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Abstract—We propose a novel multi-scale continuous wavelet
transform feature method to accurately obtain micro-texture and
multi-scale ECG characteristics and demonstrate how it could
benefit from the state-of-the-art deep convolutional neural net-
work techniques. In other words, we performed transfer learning
with popular CNN architectures such as InceptionV3, VGGI16,
VGGI19, Inception ResNetV2, MobileNetV2, and Xception which
have been trained on the ImageNet. Our proposed ECG biometric
framework achieves an average identification rate of 99.96% on
CEBDB, 99.47% on PTB dataset with 290 subjects. We also
evaluate the effectiveness of the proposed algorithm with the
other two public ECG datasets with diverse behaviors.

[. INTRODUCTION

The popularity of the biometric systems by the consumer
continues to grow and demonstrates how it can be successfully
leveraged to meet the insatiable consumer demand for prac-
tical dexterity. Today, wearable devices and smartphones are
equipped with powerful advanced biometric technologies such
as fingerprint and face recognition. The widespread adaptation
of fingerprint and facial biometrics holds the promise of a
more secure way to prove identity but comes with various
drawbacks such as presentation attacks [21]. One concern is
whether biometrics can be leveraged successfully in different
situations. Due to the outbreak of the COVID-19 pandemic
grips from all over the globe, most of the people who use face
biometric verification for different applications are encounter-
ing recognition obstacles due to wearing face masks to prevent
the spread of viruses. Many people are entering the bank,
shopping center, airport with their faces covered, resulting
in unlocking their phones, unauthorized boarding pass using
CLEAR, or making a biometric mobile transactions almost
impossible. Moreover, spoofing concerns will invariably arise,
too [16], [17], [29], [32]. Unlike other biometrics, ECG-based
biometric offers intrinsic aliveness characteristics, difficult to
spoof, and relatively easy to measure [10], [13].

While ECG-based biometric authentication offers several
benefits, several limitations are encountered. The ECG signals
contain a lot of timing information and they are very sensitive
to noises [12]. Thus, it could change based on the subject’s
prior activities, sensor quality, environment, and other factors.
Hence, handcrafted feature extraction such as the fiducial
feature extraction technique may not be the best approach.
On the other hand, with the advent of deep learning, facial
and fingerprint recognition have greatly benefited from transfer
learning from state-of-the-art CNN architectures, while ECG

biometrics are lacking behind due to 1 dimensional signal.
Therefore, we propose a novel continuous wavelet transform
feature extraction for ECG biometric identification based on
the 2D representation of the image. Our proposed technique
avoids fiducial feature extraction and highly customized fea-
ture engineering. In addition, our novel proposed method not
only provide deep information about both the timing and
frequency domain but also is compatible with transfer learning
due to the image structure of the ECG.

In short, the novelty and contributions of the paper are as
follows:

1) A novel 2D representation of ECG: We propose a
novel multi-scale continuous wavelet transform feature
method to accurately obtain micro-texture and 2D rep-
resentation of an ECG characteristics in order to take
advantage from mature field of computer vision to ECG
biometrics such as 2D convolution, max-pooling, and
transfer learning.

2) Image based ECG biometric identification using
transfer learning: We employed deep CNN architecture
such as Xception, VGG19, VGG16, mobilenetv2, Incep-
tion architecture to evaluate the ECG-based biometric
identification using the converted 2D representation of
ECG. Our proposed deep mobilenetv2 CNN framework
achieves 98.21% accuracy with 0.06% EER.

3) Effectiveness of proposed technique: Extensive exper-
iments are conducted on four public ECG datasets in
order to evaluate the proposed techniques. The results
demonstrate that the proposed non-hand crafted feature
extraction outperforms several state-of-the-art methods.

