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ABSTRACT
Keystroke dynamics has been shown to be a promising method
for user authentication based on a user’s typing rhythms. Over
the years, it has seen increasing applications such as in preventing
transaction fraud, account takeovers, and identity theft. However,
due to the variable nature of keystroke dynamics, a user’s typing
patterns may vary on a different keyboard or in a different keyboard
language setting, which may affect the system accuracy. In other
words, an algorithm modeled with data collected using a mechan-
ical keyboard may perform significantly differently when tested
with an ergonomic keyboard. Similarly, an algorithm modeled with
data collected in one language may perform significantly differ-
ently when tested with another language. Hence, there is a need to
study the impact of multiple keyboards and multiple languages on
keystroke dynamics performance. This motivated us to develop two
free-text keystroke dynamics datasets. The first is a multi-keyboard
keystroke dataset comprising of four (4) physical keyboards - me-
chanical, ergonomic, membrane, and laptop keyboards - and the
second is a bilingual keystroke dataset in both English and Chinese
languages. Data were collected from a total of 86 participants using
a non-intrusive web-based keylogger in a semi-controlled setting.
To the best of our knowledge, these are the first multi-keyboard and
bilingual keystroke datasets, as well as the data collection software,
to be made publicly available for research purposes. The usefulness
of our datasets was demonstrated by evaluating the performance
of two state-of-the-art free-text algorithms.
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1 INTRODUCTION
As more people rely on their computers and mobile devices to
trade, learn, and interact with the rest of the world, the demand for
identity verification grows and the need to provide trust, prevent
fraud and secure accounts becomes critical. Keystroke dynamics is a
promising solution to these needs because it identifies a user based
on their typing rhythms, but requires no extra hardware other than
the keyboard readily available on a computer. Furthermore, it is
passive and non-intrusive. That is, it can run in the background in
a frictionless manner without interfering with the user’s activities.

Works on keystroke dynamics can be categorized into fixed
(static-text) or free (dynamic-text) based on typed content. Some-
times, keystroke dynamics can also be neither completely fixed-text
nor free-text but somewhat in the middle, which can be called semi-
fixed-text [13].

The continuous monitoring of a user’s activities to verify that
the user is who they say they are throughout the session is referred
to as continuous authentication [8]. Continuous authentication has
seen competitive results in terms of high accuracy or low equal
error rate (EER) [3, 4, 8, 9], but its ultimate acceptance as a means
of authentication in practical applications requires it to be suffi-
ciently robust under various conditions. A particular constraint
to its robustness is the lack of publicly shared free-text datasets
to study the impact of multiple keyboards and multiple languages
in keystroke dynamics. Keystroke dynamics algorithms have been
tested with data collected from multiple users but in a keyboard-
agnostic way, leaving out the possibility of keyboard and language
variety untested. As a result, when deployed, algorithms known to
have achieved high accuracy using a particular keyboard type may
perform poorly after it is tested on a different keyboard type. The
same concern applies to languages as well.

This motivated us to develop two free-text keystroke datasets.
The first is a multi-keyboard dataset comprising of four (4) phys-
ical keyboards - mechanical, ergonomic, membrane and laptop
keyboards - and the second is a bilingual dataset involving both
English and Chinese. Data were collected from a total of 86 par-
ticipants (60 participants for the multi-keyboard dataset and 26
participants for the bilingual dataset) using a web-based keylogger
system in a laboratory. Furthermore, to demonstrate the usefulness
of our datasets, we evaluated the performance of two state-of-the-
art free-text algorithms (Instance-based Tail Area Density (ITAD)
Metric [3] and D-Vectors [4]). To the best of our knowledge, our
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free-text datasets are the first multi-keyboard and bilingual key-
stroke datasets (with the data collection software) that are publicly
available for research.

This paper is organized as follows. Section 2 surveys commonly
used free-text datasets. In Section 3, we describe the collection
process for the multi-keyboard and bilingual keystroke datasets.
Section 4 demonstrates the usefulness and quality of our datasets on
two state-of-the-art keystroke dynamics algorithms. The conclusion
is given in Section 5.

2 RELATED WORK
There are a few publicly available free-text keystroke dynamics
datasets. These include the Clarkson I dataset [12], the Buffalo
dataset [11], the Clarkson II dataset [9], the Aalto University dataset [6],
the ACB [2], and the Torino dataset [8].

