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Abstract—The variety of services and functionality offered
by various cloud service providers (CSP) have exploded lately.
Utilizing such services has created numerous opportunities for
enterprises infrastructure to become cloud-based and, in turn,
assisted the enterprises to easily and flexibly offer services to their
customers. The practice of renting out access to servers to clients
for computing and storage purposes is known as Infrastructure
as a Service (IaaS). The popularity of IaaS has led to serious and
critical concerns with respect to the cyber security and privacy.
In particular, malware is often leveraged by malicious entities
against cloud services to compromise sensitive data or to obstruct
their functionality. In response to this growing menace, malware
detection for cloud environments has become a widely researched
topic with numerous methods being proposed and deployed.
In this paper, we present online malware detection based on
process level performance metrics, and analyze the effectiveness
of different baseline machine learning models including, Support
Vector Classifier (SVC), Random Forest Classifier (RFC), K-
Nearest Neighbor (KNN), Gradient Boosted Classifier (GBC),
Gaussian Naive Bayes (GNB) and Convolutional Neural Networks
(CNN). Our analysis conclude that neural network models can
most accurately detect the impact malware have on the process
level features of virtual machines in the cloud, and therefore
are best suited to detect them. Our models were trained,
validated, and tested by using a dataset of 40,680 malicious and
benign samples. The dataset was complied by running different
families of malware (collected from VirusTotal) in a live cloud
environment and collecting the process level features.

I. INTRODUCTION AND MOTIVATION

Cloud computing’s convenience and scalability have made it
the go to resource for many entities in both private and public
sectors. One of the major cloud characteristics is offering
resources on-demand, if and when needed using the pay-as
you go model. In general, IT specialists at enterprises have
to control and manage these resources which hinders the
advantages offered by the cloud. Cloud automation tools have
become the norm where IT personnel are able to automat-
ically provision resources in the cloud. Such automation is
achieved through tools (e.g., Puppet! and Chef?) by writing
configuration scripts that are able to create, modify, and
delete resources in the cloud. Just as such orchestration tools
offer huge benefits to DevOps teams, they widen the security
attack surface. In particular, VMs are often spawned using
automatic configuration tools which means that a large group
VM are similarly configured, if not exact copies. The inherent
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redundancies in these VMs could allow for malware to easily
propagate across VMs, especially if there are flaws in these
configuration scripts. The repercussions of compromising a
group of VMs far outweighs those of a single compromised
VM. Cloud infrastructure requires considerably major security
implementations due to its inherent complexity and dynamic
environment where threats are always changing and evolving.
For the same reason, developing malware detection methods
that are both accurate and fast is imperative [1].

Malware is a major threat to cloud infrastructures. Multiple
malware detection methods have been proposed with pros and
cons. Static malware detection [2], [3], [3], [4] is a popular
method where the signature of an executable is analyzed
and compared to a database of known malware signatures.
Attackers have tried to limit the effectiveness of static analysis
by implementing techniques such as obfuscation and packing.
In addition, static malware analysis is limited to known
malware executables and is unable to detect the ever-evolving
zero-day malware. These two major limitations have led to
extensive research on behavioral malware detection methods.
Dynamic and online malware detection are two behavioral
based methods. Dynamic malware detection methods work
by running the malware executables in a secure environment,
such as a sandbox and analyzing their behavior. By doing
this, the detection system is able to analyze novel zero-day
malware since it is not relying on previously known signatures
but the actual behavior of the executable. However, attackers
have been able to implement malware that can detect the use
of tools such as a sandbox, and cease behaving maliciously
in order to avoid its detection. Dynamic and static methods
also share the same limitation where the detection system
focus on identifying malware in the given executables before
they are run on actual systems. However, it is common for
malware to get into a system through vulnerabilities, hence
bypassing these primitive detection approaches. Online mal-
ware detection [5]-[8] focuses on the behavior of a machine
that it is trying to protect from malware. Rather than analyzing
executables and their behavior, online methods monitor the
performance of the entire virtual machine, and raises an alert
if traces of malicious behavior is found at any time. As such,
online malware detection methods are considered continuous
real-time detection system, and overcomes the limitations of
static and dynamic malware detection approaches.