II. LITERATURE REVIEW

The search for ECG-based biometric began with 12 leads
recording studies by Biel et.al [2] just two decades ago. These
initial studies inspired follow-up work exploring handcrafted
feature extraction for ECG biometric recognition. Since there
was no specific database for ECG-based biometric, most of
the work performed analysis on the public database from
Physionet [1] that is known to identify cardiac abnormalities.
Later work, different public databases are applied for ECG-
based biometric recognition. In 2005, Lugovaya et.al [20]
introduced the ECG-ID database with 90 subjects for the
biometric study and they found that the ECG trait is inherently

Authorized licensed use limited to: Santa Clara University. Downloaded on June 16,2022 at 05:50:39 UTC from IEEE Xplore. Restrictions apply.



1l
50 l

. (1] .
':..;q-"“‘&--—mm - te

Z-g

(a) (b)

Fig. 1. Multiple heartbeats from ECG signal, (a) ECG in the time domain
and (b) 2D representation of ECG image after applying continuous wavelet
transform which provides timing, and frequency information.

difficult to be cloned. It has also been demonstrated ECG-
based biometric recognition can be performed using a single
lead which is suitable for mobile and wearable devices [11].
While physiological biometrics such as fingerprint and faces
offer accurate and fast recognition, they are easily observable
and can be easily obtained and spoofed by adversaries. Consid-
ering that ECG is a vital signal and motivated by its inherent
liveness, Caused that biometric community to combine it with
a fingerprint liveness detection algorithm [15]. However, the
most drawback of ECG-based biometric is that there was no
large population size of database with diverse attributes such
as healthy, unhealthy, age, and weight. Moreover, most of the
existing work falls into a handcrafted technique rather than
standard methods. Although deep learning is being widely
adopted for computer vision, less research has been prominent
in ECG-based recognition. We summarized the most relevant
deep learning ECG biometric approach that has been explored.
Hong et.al [9] utilized Inception-v3 CNN model by trans-
ferring ECG into an image using spatial correlation image.

The model classifies all the subjects of the PTB dataset
and obtained a 97.84% identification rate. Labati et.al [18]
proposed a (1D)-CNN model, comprising six convolutional
layers, three max-pooling layers, one dropout layer, a fully
connected layer, and a Soft-max layer. The PTB database with
only 52 subjects (healthy) was considered and achieved 2.90%

EER. Kim et.al [14] used the resnet-ve-152, inception-resnet-
v2, inception-v4, and inception-v3 and 2-D coupling image
generated from three sequential cycles of the ECG signal. The
MIT-BIH normal sinus rhythm database and PTB database

with 100 subjects out of 290 subjects were used and the
identification rate of 98.45% was reported.

Chu etal [5] proposed a parallel multi-scale one-
dimensional residual network contains an input layer, a pre-
processing convolutional block, three parallel residual blocks,
embedding fully connected layer, and an extra fully connected
layer. Three public datasets including the ECG-ID, PTB, and
MIT-BHI with an accuracy of 97.7%, 99.33.%, and 94.74%
is reported, respectively. Zhang et.al [33] proposed to use a
multi-resolution CNN for identification. They used wavelet
and autocorrelation instead of feeding raw ECG as an input

to the CNN for identification. Moreover, CNN was designed
as a group dedicated to CNN. Li et.al [19], proposed a 1D F-
CNN model, comprising three Convolution layers, two Pooling
layers, and three fully-connected layers. ECG biometric iden-

.. tification has been implemented on six public databases with

an average of 95.2% identification rate. Luz et.al [6] proposed
a combination of raw ECG and its spectrogram and CNN for
biometric authentication. They used three public databases and
evaluate their proposed system based on the DET curve and
equal error rate. Zhao et.al [34] propose ECG identification
with S-transform—GST and CNN. They applied a GST on
the ECG signal and generate an image for the input of CNN.
The best result on identification has an accuracy of 96.63%
and does not report experiments on authentication.

Pinto et.al [25] proposed a (1D)-CNN model, comprising
four convolutional layers, three max-pooling layers, two fully
connected layers, and a triplet loss for authentication. 7.86%,
15.37%, and 9.06% equal error rate on three public databases
reported on UofTDB, CYBHi, and PTB respectively. Ranjan
et.al [26] convert the ECG segment into an image and used
the 2D CNN model for identification purposes. They report
an EER of 2% on the ECG-ID database for identification.
However, the main challenge with existing works are not only
most of the subjects are excluded, but also the databases were
limited in terms of diversity of population size. Moreover, the
ECG waveform also contains a lot of timing and frequency
information in which have not been studied in the past. In this
study, we go beyond the timing information provided from the
original ECG and explore uncovered characteristics of ECG.
Specifically, we applied continuous wavelet transform to take
advantage of timing and frequency together and convert it to
a 2D representation image in order to get the benefit of the
state-of-the-art deep learning techniques.