The Clarkson I dataset [12] was collected in a lab setting with the
same desktop computer, keyboard and the English language. The
data is mostly free text while subjects answered survey questions
that were carefully designed around the interest areas of the sub-
ject’s population to ensure a fluent response. The dataset contains
840K keystrokes and a total of 39 participants. However, all data
were collected using a single keyboard type.

The Buffalo dataset [11] is collected by SUNY Buffalo and con-
tains both long fixed text and free text keystrokes data. The keystrokes
are collected in the lab from 157 participants who are skillful at
using the keyboard. There is a total keystroke count of 2.14M and
the average user has 1.44K keystrokes while the max one has 18.3K.
Most users have 3 sessions. A subset of the 157 participants used
keyboards with different key layouts to input text information.

Unlike other datasets, the Clarkson II dataset [9] is completely
uncontrolled. A logger was loaded on the user’s own computer and
passively recorded participants’ keystrokes during their normal
behavior without requiring or restricting them to do anything.
Hence, users had the choice to use any application of their choice.
There are 103 participants in the dataset, with a total keystroke
count of 12.9M. The dataset was collected over a span of three years
or more. The average user has 125K keystrokes, while the max
user has 625K keystrokes. A single keyboard was used per user
throughout the collection.

A more recent and large free-text keystrokes dataset is the Aalto
University dataset [6]. It was collected from 168,000 participants
within three months. Subjects were required to memorize some
English sentences and then asked to type them as quickly and accu-
rately as they could. These sentences were randomly selected from
a set of 1,525 examples with 3 words and 70 characters maximum.
Subjects could type more than 70 characters because there is a
chance that participants would forget words or add new characters
when typing. The data was collected in an uncontrolled environ-
ment. All participants in the database completed each session on
either a desktop or laptop keyboard but not both.

There are some works in the literature that study the effect of
multi-keyboard on keystroke dynamics performance. Giot et al. [7]
had a publicly shared multi-keyboard dataset called the “GREYC”
where 100 participants contributed at least 5 sessions of data by
typing the passphrase “greyc laboratory”. Participants typed the
passphrase six times each on a laptop and on a USB keyboard.

Figure 1: A participant is contributing multi-keyboard data
in our laboratory.

The dataset is fixed-text and the password used was imposed unre-
alistically on participants, whereas in a practical scenario where
everyone freely chooses their own unique password.

Bours and Ellingsen [5] had participants perform a task on a
laptop keyboard and repeat the same task using a regular desktop
keyboard. The task was divided into 3 parts - first, each participant
typed his own name 20 times; second, each user typed other par-
ticipants’ names twice; and third, each user typed two texts per
keyboard, based on an image that was shown to them. Only 15
participants have contributed data to the study and there are fewer
samples contributed per participant. Unfortunately, the dataset is
private, so it can not foster research findings on the impact of
multi-keyboard on keystroke dynamics.

Our datasets are quite different and unique because they hold
data collected from participants who have entered content using
four (4) different physical keyboards each, and also in two lan-
guages (English and Chinese). Unlike others, our datasets can be
used to study the impact of the variation in users’ typing patterns
across multiple keyboards and two languages. There are a total of
86 participants and 2.35M keystrokes in our datasets - 60 partici-
pants contributed 1.66M keystrokes for the multi-keyboard and 26
participants contributed 694K keystrokes for the bilingual dataset.

3 DATA COLLECTION PROCEDURE
As shown in Figure 1, three desktop computers and one laptop were
set up in our laboratory for the multi-keyboard study. Connected
to the first (a), second (b) and third (c) desktop computers are a
mechanical, ergonomic and membrane keyboard, respectively. The
fourth (d) is a laptop keyboard.

3.1 The Four Physical Keyboards
Each of the four QWERTY physical keyboards used in this study
(mechanical, ergonomic, membrane and laptop as shown in Fig-
ure 2), has its own pros and cons in terms of key travel (the total
distance from the key at rest to full depression until it hits bottom),
force applied, and the noise that the keyboard produces. As demon-
strated later in this paper, the size, shape, and position of the keys
on a keyboard affect the performance of keystroke dynamics-based
authentication systems.



Figure 2: The four physical keyboards used in the study a)
Mechanical keyboard b) Ergonomic keyboard c) Membrane
keyboard d) Laptop keyboard.

