
Analyzing Machine Learning Approaches for
Online Malware Detection in Cloud

Jeffrey C Kimmell∗, Mahmoud Abdelsalam†, and Maanak Gupta‡
∗‡Dept. of Computer Science, Tennessee Technological University, Cookeville, Tennessee 38505, USA

†Dept. of Computer Science, Manhattan College, Riverdale, NY, USA
∗jckimmell42@tntech.edu, †mabdelsalam01@manhattan.edu, ‡mgupta@tntech.edu

Abstract—The variety of services and functionality offered
by various cloud service providers (CSP) have exploded lately.
Utilizing such services has created numerous opportunities for
enterprises infrastructure to become cloud-based and, in turn,
assisted the enterprises to easily and flexibly offer services to their
customers. The practice of renting out access to servers to clients
for computing and storage purposes is known as Infrastructure
as a Service (IaaS). The popularity of IaaS has led to serious and
critical concerns with respect to the cyber security and privacy.
In particular, malware is often leveraged by malicious entities
against cloud services to compromise sensitive data or to obstruct
their functionality. In response to this growing menace, malware
detection for cloud environments has become a widely researched
topic with numerous methods being proposed and deployed.
In this paper, we present online malware detection based on
process level performance metrics, and analyze the effectiveness
of different baseline machine learning models including, Support
Vector Classifier (SVC), Random Forest Classifier (RFC), K-
Nearest Neighbor (KNN), Gradient Boosted Classifier (GBC),
Gaussian Naive Bayes (GNB) and Convolutional Neural Networks
(CNN). Our analysis conclude that neural network models can
most accurately detect the impact malware have on the process
level features of virtual machines in the cloud, and therefore
are best suited to detect them. Our models were trained,
validated, and tested by using a dataset of 40,680 malicious and
benign samples. The dataset was complied by running different
families of malware (collected from VirusTotal) in a live cloud
environment and collecting the process level features.

I. INTRODUCTION AND MOTIVATION

Cloud computing’s convenience and scalability have made it

the go to resource for many entities in both private and public

sectors. One of the major cloud characteristics is offering

resources on-demand, if and when needed using the pay-as

you go model. In general, IT specialists at enterprises have

to control and manage these resources which hinders the

advantages offered by the cloud. Cloud automation tools have

become the norm where IT personnel are able to automat-

ically provision resources in the cloud. Such automation is

achieved through tools (e.g., Puppet1 and Chef2) by writing

configuration scripts that are able to create, modify, and

delete resources in the cloud. Just as such orchestration tools

offer huge benefits to DevOps teams, they widen the security

attack surface. In particular, VMs are often spawned using

automatic configuration tools which means that a large group

VM are similarly configured, if not exact copies. The inherent

1Puppet. https://puppet.com/
2Chef. https://www.chef.io/

redundancies in these VMs could allow for malware to easily

propagate across VMs, especially if there are flaws in these

configuration scripts. The repercussions of compromising a

group of VMs far outweighs those of a single compromised

VM. Cloud infrastructure requires considerably major security

implementations due to its inherent complexity and dynamic

environment where threats are always changing and evolving.

For the same reason, developing malware detection methods

that are both accurate and fast is imperative [1].

Malware is a major threat to cloud infrastructures. Multiple

malware detection methods have been proposed with pros and

cons. Static malware detection [2], [3], [3], [4] is a popular

method where the signature of an executable is analyzed

and compared to a database of known malware signatures.

Attackers have tried to limit the effectiveness of static analysis

by implementing techniques such as obfuscation and packing.

In addition, static malware analysis is limited to known

malware executables and is unable to detect the ever-evolving

zero-day malware. These two major limitations have led to

extensive research on behavioral malware detection methods.

Dynamic and online malware detection are two behavioral

based methods. Dynamic malware detection methods work

by running the malware executables in a secure environment,

such as a sandbox and analyzing their behavior. By doing

this, the detection system is able to analyze novel zero-day

malware since it is not relying on previously known signatures

but the actual behavior of the executable. However, attackers

have been able to implement malware that can detect the use

of tools such as a sandbox, and cease behaving maliciously

in order to avoid its detection. Dynamic and static methods

also share the same limitation where the detection system

focus on identifying malware in the given executables before

they are run on actual systems. However, it is common for

malware to get into a system through vulnerabilities, hence

bypassing these primitive detection approaches. Online mal-

ware detection [5]–[8] focuses on the behavior of a machine

that it is trying to protect from malware. Rather than analyzing

executables and their behavior, online methods monitor the

performance of the entire virtual machine, and raises an alert

if traces of malicious behavior is found at any time. As such,

online malware detection methods are considered continuous

real-time detection system, and overcomes the limitations of

static and dynamic malware detection approaches.

