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LAY SUMMARY 

The widespread deployment of electronic health records (EHR) has introduced new sources of error to the process of 

ordering medications in the hospital setting.  Prior research identifies order errors by comparing orders against a patient’s 

medical records, but this approach may miss certain sources of error and may put patient data privacy and security at 

risk. In this work we develop a machine learning model for identifying medication  orders  that  require  pharmacy  

intervention using  only  provider  behavior  and  other contextual features that may reflect these new sources of 

inefficiencies. We collected this data from the EHR system of a major metropolitan hospital system over a 2-week period 

and trained a gradient boosted tree model. The resultant model had an area under the ROC curve of 0.91 and an area 

under the precision-recall curve of 0.44. We tune the model to the context in which it would be deployed, and evaluate 

global and local feature importance. We find that providers’ actions can serve as useful predictors in identifying 

suboptimal medication orders, and careful tuning to the clinical context in which the model is deployed can help to create 

improved health outcomes. 
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ABSTRACT 
 
Objective:  The widespread deployment of electronic health records (EHR) has introduced new sources of error and 

inefficiencies to the process of ordering medications in the hospital setting.  Existing work identifies orders that require 

pharmacy intervention by comparing them to a patient’s medical records. In this work we develop a machine learning 

model for identifying medication orders requiring intervention using only provider behavior and other contextual 

features that may reflect these new sources of inefficiencies.  

 

Methods:  Data on providers’ actions in the EHR system and pharmacy orders were collected over a 2-week period in 

a major metropolitan hospital system. A classification model was then built to identify orders requiring pharmacist 

intervention.  We tune the model to the context in which it would be deployed, and evaluate global and local feature 

importance.  

 

Results:  The resultant model had an area under the ROC curve of 0.91 and an area under the precision-recall curve of 

0.44. 

 

Conclusions:  Providers’ actions can serve as useful predictors in identifying medication orders that require pharmacy 

intervention.  Careful model tuning for the clinical context in which the model is deployed can help to create an effective 

tool for improving health outcomes without using sensitive patient data. 
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INTRODUCTION 

Significant  amounts  of  heterogeneous  data  from  electronic  health  record  (EHR)  platforms  have  led  to  a surge 

in interest in using machine learning in clinical decision support (CDS) tools [1].  This has resulted in the development 

of tools that provide clinicians with information which, when embedded at the appropriate point  in  their  workflows,  

can  improve  healthcare  [2,  3,  4,  5].   CDS  tools  encompass  a  variety  of  systems that can assist in the interpretation, 

diagnosis, and treatment of patients through the use of various tools, including:  alerts and reminders, clinical guidelines, 

recommendations, order sets, patient data reports and dashboards, documentation templates, diagnostic support, and 

other clinical workflow tools [3, 4]. 

One interesting application area lies in detecting medication order errors [6].  Medical errors (including invasive 

procedures and hospital-acquired infections as well as those involving drugs and medical devices) are  a  significant  

public  health  problem  and  a  leading  cause  of  death  [7].   For  medication  order  errors, manual review of incoming 

pharmacy orders is the ‘gold standard’ [8] for improving the use of medications and  minimizing  prescribing  errors  [9,  

8],  though  a  series  of  recent  studies  have  shown  that  pharmacies in both inpatient and outpatient settings are often 

understaffed [10, 11, 12, 13].  As a result, pharmacists experience a high degree of burnout [10] and are at higher risk of 

making errors or not detecting problems with incoming orders.  Supporting clinical pharmacists with CDS tools could 

therefore improve health outcomes for patients and effectively help pharmacists in under-resourced institutions to 

manage the load of detecting and correcting orders requiring intervention.  

The widespread deployment of computerized physician order entry systems is believed to have resulted in 

significant declines in traditional sources of medication order errors [14, 15, 5].  Recent research, however, has suggested 

ways in which these tools may have introduced or contributed to other sources of error (e.g. alert fatigue, orders in the 

wrong medical records, etc.)  [16, 14, 17].  These types of errors tend to fall into two categories [18]:  (1) errors in the 

process of entering and retrieving information (e.g.  interfaces that are not suitable for a highly interruptive use context, 

that produce cognitive overload by requiring structured information entry, that fragment information onto different 

screens, and interfaces that overemphasize information about a patient that is not useful), or (2) errors that come from a 

mismatch between the structured communication and coordination processes embedded in digital systems relative to the 

highly flexible and fluid ways in which clinical work happens in reality.  