3.1.1 Mechanical Keyboard. Mechanical keyboards use individ-
ual physical springs and switches to deploy each key. They have
a longer key travel, heavier keys that feel sturdier, and provide
much more direct feedback to the user with a physical and satis-
fying sensation when keys are depressed. As a result, they could
be noisy to use. They are mostly preferred by typists and gamers.
The mechanical keyboard used in this study is a Das keyboard
(DASK4MKPROSIL-3G7-r1.5) with theMX-Brown switch (Figure 2a).

3.1.2 Ergonomic Keyboard. Ergonomic keyboards (Figure 2b) are
designed to reduce typing strain on the fingers and hands. The
keys are laid out at angles that make them comfortably reachable
without strain on the fingers, wrist, hands or arms. Most ergonomic
keyboards split the letter keys into two halves, rotating the keys to
point down toward the lower corners of the keyboard. The rotation
allows the arms to approach the keyboard from a more natural
angle. They are more expensive than the regular typing keyboards
and could take a while to get used to because of the shape and
key positioning. We have used the PERIBOARD-512 ergonomic
keyboard in this study.

3.1.3 Membrane Keyboard. Membrane keyboards (Figure 2c) are
designed with little to no space between the individual keys, and
with shorter key travel. Unlike mechanical keyboards which use
separate keys that are each attached to individual switches, a mem-
brane keyboard uses a single pressure pad/membrane to register
keystrokes. The keys are pressure-sensitive, with each character
outlined on a flat surface. In general, membrane keyboards are
cheaper and quieter than traditional keyboards and we have used
the Logitech MK270.

3.1.4 Laptop Keyboard. Laptops use either the traditional, chiclet
or mechanical keyboards, although the chiclet style is becoming the
keyboard of choice for thin-and-light laptop makers because it is
thinner and more versatile in design. The 14-inch laptop computer
(DELL Latitude 5410) used in this study comes with a chicklet style
keyboard (Figure 2d). The chiclet keyboard (also known as the
island style) is an evolution of the membrane keyboard using the
same principle of a single rubber sheet with keys that appear to

pop out of the laptop’s body through separate cut-outs for each
key. The keys usually have flat tops and do not slope off around the
edges, creating an impression that there is more space between the
keys. This also makes it easier for cleaning the keyboard.

3.2 The Web System Design
A web system was designed for the data collection using Python
and the Django and hosted on an Amazon cloud server. The user
interface (UI) and user experience (UX) of the system design could
affect the way participants type during data collection. Therefore,
care was taken to ensure that the pages, texts and buttons are
visually appealing, engaging and easy to use - requiring little to no
external human guide during the study. The UI of the web system
comprises a Signup/Sign-in screen, a keyboards selection screen, a
Q/A tasks selection screen and a Q/A screen.

3.2.1 Signup/Sign-in Screen. This screen is for new and returning
users to sign up/sign in to the system. A participant’s first and last
names are required to signup/sign-in. To protect the participants’
personal identifiable information, a seven-digit random number
known as the “uniqueID” is assigned to every participant at signup.

3.2.2 Keyboard Selection Screen. After a participant signs up or
signs in to the web system, they will see the keyboards screen. To
reduce human error and interference, this screen was design to
enforce the data collection order shown in Figure 1. That is, every
participant answers four questions for each of the mechanical,
ergonomic, membrane, and laptop keyboards, in this order. Once
the four questions are completed for a keyboard, the participant
will be automatically logged out the system and reminded to move
to the next computer. The participant is not allowed to select a
completed keyboard any more. The keyboard completion status is
tracked by the system so the participant can resume from where
they leave off when switching between the four computers.

3.2.3 Tasks Selection Screen. The tasks screen displays to the par-
ticipant four (4) question-answer (Q/A) tasks associated with the
selected keyboard. Unlike the keyboard selection screen, the par-
ticipant can choose the next Q/A task for completion in any order.
Each task requires the participant to type at least 50 words as an
answer. Table 1 shows the list of 16 open-ended Q/A tasks and their
assignments per keyboard.

3.2.4 Q/A Screen. This screen takes a user’s input to the task ques-
tions and logs the keystrokes in the background. The screen has a
word count showing the number of words typed. The total typed
words must be 50 or more before the the submit button is clickable.
To ensure that responses are typed and keystrokes are captured at
all times, users are prevented from copying or pasting content into
the text area. This is also monitored and enforced by the system.

