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Abstract—We propose a novel multi-scale continuous wavelet 

transform feature method to accurately obtain micro-texture and 
multi-scale ECG characteristics and demonstrate how it could 
benefit from the state-of-the-art deep convolutional neural net- 
work techniques. In other words, we performed transfer learning 
with popular CNN architectures such as InceptionV3, VGG16, 
VGG19, Inception ResNetV2, MobileNetV2, and Xception which 
have been trained on the ImageNet. Our proposed ECG biometric 
framework achieves an average identification rate of 99.96% on 
CEBDB, 99.47% on PTB dataset with 290 subjects. We also 
evaluate the effectiveness of the proposed algorithm with the 
other two public ECG datasets with diverse behaviors. 

I. INTRODUCTION 

The popularity of the biometric systems by the consumer 

continues to grow and demonstrates how it can be successfully 

leveraged to meet the insatiable consumer demand for prac- 

tical dexterity. Today, wearable devices and smartphones are 

equipped with powerful advanced biometric technologies such 

as fingerprint and face recognition. The widespread adaptation 

of fingerprint and facial biometrics holds the promise of a 

more secure way to prove identity but comes with various 

drawbacks such as presentation attacks [21]. One concern is 

whether biometrics can be leveraged successfully in different 

situations. Due to the outbreak of the COVID-19 pandemic 

grips from all over the globe, most of the people who use face 

biometric verification for different applications are encounter- 

ing recognition obstacles due to wearing face masks to prevent 

the spread of viruses. Many people are entering the bank, 

shopping center, airport with their faces covered, resulting 

in unlocking their phones, unauthorized boarding pass using 

CLEAR, or making a biometric mobile transactions almost 

impossible. Moreover, spoofing concerns will invariably arise, 

too [16], [17], [29], [32]. Unlike other biometrics, ECG-based 

biometric offers intrinsic aliveness characteristics, difficult to 

spoof, and relatively easy to measure [10], [13]. 

While ECG-based biometric authentication offers several 

benefits, several limitations are encountered. The ECG signals 

contain a lot of timing information and they are very sensitive 

to noises [12]. Thus, it could change based on the subject’s 

prior activities, sensor quality, environment, and other factors. 

Hence, handcrafted feature extraction such as the fiducial 

feature extraction technique may not be the best approach. 

On the other hand, with the advent of deep learning, facial 

and fingerprint recognition have greatly benefited from transfer 

learning from state-of-the-art CNN architectures, while ECG 

 

biometrics are lacking behind due to 1 dimensional signal. 

Therefore, we propose a novel continuous wavelet transform 

feature extraction for ECG biometric identification based on 

the 2D representation of the image. Our proposed technique 

avoids fiducial feature extraction and highly customized fea- 

ture engineering. In addition, our novel proposed method not 

only provide deep information about both the timing and 

frequency domain but also is compatible with transfer learning 

due to the image structure of the ECG. 

In short, the novelty and contributions of the paper are as 

follows: 

1) A novel 2D representation of ECG: We propose a 

novel multi-scale continuous wavelet transform feature 

method to accurately obtain micro-texture and 2D rep- 

resentation of an ECG characteristics in order to take 

advantage from mature field of computer vision to ECG 

biometrics such as 2D convolution, max-pooling, and 

transfer learning. 

2) Image based ECG biometric identification using 

transfer learning: We employed deep CNN architecture 

such as Xception, VGG19, VGG16, mobilenetv2, Incep- 

tion architecture to evaluate the ECG-based biometric 

identification using the converted 2D representation of 

ECG. Our proposed deep mobilenetv2 CNN framework 

achieves 98.21% accuracy with 0.06% EER. 

3) Effectiveness of proposed technique: Extensive exper- 

iments are conducted on four public ECG datasets in 

order to evaluate the proposed techniques. The results 

demonstrate that the proposed non-hand crafted feature 

extraction outperforms several state-of-the-art methods. 

 
II. LITERATURE    REVIEW 

The search for ECG-based biometric began with 12 leads 

recording studies by Biel et.al [2] just two decades ago. These 

initial studies inspired follow-up work exploring handcrafted 

feature extraction for ECG biometric recognition. Since there 

was no specific database for ECG-based biometric, most of 

the work performed analysis on the public database from 

Physionet [1] that is known to identify cardiac abnormalities. 

