𝐼𝑧

(𝑙𝑓𝐹𝑐,𝑓 (𝑡) − 𝑙𝑟𝐹𝑐,𝑟(𝑡)),

𝑥̇5(𝑡) = 𝑥4(𝑡)𝑥6(𝑡) + 𝑢2(𝑡),

𝑥̇6(𝑡) = −𝑥4(𝑡)𝑥5(𝑡) +
2
𝑚
(𝐹𝑐,𝑓 (𝑡) + 𝐹𝑐,𝑟(𝑡))

(37)

ith

𝐹𝑐,𝑓 = −𝐶𝛼,𝑓𝛼𝑓 , 𝐹𝑐,𝑟 = −𝐶𝛼,𝑟𝛼𝑟 (38)

𝛼𝑓 =
𝑥6 + 𝑙𝑓𝑥4

𝑥5
− 𝑢1, 𝛼𝑟 =

𝑥6 − 𝑙𝑟𝑥4
𝑥5

(39)

where 𝑥1 to 𝑥6 represent 𝑥, 𝑦 positions in an inertial frame, inertial
heading, yaw rate, and longitudinal and lateral speeds in the body
frame. Variables 𝑢1, 𝑢2 represent front wheel steering angle and longitu-
dinal acceleration, 𝑚 and 𝐼 denote the vehicle’s mass and yaw inertia,
𝑧
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𝑢

Fig. 3. Simulation results for the vehicle obstacle avoidance example. In Fig. 3(a) we plot the trajectories of the planner and tracker systems through the environment, and in
Fig. 3(b) we plot ‖𝑒(𝑡)‖ and its guaranteed upper bound. In Fig. 3(a), the initial position of the vehicle is marked with a red diamond, the goal set is represented with a green
box, and the shrunken goal set is represented with a blue box. The four orange circles are the obstacles the vehicle must avoid. For each obstacle, the expanded unsafe region is
shown in yellow. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
and 𝑙𝑓 and 𝑙𝑟 represent the distance from the center of mass of the
vehicle to the front and rear axles. 𝐶𝛼,𝑖 is the tire cornering stiffness,
where 𝑖 ∈ {𝑓, 𝑟}. We use the parameter values 𝑚 = 1.67 × 103 kg,
𝐼𝑧 = 2.1 × 103 kg⋅m2, 𝑙𝑓 = 0.99 m, 𝑙𝑟 = 1.7 m, 𝐶𝛼,𝑓 = 6.1595 × 104 N∕rad,
and 𝐶𝛼,𝑟 = 5.2095 × 104 N∕rad.

The planning model is a Dubin’s vehicle model:
̇̂𝑥1(𝑡) = 𝑢̂2(𝑡) cos(𝑥̂3(𝑡)),
̇̂𝑥2(𝑡) = 𝑢̂2(𝑡) sin(𝑥̂3(𝑡)),
̇̂𝑥3(𝑡) = 𝑢̂1(𝑡),

where 𝑥̂1 to 𝑥̂3 represent 𝑥, 𝑦 positions and heading angle, and 𝑢̂1 and
̂2 represent angular velocity and velocity. If we use the map 𝜋(𝑥̂) =
[𝑥̂; 03×1], where 𝑥̂ = [𝑥̂1; 𝑥̂2; 𝑥̂3], then 𝑥4 and 𝑥5 will become part of the
resulting error state. As a result, the magnitude of the absolute state
𝑥4 and 𝑥5 will be minimized in optimization (13), which is practically
undesirable. To eliminate this issue, we use a map 𝜋(𝑥̂, 𝑢̂) = [𝑥̂; 𝑢̂; 0],
where 𝑢̂ = [𝑢̂1; 𝑢̂2], which also provides reference signals for 𝑥4 and 𝑥5.

The error is defined as in (17), with 𝜋(𝑥̂, 𝑢̂) = [𝑥̂; 𝑢̂; 0] and 𝜙(𝑥̂) =
diag(𝑅−1(𝑥̂3), 𝐼4), where 𝑅(𝜓) =

[

cos(𝜓) − sin(𝜓)
sin(𝜓) cos(𝜓)

]

. In this example, 𝜙
allows us to replace the trigonometric functions in 𝑥̂3 in the error
dynamics by trigonometric functions in 𝑒3 = (𝑥3 − 𝑥̂3), which can easily
be approximated by polynomials in a certain range of 𝑒3. The sampling
time used in this example is 𝑇𝑠 = 0.1 s. The input and input jump
spaces for the planning model are ̂ = [−𝜋∕8, 𝜋∕8] × [2, 4], and 𝛥̂ =
[−𝜋∕50, 𝜋∕50] × [−0.075, 0.075]. The tracking control is unconstrained,
i.e.,  = R3.