3.3 Data Collection
Data was collected from a total of 86 participants after signing an
IRB-approved consent form - 60 participants for the multi-keyboard
in a laboratory environment and 26 participants for the bilingual
(English-Chinese), remotely. Both datasets were collected over a
time span of 8 months and all participants were compensated for
participating in the study.



Table 1: Question prompts per keyboard. Participants answer the same questions per keyboard in both visits.

Keyboards Question prompts
1. If you are to share your happiest moment, what would it be and why? Ensure to type at least 50 words and reference the
date of such moment.
2. Do you prefer traveling by car or plane and where do you prefer to stay when you go on a vacation? Also, Describe the
most interesting person you met on one of your travels.

Mechanical 3. Movies are fun, interesting, captivating and entertaining. Which movie would be your best of all time? Write about why
you love the movie, if you don’t mind watching it all over again and if you could recommend it to someone.
4. Outdoor recreation encompasses a variety of outdoor activities: Backpacking, bicycling, birdwatching, boardsail-
ing/windsurfing, camping, canoeing, rock climbing, fishing, hiking, hunting, kayaking, rafting, running/jogging, sailing,
scuba diving, skateboarding, skiing, snowboarding, stand-up paddling, surfing, trail running, wakeboarding and wildlife
viewing. Do you like outdoor sports and which outdoor sport are your favorites?
1. Write about your experience on any of your first days at the Kindergarten, Middle School, High School, or University.
How did you feel (exciting, thrilled etc.)? Who did you meet like a friend or a professor or an advisor? What did you enjoy
about it (playing games with friends or meeting with advisors etc)?
2. Write about your positive experience with one of your professors, teachers, advisors, counselors. How did they help
shape your life?

Ergonomic 3. A student new to the Clarkson campus wants to walk to the Sergi’s Restaurant on Market Street for dinner, which is near
Clarkson Inn. Describe in detail how they can walk from the Cheel parking lot to the restaurant and the things they will
see along the way.
4. What is your favorite sports team? Why do you root for this team? What feelings are evoked in you when the team
wins? What does it mean to be part of the fandom?
1. On a gloomy and rainy day, what do you do to raise your spirits? Do you cook? Do you talk to someone? Do you read a
book or watch a movie?
2. What is your go-to comfort food? Describe what aspects of it bring you comfort. Is it the texture, the taste, or the
memories the food evokes? Who would you like to share the meal with to make the experience better?

Membrane 3. Describe a close family member like a mother, father, or sibling. What is their personality? What are their favorite
activities? What are your memories of them?
4. Describe a course you have taken in college or high school. What were the major topics that were covered? How has this
course helped you in your life or career?
1. On a daily basis, you need to go to the store, your job, school or to visit friends. How do you prefer to get around? Do you
use multiple methods? What are the advantages and disadvantages of each? Have you lived somewhere where you have
used public transportation and what methods did you take? How does this compare to transportation in a college town?
2. How has technology changed over your lifetime? What technology do you spend the most time on? Are there times that
you purposefully limit your use of technology? why?

Laptop 3. Due to Covid-19, our lifestyles have been restricted in many ways. What is the first thing that you will want to do and
enjoy, when we go back to our previous normal beings. It can be anything that you wish or desire post covid-19 life. And
how will you do it and why would you like to do it?
4. Write about your favorite animal. Why is it your favorite? Do you still own it? How long have you owned it? What was
your experience with it?

3.3.1 Multi-Keyboard Data Collection. Each multi-keyboard par-
ticipant visited our lab twice with each visit estimated to last about
an hour, although most participants completed the tasks much ear-
lier. The visits are about a week apart for a large percentage of the
participants but only 2 to 3 days apart for some. For the first visit,
the participant walked through the four computers starting with
the desktop computer hooked up with the mechanical keyboard all
the way to the last computer (laptop) (in order shown in Figure 1).
Signup is required for all new users. After signup, the user is shown
the list of all keyboards with the mechanical keyboard being the
only selectable option on the first computer. Upon clicking on the
mechanical keyboard option, four Q/A tasks are displayed and the
user can choose in any order of his choice. A keylogger captures
the user’s inputs: key presses, key releases, key code and times-
tamps with a precision in milliseconds. A prompt to move to the
next computer is displayed on the screen when the user completes
all the 4 Q/A tasks for a given keyboard. The user is also notified

when all Visit 1 tasks are completed. Since the system tracks the
user’s visit and the completed keyboards, the user can resume from
where they left off after switching computers. A total of 16 tasks
are required to complete Visit 1. In the second visit, the user repeats
the same process and the same set of questions as the first visit.

