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ABSTRACT: The dynamics of microbial communities involved in
anaerobic digestion of mixed organic waste are notoriously complex and
difficult to model, yet successful operation of anaerobic digestion is critical
to the goals of diverting high-moisture organic waste from landfills.
Machine learning (ML) is ideally suited to capturing complex and
nonlinear behavior that cannot be modeled mechanistically. This study
uses 8 years of data collected from an industrial-scale anaerobic co-
digestion (AcoD) operation at a municipal wastewater treatment plant in
Oakland, California, combined with a powerful automated ML method,
Tree-based Pipeline Optimization Tool, to develop an improved
understanding of how different waste inputs and operating conditions
impact biogas yield. The model inputs included daily input volumes of 31
waste streams and 5 operating parameters. Because different wastes are
broken down at varying rates, the model explored a range of time lags ascribed to each waste input ranging from 0 to 30 days. The
results suggest that the waste types (including rendering waste, lactose, poultry waste, and fats, oils, and greases) differ considerably
in their impact on biogas yield on both a per-gallon basis and a mass of volatile solids basis, while operating parameters were not
good predictors of yield at this facility.
KEYWORDS: TPOT, machine learning, biogas, anaerobic digestion, bioenergy, wastewater treatment, organic waste

■ INTRODUCTION

Anaerobic digestion (AD) has been used to generate
combustible fuel from organic wastes since the 1800s and,
although advancements in synthetic biology have resulted in
more targeted routes to producing specific fuel molecules, AD
remains one of the most efficient strategies for converting
mixed organic waste to renewable energy and nutrient-rich
residual solids. In the U.S., there are over 2200 biogas
production sites, of which over 1200 are industrial-scale AD
facilities aligning with water resource recovery and additional
263 operate on livestock farms.1−3 Ambitious “zero waste”
policies from local and state governments across the U.S. will
require substantial new investments in infrastructure to divert
organic waste from landfills, and AD is an essential part of any
viable strategy.4,5 However, different organic wastes may be
more or less suitable for use as an AD feedstock and, ideally,
facilities could establish prioritization and pricing structures
based on a waste’s impact on digester performance. However,
the development of reliable predictive models that estimate
biogas yield as a function of feedstock type/composition has
proved challenging. Unlike industrial bioreactors where a single
microbial host utilizes a pure substrate (e.g., glucose), AD is
most effective with heterogeneous organic feedstocks, as the
use of a single feedstock (monodigestion) often results a
nutritional imbalance of substrates.6−9 Anaerobic co-digestion

(AcoD) of multiple substrates has been widely employed to
achieve the right nutrient balance and dilute inhibitory
substances in the digester, improving biogas production and
stability.6−11 Co-digestion can increase biogas yield by 25−
400% compared to monodigestion.6,10 AcoD is an effective
practice for wastewater treatment plants (WWTPs), which
receive organics for co-digestion with their sewage sludges in
exchange for tipping fee revenue and combust the resulting
biogas onsite to provide heat, electricity, or mechanical
power.12,13 Approximately, 20% of AD facilities at U.S.
WWTPs co-digest offsite wastes, with combined heat and
electricity (CHP) as the dominant biogas use.13 The
complexity associated with utilizing a microbial community
grown on heterogeneous, variable substrates means that
mechanistic modeling is usually impractical; the data required
for a mechanistic model is vast and impossible to collect on a
regular basis. Thus, biogas yield and composition prediction
has remained a largely empirical exercise. Advanced regression
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techniques, under the umbrella of machine learning (ML),
offer an opportunity to improve upon current practices.
Generally, AD involves four successive steps that each relies

on different communities of microbes, including hydrolysis,
acidogenesis, acetogenesis, and methanogenesis.7,14 The
resulting biogas product consists primarily of CH4 (50−75%)
and CO2 (25−50%), with trace amounts of other components
present as well such as H2O, O2, N2, H2S, NH3, siloxanes, and
halogenated hydrocarbons.15−18 Biogas can be an attractive
renewable fuel, particularly given the U.S. Environmental
Protection Agency (USEPA) 2014 ruling that qualified biogas
under the expanded Renewable Fuel Standard (RFS2) to claim
D3 or D5 Renewable Identification Number (RIN) credits,
depending on the type of organic wastes utilized.19 Biogas
cleaning is necessary to remove trace contaminants, at which
point it can be combusted for heat and/or electricity
generation, used in gas fermentation processes, or upgraded
and compressed or liquified for higher-value uses in trans-
portation applications or steam methane reforming.20,21