Machine Learning (ML) and neural networks techniques are

189

2021 IEEE International Conference on Smart Computing (SMARTCOMP)

2693-8340/21/$31.00 ©2021 IEEE
DOI 10.1109/SMARTCOMP52413.2021.00046

widely utilized in order to capture the behavior of malware

in an accurate and efficient way [9]. This is due to the

models’ abilities to quickly process a significant amount of

data generated by a VM to classify executables as malicious or

benign. Online malware detection techniques are significantly

impacted by the features chosen to capture the behavior of the

malware present in a particular machine. For example, several

works [2], [10], [11] are using system calls (the most widely

used); however, it is very resource consuming and data can

only be fetched through on-host collecting agent. Only few

works [1], [5]–[8], [12], [13] use resource utilization metrics

(also known as performance metrics) due to the fact that they

are less expressive than system calls in terms of capturing

the low-activity malicious behavior. However, performance

metrics are more suitable to cloud environments since they

are cheaper and can easily be fetched from the hypervisor

(e.g., VMs introspection [14]).

In this paper, we analyze and compare the effectiveness

of different online malware detection approaches that utilize

process-level performance metrics. We provide an in depth

analysis of various machine learning models which will work

as a baseline for other works which focus primarily on one

machine learning model. This is critical to motivate the use of

expensive deep learning models which require huge amounts

of training data and to prove their efficacy with respect to more

fundamental machine learning models. To our understanding

and literature review, this is the first work focusing on an-

alyzing the efficiency of baseline machine learning models,

which is important to justify the use of expensive deep learning

techniques.

The main contributions of this paper are as follows:

• We analyze the effectiveness of different machine learn-

ing models for online malware detection.

• We demonstrate how the set of processes running in a

VM can be represented as a sequence of system features.

• We conjecture that a Convolutional Neural Network

(CNN) model is better suited for malware detection

compared to traditional ML methods.

The remainder of the paper is structured as follows. Sec-

tion II discusses the related works regarding cloud malware

detection and use of various machine learning models. We

also elaborate different ML models used in our work. Section

III discusses the experimental cloud set up and methodology.

The results generated by each of the models are discussed

in Section IV. Section V offers comparison and analysis

of different ML approaches used followed by limitations in

Section VI. Section VII summarizes our work.

II. BACKGROUND

We will outline related work in malware detection and

summarize different ML models used in our work.

A. Related Works

There has been substantial work in the field of malware

detection. Most recently, approaches that rely on machine

learning techniques have gained traction. The high increase

in cloud activity has also called for more attention towards

methods that are specific to the cloud environment [1], [5]–

[7], [10], [20], [21]. Table I shows some of the closely related

work. We categorize the work with respect to the focus of

the paper, the targeted environment, and the features used for

detection as well as the ML algorithms used.

Dynamic Malware Detection. Dynamic malware detec-

tion approaches focus on running malware executables in a

sandbox and closely monitor its behavior or system wide

behavior. Most works target traditional host-based systems.

Research in [11], [15] utilize system calls as features to

train classical machine learning models (i.e. KNN, NB, SVC

and DT) and neural networks, respectively. Other works [9],

[20], [21] analyze the effectiveness of using CNN, RF and

KNN models for malware detection and rely on features

extracted from API calls. In addition, Joshi et al. [23] use

the random forest classifier and monitor a VM’s process

behavior. However, their analysis of these approaches is not

analyzed on a cloud environment. The main limitation of such

approaches is the fact that they are performed in an isolated

environment neglecting the unique cloud topology, including

the infrastructure and its network communication channels.

Even though dynamic analysis approaches can be adopted and

used in online settings, collecting real-time metrics generated

from the cloud environment is essential for cloud malware

detection.