In this example, the SOS optimizations are formulated using SOSOPT
(Seiler, 2013), and solved by MOSEK. To compute the tracking con-
troller, we parameterize the storage function 𝑉 , control law 𝜅, and
multipliers 𝑠, 𝑙 as degree-2 polynomials. We solve optimization (34)
with these decision variables and then solve optimization (35) with
the error bound  parameterized as a hypercube. The resulting error
bound on (𝑒1, 𝑒2, 𝑒3) is [−1.07, 1.07] × [−1.44, 1.44] × [−1.05, 1.05].

The resulting tracking controller is then tested in simulation with a
corresponding planner; see Fig. 3. The objective for the planner system
is to generate a pathway through the environment that avoids all ob-
stacles and eventually reaches a goal set, which is accomplished using
a standard model-predictive controller (using the solver Ipopt (Wächter
& Biegler, 2006)):

min 𝐽 = 𝓁𝑓 (𝑥̂(𝑡 +𝑁𝑝 + 1)) +
𝑡+𝑁𝑝
∑

𝓁(𝑥̂(𝑘), 𝑢̂(𝑘)) (40a)
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𝑢̂(⋅) 𝑘=𝑡
s.t. 𝑥̂(𝑘 + 1) = 𝑥̂(𝑘) + 𝑇𝑠 ⋅ 𝑓approx(𝑥̂(𝑘), 𝑢̂(𝑘)), (40b)

𝑥̂(𝑘) ∈ ̂ , (40c)

𝑢̂(𝑘) ∈ ̂ , (40d)

𝑥̂(𝑡) = 𝑥̂0, (40e)
∀𝑘 = 𝑡,… , 𝑡 +𝑁𝑝,

𝑢̂(𝑘) − 𝑢̂(𝑘 − 1) ∈ 𝛥̂ , (40f)

𝑢̂(𝑡) − 𝑢̂0 ∈ 𝛥̂ , (40g)
∀𝑘 = 𝑡 + 1,… , 𝑡 +𝑁𝑝,

where 𝓁(⋅, ⋅) in (40a) is the state/input cost at each time step, 𝓁𝑓 (⋅)
is the final state cost, (40b) is the polynomial approximation of the
discretized Dubin’s vehicle dynamics, (40c) and (40d) ensure state and
input constraints are obeyed, and (40e) is the initial state constraint.
Furthermore, 𝑢̂0 is the input that was applied at the previous time step,
and therefore (40f) and (40g) ensure the input jump constraints are
respected. The objective to reach the goal set is encoded using the
functions 𝓁 and 𝓁𝑓 . The initial state of the vehicle is 𝑥̂0 = [0; 15; 0]
and the goal set is a square region centered at (48.5, 6.5) with a height
and width of 7 m. This goal set is shrunk by the error bound to ensure
that if the planner state reaches the shrunk goal set, the tracker state
will reach the true goal set. There are four circular obstacles centered at
(−5,−2.5), (12.5, 10), (30, 7.5), and (15,−15), each with a radius of 3 m.
Since the maximum position tracking error the vehicle will experience
is

√

1.072 + 1.442 = 1.79m, for each obstacle, we constrain the vehicle
to avoid a circular region centered at the obstacle coordinates with an
expanded radius of 4.79 m. This ensures the vehicle will not collide
with any of the obstacles. Indeed, in simulation the vehicle successfully
navigates past each obstacle and eventually reaches the goal set, as
shown in Fig. 3.

5. Conclusion

In this tutorial, we address robust trajectory planning and control
design for nonlinear systems. A hierarchical trajectory planning and
control framework is proposed, where a low-fidelity model is used
to plan trajectories satisfying planning constraints, and a high-fidelity
model is used for synthesizing tracking controllers guaranteeing the
boundedness of the error state between the low- and high-fidelity
models. We consider error states that are functions of both planner
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states and inputs, which offers more freedom in the choice of the low-
fidelity model. SOS optimizations are formulated for computing the
tracking controllers and their associated tracking error bound simul-
taneously. Finally, we demonstrate the planner–tracker control scheme
on a vehicle obstacle avoidance example.

When implementing the planner–tracker framework in real-time,
there are still challenges for providing a full guarantee of safety.
Two sources of error in the planner dynamics are present in the
example above: (1) the discretization error from the forward Euler
discretization, and (2) the polynomial approximation error from the
trigonometric terms. If a bound on these errors were known, it would be
possible to incorporate them into the design process, ensuring instead
that the planner constraints, when augmented with the discretization
error, polynomial approximation error, and the tracking error still
satisfy the tracker constraints. We do not perform such an analysis
in this tutorial. One could also avoid discretization error by using
a MPC solver that is designed to perform numerical integration for
continuous-time dynamical systems, such as in the software package
acados (Verschueren etal, 2021).