Facilities employing AD to generate biogas must make
decisions regarding tipping fees for, and willingness to accept,
specific incoming waste types based on digester stability,
biogas yield, and the likelihood of problematic contaminants
(e.g., cutlery or other items that may clog or damage
equipment). These decisions are often based on qualitative
judgements and anecdotal observations rather than rigorous
data analysis. Predictive modeling capabilities can provide a
more quantitative basis to support decision-making for AcoD
and improve resource utilization efficiency in the future.6

Mechanistic models, such as the well-known Anaerobic
Digestion Model 1 (ADM1), have made important strides in
the scientific community’s ability to predict digestion perform-
ance. However, the ADM1 model requires knowledge of many
concentration state variables (i.e., the concentrations for detail
components of substrates), which necessitates extensive
ongoing analysis of substrates, thus limiting its applicability

in industrial facilities where this data is not regularly
collected.22−24 Also, the complicated microbial and phys-
icochemical process of AD substantially affects the prediction
accuracy of mechanistic models.25 Given the fact that AD is
often a nonlinear process, traditional statistical models (e.g.,
linear regression) have shown deficient performance for a
generalized prediction of biogas production.26 When mecha-
nistic modeling is not feasible or sufficient, and training data is
available, machine learning (ML) can be the best option for
developing predictive models and developing insights into the
influence of key parameters. In the past decade, different ML
techniques (summarized in Table S1) have been leveraged to
predict biogas production, including connectivism learning
(e.g., artificial neural network, ANN) and statistical learning
(e.g., random forest, extreme gradient boosting, support vector
machine).22,23,27−37 Previous research either employed a single
technique or aimed to compare several techniques to select the
best-performing approach. Table S1 summarizes 13 prior
studies using ML to predict biogas production from AD as
compared to this study. These prior studies were also limited
by the training data available to them.
Most ML studies have used fairly limited datasets, based on

digesters operating at the lab scale or larger digesters fed with
only a few substrates (Table S1). To the best of our
knowledge, only the study from De Clercq et al. used a
comparatively large dataset, with 4 years of operational data
from an industrial AcoD facility treating 16 types of organic
wastes (total dataset size of 1398 entries including feedstock
inputs but no operating conditions).23 The team analyzed their
data using elastic net, random forest, and extreme gradient
boosting models to predict biomethane production and the
study placed an emphasis on comparing model performance
across different built-in time lags between feedstock input and
predicted biogas production.23 Their best-performing models
achieved an R2 between 0.8 and 0.88 for the test dataset,

Figure 1. Simplified process flow diagram for the integrated full-scale WWTP-AcoD system. The waste streams fed into the AcoD facility are
indicated in blue.
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although the study relied on a fairly small test dataset (136
entries resulting from a 0.9/0.1 train−test split ratio).
Our study aims to significantly improve the state of the art

relative to prior studies. First, we used the most extensive
dataset documented to-date, collected from an integrated full-
scale WWTP-AcoD system spanning an 8-year operation

period and accepting 31 different waste streams to produce
biogas (approximately double the size of the De Clercq et al.
study, at 2813 entries). By using a larger, more diverse dataset,
the resulting model should provide greater insights and
predictive capability, given ML’s usefulness for interpolation
and the challenges in using ML models trained on limited

Figure 2. (a) Box plots (minimum, 25th percentile, median, 75th percentile, maximum, and mean by circles) displaying the data distribution for
daily input volume (gallon/day) of 15 waste types that are in significant quantities. The flows for Primary_Sludge, TWAS, Organic (H),
Dairy_DAF, and FOG are shown in the left y-axis (green), while those for other waste types are shown in the right y-axis (purple). The numeric
values above the box refer to the number of collected data points, i.e., the number of days the digester accepts each waste type over an 8-year
operation period. The name acronyms of wastes used along the x-axis are defined in Table S2. (b, c) Data distribution for digester operating
parameters, including total solid (TS, %), volatile solid (VS, %), the content of volatile fatty acids (VFA, mg/L), and alkalinity (ALK, mg/L). (d)
Evolution of the biogas production (scfm) during an 8-year operation period.
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datasets for extrapolation. Second, this study demonstrates a
newer ML modeling approachautomated ML pipelines
that can be more easily replicated by practitioners and
nonexperts. One of the most successful automated ML systems
is Tree-based Pipeline Optimization Tool (TPOT), which
relies on genetic programming (GP) to recommend an
optimized analysis pipeline including supervised classifica-
tion/regression operators, feature preprocessing operators, and
feature selection operators.38−41 We compared the perform-
ance of our TPOT model with more traditional ML techniques
to understand how the results may vary and what insights
about industrial AcoD operations can be gleaned from these
approaches. Finally, while prior studies have focused on
comparing the performance of different ML models, this study
places an emphasis on using the best-performing model to
generate interpretable results and actionable information for
AcoD facility operators.