Later work, different public databases are applied for ECG- 

based biometric recognition. In 2005, Lugovaya et.al [20] 

introduced the ECG-ID database with 90 subjects for the 

biometric study and they found that the ECG trait is inherently 
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Fig. 1. Multiple heartbeats from ECG signal, (a) ECG in the time domain 
and (b) 2D representation of ECG image after applying continuous wavelet 
transform which provides timing, and frequency information. 

 

 

difficult to be cloned. It has also been demonstrated ECG- 

based biometric recognition can be performed using a single 

lead which is suitable for mobile and wearable devices [11]. 

While physiological biometrics such as fingerprint and faces 

offer accurate and fast recognition, they are easily observable 

and can be easily obtained and spoofed by adversaries. Consid- 

ering that ECG is a vital signal and motivated by its inherent 

liveness, Caused that biometric community to combine it with 

a fingerprint liveness detection algorithm [15]. However, the 

most drawback of ECG-based biometric is that there was no 

large population size of database with diverse attributes such 

as healthy, unhealthy, age, and weight. Moreover, most of the 

existing work falls into a handcrafted technique rather than 

standard methods. Although deep learning is being widely 

adopted for computer vision, less research has been prominent 

in ECG-based recognition. We summarized the most relevant 

deep learning ECG biometric approach that has been explored. 

Hong et.al [9] utilized Inception-v3 CNN model by trans- 

ferring ECG into an image using spatial correlation image. 

The model classifies all the subjects of the PTB dataset 

and obtained a 97.84% identification rate. Labati et.al [18] 

proposed a (1D)-CNN model, comprising six convolutional 

layers, three max-pooling layers, one dropout layer, a fully 

connected layer, and a Soft-max layer. The PTB database with 

only 52 subjects (healthy) was considered and achieved 2.90% 

EER. Kim et.al [14] used the resnet-ve-152, inception-resnet- 

v2, inception-v4, and inception-v3 and 2-D coupling image 

generated from three sequential cycles of the ECG signal. The 

MIT-BIH normal sinus rhythm database and PTB database 

with 100 subjects out of 290 subjects were used and the 

identification rate of 98.45% was reported. 

Chu et.al [5] proposed a parallel multi-scale one- 

dimensional residual network contains an input layer, a pre- 

processing convolutional block, three parallel residual blocks, 

embedding fully connected layer, and an extra fully connected 

layer. Three public datasets including the ECG-ID, PTB, and 

MIT-BHI with an accuracy of 97.7%, 99.33.%, and 94.74% 

is reported, respectively. Zhang et.al [33] proposed to use a 

multi-resolution CNN for identification. They used wavelet 

and autocorrelation instead of feeding raw ECG as an input 

to the CNN for identification. Moreover, CNN was designed 

as a group dedicated to CNN. Li et.al [19], proposed a 1D F- 

CNN model, comprising three Convolution layers, two Pooling 

layers, and three fully-connected layers. ECG biometric iden- 

tification has been implemented on six public databases with 

an average of 95.2% identification rate. Luz et.al [6] proposed 

a combination of raw ECG and its spectrogram and CNN for 

biometric authentication. They used three public databases and 

evaluate their proposed system based on the DET curve and 

equal error rate. Zhao et.al [34] propose ECG identification 

with S-transform—GST and CNN. They applied a GST on 

the ECG signal and generate an image for the input of CNN. 

The best result on identification has an accuracy of 96.63% 

and does not report experiments on authentication. 

Pinto et.al [25] proposed a (1D)-CNN model, comprising 

four convolutional layers, three max-pooling layers, two fully 

connected layers, and a triplet loss for authentication. 7.86%, 

15.37%, and 9.06% equal error rate on three public databases 

reported on UofTDB, CYBHi, and PTB respectively. Ranjan 

et.al [26] convert the ECG segment into an image and used 

the 2D CNN model for identification purposes. They report 

an EER of 2% on the ECG-ID database for identification. 

However, the main challenge with existing works are not only 

most of the subjects are excluded, but also the databases were 

limited in terms of diversity of population size. Moreover, the 

ECG waveform also contains a lot of timing and frequency 

information in which have not been studied in the past. In this 

study, we go beyond the timing information provided from the 

original ECG and explore uncovered characteristics of ECG. 