Prior  work  has  centered  on  comparing  the  order  to  the  patient’s  medical  records,  and  omits  features 

representing  provider  behavior. For  example,  Corny  et  al.   [8]  evaluate  orders  in  the  medical  context of the  

individual  patient’s  laboratory  reports,  demographics,  medical  and  allergy  history,  and  physiological data.   

Similarly,  Segal  et  al. [19]  screen  patients’  medical  records  and  corresponding  orders  to  identify time-dependent 

irregularities, clinical outliers, dosage outliers, and drug overlaps that might be indicative of medication order errors.  

Nguyen et al. [20] use an alternative approach in which patient information is used to identify those who are at high-risk 

of receiving an inappropriate therapeutic and to prioritize review of orders made on their behalf.  

These approaches may be missing critical signals from the provider’s suboptimal interactions with the EHR 

leading up to the submission of an order,  and therefore entire ‘phenotypes’ of errors.  In this paper we develop a 

predictive model for flagging orders requiring intervention using only information about the ordering provider’s 

interaction with the EHR. The model is then tuned and evaluated within the clinical context in which it would be 

deployed. 
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METHODS 

Setting 

This work was conducted within a large urban academic hospital system comprised of 3 hospitals (a quarternary care, a 

tertiary care, and an orthopedic sub-specialty hospital) with over 1,600 beds (combined) and numerous satellite locations.  

Pharmacy orders were submitted via the electronic medications management  system,  EPIC.  Auto-verification 

was implemented only for dietary supplements. Interventions were made by pharmacists in a main dispensing pharmacy 

or unit-based satellites, as well as by clinical pharmacists that rounded directly with  the  medical  teams  in  certain  

specialty  areas. The  frequency  of  each  type  of  clinical  intervention may vary in different functional areas.  For 

example, a pharmacist rounding with a medical team is more likely to see patient-specific details and optimize a 

medication therapy plan to improve patient tolerance. Alternatively, a pharmacist dispensing  medications  from  the  

pharmacy may not  have  access  to  as  many patient-specific  details,  but  may  intervene on general  medication  issues  

(e.g. reviewing  medication  dose, checking for appropriateness given patient renal function/age/weight, advising of 

allergy risk). There may also be variability in documentation of interventions between pharmacists and at times of 

increased workload, however supervision of clinical pharmacists and review of interventions by supervisors finds a high 

rate of adherence to the expected workflow. 

 
Analysis 

Data 

This study relies on inpatient data from July 10th through July 24th 2017. The dataset included a total of 181,407 

individual orders submitted by 2,708 providers. On average, providers submit 4.96 orders at once. We therefore 

consolidated orders made simultaneously into 36,585 order “batches”. Of these, 2,054 (5.61%) contained at least one 

order that required intervention. The sample is described in Table 1. 

Type Inpatient 
Dates July 10-24, 2017 
# orders 181,407 
# order batches 38,966 
# order batches requiring intervention 2,054 (5.61%) 
# providers 2,708 
# departments 183 
# therapeutic classes 45 
# patients 16,714 

Table 1: Description of sample used.
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Feature Construction 

Model  features  were  determined  using  descriptive  analysis  and  clinical  expertise. Conversations  with clinician 

informants revealed that they experience high administrative workload and a high degree of disruption and fragmentation 

in their workflows. This can tax working memory, which acts as a temporary storage for task-relevant information (often 

in the face of distractions) [21, 22, 23]. This is consistent with prior research [14, 17] and informed our selection of 17 

features (continuous features described in Table 2). 

1. Measures of clinician engagement with patients and the EHR in the hour preceding the order.  These features 

capture behaviors that may require the provider to store more information in working memory [22,  23]  (e.g.   

seeing  many  patients  in  a  short  period  of  time),  or  periods  in  which  a  provider  is multitasking or their 

workflow is disrupted (e.g.  needing to communicate information about a patient to  a  colleague  while  engaged  

with  a  different  patient)  [24].  Interruptions  and  multitasking  increase the demands on working memory by 

requiring them to process information unrelated to their primary task, increasing the potential for error [21, 25, 

21]. 

 Number patient encounters 

 Number workstations accessed by a provider 

 Number  general  administrative  actions  the  provider  engaged  in  in  the  EHR  (e.g. reviewing  a 

patient list, checking messages, using the chat tool). 