3.3.2 Bilingual Data Collection. The bilingual participants accessed
the data collection web system remotely via a web link from any-
where and on any computer of their choice. Since the goal for
the bilingual dataset was to study the effect of language variation
on typing patterns, only one computer keyboard is required (one
owned by the participant). Participants were screened to ensure
their fluency in both English and Chinese language. The same phys-
ical keyboard was used to input data for both languages. However,
users were required to change the keyboard input language to Chi-
nese in the computer settings before contributing data in Chinese.
Participants are required to complete at least 8 tasks in English and



Figure 3: Distribution of total keystrokes contributed per
user across all 60 participants for the multi-keyboards
dataset.

another 8 tasks in Chinese from Table 1. Most users had completed
16 tasks for both languages.

3.4 Keystroke Logger and Database
The keystroke logger, written in JavaScript, runs continuously
in the background and is completely passive and non-intrusive.
Captured keystrokes are stored asynchronously to a remote data-
base without interrupting the user’s activity. This was achieved
with Django Background Task, a database-backed work queue for
Django, loosely based around Ruby’s DelayedJob library. The key-
stroke logger captures the user’s 7 digits unique ID, key presses, key
releases and their respective timestamps in milliseconds precision,
task prompt number (referred to as question), selected keyboard
and visit.

A remote MySQL database was used to store data. Tables were
created for storing users and keystrokes data respectively. Columns
in the users table include unique ID (the randomly generated 7 digit
number), first name, last name, keyboard sessions (the number of
completed keyboards) and visit (the number of completed visits).
Note that the shared data have been anonymized and contains no
personally identifiable information. The columns in the keystrokes
table for the multi-keyboard data includes unique ID, key name,
release (0 for press and 1 for release), timestamp, keyboard, visit and
question ID. The same keystrokes table was used for the bilingual
data, except that the “visit” column was discarded.

4 INITIAL EVALUATION
To demonstrate the usefulness of our datasets for studying the
effects of multi-keyboard and multi-language in keystroke dynam-
ics, we replicated two free-text algorithms - ITAD metric [3] and
D-Vectors model [4] - on the datasets.

4.1 Instance-based Tail Area Density (ITAD)
Metric

The ITAD metric [3] is an instance-based metric that relies solely
on the tail area under the probability density function (PDF) of each
keystroke dynamics feature (Equation 1).

similarity score =
{
𝐶𝐷𝐹train (𝑥), if 𝑥 ≤ 𝑀train

1 −𝐶𝐷𝐹train (𝑥), if 𝑥 > 𝑀train
(1)

Figure 4: The EERs (%) for same keyboard and cross-
keyboard on our multi-keyboard dataset (left) and the EERs
(%) for same language and cross-language on our multi-
keyboard dataset (right) using ITAD metric.

where CDFtrain is the empirical cumulative distribution function of
each feature in the profile, and Mtrain is the median. The average
ITAD metric of all feature instances in a test sample is thresholded
to make an authentication decision. The ITAD metric is always
between 0 and 0.5 and can be interpreted as a similarity score; the
larger it is, the closer the test sample is to the profile.

4.1.1 Multi-keyboard Experiment and Results: For themulti-keyboard
dataset, the average participant contributes about 14,000 keystrokes
in both visits and across all four keyboards. Figure 3 shows the dis-
tribution of total keystrokes contributed per user. Five (5) kinds of
features including monograph (the time interval between the press
and release of a key) and digraphs (the latency between successive
keys such as down-down, up-down, down-up and up-up) were ex-
tracted from the raw data. For each participant per keyboard type,
all keystrokes (average of 1,800) from the first visit are used for
enrollment. Data from the second visit was used for testing. More
specifically, each test sample comprises 200 keystrokes. As a result,
if a user has an average of K test samples and there are a total of N
users, then there will be K genuine test samples and (N-1)*K impos-
tor samples. These scores are averaged across all feature instances.
Performance is measured in terms of EER. The EER is calculated
per user and then averaged across all users. Figure 4 (left) depicts a
heatmap of the EERs across all four keyboards. As shown by each
column in Figure 4 (left), cross-keyboard - enrolling and testing
with different keyboards - affects keystroke dynamics performance
where keyboard size and layout appear to have the biggest impact
on users’ performance. Second, when the laptop keyboard is used
to test against all other keyboard enrollments, it gives the worst
performance of a 19% EER. Therefore, we hypothesize that the key-
board size is the major factor at play here. Furthermore, when the
ergonomic keyboard is used for enrollment, it performs the worst
among all keyboard enrollments. Therefore, we hypothesize that
the keyboard layout is the major factor.