Specifically, we applied continuous wavelet transform to take 

advantage of timing and frequency together and convert it to 

a 2D representation image in order to get the benefit of the 

state-of-the-art deep learning techniques. 

 
III. OUR PROPOSED METHOD 

ECG signals can be measured using non-invasive and low- 

cost sensors. Due to non-stationary characteristics, it demon- 

strates time-varying morphological content and influence from 

different environmental conditions such as noise and artifacts 

such as power line interface, baseline drift, motion artifacts, 

arrhythmia, electromyography (EMG), and intra-user variabil- 

ity. Apart from the handcrafted feature extraction or non- 

handcrafted, the filtering is a major pre-processing step that 

can not be eliminated due to its impact on performance. Unlike 

face and fingerprint biometrics, the ECG signal is a more 

non-stationary signal and it is affected by the aforementioned 

environmental noises that can not be handled by deep learning 

without pre-processing. ECG comprises three almost immedi- 

ately distinguishable waves: the P wave, the QRS complex, 

and the T wave, and it is continuously repeated. In order to 

speed up enrollment and authentication, one cycle of ECG 

that has all three waveforms is sufficient. ECG segmentation 

not only reduces the template size but also due to the fewer 

data processing, the power consumption of the device is 

maintained. 
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resulting coefficients are transformed into RGB format which 

creates the 2D representation of the ECG signal. 
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ΨP,γ(ω) = U (ω)aP,γω γ e−ω (1) 

where U (ω) is the unit step, a a 
 
p,γ is a normalizing constant, 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

TABLE I 
SUMMARY  OF  THE  STATE-OF-THE-ART  APPROACHES  FOR  ECG 

BIOMETRICS. NS - NUMBER OF SUBJECTS, F -  FEATURE  EXTRACTION, 
EER - EQUAL ERROR RATE, ID - IDENTIFICATION RATE, SE - SUBJECT 

EXCLUSIVE, CNN - CONVOLUTIONAL NEURAL NETWORK. 

 

 

 
A. Segmentation 

An ECG signal is formed by a series of waveforms including 

P, Q, R, S, and T peaks in a periodic format which repre- 

sent the sequence of depolarization and repolarization. One 

sequence of ECG signals that comprises the aforementioned 

peaks is called the ECG segment in which provide the same in- 

formation over time. Since, each ECG segment contains same 

information of the signal,it is not efficient to repetitively read 

correlating signals. By segmenting ECG signal into the one 

cycle of waveform, not only the size of data used for biometric 

template is decreased, but also the processing time and power 

consumption will be degraded. To segment ECG signal, Pan- 

Tompkins [23] technique has been utilized to identify R-peak. 

Upon successful completion of R peak detection, the ECG 

signals are isolated into ECG beats (segments). We used fixed 

length segmentation with n = 0.16s and nl = 0.41s where n 
and nl are the time periods before and after the R peaks. 

 
B. Two-Dimensional Representation of ECG 

A 2D representation of ECG instead of the 1D signal pro- 

vides more opportunity to integrate many properties from the 

computer vision field into ECG biometric domains including 

2D convolution and max-pooling, transfer learning, larger filter 

sizes. To generate a 2D representation of an ECG signal, the 

entire user’s ECG is segmented into heartbeats using fixed- 

length segmentation described in Section III-A. Then, a con- 

tinuous wavelet transformation function with Morse wavelets 

is applied to the ECG signal corresponding to each user. The 

p2 is the time-bandwidth product, and γ characterizes the sym- 
metry of the Morse wavelet. After converted 2D representation 
of the ECG signal, we then resized into the 224 × 224 or 
299 × 299 dimension to get uniformity in the shape of 
input. 

IV. EXPERIMENTAL SETUP 

A. Evaluation metrics 

To evaluate the performance of our ECG based biometric 

algorithm, we conducted the experiments with three error 

rates: false positive/accept rate (FPR/FAR), true positive/accept 

rate (TPR), and equal error rate (EER). FPR is the probability 

that the biometric system incorrectly rejects an authorized 

user by an access attempt whereas FAR is the probability 

that the biometric system accepts an unauthorized user and 

allow them to access attempt incorrectly. Both FRR and TPR 

can be traded-off with each other in order to find the optimal 

and desired EER. EER is the location on the receiver operator 

characteristic (ROC) curve where the FAR and FRR are equal. 