 Number administrative actions in a patient’s EHR (e.g. reviewing a prior patient’s history) outside of 

the current patient encounter 

 Number of administrative actions in the EHR related to a specific patient during an in-person visit 

(e.g.  reviewing their chart) 

2. Details of the orders contained in the order batch. Creating orders is one of the more complex parts of the 

order-prescribing task [21] and taxes a provider’s working memory (e.g.  when choosing clinical elements for 

an order), particularly when they are being made for multiple patients. This is especially true when the provider 

is disrupted or distracted as they are placing the order, increasing the probability of making an error or sub-

optimal order. 

 Number of orders in batch (submitted at once) 

 Number of orders in a batch using a predefined order template, called ordersets 

 Number of medications in a batch which are re-orders of a prior medication order, called reorders 

 Number of orders in a batch intended to keep a patient’s medications up-to-date, commonly from old 

or outdated prescriptions, when the patient’s care is transferred from one context to another (e.g.  when 

transferred from the ambulatory context to the inpatient context or from one team in the hospital to 

another), called reconciliations 

 Number of time sensitive ("STAT") orders in a batch 

 Number of patients for whom orders within a batch are being made 

3. Contextual data related to the clinician and the order.  The context in which orders are made may in-fluence 

providers’ behavior; for example, clinicians in certain specialties (e.g. Emergency Department) may experience 

higher levels of cognitive load. We include the following contextual features: 

 Ordering clinician type (e.g. Nurse Practitioner, Resident) 
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 Ordering clinician specialty (e.g. Emergency Medicine, Oncology) 

 Day of the week 

 Time of day (e.g. early morning, late morning) 

 Hospital 

 Order therapeutic class (e.g. Antivirals, Antibiotics) 

 

 

 

 

 

 

 

 

Table 2: Descriptive statistics of continuous features included in the model 

 
Machine Learning Model 

The model was designed as a binary classification task where the target labels corresponded to whether an order batch 

required intervention. 

The data were split randomly into 70%, 15%, and 15% sets for model training, validation, and testing, 

respectively.  Logistic regression with L1 and L2 regularization were used as baselines, and gradient-boosted trees  

(XGBoost)  were  employed  as  our  focal  ML  algorithm. Cross-validation  was  used  to  identify  the λ penalty  in  

the  regressions  with  regularization  where  the  value  selected  gives  the  simplest  model  but  also lies  within  one  

standard  error  of  the  optimal  value  of  lambda  (λ = 0.013 and λ = 0.28,  respectively). 

The XGBoost model was implemented with nested 5-fold cross-validation with early stopping (maximum of 

50 rounds). Grid search was used to tune model hyperparameters, resulting in a maximum tree depth = 7, minimum child 

weight = 1, subsampling = 0.84, evaluation metric = auc, eta = 0.17, gamma = 0.32.  The validation set was used to 

monitor the model training through early stopping to evaluate the model performance and the effectiveness of the 

decision boundary;  the test set was then used to evaluate the generalizability of the trained model.  Due to a significant 

class imbalance in the training data (5.53% of batches required intervention), synthetic minority oversampling technique 

(SMOTE) was used to generate a pseudo-synthetic training set with 5,672 order batches in which 2,836 (50%) required 

intervention.

Feature Mean Median Std. Dev. 
# administrative actions in hour preceding order 15.42 2 29.62
# administrative actions in patient files in hour preceding order 30.26 7 46.30
# orders in batch 3.09 2 3.22
# ordersets in batch 0.05 0 0.44
# actions related to patient encounters in hour preceding order 49.65 8 79.81
# patients in batch 1.07 1 0.31
# reconciliations in batch 1.23 0 3.96
# STAT orders in batch 0.68 0 1.80
# unique patient encounters in hour preceding order 3.63 1 5.70
# unique workstations 1.62 1 1.06
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RESULTS 

The XGBoost algorithm outperformed both of the logistic regressions as well as the random forest algorithm by a 

significant margin in both area under the receiver-operator (AUROC) and precision-recall (AUPR) curves (Table 3). 

This indicates complex and non-linear relationships between predictors that are not captured by linear classifiers or 

simple decision trees.  

Model AUROC AUPR 

Logistic regression with L1 (Lasso) regularization 0.528 0.276 

Logistic regression with L2 (Ridge) regularization 0.530 0.278 

Random Forest with pruning 0.579 0.180 

Extreme gradient boosted trees (XGBoost) 0.908 0.439 

Table 3: Model performance metrics for baseline (Lasso, Ridge, and Random Forest regression) and focal models 

(XGBoost). 