III. OUR PROPOSED METHOD

ECG signals can be measured using non-invasive and low-
cost sensors. Due to non-stationary characteristics, it demon-
strates time-varying morphological content and influence from
different environmental conditions such as noise and artifacts
such as power line interface, baseline drift, motion artifacts,
arrhythmia, electromyography (EMG), and intra-user variabil-
ity. Apart from the handcrafted feature extraction or non-
handcrafted, the filtering is a major pre-processing step that
can not be eliminated due to its impact on performance. Unlike
face and fingerprint biometrics, the ECG signal is a more
non-stationary signal and it is affected by the aforementioned
environmental noises that can not be handled by deep learning
without pre-processing. ECG comprises three almost immedi-
ately distinguishable waves: the P wave, the QRS complex,
and the T wave, and it is continuously repeated. In order to
speed up enrollment and authentication, one cycle of ECG
that has all three waveforms is sufficient. ECG segmentation
not only reduces the template size but also due to the fewer
data processing, the power consumption of the device is
maintained.
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Authors Database NS F EER 1d SE
Hong ct.al [9] PTB 200 (Imcggon) R 98.1% | Y
Tabati cLal [18] PTE ) CNN | 290% | 100
; PTE ) NN 9845%
Kimetal [14] | n\prgig | 18 | (Inception) | - 99.2% | ¥
ECGID | 90 7% | 98.24%
Chu etal [5] PTB 200 | oNN | 059% | 100% | Y
MIT-BIH | 48 474% | 95.99%
CEBSDE | 20 39%
STDB 28 90.3%
MITDB | 47 91.1%
NSRDB | 18 CWT 95.1%
Zhang etal [33] | ppp 23 CNN ~ | o30% | N
WECG | 22 95.5%
VEDB 2 86.6%
FANTASIA | 20 97.2%
CEBSDB | 20 3.1%
NSRDB | 18 | oo 91.4%
Li etal [19] STDB 28 o ~ 92.7% | N
AFDB 23 89.7%
FANTASIA | 20 99.9%
CYBHT | 63 3.95%
Luz etal [6] UoftdB | 1019 | NN | 14070 | - Y
Zhao etal [34] | ECGD | 90 NN 96.63% | N
‘é‘)gg? 1019 7.86%
Pinto ctal [25] 126 | oNN | 1537% | Y
- 290 9.03%
Ranjan et.al [26] Private 800 CNN 2.0% N
TABLET —

SUMMARY OF THE STATE-OF-THE-ART APPROACHES FOR ECG
BIOMETRICS. NS - NUMBER OF SUBJECTS, F - FEATURE EXTRACTION,
EER - EQUAL ERROR RATE, ID - IDENTIFICATION RATE, SE - SUBJECT
EXCLUSIVE, CNN - CONVOLUTIONAL NEURAL NETWORK.

A. Segmentation

An ECG signal is formed by a series of waveforms including
P, Q, R, S, and T peaks in a periodic format which repre-
sent the sequence of depolarization and repolarization. One
sequence of ECG signals that comprises the aforementioned
peaks is called the ECG segment in which provide the same in-
formation over time. Since, each ECG segment contains same
information of the signal,it is not efficient to repetitively read
correlating signals. By segmenting ECG signal into the one
cycle of waveform, not only the size of data used for biometric
template is decreased, but also the processing time and power
consumption will be degraded. To segment ECG signal, Pan-
Tompkins [23] technique has been utilized to identify R-peak.
Upon successful completion of R peak detection, the ECG
signals are isolated into ECG beats (segments). We used fixed
length segmentation with n = 0.16s and n' = 0.41s where n
and n! are the time periods before and after the R peaks.