We also used identification rank which is defined as the user’s 

correct identity corresponding to the top t matches with N 
enrolled identity, where the (1     t      N ).) We also evaluate 

our system using identification Rate or accuracy where it is 

defined as a portion of correctly identified subjects. 

B. Database 

To evaluate our proposed ECG biometric system, four public 

ECG databases has been examined in this study. The databases 

offer different size, status of condition, length and etc. The 

summary of databases information can be found in Table II. 

PTB Diagnostic ECG Database (PTB): This database was 

obtained by the Physikalisch-Technische Bundesanstalt (PTB), 

National Metrology Institute of Germany [3]. The database is 

collected from non-commercial sensors. Overall, 290 subjects 

participated in the study with various profile information such 

as gender, age, healthy, unhealthy, different lengths with the 

sample rate of 1 kHz. 

Combined measurement of ECG, breathing, and seismo- 

cardiograms database (CEBSDB): CEBSDB database [8] 

only contain healthy subjects. Moreover, compared to other 

databases, only 20 subjects has been participated. Each ECG 

data recorded at a sampling frequency of 5 kHz 

Arrhythmia Database (MITDB): The MITDB [22] is an ECG 

database that was collected in the laboratories at Boston’s 

Beth Israel Hospital and MIT. It contains 48 half-hour ECG 

recordings from 47 subjects. The recordings were digitized at 

360 samples per second per channel with an 11-bit resolution 

over a 10 mV range. 

ECG identification database (ECG-ID). The ECG-ID were 

recorded for biometric identification purpose [20]. Each raw 

ECG record was acquired for about 20 seconds with a 

Authors Database NS F EER Id SE 

Hong et.al [9] PTB 200 
CNN 

(Inception) 
 98.1% Y 

Labati et.al [18] PTB 52 CNN 2.90% 100 Y 

Kim et.al [14] 
PTB 

MIT-BIH 
52 
18 

CNN 
(Inception) 

 98.45% 
99.2% 

Y 

Chu et.al [5] 

ECG-ID 
PTB 

MIT-BIH 

90 
290 
48 

CNN 

2% 
0.59% 
4.74% 

98.24% 
100% 

95.99% 
Y 

 
 

Zhang et.al [33] 

CEBSDB 
STDB 

MITDB 

NSRDB 

AFDB 

WECG 

VFDB 

FANTASIA 

20 
28 

47 

18 

23 

22 

22 
20 

 

 
CWT 

CNN 

 99% 
90.3% 

91.1% 

95.1% 

93.9% 

95.5% 

86.6% 
97.2% 

 
 

N 

 

Li et.al [19] 

CEBSDB 
NSRDB 

STDB 

AFDB 

FANTASIA 

20 
18 

28 

23 
20 

 
Cascaded 

CNN 

 93.1% 
91.4% 

92.7% 

89.7% 
99.9% 

 

N 

Luz et.al [6] 
CYBHi 
UofTDB 

65 
1019 

CNN 
13.93% 
14.27% 

 Y 

Zhao et.al [34] ECG-ID 90 CNN  96.63% N 

 
Pinto et.al [25] 

UofTDB 
CYBHi 

 

PTB 

1019 

126 

290 

 
CNN 

7.86% 

15.37% 

9.03% 

  
Y 

Ranjan et.al [26] Private 800 CNN 2.0%  N 
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TABLE II 
THE  SUMMARY  OF  THE  FOUR  DATA  SETS  ADOPTED  IN  OUR  EXPERIMENTS. 