4.1.2 Bilingual Experiment and Results: The goal of the bilingual
experiment is to study the effect of cross-language in keystroke dy-
namics. The average participant contributes about 10,000 keystrokes
for both English and Chinese language. We extracted monograph
and digraphs features from the dataset. For each participant per
language, the first two questions (known as prompt 1 and prompt 2



in the dataset) were used for enrollment (average of 900 keystrokes).
Data from the remaining questions was used for testing and each
test sample comprises 200 keystrokes. As a result, if a user has an
average of K test samples and there are a total of N users, then
there will be K genuine test samples and (N-1)*K impostor samples.
These scores are averaged across all feature instances.

The bilingual experiments results are shown in Figure 4 (right).
Our results show that there is a deterioration in performance for
cross-language in keystroke dynamics. Enrolling with Chinese data
and testing with English results in a performance loss of (16-2)=14%,
while enrolling with English data and testing with Chinese results
in a performance loss of (9.7-3.3)=6.4%. While further investigation
is required, we hypothesized that users could be more familiar with
typing in one language than the other even though they are fluent
in both languages.

4.2 D-Vectors
The Deep Vectors (D-Vectors) [4] keystroke authentication algo-
rithm is unconventional. Unlike most methods, D-Vectors does not
use digraphs that are traditionally used in keystroke dynamics. In-
stead, the D-Vectors method converts N sequential keystroke events
into an image that is fed into a convolutional neural network to
featurize the data and learn the projection. The authors argue that
this approach enables the model to extract non-intuitive features
and reason over arbitrary length sequences of keystrokes which
contributes to its increased accuracy. As a deep learning approach,
this method is data hungry and takes hours to train. However, once
trained this method is computationally inexpensive [4].

For our experiments we divided the datasets by subjects in a
70/30 train test split. 70% of a user’s data is used to train the D-
Vectors model and then the remaining 30% of the data is used for
evaluation purposes. In testing, for the multi-keyboard experiment,
we used a profile with 6 samples of 150 keystrokes each (a total of
900 keystrokes) for enrollment while for the bilingual experiment,
we used a profile of size 5 (750 keystrokes) for enrollment.

Figure 5 (left) shows the EERs across all four keyboards. Sim-
ilar to the results from the ITAD metric, performance drops for
cross-keyboard compared to using the same keyboard. More so,
enrolling with the ergonomic keyboard and testing with the laptop
keyboard gave the worst performance (13.6%), an observation that
is consistent with the results from the ITAD metric. Figure 5 (right)
shows the bilingual experiment results, which is also consistent
with the ITAD metric results that the performance of keystroke
dynamics deteriorates when enrolling and testing with different
languages (cross-language).

Overall, the statistical instance-based ITAD metric results out-
performed the D-vectors model because the D-vectors model, like
any other deep learning models [1], is data hungry. D-vectors may
produce more competitive results when fed with a larger amount
of keystroke data.

5 CONCLUSION
The robustness of keystroke dynamics is contingent upon studying
the effect of multi-keyboard and multi-language on its performance,
so that algorithms or strategies can be developed to deliver stable
verification accuracy regardless of the keyboard type or language

Figure 5: The EERs (%) for same keyboard and cross-
keyboard on our multi-keyboard dataset (left) and the EERs
(%) for same language and cross-language on our multi-
keyboard dataset (right) using the D-Vectors.

used for enrollment and testing. To this end, we developed two novel
datasets - multi-keyboard and bilingual datasets - to be used for
research purposes. In demonstrating the usefulness of the datasets,
we replicated two state-of-the-art algorithms on them. The results
of our initial evaluation indicates that cross-keyboard and cross-
language do significantly affect keystroke dynamics performance.

Maxion and Commuri [10] found that there are discrepancies
between timestamps recorded from a USB keyboard and a laptop
keyboard (PS/2). In addition to the keyboard size as the major factor,
we intend to further investigate why the laptop, when used to test
against all other keyboard enrollments, gave worst performances.
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