Machine Learning (ML) and neural networks techniques are



widely utilized in order to capture the behavior of malware
in an accurate and efficient way [9]. This is due to the
models’ abilities to quickly process a significant amount of
data generated by a VM to classify executables as malicious or
benign. Online malware detection techniques are significantly
impacted by the features chosen to capture the behavior of the
malware present in a particular machine. For example, several
works [2], [10], [11] are using system calls (the most widely
used); however, it is very resource consuming and data can
only be fetched through on-host collecting agent. Only few
works [1], [5]-[8], [12], [13] use resource utilization metrics
(also known as performance metrics) due to the fact that they
are less expressive than system calls in terms of capturing
the low-activity malicious behavior. However, performance
metrics are more suitable to cloud environments since they
are cheaper and can easily be fetched from the hypervisor
(e.g., VMs introspection [14]).

In this paper, we analyze and compare the effectiveness
of different online malware detection approaches that utilize
process-level performance metrics. We provide an in depth
analysis of various machine learning models which will work
as a baseline for other works which focus primarily on one
machine learning model. This is critical to motivate the use of
expensive deep learning models which require huge amounts
of training data and to prove their efficacy with respect to more
fundamental machine learning models. To our understanding
and literature review, this is the first work focusing on an-
alyzing the efficiency of baseline machine learning models,
which is important to justify the use of expensive deep learning
techniques.

The main contributions of this paper are as follows:

o We analyze the effectiveness of different machine learn-
ing models for online malware detection.

+« We demonstrate how the set of processes running in a
VM can be represented as a sequence of system features.

o« We conjecture that a Convolutional Neural Network
(CNN) model is better suited for malware detection
compared to traditional ML methods.

The remainder of the paper is structured as follows. Sec-
tion II discusses the related works regarding cloud malware
detection and use of various machine learning models. We
also elaborate different ML models used in our work. Section
III discusses the experimental cloud set up and methodology.
The results generated by each of the models are discussed
in Section IV. Section V offers comparison and analysis
of different ML approaches used followed by limitations in
Section VI. Section VII summarizes our work.

II. BACKGROUND
We will outline related work in malware detection and
summarize different ML models used in our work.
A. Related Works

There has been substantial work in the field of malware
detection. Most recently, approaches that rely on machine
learning techniques have gained traction. The high increase
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in cloud activity has also called for more attention towards
methods that are specific to the cloud environment [1], [S]—
[7], [10], [20], [21]. Table I shows some of the closely related
work. We categorize the work with respect to the focus of
the paper, the targeted environment, and the features used for
detection as well as the ML algorithms used.

Dynamic Malware Detection. Dynamic malware detec-
tion approaches focus on running malware executables in a
sandbox and closely monitor its behavior or system wide
behavior. Most works target traditional host-based systems.
Research in [11], [15] utilize system calls as features to
train classical machine learning models (i.e. KNN, NB, SVC
and DT) and neural networks, respectively. Other works [9],
[20], [21] analyze the effectiveness of using CNN, RF and
KNN models for malware detection and rely on features
extracted from API calls. In addition, Joshi et al. [23] use
the random forest classifier and monitor a VM’s process
behavior. However, their analysis of these approaches is not
analyzed on a cloud environment. The main limitation of such
approaches is the fact that they are performed in an isolated
environment neglecting the unique cloud topology, including
the infrastructure and its network communication channels.
Even though dynamic analysis approaches can be adopted and
used in online settings, collecting real-time metrics generated
from the cloud environment is essential for cloud malware
detection.