■ METHODS
Data Collection and Structure. Data used in this study were

collected from East Bay Municipal Utility District (EBMUD)’s
WWTP (Oakland, California, U.S.) spanning an 8-year operation
period (equivalent to 2813 days). The EBMUD service area
previously included multiple large industrial facilities that contributed
to high biological oxygen demand (BOD) load at the WWTP,
including a dog food factory and numerous canneries across Berkeley,
Emeryville, and Oakland, California. The Resource Recovery program
was developed to compensate for reduced BOD load as these
industrial facilities shut down by accepting various high-strength
nonhazardous organic trucked wastes to increase onsite energy
production. A simplified process flow diagram for this integrated
WWTP-AcoD system is shown in Figure 1. The liquid wastewater
treatment processes mainly include coarse and fine screens, primary
sedimentation tanks, aerated activated sludge basins, and clarifiers.
Treated effluent is disinfected, dechlorinated, and discharged to the
San Francisco Bay. The solid treatment processes include activated
sludge thickeners, blend tanks (for solid blending of primary sludge,
thickened waste activated sludge (TWAS), and trucked wastes), low
thermophilic anaerobic digestion, and digested biosolids dewatering.
Ferric chloride (FeCl3) is added to blend tanks (digester feed) for
sulfide control, which reduces H2S concentrations in the biogas. The
biogas is combusted onsite to provide heat and electricity via the CHP
system. The biosolids are applied to agricultural lands growing

nonedible crops and, during the rainy season, used as alternative daily
cover at landfills.

The AcoD facility accepts 29 types of trucked wastes, including
brine, dairy, fats, oils, and greases (FOG), protein, process water,
septage, sludge, food waste, winery, and general category for high-
COD (chemical oxygen demand) and low-COD organics [denoted as
Organic (H) and Organic (L), respectively]. Two additional waste
types are sourced from the WWTP itself, for a total of 31 waste
inputs. Definitions and brief descriptions of all waste streams fed into
the AcoD facility are included in Table S2. Over the 8-year operation
period, the daily input volume of each waste stream was recorded.
Two hundred and thirty-nine thousand gallon/day of wastes on
average were co-digested in the facility, while the average total feed
reached 668 thousand gallons/day including WWTP sludge wastes
(primary sludge and TWAS).

In addition to waste inputs, digester operating conditions are
routinely monitored at the EBMUD facility, including total solid (TS,
%), volatile solid (VS, %), the content of volatile fatty acids (VFA,
mg/L), alkalinity (ALK, mg/L), and the VFA/ALK ratio. Operating
parameters, while not truly independent of other input variables like
feedstock inputs, have the potential to improve the model
performance. These five operating parameters are essential factors
in determining digester design and ensuring process stability. TS,
representing the percentage of the dry matter (organic or inorganic),
is an important attribute of digester design and operation. For
example, a higher TS usually results in a smaller-sized digester and
lower heating demand.42 VS is typically regarded as a measurement of
organics in the digester, serving as the basis for determining the
digester organic loading rate. VFA is generated from the acidogenesis
stage, comprising a class of organic acids (e.g., acetic acid, propionic
acid, butyric acid), and is important to monitor because a neutral pH
is optimal for methanogens.14 Acidification (high VFA) is widely
considered to be a cause of digester failure because methanogens are
sensitive to low pH, which has an inhibitory effect on their
growth.14,42 As a result, ALK is needed to provide buffer capacity
to neutralize VFA, thus controlling pH. A balance between VFA
production and consumption by ALK (reflected by VFA/ALK ratio)
can ensure a stable AD process. TS and VS in the digester were
calculated based on the daily input volume of each waste stream and
its specific TS or VS level obtained from the composition analysis
(Figure S1). Note that VFA and ALK were not measured every day,
so the missing values of VFA and ALK were imputed with the median
value (raw data with non-normal distribution) and the mean value
(raw data with normal distribution), respectively.