The trained XGBoost model had an AUROC of 0.908 (Figure 1); however, the high AUROC performance is 

likely a result of the imbalance data set. In this case, the Precision-Recall curve can offer us a more accurate 

representation of model performance (visualized in Figure 2).  The AUPR curve is 0.439.  The resultant Lift curve shows 

that flagging a small fraction of orders for review results in the detection of a large number of the orders that required 

intervention (e.g.  selecting the top 20% of orders according to the model results in approximately 4 times the total 

number of orders requiring intervention being identified).  This is visualized in Figure 3. 

  

Figure 1: Average Receiver-Operator Characteristic (ROC) curve. AUROC is 0.908. 
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Figure 2: Precision-Recall curve. AUPR is 0.439. 
 

 

Figure 3:  Lift curve 
 
The choice of decision boundary will influence the performance of the model in the context of the clinical workflow.   

We  therefore  want  to  consider  constraints  on  model  error  that  exist  at  different  stages  in  the workflow,  then  

evaluate  the  model  performance  within  the  context  of  each  of  these  stages. The  hospital system on which this 

analysis is centered follows a well-established, digitally-mediated process for prescribing and dispensing medications 

in the inpatient setting that involves the verification of all orders that are placed by clinicians to the pharmacy.  Based 

on this workflow, we evaluate the model at two potential points: 
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1. Intervene at the point of order submission by the clinician; for example, alerting the clinician at the time  of  

order  entry  that  it  may  contain  an  error  or  require  optimization.   In  this  scenario,  a  high number of 

incorrectly flagged orders (false positives) could become burdensome and lead the provider to distrust or 

disregard the system [26, 27, 28].  Within these constraints the precision rate should be relatively high, but the 

precision-recall curve for our model (Figure 1) suggests that this model may not adequately minimize both false 

positives and false negatives (AUPR= 0.439); we therefore consider the alternative: 

2. Intervene at the point of order receipt by the pharmacist; for example, by removing the requirement for 

pharmacist verification on incoming orders that the model has identified as having a low risk of requiring an 

intervention. Clinical pharmacists currently review incoming orders assuming equal probability of requiring  

an  intervention. Their  order  verification  queue  could  be  reduced  by  de-prioritizing  these orders.  An 

intervention targeting pharmacists therefore has a requirement for a low false negative rate, but pharmacists 

can likely tolerate a higher rate of false positives (relative to prescribing clinicians) because they already review 

a large number of orders that do not require intervention in the current workflow so any reduction in this 

workload is an improvement. 

In  light  of  this,  we  compute  the  classification  threshold  for  the  model  that  optimizes  for  model  recall performance 

using the F10 score (0.076).  Table 4(a) displays the corresponding confusion matrix and other model performance 

metrics.  

Though the model accuracy is only 0.41, it has a sensitivity of 0.99 and specificity of 0.37 on the test set. The 

associated confusion matrix shows a very low number of false negatives (2) when de-prioritizing 35% (1,933 + 2) of 

orders identified by the model as not requiring intervention.  

Table 4: Confusion matrix associated with decision boundaries displayed on the left side of the double lines in the 
table, and the corresponding model performance metrics are displayed on the right.  (a) Displays model performance 

associated with the selected decision boundary (0.076).  (b) displays the model performance with a decision boundary 
of 0.5; and (c) displays the model performance with a decision boundary of 0.83. 

 

(a)  Actual Model Performance Metrics 

Decision boundary = 0.076 Intervention No Intervention Accuracy Recall Specificity Precision 

Prediction Intervention 312 3,241 0.41 0.99 0.37 0.09 

 No Intervention 2 1,933     

(b) Actual Model Performance Metrics 

Decision boundary = 0.5 Intervention No Intervention Accuracy Recall Specificity Precision 

Prediction Intervention 242 606 0.88 0.77 0.88 0.29 

 No Intervention 72 4,568     

(c) Actual Model Performance Metrics 

Decision boundary = 0.83 Intervention No Intervention Accuracy Recall Specificity Precision 

Prediction Intervention 130 120 0.94 0.41 0.98 0.52 

 No Intervention 184 5,054     
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To demonstrate how alternative thresholds would perform consider (a) 0.5 and (b) 0.83 (model performance metrics in 

Table 4 (b, c)). The model performance metrics associated with threshold (a) (Table 4(a)) show an accuracy and 

specificity rate of 0.88. This is a significant increase in specificity compared with the selected threshold (0.37) and 

corresponds to a substantial decrease in false positives (from 3,241 to 606 with threshold (b)).  However, the number of 

false negatives increases from 2 to 72, corresponding to a decrease in sensitivity from 0.99 to 0.77 with threshold (b).  