 
 

 MITDB CEBDB PTB ECG-ID 

Model Id EER FRR FAR Id EER FRR FAR Id EER FRR FAR Id EER FRR FAR 

VGG16 95.83 0.17 4.17 0.09 99.93 0.007 0.08 0.004 97.43 0.017 4.05 0.009 96.42 0.08 3.46 0.04 

VGG19 95.06 0.21 4.94 0.10 99.91 0.008 0.08 0.004 98.05 0.013 3.46 0.006 96.24 0.08 3.72 0.04 

MOBILENET V2 97.45 0.14 2.55 0.01 99.96 0.008 0.05 0.003 99.47 0.003 0.85 0.001 97.52 0.05 2.49 0.02 

INCEPTION V3 96.43 0.15 3.57 0.07 99.94 0.005 0.07 0.004 99.34 0.004 0.96 0.002 97.15 0.06 2.77 0.06 

XCEPTION 96.77 0.13 3.23 0.07 99.93 0.008 0.06 0.003 99.31 0.005 1.14 0.002 96.88 0.07 2.98 0.03 

INCEPTION RESNET V2 96.51 0.14 3.49 0.08 99.92 0.008 0.08 0.004 99.34 0.004 1.23 0.002 96.97 0.06 2.84 0.03 

TABLE III 
EXPERIMENT RESULTS USING DIFFERENT PUBLIC DATASETS SUCH AS MITDB, CEBDB, PTB, ECG-ID, AND STATE-OF-THE-ART DEEP CNN MODELS. 

METRICS ARE ID - IDENTIFICATION RATE, EER - EQUAL ERROR RATE, FRR - FALSE REJECT RATE, FAR - FALSE ACCEPT RATE. 

 

 

sampling rate of 500 Hz and a 12-bit resolution. The first 

two records acquired from the same day were used for each 

subject. The database consists of 310 one-lead ECG recording 

sessions obtained from 90 volunteers during a resting state. 

C. Experimental Configuration 

Convolutional Neural Networks (CNN) have the capability 

to learn the features, eliminating the need for manual feature 

engineering. The only problem with neural networks is that 

they are data-hungry and to harness their true power, a 

relatively large number of data points are required. Usually, the 

biomedical dataset has fewer data samples, and hence transfer 

learning technique can be beneficial in such cases. Thus, we 

performed transfer learning with popular CNN architectures 

such as IncpetionV3 [31], VGG16 [28], VGG19 [28], In- 

ception ResNetV2 [30], MobileNetV2 [27] and Xception [4]. 

While the aforementioned deep CNN architectures can obtain 

high performance on ImageNet, training deep CNN from 

scratch is difficult for 2D representation of ECG due to (i) 

it requires a huge amount of training data to deal with proper 

convergence; (ii) time-consuming process; (iii) it is most 

likely to suffer from overfitting problem. This motivated us 

to use transfer learning [24] to deal with the aforementioned 

drawbacks. In this paper, The ECG based biometric system 

has been trained on a large labeled dataset from ImageNet [7] 

with good results and thus has high generalization capabilities. 

In other words, we use the weights pre-trained on ImageNet to 

fine-tune our ECG-based biometric model to take advantage of 

the 2D structure input method on CNN. 2D image of ECG with 
a resolution of 224 224 was fed to the VGG and MobileNet 
architectures while a resolution of 299     299 was used for 
other models. The initial learning rate was set to 5e−3 with a 
polynomial decay of 0.01 for every epoch. A small batch size 

of 16 was used as smaller batches yield better results. 
Generally speaking, we extracted 40 segments from each 

user for the entire experimental dataset. Note that some of 

the datasets may have more/fewer segments. Then, each ECG 
segment is converted into a 2D image. Next, the 2D image 

dataset is split randomly into 75% for enrollment and 

25% 

authentication sets with 5-fold cross-validation. By random 

we refer to random splits based on ECG segments rather than 

users to ensure balanced label distributions. Class weights 

were introduced to penalize the model more when classes with 

fewer samples were wrongly classified. For all the models, 

the top layer was removed and a Global Average Pooling 

layer, a dropout layer, two fully connected layers with ReLU 

activation, and a softmax layer were added. A dropout factor 

of 0.4 and an L2-regularization factor of 5e−4 was introduced 

to reduce any overfitting. The models were loaded with 

ImageNet weights and fine-tuned for our dataset. A stochastic 

gradient descent (SGD) with a 0.9 momentum was used as 

an optimizer for our models. Finally, the models were trained 

for a maximum of 100 epochs and were monitored using early 

stopping to halt training when validation loss starts increasing. 