Online Malware Detection. Unlike static and dynamic

analysis approaches where an executable is analyzed or moni-

tored before it runs on a system, online malware detection ap-

proaches focus on continuously monitoring the entire systems

under the assumption that a malware will eventually make its

way into the system. The authors in [19] introduced a malware

detection method that utilizes performance counters and [22]

proposed the use of memory features; however, both of these

works are targeting traditional host-based environment. Other

works specifically target the cloud. Abdelsalam et al. [7]

presented a CNN solution that focused on process level perfor-

mance metrics with a relatively successful accuracy score of

90%. However, this work only examines CNN and does not

provide a baseline of comparison with respect to traditional

machine learning algorithm, which we aim to accomplish in

this paper. In addition, we also categorize anomaly detection

based approaches as online techniques, since they naturally

focus on continuous monitoring of their target systems. Pannu

et al. [18] use cloud performance metrics features and analyzed

the effectiveness SVM and Gaussian based approaches. Even

though their work focused on general anomaly detection

within the cloud, it can be easily adopted and tailored to detect

malware specifically. Similarly, Guan et al. [17] considered

anomaly detection within a cloud environment where they

analyzed system calls based on an ensemble of Bayesian

predictors and decision trees. Their work also focused on cloud

computing systems failure, not specifically malware. Other

anomaly detection based approaches are focused on malware.

Azmandian et al. [16] presented an intrusion detection system

using system calls as features. Abdelsalam et al. [6] proposed

190

TABLE I
THIS TABLE SHOWS THE DIFFERENCES BETWEEN OUR WORK AND RELATED WORKS. THE SECTIONS IN RED INDICATE A DIFFERENCE IN FEATURES

USED, ENVIRONMENT THAT THE SOLUTION WAS TESTED IN, OR FOCUS OF THE PAPER. A � INDICATES THAT A PARTICULAR PAPER POSSESSES THIS

ATTRIBUTE OR MODEL, WHEREAS A BLANK CELL INDICATES AN ABSENCE OF THIS ATTRIBUTE OR MODEL.

Features Domain Focus Models Used

Paper

A
P

I
C

al
ls

P
er

fo
rm

an
ce

M
et

ri
cs

S
y
st

em
C

al
ls

P
er

fo
rm

an
ce

C
o
u
n
te

rs

M
em

o
ry

F
ea

tu
re

s

C
lo

u
d

E
nv

ir
o
n
m

en
t

T
ra

d
it

io
n
al

H
o
st

-B
as

ed
E

nv
ir

o
n
m

en
t

D
y
n
am

ic
M

al
w

ar
e

D
et

ec
ti

o
n

O
n
li

n
e

M
al

w
ar

e
D

et
ec

ti
o
n

A
n
o
m

al
y

D
et

ec
ti

o
n

K
N

N

N
ai

v
e

B
ay

es

N
eu

ra
l

N
et

w
o
rk

R
an

d
o
m

F
o
re

st

B
o
o
st

ed
T

re
es

S
V

C

C
lu

st
er

in
g

D
ec

is
io

n
T

re
es

N
o

M
ac

h
in

e
L

ea
rn

in
g

Firdausi et al. 2010 [15] � � � � � � �
Azmandian et al. 2011 [16] � � � � � �

Guan et al. 2012 [17] � � � � � �
Pannu et al. 2012 [18] � � � �

Demme et al. 2013 [19] � � � � � �
Pirscoveanu et al. 2015 [20] � � � �

Watson et al. 2015 [1] � � � � �
Luckett et al. 2016 [11] � � � �

Fan et al. 2016 [21] � � � �
Tobiyama et al. 2016 [9] � � � �

Abdelsalam et al. 2017 [6] � � � � �
Xu et al. 2017 [22] � � � �

Abdelsalam et al. 2018 [7] � � � �
Dawson et al. 2018 [10] � � � � � �

Joshi et al. 2018 [23] � � � �
Our Approach � � � � � � � � �

a novel k-means clustering algorithm for detection purposes.

This approach succeeded in detecting highly active malware,

but was not successful in detecting low activity malware.

Dawson et al. [10] fetch API calls through hypervisor to be

used as features and use a non linear phase-space algorithm to

detect anomalous behavior. Watson et al. [1] use performance

metrics to build a one class SVC; however, the authors

experimented on highly active malware which is easy to detect.

In this paper, we aim to address the following limitations:

1) Unlike traditional host-based approaches in [9], [11],

[15], [19]–[23], we aim to focus on developing a cloud-

specific approach. Our experiment deployment, which

consists of a commonly used three-tier web architecture,

gives our collected data the added benefit of being gen-

erated in an extremely realistic cloud environment. The

different layers of this architecture allows the utilization

of the cloud topology and provides an in-depth view at

how a real system could be affected by malware.

2) Unlike dynamic analysis approaches in [9], [11], [15],

[20], [21], we aim to focus on developing an online

malware detection approach that is well suited for cloud

environments.