Online Malware Detection. Unlike static and dynamic
analysis approaches where an executable is analyzed or moni-
tored before it runs on a system, online malware detection ap-
proaches focus on continuously monitoring the entire systems
under the assumption that a malware will eventually make its
way into the system. The authors in [19] introduced a malware
detection method that utilizes performance counters and [22]
proposed the use of memory features; however, both of these
works are targeting traditional host-based environment. Other
works specifically target the cloud. Abdelsalam et al. [7]
presented a CNN solution that focused on process level perfor-
mance metrics with a relatively successful accuracy score of
90%. However, this work only examines CNN and does not
provide a baseline of comparison with respect to traditional
machine learning algorithm, which we aim to accomplish in
this paper. In addition, we also categorize anomaly detection
based approaches as online techniques, since they naturally
focus on continuous monitoring of their target systems. Pannu
et al. [18] use cloud performance metrics features and analyzed
the effectiveness SVM and Gaussian based approaches. Even
though their work focused on general anomaly detection
within the cloud, it can be easily adopted and tailored to detect
malware specifically. Similarly, Guan et al. [17] considered
anomaly detection within a cloud environment where they
analyzed system calls based on an ensemble of Bayesian
predictors and decision trees. Their work also focused on cloud
computing systems failure, not specifically malware. Other
anomaly detection based approaches are focused on malware.
Azmandian et al. [16] presented an intrusion detection system
using system calls as features. Abdelsalam et al. [6] proposed
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a novel k-means clustering algorithm for detection purposes. 4) Unlike the work in [1], we aim to focus on a broad
This approach succeeded in detecting highly active malware, range of malware by using low-active malware from
but was not successful in detecting low activity malware. seven different categories.
Dawson et al. [10] fetch API calls through hypervisor to be 5) Unlike the work in [7], we aim to provide a baseline

used as features and use a non linear phase-space algorithm to
detect anomalous behavior. Watson et al. [1] use performance
metrics to build a one class SVC; however, the authors
experimented on highly active malware which is easy to detect.

In this paper, we aim to address the following limitations:

1) Unlike traditional host-based approaches in [9], [11],
[15], [19]-[23], we aim to focus on developing a cloud-
specific approach. Our experiment deployment, which
consists of a commonly used three-tier web architecture,
gives our collected data the added benefit of being gen-
erated in an extremely realistic cloud environment. The
different layers of this architecture allows the utilization
of the cloud topology and provides an in-depth view at
how a real system could be affected by malware.
Unlike dynamic analysis approaches in [9], [11], [15],
[20], [21], we aim to focus on developing an online
malware detection approach that is well suited for cloud
environments.

Unlike the work in [9]-[11], [15], [16], [19], [21], [22],
we focus on performance-level metrics which is more
practical for cloud than costly features like system or
API calls.

2)

3)
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comparison by employing various traditional machine
learning algorithms to convey the importance of using
deep learning algorithms for online malware detection
in cloud.

B. Baseline Machine Learning Models

Here we outline different ML models used in our analysis.

1) Support Vector Classifier (SVC): SVC are supervised
learning models that are used for classification. SVC’s ability
to use a non-linear kernel gives this method the ability to
efficiently perform non-linear classifications. This also reduces
the computational power required to calculate relationships
in infinite dimensions. There is not always a possible linear
classification discernible between features, so finding higher
dimensional relationships between the supplied features allows
SVC to make classifications that other methods, such as
logistic regression, would not be able to make.

2) Random Forest Classifier (RFC): RFC are supervised
learning models used for classification. An RFC works by
fitting a collection of decision trees [24], and is therefore
considered an ensemble learning method since it uses a
collection of classifiers [25]. RFCs choose the best parameter
at each node at random as opposed to decision trees where the



best parameter is selected based on all of the features [23].
This gives RFCs better scalability as well as reducing the risk
of overfitting.

3) Nearest Neighbor: Also known as k-Nearest Neighbor
(KNN), it is a supervised learning method of classification that
relies on measuring the distances of samples that have close
proximity. KNN assumes that samples with the same classifi-
cation will be closer in distance, and uses this assumption to
classify a new sample based on the k closest neighbors.