V. EXPERIMENTAL RESULTS 

ROC curves are shown in Fig. 2 (a-d), TableIII. As shown 

in the results, the average identification rate from PTB are 

97.43%, 98.0.5%, 99.47%, 99.34%, 99.31%, and 99.34% 

with EER of 0.017%, 0.013%, 0.003%, 0.004%, 0.005%, 

and 0.04% using VGG16, VGG19, MobileNet2, InceptionV3, 

Xception, and Inception ResNetV2 respectively. In contrast, 

the average identification from MITDB are 95.83%, 95.0.6%, 

97.45%, 96.43%, 97.77%, and 96.51% with EER of 0.17%, 

0.21%, 0.14%, 0.15%, 0.13%, and 0.14% using VGG16, 

VGG19, MobileNet2, InceptionV3, Xception, and Inception 

ResNetV2 respectively. Among different deep CNN model, 

MobileNetV2 seems to be a powerful tool for 2D CNN ECG 

biometric identification, achieve high identification rate. As 

expected, the CEBDB dataset obtains 99.92% identification 

rate and 0.008% EER for all types of CNN architecture since 

not only has 20 subjects but also all the users are healthy. 

VGG architectures are slow to train and the model weights are 

heavy. Depth wise and pointwise convolutions in MobileNet 

architectures make the model 32 times smaller than VGG 

while being faster and more accurate. Efficient and deeper 

models like InceptionV3, InceptionResNetV2, MobileNetV2, 

and Xception performed better than VGG architectures. How- 

Dataset # Subjects Sample Rate (Hz) Type Health state 
PTB 290 100 Public Healthy/Myocardial infarction 
ECG-ID 90 500 Public Arrhythmia 
MITDB 47 360 Public Healthy 

CEBSDB 20 10,000 Public Healthy 
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Fig. 2. ROC curves for different non-crafted features extraction such as Inception, MobileNet, VGG16, VGG19, Xception. (a) PTB, (b) MITDB, (c) CEBSDB, 
(d) and ECG-ID. 
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Fig. 3. The CMC curve of the proposed approach using, MobileNet, VGG16, VGG19, Xception. (a) PTB, (b) MITDB, (c) CEBSDB, (d) and ECG-ID 
respectively. 

 

ever, the boost in MobileNetV2’s accuracy can be attributed to 

it’s fewer parameters as more parameters might lead to over- 

fitting and deeper models might create optimization problems. 

We also summarized the rank-t identification for different 

rank values using the cumulative match characteristics (CMC) 

curve in Fig. 3. The main purpose of Fig. 3 is to demonstrate 

the rank one accuracy of our proposed ECG based biometric 

identification from different datasets which indicates the value 

of TRP for t = 1. Since each dataset has a different number 
of users, thus the number of enrollment vary. Hence, instead 

of plotting the rank-t identification rate for t = 1, 2, , N , 

where N is the number of enrolled users, only rank-5 is 

depicted. As can be seen in this figure, in the PTB, the 

accuracy of rank-1 is as high as 96.3% using deep MobileNet 

architecture, while VGG16 and VGG19 are 97.47% and it 

reaches 99.3% in rank-5. Also, the average identification rate 

of MITDB starts with    97% and reaches 99% in rank-5. On 

the other hand, in the CEBDB dataset, the identification rate 

of rank-1 is    100% rate. In ECG-ID dataset, rank-1 starts 

at 97.5% using MobileNet technique and reaches     100% 

at rank-5. Similarly, the average identification rate starts at 

≈ 96% and reaches 100% in rank-5. 

VI. CONCLUSION 

Most of the existing work on ECG biometric has been 

focused on handcrafted feature extraction and less attention 

has been paid to developing state-of-the-art non-handcrafted 

technique. One reason for that is that ECG is a one-dimension 

signal and thus cannot take advantage of mature fields such 

as computer vision, 2D convolution, and transfer learning. 

Thus, we developed a novel 2D representation of ECG using 

continuous wavelet transform to take advantage of timing and 

frequency together and convert it to a 2D image in order to get 

the benefit of the state-of-the-art deep learning techniques. Our 

proposed ECG biometric has been trained on a four public data 

sets including MITDB, CEBDB, PTB, and ECG-ID with more 

than 450 subjects. Our proposed ECG biometric framework 

achieves an average identification rate of 99.96% on CEBDB, 

99.47% on PTB dataset with 290 subjects. We also evaluate 

the effectiveness of the proposed algorithm with another two 

public ECG datasets with diverse behaviors, such as a healthy 

and unhealthy ECG signal. 
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