3) Unlike the work in [9]–[11], [15], [16], [19], [21], [22],

we focus on performance-level metrics which is more

practical for cloud than costly features like system or

API calls.

4) Unlike the work in [1], we aim to focus on a broad

range of malware by using low-active malware from

seven different categories.

5) Unlike the work in [7], we aim to provide a baseline

comparison by employing various traditional machine

learning algorithms to convey the importance of using

deep learning algorithms for online malware detection

in cloud.

B. Baseline Machine Learning Models

Here we outline different ML models used in our analysis.

1) Support Vector Classifier (SVC): SVC are supervised

learning models that are used for classification. SVC’s ability

to use a non-linear kernel gives this method the ability to

efficiently perform non-linear classifications. This also reduces

the computational power required to calculate relationships

in infinite dimensions. There is not always a possible linear

classification discernible between features, so finding higher

dimensional relationships between the supplied features allows

SVC to make classifications that other methods, such as

logistic regression, would not be able to make.

2) Random Forest Classifier (RFC): RFC are supervised

learning models used for classification. An RFC works by

fitting a collection of decision trees [24], and is therefore

considered an ensemble learning method since it uses a

collection of classifiers [25]. RFCs choose the best parameter

at each node at random as opposed to decision trees where the

191

best parameter is selected based on all of the features [23].

This gives RFCs better scalability as well as reducing the risk

of overfitting.

3) Nearest Neighbor: Also known as k-Nearest Neighbor

(KNN), it is a supervised learning method of classification that

relies on measuring the distances of samples that have close

proximity. KNN assumes that samples with the same classifi-

cation will be closer in distance, and uses this assumption to

classify a new sample based on the k closest neighbors.

4) Gradient Boosted Trees: Gradient Boosted Trees, or

Gradient Boosted Classifiers (GBC), like RFC, is an ensemble

supervised learning method. GBCs work by creating many

decision trees that handle specific decisions. A weak learner

is considered a model that is only slightly better than guessing.

However, weak learners are often able to make correct deci-

sions on a very specific portion of the sample. The idea is to

create an ensemble of enough weak learners so that the model

as a whole can uses the decisions from the various learners to

generate an overall accurate classification.

5) Naive Bayes: A Naive Bayes classifier generates classifi-

cations using the Bayes Theorem. Bayes Theorem is a method

used to calculate conditional probability based off a set of

features, however it requires a large pool of computational

resources. Bayes Theorem assumes that all features are de-

pendent on one another, this is what leads to the theorem

becoming so computationally demanding. To remedy this, a

simplified or Naive method was created by assuming that each

of the features are independent; this assumption allows the

theorem to be simplified which therefore reduces the required

computational resources.

6) CNN: Convolutional Neural Networks are most com-

monly used for image recognition or use cases that involve

visual data. We can imitate this with our data by shaping it

so that it is represented in a two dimensional array, similar

to an image. The CNN model that we employ in our paper

is DenseNet-121 model, which is one of the state-of-the-art

CNN models.

DenseNets [26] attempt to solve the issue of the ”vanish-

ing gradient.” This problem arises when the neural network

becomes so deep that the standard back-propagation fails to

update the neurons at the early layers of the network from

the changes made at the output. Because of this issue, neural

networks were limited in deepness and complexity. DenseNets

work around this issue by creating more channels that connect

the hidden layers. In DenseNets, the outputs of every layer are

passed to subsequent layers. Because of this, DenseNets do not

need as many feature maps at every hidden layer since these

feature maps are being used by every subsequent layer and

not just the successor layer. In addition, DenseNets borrow the

identity mapping feature from residual networks. This feature

allows the gradient to flow through the model easily via the

use of skip-connections. DenseNets are comprised of dense

blocks and connected with transition layers that are made of

a convolution and pooling layer. For simplicity, we will refer

to it as CNN for the remainder of the paper.

Fig. 1. Experimental Cloud Testbed Setup

III. METHODOLOGY AND EXPERIMENTAL SETUP

A. Experimental Setup

1) Testbed: Simulating real world data is an imperative

aspect to creating reliable malware prediction models. In order

to achieve this, we set up a cloud environment with traffic

to emulate real world cloud behavior. OpenStack, a popular

cloud platform, was installed on the testbed and consisted

of a single control node and four compute nodes as shown

in Figure 1. The control node is responsible for tasks such

as the dashboard, storage, network, identity, and computing.