Using all feedstock and operating information provided, our model
aims to predict the biogas production, thus the output (i.e., the target
variable) is represented by biogas yield in standard cubic feet per

Figure 3. Schematic methodology using TPOT for biogas yield prediction based on 222 input variables, including 31 waste streams across different
time lags (0, 1, 3, 5, 10, 20, 30 days) and 5 operating parameters at the current day. Typical steps in the ML pipeline automated by TPOT involve
data transformation (feature selection, feature preprocessing, feature construction), model selection, and parameter optimization. The supervised
learning regression models in the default TPOT configuration include decision trees, ensemble models (AdaBoost, XGBoost, forests of randomized
trees, gradient tree boosting), cross-validated linear models (Ridge, Elastic Net, and Lasso using LARS algorithm), linear support vector regression
(SVR), stochastic gradient descent (SGD), and k-nearest neighbors.
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minute (scfm). The input variables (i.e., features) to construct the
dataset include the daily input volumes of 31 waste streams (primary
sludge, TWAS, and 29 types of trucked wastes) and 5 operating
parameters (TS, VS, VFA, ALK, and VFA/ALK ratio). Considering
the digestion time, additional input variables were created by creating
a time lag between the daily input volumes of 31 waste streams and
the date of the target variable measurement, namely, 0 (no lag), 1, 3,
5, 10, 20, and 30 days, respectively. In this way, a total of 222 input
variables (31 waste streams × 7 time lags + 5 operating parameters)
were created. This model configuration enables the following
questions to be answered: which waste stream(s) have the greatest
impact on biogas yield? On what timescale do these waste inputs
impact the biogas yield (measured in days)? Figure 2 displays the raw
data distribution for primary inputs and output. The model data
structure is presented in Figure 3.
TPOT Overview. TPOT uses the dataset as input and

recommends a best-performing ML pipeline with a series of
operations related to feature selection, feature preprocessing, feature
construction, and ML modeling (Figure 3). GP is used to optimize
the pipelines. In this case, the population consists of a set of randomly
generated pipelines to be evaluated; copies of the best-performing
pipelines from each iteration (known as a generation) of the
optimization process are created and imposed with random changes
(e.g., the addition or removal of an operation or the parameter tuning
of an operation), enabling the development of new pipelines that are
never explored. The worst-performing pipelines are removed from the
population at the end of each generation before starting the next
generation. TPOT was run with a default configuration and
considered the following supervised learning regression models
during the optimization process: decision trees, ensemble models
(AdaBoost, XGBoost, forests of randomized trees, gradient tree
boosting), cross-validated linear models (Ridge, Elastic Net, and
Lasso using LARS algorithm), linear support vector regression (SVR),
stochastic gradient descent (SGD), and k-nearest neighbors. Prior to
the TPOT analysis, the dataset was randomly partitioned into a
training set and a test set with a 0.75/0.25 train−test split ratio. The
pipeline was trained on the training set and evaluated on the test set.
The following TPOT parameter settings were used to generate a
regression predictive model on the training set: the number of
generations was 100, the size of the population was 100, it used 5-fold
CV, and the scoring function (performance metric) was mean squared
error (MSE). Further increasing the number of generations and the
size of the population did not improve the internal CV score.
Extensive detail on the TPOT algorithm and its implementation

can be found in the previously published literature.38−41 Like other
automated ML systems, TPOT minimizes user intervention by
automating the process from end to end. However, like other
commonly used ML models, the pipeline built by TPOT can overfit
the data (i.e., the model learns the detail and noise in the training data
too well so that its generalization ability to new data is negatively
affected). While the pipeline optimization procedure used here
employs k-fold CV to reduce overfitting, alternative methods such as
multiobjective and Pareto optimization could further prevent TPOT
models from overfitting.38 A downside of the GP process is the high
computational costs associated with exploring and optimizing over a
vast space of ML pipelines and solutions. Incorporating metalearning
techniques into TPOT, which inject domain knowledge in the form of
preranking pipelines explored in the GP process, could potentially
lower the running time without influencing performance.43 Addition-
ally, ML approaches (automated and conventional models) might not
significantly outperform basic statistical forecasters in time-series
predictions.44 For example, Huntington et al. evaluated a “temporally
binned” train−test split in their sorghum yield model using an
extremely randomized trees (ExtraTrees) model and found decreased
model performance.45