B. Two-Dimensional Representation of ECG

A 2D representation of ECG instead of the 1D signal pro-
vides more opportunity to integrate many properties from the
computer vision field into ECG biometric domains including
2D convolution and max-pooling, transfer learning, larger filter
sizes. To generate a 2D representation of an ECG signal, the
entire user’s ECG is segmented into heartbeats using fixed-
length segmentation described in Section III-A. Then, a con-
tinuous wavelet transformation function with Morse wavelets
is applied to the ECG signal corresponding to each user. The

resulting coefficients are transformed into RGB format which
creates the 2D representation of the ECG signal.

p? v

¥p () = U(w)apyw v e (D

where U(w) is the unit step, a ap,, is a normalizing constant,
p? is the time-bandwidth product, and y characterizes the sym-
metry of the Morse wavelet. After converted 2D representation
of the ECG signal, we then resized into the 224 X 224 or
299 X 299 dimension to get uniformity in the shape of
nput.

IV. EXPERIMENTAL SETUP
A. Evaluation metrics

To evaluate the performance of our ECG based biometric
algorithm, we conducted the experiments with three error
rates: false positive/accept rate (FPR/FAR), true positive/accept
rate (TPR), and equal error rate (EER). FPR is the probability
that the biometric system incorrectly rejects an authorized
user by an access attempt whereas FAR is the probability
that the biometric system accepts an unauthorized user and
allow them to access attempt incorrectly. Both FRR and TPR
can be traded-off with each other in order to find the optimal
and desired EER. EER is the location on the receiver operator
characteristic (ROC) curve where the FAR and FRR are equal.
We also used identification rank which is defined as the user’s
correct identity corresponding to the top t matches with N
enrolled identity, where the (1 < <« N ).) We also evaluate
our system using identification Rate or accuracy where it is
defined as a portion of correctly identified subjects.

B. Database

To evaluate our proposed ECG biometric system, four public
ECG databases has been examined in this study. The databases
offer different size, status of condition, length and etc. The
summary of databases information can be found in Table II.

PTB Diagnostic ECG Database (PTB): This database was
obtained by the Physikalisch-Technische Bundesanstalt (PTB),
National Metrology Institute of Germany [3]. The database is
collected from non-commercial sensors. Overall, 290 subjects
participated in the study with various profile information such
as gender, age, healthy, unhealthy, different lengths with the
sample rate of 1 kHz.

Combined measurement of ECG, breathing, and seismo-
cardiograms database (CEBSDB). CEBSDB database [8]
only contain healthy subjects. Moreover, compared to other
databases, only 20 subjects has been participated. Each ECG
data recorded at a sampling frequency of 5 kHz

Arrhythmia Database (MITDB): The MITDB [22] is an ECG
database that was collected in the laboratories at Boston’s
Beth Israel Hospital and MIT. It contains 48 half-hour ECG
recordings from 47 subjects. The recordings were digitized at
360 samples per second per channel with an 11-bit resolution
over a 10 mV range.

ECG identification database (ECG-ID). The ECG-ID were
recorded for biometric identification purpose [20]. Each raw
ECG record was acquired for about 20 seconds with a
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Dataset # Subjects | Sample Rate (Hz) | Type Health state
PTB 290 100 Public | Healthy/Myocardial infarction
ECG-ID 90 500 Public | Arrhythmia
MITDB 47 360 Public | Healthy
CEBSDB | 20 10,000 Public | Healthy
TABLE TI

THE SUMMARY OF

THE FOUR DATA SETS ADOPTED IN OUR EXPERIMENTS.