4) Gradient Boosted Trees: Gradient Boosted Trees, or
Gradient Boosted Classifiers (GBC), like RFC, is an ensemble
supervised learning method. GBCs work by creating many
decision trees that handle specific decisions. A weak learner
is considered a model that is only slightly better than guessing.
However, weak learners are often able to make correct deci-
sions on a very specific portion of the sample. The idea is to
create an ensemble of enough weak learners so that the model
as a whole can uses the decisions from the various learners to
generate an overall accurate classification.

5) Naive Bayes: A Naive Bayes classifier generates classifi-
cations using the Bayes Theorem. Bayes Theorem is a method
used to calculate conditional probability based off a set of
features, however it requires a large pool of computational
resources. Bayes Theorem assumes that all features are de-
pendent on one another, this is what leads to the theorem
becoming so computationally demanding. To remedy this, a
simplified or Naive method was created by assuming that each
of the features are independent; this assumption allows the
theorem to be simplified which therefore reduces the required
computational resources.

6) CNN: Convolutional Neural Networks are most com-
monly used for image recognition or use cases that involve
visual data. We can imitate this with our data by shaping it
so that it is represented in a two dimensional array, similar
to an image. The CNN model that we employ in our paper
is DenseNet-121 model, which is one of the state-of-the-art
CNN models.

DenseNets [26] attempt to solve the issue of the “vanish-
ing gradient.” This problem arises when the neural network
becomes so deep that the standard back-propagation fails to
update the neurons at the early layers of the network from
the changes made at the output. Because of this issue, neural
networks were limited in deepness and complexity. DenseNets
work around this issue by creating more channels that connect
the hidden layers. In DenseNets, the outputs of every layer are
passed to subsequent layers. Because of this, DenseNets do not
need as many feature maps at every hidden layer since these
feature maps are being used by every subsequent layer and
not just the successor layer. In addition, DenseNets borrow the
identity mapping feature from residual networks. This feature
allows the gradient to flow through the model easily via the
use of skip-connections. DenseNets are comprised of dense
blocks and connected with transition layers that are made of
a convolution and pooling layer. For simplicity, we will refer
to it as CNN for the remainder of the paper.
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Fig. 1. Experimental Cloud Testbed Setup

III. METHODOLOGY AND EXPERIMENTAL SETUP
A. Experimental Setup

1) Testbed: Simulating real world data is an imperative
aspect to creating reliable malware prediction models. In order
to achieve this, we set up a cloud environment with traffic
to emulate real world cloud behavior. OpenStack, a popular
cloud platform, was installed on the testbed and consisted
of a single control node and four compute nodes as shown
in Figure 1. The control node is responsible for tasks such
as the dashboard, storage, network, identity, and computing.
The compute nodes only handle computing services, and each
compute node is also supplied with agents for networking,
polling, and collecting. Allowing malware to behave naturally
is also key in the data collection process. To ensure the
malware was able to behave as intended, all of the experiments
to collect system features were conducted on machines that
were connected to the Internet. This was done since some
malware has the capability to detect a closed environment
such as a sandbox, a limitation of dynamic malware analysis
approaches. If a closed environment is detected, the malware
may try to act as a benign process or may cease its behaviour
as to not be detected. The Internet connection ensures that
malware is able to communicate with its necessary command
and control servers needed for malware to act in some cases.
In addition, all firewalls and antivirus were disabled.

2) Malware Samples: The malware that was injected during
our experiments were obtained from VirusTotal®. 113 samples
were gathered in total and were chosen at random consisting
of diverse malware families such as DoS, Backdoor, Trojan,
Virus, among others.