The compute nodes only handle computing services, and each

compute node is also supplied with agents for networking,

polling, and collecting. Allowing malware to behave naturally

is also key in the data collection process. To ensure the

malware was able to behave as intended, all of the experiments

to collect system features were conducted on machines that

were connected to the Internet. This was done since some

malware has the capability to detect a closed environment

such as a sandbox, a limitation of dynamic malware analysis

approaches. If a closed environment is detected, the malware

may try to act as a benign process or may cease its behaviour

as to not be detected. The Internet connection ensures that

malware is able to communicate with its necessary command

and control servers needed for malware to act in some cases.

In addition, all firewalls and antivirus were disabled.

2) Malware Samples: The malware that was injected during

our experiments were obtained from VirusTotal3. 113 samples

were gathered in total and were chosen at random consisting

of diverse malware families such as DoS, Backdoor, Trojan,

Virus, among others.

3https://www.virustotal.com/gui/

192

Fig. 2. Experiment Deployment

3) Experiment Deployment: In order to simulate a real

world scenario, a three-tiered web architecture was used as

shown in Figure 2. This architecture consisted of web-servers,

application servers, and a database server. A front load bal-

ancer is tasked with handling and distributing clients requests

to the appropriate web servers. An internal load balancer is

used to connect web servers to the application servers and

to distribute requests among the application servers, and the

application servers are all connected to a single database

server. An auto scaling policy is also utilized which is based

on the average CPU usage and is applied independently to

both the web and application servers. The policy states that

if the average CPU utilization of all VMs belonging to the

web or application layer exceeds 70%, new VMs are created

and attached to the corresponding load balancer. Inversely,

if the average CPU utilization falls below 40%, VMs are

deleted to reduce resource usage. During our experiments,

anywhere between 2 to 10 servers were spawned at each

layer, depending on the overall traffic load. In order to uphold

integrity, the traffic/requests were generated based on an

ON/OFF Pareto distribution, this is done to mimic the realistic

dynamic behavior of cloud infrastructures. A main control VM

is used for keeping the malware executables in the database,

injecting a single malware sample into an application server at

a specific time, and deploying/destroying the experiment stack.

OpenStack Heat orchestration service is used to deploy/destroy

experiment stacks using yaml scripts.

4) Unique Processes: We collect system features (e.g.

memory, cpu, input/output etc.) from all process that are

running on the VM at certain times. The 45 features that were

collected are used to represent the dynamic behavior of each

of the processes [13]. Many of these processes are short lived,

and also have their process IDs reassigned by the operating

system. Due to these characteristics, it is often difficult to

analyze the behavior of these processes. To remedy this, we

Fig. 3. Experiment Timeline

utilize a method known as unique processes inspired by [7]

which reduces dynamism. Traditional operating systems iden-

tify processes with a pid, whereas unique processes consider

the actual behavior of a process and is identified using a tuple

of two elements, process name and the command used to run
the process. Processes that share common values in both fields

within the tuple are clustered by taking the average of their

measurements. By using this approach, we are also able to

reduce the total number of processes within a given sample.

5) Data Collection: A total of 113 experiments were con-

ducted each using a different malware executable. Each of

the 113 experiments lasted for 1 hour and generated 360 data

samples (sample collected every 10 seconds) for a total of

40,680 samples. Each experiment is split up into benign and

infected phases as shown in Figure 3. The first 30 minutes

is the benign phase, during this time there is no malware

injected into the machine. Between minute 30 and 40, a single

malware is injected into one of the application servers. The

malware injection and execution times varies which adds a

more dynamic nature to the experiments and ensures that

a rigid injection and execution would not skew the results.

Minute 40 is referred to as the malicious phase. During this

time, malware is openly running on the machine. Data samples

are collected every 10 seconds, this results in a total of 360

samples in total for each experiment which are stored in the

database. After the experiment is completed, the main control

VM destroys the entire experiment stack in order to prevent

contamination between experiments.

6) Model Training: We used the scikit-learn4 library for

implementing our classical machine learning models, and

Keras5, a high-level API that runs on top of TensorFlow6,

for implementing our CNN model. The hyperparamaters for

each of the models were determined by conducting random

grid search to achieve optimal performance. The data collected

was split with 60% of the data being used for training, 20%

for validation, and 20% being used for testing. All the ML

models were trained on a Windows machine equipped with

an AMD Ryzen 5 2600 processor and 16 GB of RAM.