These trends continue when the decision boundary is increased to 0.83 (Table 4 (c)).  Though the percentage of orders 

that can be de-prioritized increases from 85% (with threshold (a)) to 95% (with threshold (b)), there is a simultaneous 

and substantial increase in false negatives (the number of errors that are incorrectly labeled as not requiring intervention) 

- well beyond what we have identified as an acceptable rate of missing errors (maximum 5%). 

Finally, we examine the global and local feature importance of model features.  In Figure 4 we display the 20 

features with the highest gain. Whether the provider is a Resident has the greatest impact, followed closely by the number 

of reconciliations contained in an order batch.  The number of individual orders in a batch and orders for antibiotics have 

moderate gain, whereas remaining features have relatively low influence over the model at the aggregate level. 

To understand how these features impact individual predictions, we visualize local feature importance (Figures  

5(a)  to  6(b))  as  the  log-odds  of  an  order  requiring  pharmacist  intervention  with  the  addition of each feature to 

the model.  The baseline intercept corresponds to the naive probability that any single order batch requires intervention 

(5.61%).  Figure 5(a) visualizes these effects for a randomly sampled order from the test set where the outcome of the 

model resulted in a true positive, Figure 5(b) visualizes a true negative,  Figure 6(a) visualizes a false positive,  and 

Figure 6(b) visualizes a false negative.  The y-axis corresponds to the probabilities associated with the calculated log-

odds, red bars correspond to a decrease in the log-odds of an order requiring intervention, and the blue bars signify an 

increase in the log-odds. The order represented in Figure 5(a) contains two cardiovascular medications, which is 

associated with an increase in the log-odds of this order requiring intervention of 0.65 over the baseline rate (5.61% in 

the sample). The plot also showed significant increases in the log-odds attributed to the number of reconciliations 

contained in the batch,  orders for antibiotics,  and providers who are residents (+0.55,  +0.46,  and +0.44,respectively).  

The number of patients the provider saw in the hour preceding the submission of the order and the day of the week 

(Monday) were among the features that reduced the log-odds of the order requiring intervention (by -0.45 and -0.41, 

respectively). 
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Figure 4:  Top 20 features with highest global importance.  Gain represents the improvement in accuracy brought by a 

feature to the branches it is on. 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 

 

 
 
 

Figure 5:  The y-axis represents the change in the probability of the order requiring intervention. Red bars represent a 
decrease in the log-odds, whereas blue bars represent an increase.  (a) Contribution of features to the log-odds of a true 
positive order. The estimated probability of this order requiring intervention is0.39, well above the 0.076 decision 
boundary and consistent with the observed outcome. (b) Contribution of  features  to  the  log-odds  of  a true negative 
order. The  estimated  probability  of  this  order  requiring intervention is 0.004, below the 0.076 decision boundary. 
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) 

 

 
 
 

Figure  6: The y-axis represents the change in the probability of the order requiring intervention. Red bars represent a 
decrease in the log-odds, whereas blue bars represent an increase. (a) Contribution made by  individual  features  to  the  
log-odds of a false positive order. The estimated probability of this order requiring intervention is 0.10, which is above 
the 0.076 decision boundary, though this particular order was not observed to require intervention.  (b) Contribution 
made by individual features to the log-odds of a false negative order. The estimated probability of this order requiring 
intervention is 0.003. Despite being well below the 0.076 decision boundary, this particular order did require 
intervention. 
 

DISCUSSION 

The widespread deployment of electronic health records and computerized order entry systems have largely reduced 

medication order errors and inefficiencies in the inpatient setting. Emerging research  suggests, however, that they have 

also introduced new sources of error related to the interaction between the provider and the platform.  Despite this, prior 

work has centered on the compatibility of the medication ordered with the patient’s medical records. We instead 

developed a machine learning model using provider behavioral data and other contextual features related to the usage of 

these systems. We collected data on providers’ actions in the EHR and pharmacy orders over a 2-week period within the 

hospital system.  We then built a classification model to identify incoming orders requiring pharmacist intervention and 
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tuned the model considering the constraints of the pharmacist’s workflow.  The resultant model had an AUROC curve 

of 0.91and an AUPR curve of 0.44. 

Though the precision-recall curve in Figure 2 suggests that false positive and negatives are not entirely 

separable,  we  show  that  by  strategically  tuning  the  model  to  the  clinical  context  in  which  it  is  deployed we 

can still bring significant value to users.  The model performance metrics (Table 4 (a)) show a very low number of false 

negatives (2) when de-prioritizing 35% (1,933 + 2) of orders deemed by the model as not requiring intervention. While 

this reduction may not be as meaningful to a well-resourced institution, many hospitals have understaffed pharmacies. 