Model Evaluation. The generalization performance of the trained
model was evaluated on the test dataset. The metrics used to examine
the precision and accuracy of the model include the coefficient of
determination (R2) and the root mean square error (RMSE). While
R2 offers a relative measure of model fit, RMSE provides an error

metric in the same unit as the target variable, making it highly
interpretable. Higher R2 and lower RMSE of the predicted-versus-
observed plots for the test dataset refer to higher precision and
accuracy of a model for predicting biogas yield. Additionally, the
relative RMSE (%) for both training and test datasets, determined by
dividing RMSE with the average value of observed data, was used to
compare the prediction ability between different ML models. Model
accuracy can be considered excellent for a relative RMSE smaller than
10%, good if between 10 and 20%, fair if between 20 and 30%, and
poor if greater than 30%.46

Feature Importance and Partial Dependence (PD) Calcu-
lations. The two most widely used model interpretation techniques
are feature importance and partial dependence (PD) plots. The
permutation feature importance was calculated for the TPOT model
using the scikit-learn library.47 Feature importance quantifies the
relative importance of a feature (i.e., an input variable) by calculating
the change in prediction error after the values of a given feature are
randomly permuted. A larger increase in error suggests that the model
relies on this feature to predict the target variable and thus has higher
importance. MSE was used as the scoring function. The mean and
standard deviation of feature importance were calculated over 50
permutations of a given feature in the training dataset. PD plots and
individual conditional expectation (ICE) plots were produced using
the PDPbox library.48 Using a previously fit model, PD plots visualize
the predicted response as a function of the chosen feature, while the
effects of all other features in the model are averaged out. ICE plots
show the functional relationship between the feature and the
predicted response separately for each instance. Specifically, an ICE
plot produces one line per instance, while the PD plot is simply the
average of all lines in the ICE plot.

■ RESULTS AND DISCUSSION

A critical first question to be answered through this analysis is
whether machine learning can be effectively used to predict
biogas yield based on detailed operating data. If the model
achieved acceptable performance, a follow-on question is what
insights the analysis provides into potential strategies for
optimizing the facility studied here and other similar AD
facilities.

Prediction of Biogas Yield Using the TPOT Regres-
sion Model. To address the question of whether machine
learning can be utilized to predict biogas yield, the TPOT
model prediction performance was assessed by comparing the
predicted values with the observed (measured) biogas yield in
the test dataset (Figure 4). R2 and RMSE were used as the
metrics to examine the precision and accuracy of the model,
respectively. The regression model selected in the best-
performing TPOT pipeline was ExtraTrees. The ExtraTrees
pipeline from TPOT performed well on the test dataset with
an R2 of 0.72, which generally represents a good predictive
capacity for a model trained on real-world industrial data.25

For the sake of comparison, an alternative model using the
ANN model was also developed. ANN has been the most
commonly used technique to predict the performance of AD
facilities (Table S1). In this case, the most popular ANN type,
multilayer perceptron (MLP), was employed (Figure S2) as
the baseline for comparison with the TPOT model. TPOT (R2

= 0.72, RMSE = 247 scfm) outperforms MLP (R2 = 0.56,
RMSE = 327 scfm). Also, the relative RMSE is around 10% for
TPOT and 14% for MLP in the test dataset. Although the
performance of the TPOT model is higher in training than in
testing, it outperforms MLP in both cases (Figure S3). Note
that it is not unusual for an ML model to have better
performance on the training dataset than the test dataset.49

Notably, while many ANN parameters require manual tuning,
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TPOT automates the parameter tuning process, making it a
more practical ML approach for nonexperts.
Importance of Input Variables Influencing Biogas