B. Evaluation

We use five standard metrics to measure the performance

of different models, accuracy, precision, recall, and F1 as

4scikit-learn. https://scikit-learn.org/stable/
5Keras. https://keras.io/
6Tensorflow. https://www.tensorflow.org/

193

defined below where TP (True Positive), TN (True Negative),

FP (False Positive), and FN (False Negative).

Accuracy =
TP + TN

TP + TN + FP + FN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 Score = 2× Precision×Recall

Precision+Recall

IV. RESULTS

Figure 4 shows the performance metric scores from each of

our models. In regards to overall performance, the CNN model

outperformed every other model with an F1 score of 91.5%.

We use the F1 score as a basis for overall performance since

it takes the precision and recall metrics into consideration and

is therefore better at describing a model’s overall performance

than the accuracy metric. The RFC and SVC models had the

next highest F1 scores with 84.15% and 83.47% respectively.

The GBC, GNB, and KNN models did not perform as well

with F1 scores of 76.57%, 64.61%, and 61.81%.

The recall metric quantifies the percentage of the infected

samples that were detected, and the model that scored the

highest in this metric was the GNB model with a score of

98.57%. However there is a caveat to this, its precision score,

which measures how many of the samples that were labeled

as infected were actually infected, was very low with a score

of 48.06%. The CNN model achieved a recall score of 84.6%

and a precision score of 100%. The next best model in regards

to recall was the SVC model with a score of 80.91% and a

precision score of 86.2%. The RFC model achieved a recall

score of 72.80% but also had a very high precision score of

99.71%. The KNN model performed the worst, which was

indicated earlier by the low F1 score, with a recall score of

57.67% and a precision score of 66.6%. The findings when

analyzing the accuracy scores are consistent with our other

findings, the CNN model outperforms the other models with

the RFC and SVC models not too far behind.

Figure 5 shows the ROC curves and AUC scores for each

of our models. Once again, the CNN model has the best AUC

score of more than 99%. The RFC and SVC models follow

closely scoring a 94% and a 93% respectively. The GBC

model was able to score and AUC of 90% whereas the KNN

model scored a 77% and the GNB model performed the worst

with a score of 65%. These results are consistent with the

results depicted in Figure 4.

Another important metric to consider when comparing the

performance of various models is the training time of the

model, as shown in Table II. Neural networks require models

that use this methodology be trained for a certain number of

TABLE II
TIME COST FOR THE MODELS

Model Time to Train (s) Detection Time (ms)

CNN 1683 164
SVC 989 11
RFC 20 3900
KNN 28 118
GBC 167 40
GNB 2 .9

epochs. If the model is trained for too many epochs overfitting
could occur, but if the model is not trained for enough

epochs, underfitting will occur. As such, we stop training if

the validation accuracy is not increasing for specific number

of epochs and we choose the model with the highest validation

accuracy achieved during these epochs. The CNN model took

1683 seconds to train and required a total of 32 epochs. Other

models do not train based on a certain number of epochs,

therefore, the same technique doesn’t apply when training the

remainder of the models. In such case, the SVC model took the

longest to train by far at 989 seconds. The GBC model took

167 seconds, the KNN model took 28 seconds, the RFC model

took 20 seconds, and the GNB model only took 2 second to

train. Note that the reported times solely include training time,

excluding the time it takes to read and load the data samples.

V. COMPARISON AND ANALYSIS

The superior metrics generated by the CNN model clearly

indicate that this model is the best suited for our use case. The

comparison of all the models can be found in Figure 4. The

CNN model was able to detect 84.6% of all of the infected

samples while also not falsely labeling benign samples as

infected. In malware detection, while detecting every instance

of malware is ideal, a high number of false positives can be

just as much of a disruption as malware. That is why the high

recall rate achieved by the GNB model is not as promising

as it may seem. Its extremely low precision score of 48.06%

indicates that this model generated a high number of false

positives. In fact, 52% of the samples labeled as infected

were actually benign. In a business case, having a model that

generated these many false positives could hinder day to day

activities by labeling essential, benign processes as malware.

The SVC and RFC models produced similar accuracy and

precision scores but differed in the recall and precision metrics.

The SVC model was able to detect 80% of the total infected

samples, but also has a lower precision score of 86%. The

RFC model had a lower recall score of 72% but generated

nearly no false positives with a precision score of 99%. These

models will need security professionals to make a decision

when implementing a malware detection system. There could

be a situation where a company is willing to have a lower recall

rate in exchange for nearly no false positives to ensure that

the malware detection implementation does not severely hinder

necessary activities. On the other hand, there may be a security

critical use case where a high number of false negatives is very

detrimental. In that case, it may be beneficial with a system

194

Fig. 4. Performance Metrics Comparison for Different Machine Learning Models

Fig. 5. Receiver Operating Characteristic (ROC) Curves

which is able to detect nearly all malwares even if a large

portion of those classifications are false positives.