MITDB CEBDB PTB ECG-ID
Model Id [ EER [ FRR [ FAR[ 1d [ EER [ FRR | FAR Id | EER | FRR | FAR Id [ EER | FRR [ FAR
VGG16 9583 0.17 417 0.09 | 99.93 0.007 0.08 0.004 [ 9743 0.017 4.05 0.009 [ 9642 0.08 3.46 0.04
VGG19 95.06 021 494 0.10 [ 9991 0.008 0.08 0.004 [ 98.05 0.013 346 0.006 | 9624 0.08 372 0.04
MOBILENET V2 97.45 014 255 0.01 | 99.96 0.008 0.05 0.003 | 99.47 0.003 085 0.001 | 9752 0.05 249 0.02
INCEPTION V3 96.43  0.15 357 0.07 | 99.94 0.005 0.07 0.004 | 9934 0.004 096 0.002 | 97.15 0.06 277 0.06
XCEPTION 96.77 013 323 0.07 | 9993 0.008 0.06 0.003 | 9931 0.005 1.14 0.002 | 96.88 0.07 298 0.03
INCEPTION RESNET V2 | 9651  0.14 349 0.08 [ 99.92  0.008 0.08 0.004 | 99.34 0.004 123 0.002 | 9697 0.06 284 0.03

TABLE III

EXPERIMENT RESULTS USING DIFFERENT PUBLIC DATASETS SUCH AS MITDB, CEBDB, PTB, ECG-ID, AND STATE-OF-THE-ART DEEP CNN MODELS.
METRICS ARE ID - IDENTIFICATION RATE, EER - EQUAL ERROR RATE, FRR - FALSE REJECT RATE, FAR - FALSE ACCEPT RATE.

sampling rate of 500 Hz and a 12-bit resolution. The first
two records acquired from the same day were used for each
subject. The database consists of 310 one-lead ECG recording
sessions obtained from 90 volunteers during a resting state.

C. Experimental Configuration

Convolutional Neural Networks (CNN) have the capability
to learn the features, eliminating the need for manual feature
engineering. The only problem with neural networks is that
they are data-hungry and to harness their true power, a
relatively large number of data points are required. Usually, the
biomedical dataset has fewer data samples, and hence transfer
learning technique can be beneficial in such cases. Thus, we
performed transfer learning with popular CNN architectures
such as IncpetionV3 [31], VGG16 [28], VGG19 [28], In-
ception ResNetV2 [30], MobileNetV2 [27] and Xception [4].
While the aforementioned deep CNN architectures can obtain
high performance on ImageNet, training deep CNN from
scratch is difficult for 2D representation of ECG due to (i)
it requires a huge amount of training data to deal with proper
convergence; (ii) time-consuming process; (iii) it is most
likely to suffer from overfitting problem. This motivated us
to use transfer learning [24] to deal with the aforementioned
drawbacks. In this paper, The ECG based biometric system
has been trained on a large labeled dataset from ImageNet [7]
with good results and thus has high generalization capabilities.
In other words, we use the weights pre-trained on ImageNet to
fine-tune our ECG-based biometric model to take advantage of
the 2D structure input method on CNN. 2D image of ECG with
a resolution of 224224 was fed to the VGG and MobileNet
architectures while a resolution of 299 « 299 was used for
other models. The initial learning rate was set to 5e™> with a
polynomial decay of 0.01 for every epoch. A small batch size
of 16 was used as smaller batches yield better results.

Generally speaking, we extracted~40 segments from each
user for the entire experimental dataset. Note that some of
the datasets may have more/fewer segments. Then, each ECG
segment is converted into a 2D image. Next, the 2D image
dataset is split randomly into 75% for enrollment and
25%

authentication sets with 5-fold cross-validation. By random
we refer to random splits based on ECG segments rather than
users to ensure balanced label distributions. Class weights
were introduced to penalize the model more when classes with
fewer samples were wrongly classified. For all the models,
the top layer was removed and a Global Average Pooling
layer, a dropout layer, two fully connected layers with ReLU
activation, and a softmax layer were added. A dropout factor
of 0.4 and an L2-regularization factor of 5¢™* was introduced
to reduce any overfitting. The models were loaded with
ImageNet weights and fine-tuned for our dataset. A stochastic
gradient descent (SGD) with a 0.9 momentum was used as
an optimizer for our models. Finally, the models were trained
for a maximum of 100 epochs and were monitored using early
stopping to halt training when validation loss starts increasing.