Yield. Model interpretability is critical, whether it is developed
as a research tool or to guide decision-making for facility
operation. This study relies on expertise in bioprocesses and
experience in the operation of AD facilities to guide the model
development and interpretation such that the results answer
scientifically interesting and operationally relevant questions.
To investigate the influence of input variables (daily input
volumes of 31 waste streams each evaluated over different time
lags and 5 operating parameters) on biogas yield, permutation
feature importance was generated for the TPOT model
(Figure 5). The important scores provide insights into which
input variables have the greatest influence on biogas yield.
The most important input variables that affect biogas yield

are waste inputs from high-COD organics, FOG, dairy, protein,
lactose, and sludge categories, while operating parameters did
not have high importance scores (Figure 5, Table S3, also see
Table S2 for the waste categories and the definitions of waste
name acronyms). The less significant role of operating
parameters in influencing biogas yield can be attributed to
the fact that the EBMUD facility’s operations have remained
stable over the time period studied here. Because conditions
do not generally frequently deviate from the acceptable range,
biogas production is primarily dependent on the types of waste
being fed into the digester. At a facility in which pH, for
example, is allowed to become sufficiently acidic to inhibit
microbial growth, the resulting model might show a stronger
relationship between VFA and biogas yield. The top 8 waste
types include Organic (H), FOG, Rendering, Poultry_Blood,
Dariy_DAF, Primary_Sludge, TWAS, and Lactose. The
appropriate time lag to assign for each waste type was
determined, representing the duration between when it is
delivered to the facility and when it has the greatest impact on
biogas yield. Figure 5a shows the important results for each
waste type and time lag. Poultry blood, rendering waste, and

FOG all appear to have the greatest impact on biogas yield
with a one-day time lag, whereas all other waste types have the
largest importance scores with no time lag (zero days). This
agrees with the facility operators’ observations that the biogas
yield is obviously boosted within a matter of hours after
feeding the more sugar-rich wastes into the digesters, while
blood and other protein and lipid-rich wastes typically boost
yields within a day.
Figure 5b compiles the best-performing version of each

input variable (based on the time-lag analysis in Figure 5a) and
their relative performance was compared to determine which
waste types are the primary drivers of biogas yield. Organic
(H), while not the largest input by volume (Figure 2a), results
in the highest importance score. This is a general category used
by the facility to denote waste streams with a COD greater
than 20 000 mg/L. Organic (H) might include, for example,

Figure 4. Comparison between observed and predicted biogas yield
(scfm) for the test dataset using TPOT. ExtraTrees regression model
was selected for the best prediction performance. Model prediction
performance is evaluated by RMSE and R2 and also visually revealed
by the extent of data clustering around the identity line (y = x, in
black).

Figure 5. (a) Input variable importance of top 8 waste types in the
TPOT model across different time lags (0, 1, 3, 5, 10, 20, 30 days).
The important values of all input variables are compiled in Table S3.
The relative importance scores are calculated using the permutation
feature importance technique. An input variable that leads to a higher
increase in the mode prediction error (mean squared error, MSE)
upon randomly permuted is more important in the model. The name
acronyms of wastes are defined in Table S2. (b) Importance ranking
for the 8 most influential waste types, of which each shows the highest
importance score from the time-lag variable set (data compiled from
(a)). The suffix on waste names represents the specific number of
lagged days. Error bars denote the standard deviations over 50 times
of permuting an input variable.
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carbohydrate-rich waste from beverage processing facilities.
Anecdotally, sugar-rich wastes have been noted to produce a
near-immediately evident impact on microbial activity in the
digesters. Followed by Organic (H) in terms of impact on
biogas yield are the three protein and lipid-rich waste types, all
of which are well known to be desirable supplemental inputs in
wet AD.50,51 In addition, the results indicate that, although
WWTP sludge wastes (primary sludge and TWAS) have
considerably higher daily input volumes than the trucked co-
digested wastes (Figure 2a), their contributions to biogas yield
are less significant than the wastes in the categories of high-
COD organics, FOG, dairy, and protein. Compositional
analysis on the co-digested wastes shows that the wastes in
these categories typically have higher TS, VS, COD, and total
nitrogen than others (Figure S1). Combined, the waste types
with higher organic matter contents and faster digestion rates
are more contributory to biogas yield.
Quantitative Relationships between the Most Influ-

ential Waste Inputs and Biogas Yield. While feature
importance calculations identify the most influential input
variables, it is necessary to explore the functional relationships
between these important input variables and the target
variable. PD (Figure 6) or ICE (Figure S4) plots enable us
to isolate the quantitative effect of adjusting the values of an