In this tutorial, we also do not address the question of MPC terminal
ets and costs for stability and persistent feasibility guarantees for the
PC problem. These sets/costs can be computed in simple cases but
ay increase the computational burden, both offline and online. Real-
ime reliability of solvers for MPC, especially for nonlinear models,
hould also be considered in practical applications. Finally, defining
he error variable can require clever selection of the function 𝜙 to
ake terms in the dynamics cancel, which is not always intuitive.
he shortcomings mentioned above also provide directions for further
esearch.
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ppendix

The algorithm to solve the bilinear optimization (13) is summarized
elow, the (𝜅, 𝛾)-step of which treats 𝛾 as a decision variable. By
minimizing 𝛾, the volume of 𝛺(𝑉 𝑗−1, 𝛾) can be shrunk. In the 𝑉 -step,
(41) enforces 𝛺(𝑉 𝑗 , 𝛾𝑗 ) ⊆ 𝛺(𝑉 𝑗−1, 𝛾𝑗 ).

The input to Algorithm 1 is a feasible initial guess 𝑉 0. One candi-
date might be a quadratic Lyapunov function 𝑉 obtained by solving
Lyapunov equations using the linearized error dynamics with LQR
controllers. However, 𝑉 might be too coarse to be feasible for the
constraints (13). Here, we introduced a slack variable 𝜆 > 0 to the
constraint (13c) to relax the constraint, and quantify how far 𝑉 is away
from a feasible candidate:

− 𝜕𝑉
𝜕𝑒

⋅ (𝑓𝑒 + 𝑔𝑒 ⋅ 𝜅) + 𝜆 − 𝜖𝑒⊤𝑒 + 𝑙 ⋅ (𝑉 − 𝛾) + 𝑠1 ⋅ 𝑝𝑥̂

+ 𝑠2 ⋅ 𝑝𝑢̂ + 𝑠3 ⋅ 𝑝𝑤 ∈ 𝛴[(𝑒, 𝑥̂, 𝑢̂, 𝑤)]. (42)

By iteratively searching over two bilinear groups of decision variables,
we minimize 𝜆 until 𝜆 ≤ 0. Based on this idea, an algorithm to compute
𝑉 0 from 𝑉 is proposed as Algorithm 2.
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Algorithm 1 Alternating direction method

Input: function 𝑉 0 such that constraints (13) are feasible by proper
choice of 𝑠, 𝑙, 𝜅, 𝛾.

Output: 𝜅, 𝛾, 𝑉 .
1: for 𝑗 = 1 ∶ 𝑁iter do
2: (𝜿, 𝜸)-step: decision variables (𝑠, 𝑙, 𝜅, 𝛾).

Minimize 𝛾 subject to (13) using 𝑉 = 𝑉 𝑗−1.
This yields (𝑙𝑗 , 𝑠𝑗4,𝑖, 𝑠

𝑗
7,𝑖, 𝜅

𝑗) and the cost 𝛾𝑗 .
3: 𝑽 -step: decision variables (𝑠1→3, 𝑠5→6,𝑖,

𝑠8→9,𝑖, 𝑉 ); Maximize the feasibility subject to
(13) as well as 𝑠10 − 𝜖 ∈ 𝛴[𝑒], and

− 𝑠10 ⋅ (𝑉 𝑗−1 − 𝛾𝑗 ) + (𝑉 − 𝛾𝑗 ) ∈ 𝛴[𝑒], (41)

using (𝛾 = 𝛾𝑗 , 𝑠4,𝑖 = 𝑠𝑗4,𝑖, 𝑠7,𝑖 = 𝑠𝑗7,𝑖, 𝜅 = 𝜅𝑗 ,
𝑙 = 𝑙𝑗). This yields 𝑉 𝑗 .

4: end for

Algorithm 2 Computation of 𝑉 0

Input: function 𝑉 , and 𝛾̄ > 0.
Output: 𝑉 0.
1: 𝑉 pre ← 𝑉
2: while 𝜆 > 0 do
3: 𝜿-step: decision variables (𝑠, 𝑙, 𝜅).

Minimize 𝜆 subject to (13a)–(13b), (42), (13d)–(13e),
using 𝑉 = 𝑉 pre, 𝛾 = 𝛾̄.
(𝑙pre, 𝑠pre4,𝑖 , 𝑠

pre
7,𝑖 , 𝜅

pre) ← (𝑙, 𝑠4,𝑖, 𝑠7,𝑖, 𝜅)
4: 𝑽 -step: decision variables (𝑠1→3, 𝑠5→6,𝑖,

𝑠8→9,𝑖, 𝑉 ); Minimize 𝜆 subject to (13a)–(13b), (42),
(13d)–(13e) using (𝛾 = 𝛾̄ , 𝑠4,𝑖 = 𝑠pre4,𝑖 , 𝑠7,𝑖 = 𝑠pre7,𝑖 , 𝜅 =
𝜅pre, 𝑙 = 𝑙pre).
𝑉 pre ← 𝑉

5: end while
6: 𝑉 0 ← 𝑉 pre
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