In these settings, such an intervention may be critical for managing the workload on pharmacy staff. Future work may 

further improve the accuracy of the model by taking into consideration the severity of the intervention or stratifying by 

type of intervention. This may improve the model’s utility in a broader range of clinical contexts.  

The features that have the highest gain in our model (Figures 5(a) to 6(b)) are consistent with clinical 

experience. For  example, Residents are  often  the  least  experienced  class  of  provider  and  can  have  high workloads.  

This could account for their orders having a higher likelihood of requiring intervention.  We also see order reconciliations 

providing substantial gain in this model.  The reconciliation of medications involves reviewing medications that patients 

were receiving at an earlier phase of care (either as an outpatient prior to being admitted or on a different unit prior to 

being transferred) and decide which ones to continue and discontinue depending on the change of clinical context.  

Clinicians may anchor on the patient’s previous prescriptions, biasing them towards continuing these medications and 

not thoughtfully assessing whether the  change in context should correspond to an adjustment.  

The  total  number  of  orders  in  a  batch  might  correlate  to  a  higher  rate  of  intervention  because  each 

individual order has some baseline probability of containing an error and the probability of requiring intervention 

increases for batches containing more orders. It could also represent cognitive overburdening of the submitting clinician; 

orders often accumulate as the clinician is rounding and are submitted together at the end, providing opportunity for 

errors associated with switching among patients and their different needs. Finally, antibiotic ordering is understood to 

be complex and many institutions have structured guidelines and oversight groups that direct their approach to ordering 

antibiotics. It is thus not a surprise that antibiotic ordering is associated to increased gain in our model. 

This modeling approach offers us a novel perspective on the factors influencing order entry by focusing on the 

behavior of the provider and errors that arise from the workflow around the EHR. Whereas previous models predicting 

errors ingest patients’ medical records, by focusing on the behavior of the clinician we also reduce the risk to the privacy 

and security of these patients’ data while still being useful to pharmacists. 

LIMITATIONS & FUTURE WORK 

In our analysis, we used data from two weeks in July, 2017.  While we believe that this sample is sufficient to demonstrate 

the use of clinician behavior and other contextual features in predicting the occurrence of order errors, there may be 

seasonality and other effects that limit the generalizability of the model. For example, July is the start of the year for 

medical and surgical trainees. This introduces the possibility of increased order errors due to new interns being less 

knowledgeable about medications, the EHR system, and about processes in busy health systems [29].  Further analysis 

using longer periods of data collection is needed to account for new trainees’ evolving clinical experience and 

knowledge.  
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Future work may also consider comparing the results of these models across hospital systems to gain a better 

understanding of how different clinical contexts influence the occurrence of such errors; however, each hospital system 

is likely idiosyncratic in terms of the culture, processes, and procedures which may affect the occurrence and treatment 

of order errors. We therefore believe that models for detecting these errors will likely need to be tuned for the specific 

hospital in which they are deployed. Additional refinement of order error by type (e.g.  improper dosage, incorrect 

medication, etc.)  may bring further precision to these models, and improve their utility to the clinician in context.  

The  implementation  and  deployment  of  this  model  in  the  hospital  setting  remains  an  open  question; 

specifically, what features are available at the time the batch of orders is submitted to run the model and provide decision 

support.  Three types of features outlined in the analysis section include measures of HER clinical engagement, details 

of orders, and contextual data related to clinician and order.  Both of the latter feature  sets  are  readily  available  at  

order  time.   The  most  difficult  feature  is  the  former  (EHR  clinical engagement) that are not routinely available in 

real time from our EHR vendor.  A custom build from the EHR would be required to access these data elements.  Future 

work could analyze more sub-feature sets to see how to maintain performance given features more readily available. 

 

CONCLUSION 

Errors involving medications are a significant challenge which is well suited to interventions based on machine learning 

models. Conventional approaches have opted to compare medication orders to the contents of the patient’s medical 

records and does not consider sources of error that are produced by EHRs and reflected in the provider’s behavior.  

In this work, we develop a machine learning model that relies only on features related to the provider’s behavior  

and  basic  contextual  information  related  to  the  order  to  demonstrate  a  well-performing  model. Further, we show 

that with proper tuning, such models can significantly improve the workload on pharmacists without risking the privacy 

and security of sensitive patient data. 
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