input variable on future prediction outcomes. PD plots
visualize the marginal (average) effect of an input variable of
interest on the target variable, while ICE plots demonstrate the
heterogeneity or dispersion of the effect.52 The relative impacts
of the most influential waste inputs (in daily volume) on biogas
yield are illustrated by the PD plots (Figure 6a). As expected,
all of these waste inputs positively impact biogas yield. The
slopes of PD lines reveal the increase in biogas yield on a unit
basis of each waste input throughout its whole value range,
following the order: Rendering > Lactose > Poultry_Blood >
FOG > Organic (H) > Dairy_DAF > Primary_Sludge >
TWAS. The results between feature importance and PD
calculations are consistent, considering that the overall effect of
each waste on biogas yield is ascribed to its specific biogas
production capacity (revealed by the PD line slope) as well as
its feed availability (the feed amount). High-COD organics
(Organic (H)) emerge as having the highest importance score,
but after examining per-unit-flow values, rendering waste,
lactose, poultry blood, and FOG all result in greater increases
in biogas yield.
Because different waste streams contain varying amounts of

solids, AD facility operators often characterize wastes on the
basis of VS. Normalizing the results in Figure 6a with respect
to the daily VS load provides the results in a more usable (and

Figure 6. Partial dependence (PD) plots depicting the quantitative relationships between (a) daily input volume (gallon/day) or (b) daily volatile
solid (VS) load (metric ton/day) of the 8 most influential waste types and the resulting change in biogas yield (scfm). The table provides the
numeric values of line slopes determined by linear curve fitting. The legends are arranged in descending order based on the approximated slopes of
the lines. Each line is for the input variable that shows the highest importance score in the time-lag set (0, 1, 3, 5, 10, 20, 30 days) of each waste
type. The suffix on waste names denotes the specific number of lagged days. The dots on the lines refer to 50 percentile points across the whole
value range of each input variable; note that some percentile points can be the same thus each line does not necessarily contain 50 points. The
dispersion of dots visually reveals the data point distribution of each input variable. Individual conditional expectation (ICE) plots for these 8 input
variables are shown in Figure S4.
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generalizable) form for other facilities (see Figure 6b). The
normalized results in Figure 6a suggest considerable variation
in the impact on biogas yield on a mass of VS basis. The
ordering from greatest impact to least impact on biogas yield
also shifts; FOG, rendering waste, dairy waste after dissolved
air flotation (DAF) treatment, poultry blood, and lactose all
demonstrate higher capacity for biogas production on a per-
mass VS basis. Together, the feature importance ranking and
PD plots provide useful insights into how different inputs
impact biogas yield that can be leveraged for plant operators to
manage and operate the AcoD facility. The numeric slopes in
Figure 6 can be used to predict the impact of any given waste
stream on biogas yield and thus inform tipping fees and
priorities for which wastes to accept. The fact that some wastes
impact biogas production more rapidly than others indicates
that operators could attempt to manage incoming waste such
that biogas production is as stable as possible, thus minimizing
the need for flaring excess biogas. However, anecdotal evidence
from the EBMUD facility and other local AcoD and AD
facilities suggests that the greatest challenge in timing is the
reduction in waste hauling during weekends. Facilities could
make use of a combination of on-site liquid storage and slower-
degrading waste types to partially mitigate this problem.
Opportunity to Predict Biogas Trace Compounds

Using ML Techniques. Raw biogas typically contains trace
undesirable compounds (contaminants), of which the amounts
are highly dependent on the origin of organic sources. H2O,
H2S, and NH3 are commonly present, while siloxanes and
halogenated hydrocarbons can also be present.15−18 These
contaminants can cause problems to the equipment (e.g.,
engines, pipelines, valve fittings) for biogas utilization. For
example, H2O, H2S, NH3, and halogenated hydrocarbons cause
corrosion and SiO2 formed from siloxanes causes abrasion on
gas motor surfaces.15,18,53 Biogas cleaning is thus normally
conducted for all commonly used biogas applications. The
prediction of these trace compounds, especially by employing
ML techniques, can be informative if it enables operators to
select waste streams that minimize their formation or simply
optimize gas cleaning investments to manage the contami-
nants.
H2S is the most influential trace compound to be treated in