3https://www.virustotal.com/gui/
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3) Experiment Deployment: In order to simulate a real
world scenario, a three-tiered web architecture was used as
shown in Figure 2. This architecture consisted of web-servers,
application servers, and a database server. A front load bal-
ancer is tasked with handling and distributing clients requests
to the appropriate web servers. An internal load balancer is
used to connect web servers to the application servers and
to distribute requests among the application servers, and the
application servers are all connected to a single database
server. An auto scaling policy is also utilized which is based
on the average CPU usage and is applied independently to
both the web and application servers. The policy states that
if the average CPU utilization of all VMs belonging to the
web or application layer exceeds 70%, new VMs are created
and attached to the corresponding load balancer. Inversely,
if the average CPU utilization falls below 40%, VMs are
deleted to reduce resource usage. During our experiments,
anywhere between 2 to 10 servers were spawned at each
layer, depending on the overall traffic load. In order to uphold
integrity, the traffic/requests were generated based on an
ON/OFF Pareto distribution, this is done to mimic the realistic
dynamic behavior of cloud infrastructures. A main control VM
is used for keeping the malware executables in the database,
injecting a single malware sample into an application server at
a specific time, and deploying/destroying the experiment stack.
OpenStack Heat orchestration service is used to deploy/destroy
experiment stacks using yaml scripts.

4) Unique Processes: We collect system features (e.g.
memory, cpu, input/output etc.) from all process that are
running on the VM at certain times. The 45 features that were
collected are used to represent the dynamic behavior of each
of the processes [13]. Many of these processes are short lived,
and also have their process IDs reassigned by the operating
system. Due to these characteristics, it is often difficult to
analyze the behavior of these processes. To remedy this, we
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utilize a method known as unique processes inspired by [7]
which reduces dynamism. Traditional operating systems iden-
tify processes with a pid, whereas unique processes consider
the actual behavior of a process and is identified using a tuple
of two elements, process name and the command used to run
the process. Processes that share common values in both fields
within the tuple are clustered by taking the average of their
measurements. By using this approach, we are also able to
reduce the total number of processes within a given sample.

5) Data Collection: A total of 113 experiments were con-
ducted each using a different malware executable. Each of
the 113 experiments lasted for 1 hour and generated 360 data
samples (sample collected every 10 seconds) for a total of
40,680 samples. Each experiment is split up into benign and
infected phases as shown in Figure 3. The first 30 minutes
is the benign phase, during this time there is no malware
injected into the machine. Between minute 30 and 40, a single
malware is injected into one of the application servers. The
malware injection and execution times varies which adds a
more dynamic nature to the experiments and ensures that
a rigid injection and execution would not skew the results.
Minute 40 is referred to as the malicious phase. During this
time, malware is openly running on the machine. Data samples
are collected every 10 seconds, this results in a total of 360
samples in total for each experiment which are stored in the
database. After the experiment is completed, the main control
VM destroys the entire experiment stack in order to prevent
contamination between experiments.

6) Model Training: We used the scikit-learn* library for
implementing our classical machine learning models, and
Keras®, a high-level API that runs on top of TensorFlow?®,
for implementing our CNN model. The hyperparamaters for
each of the models were determined by conducting random
grid search to achieve optimal performance. The data collected
was split with 60% of the data being used for training, 20%
for validation, and 20% being used for testing. All the ML
models were trained on a Windows machine equipped with
an AMD Ryzen 5 2600 processor and 16 GB of RAM.

B. Evaluation
We use five standard metrics to measure the performance

of different models, accuracy, precision, recall, and F1 as

4scikit-learn. https://scikit-learn.org/stable/
SKeras. https:/keras.io/
Tensorflow. https://www.tensorflow.org/



defined below where TP (True Positive), TN (True Negative),
FP (False Positive), and FN (False Negative).