A. Cost Analysis

The time it takes to train these models, as shown in Table

II, can also have an affect on which use case each model

will be suitable for. There is a clear pattern of the more

successful models requiring more time to train. The CNN

model took the longest to train by far but also outperformed

every other model by a convincing margin. The RFC model

gave promising results with an F1 score of 84% and also only

required 20 seconds to train. The RFC model reigns supreme

of the SVC model in regards to time since the SVC model

required over 900 seconds to train while still yielding similar

results to the RFC model. In a general sense, it is usually

worth sacrificing some time in order to train models that are

as accurate as possible. That is why deploying a deep learning

method such as the CNN model is preferred to the faster

trained models such as SVC and RFC. Once these models

are trained and deployed for online detection, an important

aspect is how long will the models take to decide whether

a given sample is benign or malicious. Detection time, also

found in Table II, shows how long it took each model to

classify a single sample. This metric indicates how fast each

model will be able to process the input data and correctly

classify an infected sample as such. The GNB model has the

fastest detection time, however this is due to this model having

a high false positive rate indicated by its low precision score.

The RFC is the slowest model by far, this could be due to

the input data having to parse through the various trees that

make up the RFC which would cause this model to take longer

to generate a prediction. A faster detection time is of course

preferred, however if a model generates fast predictions that

are incorrect, the benefit of a faster model is overshadowed

by its inability to produce accurate results.

B. Overall Analysis

Despite its longer training time, the CNN model has proven

to be the optimal model in our use case. The CNN model was

195

able to achieve the highest metric scores. The CNN model

achieved high, balanced values between all of the metrics

indicating that this model is able to correctly classify our

samples as benign or infected, more so than the other models.

The CNN model’s longer train time can be attributed to its

deep architecture. This model utilized the state of the art

DenseNet-121 model, indicating that it contains 121 different

layers within the network.

VI. LIMITATIONS

One limitation of our work is due to the relatively small

number of malware samples used. We conducted 113 different

experiments each with a different type of malware, but con-

ducting more experiments with a wider range of malware could

give us a better look into how malware affects the behavior

of VMs in a cloud environment. Another limitation lies in the

assumption that each VM can only be infected by a single

malware, which helps in simplifying our analysis. In practice,

a machine can be infected with multiple malware at the same

time. That being said, our work aims to provide a fundamental

step towards a more rigorous and complex analysis for mul-

tiple malware infection. Further work is needed in order to

determine if our approach would be feasible given a situation

where a VM is infected by multiple malwares.

In addition, the use of the unique processes approach could

allow malware behavior to go unnoticed. Since a unique pro-

cess sample is the average of a collection of processes sharing

the same name and command line, a malware that mimics

these same attributes will be counted within the average of

this sample. This is a common drawback to methodologies

that utilize meta-stats (e.g. average, standard deviation, etc.)

However, the drawback of using meta-stats is confined to

each unique process independently. This makes our approach

partially immune to the meta-stats limitation as opposed to

other approaches that use meta-stats of the entire system.

VII. CONCLUSION

In this paper we analyzed a variety of machine learning

methods in order to determine which method is best for online

malware detection in cloud. We find that, although it takes

the longest to train, the DenseNet-121 (CNN) model has the

best overall performance. The SVC and RFC models produced

promising results that are not too far behind those produced

by the CNN model, as well as being much quicker to train.

However, when it comes to malware detection, taking the

time to train a more accurate model is mostly preferred. The

remaining models, KNN, GBC, and GNB, simply could not

compete with the others. Due to the CNN model’s success, it

can be concluded that deep learning models are more adept at

detecting malware within our dataset in cloud IaaS.

ACKNOWLEDGEMENT

This research is partially supported by NSF Grants 2025682

at Tennessee Technological University and 2025686 at Man-

hattan College.

REFERENCES

[1] M. R. Watson, A. K. Marnerides et al., “Malware detection in cloud
computing infrastructures,” IEEE Transactions on Dependable and Se-
cure Computing, vol. 13, no. 2, pp. 192–205, 2015.

[2] M. Alazab, S. Venkatraman et al., “Zero-day malware detection based
on supervised learning algorithms of api call signatures,” 2010.