biogas for energy applications, considering the risk of sulfide
stress cracking (embrittlement)54 and the ubiquitous presence
of sulfur in biological substrates (particularly those with high
protein levels).17 The methods for biogas cleaning differ
according to the required quality demands for the contami-
nants in specific end uses of biogas. H2S is considered as the
main component for assessing the biogas quality in heating
boilers and internal combustion engines, where its concen-
tration should be lower than 1000 ppm.17,54 However, for
biogas use as vehicle fuel or natural gas, the requirements for
H2S become much stricter (e.g., <120 ppm in the U.S.) and
maximum allowable concentrations vary by country.17,54 H2S is
typically removed during digestion through a precipitation
reaction with metal ions (Fe2+, Fe3+) or after digestion by
absorption (e.g., using water for scrubbing or metal oxide),
adsorption (e.g., on activated carbon), biological filters, and
membrane separation.15,16

The EBMUD facility studied here removes H2S by adding
FeCl3 to the digester, which reduces the H2S concentration to
less than 300 ppm and thus satisfies the requirement for
combustion onsite. This also means that H2S concentrations
are measured in the biogas after much of the sulfur has been

removed by FeCl3. Furthermore, the facility monitors H2S on
an approximately weekly basis, so the dataset for H2S is fairly
limited in its granularity. As one might expect, using ML
techniques to predict H2S did not prove to be useful because
the H2S output is most strongly correlated with the dose of
FeCl3. Since the actual H2S content produced from the input
wastes is not measured, the minimum required amount of
FeCl3 cannot be accurately estimated with our modeling
approach. That said, ML techniques do have the potential to
predict concentrations of trace compounds in such a way that
could be useful in applications requiring high biogas quality,
where frequent measurement of biogas composition is
conducted. First, the in situ H2S removal methods during
digestion are less efficient in achieving the required level of
H2S (and other contaminants of concern) for transport fuel or
pipeline quality, where post-treatment methods after digestion
are needed.16 Also, very little work has been done to explore
the potential of ML techniques for predicting these biogas
contaminants. To our knowledge, only Strik et al. applied
ANN (MATLAB Neural Network Toolbox) to predict H2S
and NH3 concentrations in an experimental AD setup a decade
ago.55 This topic presents an opportunity to use computational
methods to improve the efficiency of the biogas industry and
gain insights into the complex dynamics of the microbial
communities that break down mixed organic waste. With
richer datasets from facility operations and even lab-scale
experiments, researchers could harness (automated) ML
techniques to develop better predictions of the concentrations
of trace compounds and biogas quality for biogas utilization
systems that employ the post-treatment biogas cleaning
methods (e.g., for biogas upgrading technologies). This
could also help with the management of air pollutant
emissions, as NOx emissions from flaring have been shown
to have a relationship with NH3 concentrations in raw
biogas.56 Tracking NH3 could also serve as a proxy for
nutrient loading in the effluent, which could enable facilities to
develop strategies that minimize water quality impacts of using
high-nitrogen wastes.

■ CONCLUSIONS
Anaerobic digesters have an important role to play in diverting
organic waste from landfills and producing renewable energy.5

AcoD technology in particular is being embraced as a
pragmatic strategy for increasing biogas production, leveraging
existing infrastructure while overcoming the challenges
associated with the substrate properties and system stability
in the single-substrate AD process. The key to the success of
AcoD processes is system optimization and the ability to
manage a diverse set of incoming waste streams. ML models,
which are ideally suited to capturing the behavior of systems
that are too complex to model mechanistically, can improve
researchers’ and operators’ understanding of the AcoD process
and its performance as a function of varying feed substrates or
operating conditions. Our work contributes to a growing field
of biogas production prediction using ML techniques and the
use of TPOT with a substantially larger dataset than any
previously documented (based on 8-year industrial-scale
operations) makes this study unique. Our work provides
evidence for the robust predictive power of TPOT applied to
AcoD modeling, as demonstrated by its superior prediction
performance compared to the basic ANN model (MLP). The
combination of feature importance and PD analyses allowed us
to differentiate between waste streams that have a larger impact
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because of greater incoming volumes and waste streams that
have a greater impact per unit of waste input to the digester.
Our approach of testing different time lags also provided
insights into how different wastes are broken down once
loaded into the digester. By developing and improving
predictive models for AcoD performance, we hope to enable
more efficient facility operation, a better understanding of how
microbial communities respond to different substrates and
operating conditions, and ultimately a more sustainable organic
waste valorization industry.
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