N B TP+ TN
Y = TP I TN+ FP+ FN
Precision — LT
recision = s P
TP
Recall = m

P ..
F1 Score = 2 x recision X Recall

Precision + Recall

IV. RESULTS

Figure 4 shows the performance metric scores from each of
our models. In regards to overall performance, the CNN model
outperformed every other model with an F1 score of 91.5%.
We use the F1 score as a basis for overall performance since
it takes the precision and recall metrics into consideration and
is therefore better at describing a model’s overall performance
than the accuracy metric. The RFC and SVC models had the
next highest F1 scores with 84.15% and 83.47% respectively.
The GBC, GNB, and KNN models did not perform as well
with F1 scores of 76.57%, 64.61%, and 61.81%.

The recall metric quantifies the percentage of the infected
samples that were detected, and the model that scored the
highest in this metric was the GNB model with a score of
98.57%. However there is a caveat to this, its precision score,
which measures how many of the samples that were labeled
as infected were actually infected, was very low with a score
of 48.06%. The CNN model achieved a recall score of 84.6%
and a precision score of 100%. The next best model in regards
to recall was the SVC model with a score of 80.91% and a
precision score of 86.2%. The RFC model achieved a recall
score of 72.80% but also had a very high precision score of
99.71%. The KNN model performed the worst, which was
indicated earlier by the low F1 score, with a recall score of
57.67% and a precision score of 66.6%. The findings when
analyzing the accuracy scores are consistent with our other
findings, the CNN model outperforms the other models with
the RFC and SVC models not too far behind.

Figure 5 shows the ROC curves and AUC scores for each
of our models. Once again, the CNN model has the best AUC
score of more than 99%. The RFC and SVC models follow
closely scoring a 94% and a 93% respectively. The GBC
model was able to score and AUC of 90% whereas the KNN
model scored a 77% and the GNB model performed the worst
with a score of 65%. These results are consistent with the
results depicted in Figure 4.

Another important metric to consider when comparing the
performance of various models is the training time of the
model, as shown in Table II. Neural networks require models
that use this methodology be trained for a certain number of
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TABLE 11
TIME COST FOR THE MODELS

Model | Time to Train (s) | Detection Time (ms)
CNN 1683 164

SvC 989 11

RFC 20 3900

KNN 28 118

GBC 167 40

GNB 2 9

epochs. If the model is trained for too many epochs overfitting
could occur, but if the model is not trained for enough
epochs, underfitting will occur. As such, we stop training if
the validation accuracy is not increasing for specific number
of epochs and we choose the model with the highest validation
accuracy achieved during these epochs. The CNN model took
1683 seconds to train and required a total of 32 epochs. Other
models do not train based on a certain number of epochs,
therefore, the same technique doesn’t apply when training the
remainder of the models. In such case, the SVC model took the
longest to train by far at 989 seconds. The GBC model took
167 seconds, the KNN model took 28 seconds, the RFC model
took 20 seconds, and the GNB model only took 2 second to
train. Note that the reported times solely include training time,
excluding the time it takes to read and load the data samples.

V. COMPARISON AND ANALYSIS

The superior metrics generated by the CNN model clearly
indicate that this model is the best suited for our use case. The
comparison of all the models can be found in Figure 4. The
CNN model was able to detect 84.6% of all of the infected
samples while also not falsely labeling benign samples as
infected. In malware detection, while detecting every instance
of malware is ideal, a high number of false positives can be
just as much of a disruption as malware. That is why the high
recall rate achieved by the GNB model is not as promising
as it may seem. Its extremely low precision score of 48.06%
indicates that this model generated a high number of false
positives. In fact, 52% of the samples labeled as infected
were actually benign. In a business case, having a model that
generated these many false positives could hinder day to day
activities by labeling essential, benign processes as malware.
The SVC and RFC models produced similar accuracy and
precision scores but differed in the recall and precision metrics.
The SVC model was able to detect 80% of the total infected
samples, but also has a lower precision score of 86%. The
RFC model had a lower recall score of 72% but generated
nearly no false positives with a precision score of 99%. These
models will need security professionals to make a decision
when implementing a malware detection system. There could
be a situation where a company is willing to have a lower recall
rate in exchange for nearly no false positives to ensure that
the malware detection implementation does not severely hinder
necessary activities. On the other hand, there may be a security
critical use case where a high number of false negatives is very
detrimental. In that case, it may be beneficial with a system
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Fig. 5. Receiver Operating Characteristic (ROC) Curves

which is able to detect nearly all malwares even if a large
portion of those classifications are false positives.