V. EXPERIMENTAL RESULTS

ROC curves are shown in Fig. 2 (a-d), Tablelll. As shown
in the results, the average identification rate from PTB are
97.43%, 98.0.5%, 99.47%, 99.34%, 99.31%, and 99.34%
with EER of 0.017%, 0.013%, 0.003%, 0.004%, 0.005%,
and 0.04% using VGG16, VGG19, MobileNet2, InceptionV3,
Xception, and Inception ResNetV2 respectively. In contrast,
the average identification from MITDB are 95.83%, 95.0.6%,
97.45%, 96.43%, 97.77%, and 96.51% with EER of 0.17%,
0.21%, 0.14%, 0.15%, 0.13%, and 0.14% using VGG16,
VGG19, MobileNet2, InceptionV3, Xception, and Inception
ResNetV2 respectively. Among different deep CNN model,
MobileNetV2 seems to be a powerful tool for 2D CNN ECG
biometric identification, achieve high identification rate. As
expected, the CEBDB dataset obtains 99.92% identification
rate and 0.008% EER for all types of CNN architecture since
not only has 20 subjects but also all the users are healthy.
VGG architectures are slow to train and the model weights are
heavy. Depth wise and pointwise convolutions in MobileNet
architectures make the model 32 times smaller than VGG
while being faster and more accurate. Efficient and deeper
models like InceptionV3, InceptionResNetV2, MobileNetV2,
and Xception performed better than VGG architectures. How-
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Fig. 2. ROC curves for different non-crafted features extraction such as Inception, MobileNet, VGG16, VGG19, Xception. (a) PTB, (b) MITDB, (c) CEBSDB,

(d) and ECG-ID.
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Fig. 3. The CMC curve of the proposed approach using, MobileNet, VGG16, VGG19, Xception. (a) PTB, (b) MITDB, (¢) CEBSDB, (d) and ECG-ID

respectively.

ever, the boost in MobileNetV2’s accuracy can be attributed to
it’s fewer parameters as more parameters might lead to over-
fitting and deeper models might create optimization problems.

We also summarized the rank-t identification for different
rank values using the cumulative match characteristics (CMC)
curve in Fig. 3. The main purpose of Fig. 3 is to demonstrate
the rank one accuracy of our proposed ECG based biometric
identification from different datasets which indicates the value

of TRP for t = 1. Since each dataset has a different number
of users, thus the number of enrollment vary. Hence, instead

of plotting the rank-t identification rate for t = 1, 2;-3 N,
where N is the number of enrolled users, only rank-5 is
depicted. As can be seen in this figure, in the PTB, the
accuracy of rank-1 is as high as 96.3% using deep MobileNet
architecture, while VGG16 and VGG19 are 97.47% and it
reaches 99.3% in rank-5. Also, the average identification rate
of MITDB starts with ® 97% and reaches 99% in rank-5. On
the other hand, in the CEBDB dataset, the identification rate
of rank-1 is ® 100% rate. In ECG-ID dataset, rank-1 starts
at 97.5% using MobileNet technique and reaches 100%
at rank-5. Similarly, the average identification rate starts at
% 96% and reaches 100% in rank-5.

~
~

~
~

VI. CONCLUSION

Most of the existing work on ECG biometric has been
focused on handcrafted feature extraction and less attention
has been paid to developing state-of-the-art non-handcrafted
technique. One reason for that is that ECG is a one-dimension
signal and thus cannot take advantage of mature fields such
as computer vision, 2D convolution, and transfer learning.

Thus, we developed a novel 2D representation of ECG using
continuous wavelet transform to take advantage of timing and
frequency together and convert it to a 2D image in order to get
the benefit of the state-of-the-art deep learning techniques. Our
proposed ECG biometric has been trained on a four public data
sets including MITDB, CEBDB, PTB, and ECG-ID with more
than 450 subjects. Our proposed ECG biometric framework
achieves an average identification rate of 99.96% on CEBDB,
99.47% on PTB dataset with 290 subjects. We also evaluate
the effectiveness of the proposed algorithm with another two
public ECG datasets with diverse behaviors, such as a healthy
and unhealthy ECG signal.
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