[3] A. Shalaginov, S. Banin, A. Dehghantanha, and K. Franke, “Machine
learning aided static malware analysis: A survey and tutorial,” in Cyber
Threat Intelligence. Springer, 2018, pp. 7–45.

[4] S. A. Roseline, S. Geetha, S. Kadry, and Y. Nam, “Intelligent vision-
based malware detection and classification using deep random forest
paradigm,” IEEE Access, vol. 8, pp. 206 303–206 324, 2020.

[5] M. Abdelsalam, R. Krishnan, and R. Sandhu, “Online malware detection
in cloud auto-scaling systems using shallow convolutional neural net-
works,” in IFIP Annual Conference on Data and Applications Security
and Privacy. Springer, 2019, pp. 381–397.

[6] ——, “Clustering-based IaaS cloud monitoring,” in IEEE International
Conference on Cloud Computing (CLOUD), 2017, pp. 672–679.

[7] M. Abdelsalam, R. Krishnan et al., “Malware detection in cloud infras-
tructures using convolutional neural networks,” in IEEE International
Conference on Cloud Computing (CLOUD), 2018, pp. 162–169.

[8] A. McDole et al., “Analyzing CNN based behavioural malware detec-
tion techniques on cloud IaaS,” in International Conference on Cloud
Computing (CLOUD). Springer, 2020, pp. 64–79.

[9] S. Tobiyama et al., “Malware detection with deep neural network using
process behavior,” in IEEE Annual Computer Software and Applications
Conference (COMPSAC), vol. 2, 2016, pp. 577–582.

[10] J. A. Dawson et al., “Phase space detection of virtual machine cyber
events through hypervisor-level system call analysis,” in IEEE Interna-
tional Conference on Data Intelligence and Security, 2018, pp. 159–167.

[11] P. Luckett et al., “Neural network analysis of system call timing for
rootkit detection,” in IEEE Cybersecurity Symposium, 2016.

[12] A. McDole et al., “Deep Learning Techniques for Behavioral Malware
Analysis in Cloud IaaS,” in Malware Analysis using Artificial Intelli-
gence and Deep Learning. Springer, pp. 269–285.

[13] J. C. Kimmel et al., “Recurrent neural networks based online behavioural
malware detection techniques for cloud infrastructure,” IEEE Access,
vol. 9, pp. 68 066–68 080, 2021.

[14] T. Garfinkel et al., “A virtual machine introspection based architecture
for intrusion detection.” in NDSS, vol. 3, no. 2003, pp. 191–206.

[15] I. Firdausi et al., “Analysis of machine learning techniques used in
behavior-based malware detection,” in IEEE Int. conference on advances
in computing, control, and telecommunication technologies, 2010.

[16] F. Azmandian et al., “Virtual machine monitor-based lightweight intru-
sion detection,” ACM SIGOPS Operating Systems Review, vol. 45, 2011.

[17] Q. Guan, Z. Zhang, and S. Fu, “Ensemble of bayesian predictors and
decision trees for proactive failure management in cloud computing
systems,” Journal of Communications, vol. 7, no. 1, pp. 52–61, 2012.

[18] H. S. Pannu, J. Liu, and S. Fu, “Aad: Adaptive anomaly detection system
for cloud computing infrastructures,” in IEEE Symposium on Reliable
Distributed Systems, 2012, pp. 396–397.

[19] J. Demme et al., “On the feasibility of online malware detection with
performance counters,” ACM SIGARCH Computer Architecture News,
vol. 41, no. 3, pp. 559–570, 2013.

[20] R. S. Pirscoveanu et al., “Analysis of malware behavior: Type clas-
sification using machine learning,” in IEEE Int. conference on cyber
situational awareness, data analytics and assessment, 2015, pp. 1–7.

[21] Y. Fan, Y. Ye, and L. Chen, “Malicious sequential pattern mining for
automatic malware detection,” Expert Systems with Applications, vol. 52,
pp. 16–25, 2016.

[22] Z. Xu et al., “Malware detection using machine learning based analysis
of virtual memory access patterns,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2017, pp. 169–174.

[23] S. Joshi et al., “Machine learning approach for malware detection using
random forest classifier on process list data structure,” in Proc. of the Int.
Conference on Information System and Data Mining, 2018, pp. 98–102.

[24] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification
and regression trees. CRC press, 1984.

[25] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[26] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, 2017, pp. 4700–4708.

196