A. Cost Analysis

The time it takes to train these models, as shown in Table
II, can also have an affect on which use case each model
will be suitable for. There is a clear pattern of the more
successful models requiring more time to train. The CNN
model took the longest to train by far but also outperformed
every other model by a convincing margin. The RFC model
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gave promising results with an F1 score of 84% and also only
required 20 seconds to train. The RFC model reigns supreme
of the SVC model in regards to time since the SVC model
required over 900 seconds to train while still yielding similar
results to the RFC model. In a general sense, it is usually
worth sacrificing some time in order to train models that are
as accurate as possible. That is why deploying a deep learning
method such as the CNN model is preferred to the faster
trained models such as SVC and RFC. Once these models
are trained and deployed for online detection, an important
aspect is how long will the models take to decide whether
a given sample is benign or malicious. Detection time, also
found in Table II, shows how long it took each model to
classify a single sample. This metric indicates how fast each
model will be able to process the input data and correctly
classify an infected sample as such. The GNB model has the
fastest detection time, however this is due to this model having
a high false positive rate indicated by its low precision score.
The RFC is the slowest model by far, this could be due to
the input data having to parse through the various trees that
make up the RFC which would cause this model to take longer
to generate a prediction. A faster detection time is of course
preferred, however if a model generates fast predictions that
are incorrect, the benefit of a faster model is overshadowed
by its inability to produce accurate results.

B. Overall Analysis

Despite its longer training time, the CNN model has proven
to be the optimal model in our use case. The CNN model was



able to achieve the highest metric scores. The CNN model
achieved high, balanced values between all of the metrics
indicating that this model is able to correctly classify our
samples as benign or infected, more so than the other models.
The CNN model’s longer train time can be attributed to its
deep architecture. This model utilized the state of the art
DenseNet-121 model, indicating that it contains 121 different
layers within the network.

VI. LIMITATIONS

One limitation of our work is due to the relatively small
number of malware samples used. We conducted 113 different
experiments each with a different type of malware, but con-
ducting more experiments with a wider range of malware could
give us a better look into how malware affects the behavior
of VMs in a cloud environment. Another limitation lies in the
assumption that each VM can only be infected by a single
malware, which helps in simplifying our analysis. In practice,
a machine can be infected with multiple malware at the same
time. That being said, our work aims to provide a fundamental
step towards a more rigorous and complex analysis for mul-
tiple malware infection. Further work is needed in order to
determine if our approach would be feasible given a situation
where a VM is infected by multiple malwares.

In addition, the use of the unique processes approach could
allow malware behavior to go unnoticed. Since a unique pro-
cess sample is the average of a collection of processes sharing
the same name and command line, a malware that mimics
these same attributes will be counted within the average of
this sample. This is a common drawback to methodologies
that utilize meta-stats (e.g. average, standard deviation, etc.)
However, the drawback of using meta-stats is confined to
each unique process independently. This makes our approach
partially immune to the meta-stats limitation as opposed to
other approaches that use meta-stats of the entire system.

VII. CONCLUSION

In this paper we analyzed a variety of machine learning
methods in order to determine which method is best for online
malware detection in cloud. We find that, although it takes
the longest to train, the DenseNet-121 (CNN) model has the
best overall performance. The SVC and RFC models produced
promising results that are not too far behind those produced
by the CNN model, as well as being much quicker to train.
However, when it comes to malware detection, taking the
time to train a more accurate model is mostly preferred. The
remaining models, KNN, GBC, and GNB, simply could not
compete with the others. Due to the CNN model’s success, it
can be concluded that deep learning models are more adept at
detecting malware within our dataset in cloud IaaS.
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