Predicting inpatient pharmacy order interventions using provider action data
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LAY SUMMARY

The widespread deployment of electronic health records (EHR) has introduced new sources of error to the process of
ordering medications in the hospital setting. Prior research identifies order errors by comparing orders against a patient’s
medical records, but this approach may miss certain sources of error and may put patient data privacy and security at
risk. In this work we develop a machine learning model for identifying medication orders that require pharmacy
intervention using only provider behavior and other contextual features that may reflect these new sources of
inefficiencies. We collected this data from the EHR system of a major metropolitan hospital system over a 2-week period
and trained a gradient boosted tree model. The resultant model had an area under the ROC curve of 0.91 and an area
under the precision-recall curve of 0.44. We tune the model to the context in which it would be deployed, and evaluate
global and local feature importance. We find that providers’ actions can serve as useful predictors in identifying
suboptimal medication orders, and careful tuning to the clinical context in which the model is deployed can help to create

improved health outcomes.



ABSTRACT

Objective: The widespread deployment of electronic health records (EHR) has introduced new sources of error and
inefficiencies to the process of ordering medications in the hospital setting. Existing work identifies orders that require
pharmacy intervention by comparing them to a patient’s medical records. In this work we develop a machine learning
model for identifying medication orders requiring intervention using only provider behavior and other contextual

features that may reflect these new sources of inefficiencies.

Methods: Data on providers’ actions in the EHR system and pharmacy orders were collected over a 2-week period in
a major metropolitan hospital system. A classification model was then built to identify orders requiring pharmacist
intervention. We tune the model to the context in which it would be deployed, and evaluate global and local feature

importance.

Results: The resultant model had an area under the ROC curve of 0.91 and an area under the precision-recall curve of

0.44.

Conclusions: Providers’ actions can serve as useful predictors in identifying medication orders that require pharmacy
intervention. Careful model tuning for the clinical context in which the model is deployed can help to create an effective

tool for improving health outcomes without using sensitive patient data.



INTRODUCTION

Significant amounts of heterogencous data from electronic health record (EHR) platforms have led to a surge
in interest in using machine learning in clinical decision support (CDS) tools [1]. This has resulted in the development
of tools that provide clinicians with information which, when embedded at the appropriate point in their workflows,
can improve healthcare [2, 3, 4, 5]. CDS tools encompass a variety of systems that can assist in the interpretation,
diagnosis, and treatment of patients through the use of various tools, including: alerts and reminders, clinical guidelines,
recommendations, order sets, patient data reports and dashboards, documentation templates, diagnostic support, and
other clinical workflow tools [3, 4].

One interesting application area lies in detecting medication order errors [6]. Medical errors (including invasive
procedures and hospital-acquired infections as well as those involving drugs and medical devices) are a significant
public health problem and a leading cause of death [7]. For medication order errors, manual review of incoming
pharmacy orders is the ‘gold standard’ [8] for improving the use of medications and minimizing prescribing errors [9,
8], though a series of recent studies have shown that pharmacies in both inpatient and outpatient settings are often
understaffed [10, 11, 12, 13]. As a result, pharmacists experience a high degree of burnout [10] and are at higher risk of
making errors or not detecting problems with incoming orders. Supporting clinical pharmacists with CDS tools could
therefore improve health outcomes for patients and effectively help pharmacists in under-resourced institutions to
manage the load of detecting and correcting orders requiring intervention.

The widespread deployment of computerized physician order entry systems is believed to have resulted in
significant declines in traditional sources of medication order errors [14, 15, 5]. Recent research, however, has suggested
ways in which these tools may have introduced or contributed to other sources of error (e.g. alert fatigue, orders in the
wrong medical records, etc.) [16, 14, 17]. These types of errors tend to fall into two categories [18]: (1) errors in the
process of entering and retrieving information (e.g. interfaces that are not suitable for a highly interruptive use context,
that produce cognitive overload by requiring structured information entry, that fragment information onto different
screens, and interfaces that overemphasize information about a patient that is not useful), or (2) errors that come from a
mismatch between the structured communication and coordination processes embedded in digital systems relative to the
highly flexible and fluid ways in which clinical work happens in reality.

Prior work has centered on comparing the order to the patient’s medical records, and omits features
representing provider behavior. For example, Corny et al. [8] evaluate orders in the medical context of the
individual patient’s laboratory reports, demographics, medical and allergy history, and physiological data.
Similarly, Segal et al. [19] screen patients’ medical records and corresponding orders to identify time-dependent
irregularities, clinical outliers, dosage outliers, and drug overlaps that might be indicative of medication order errors.
Nguyen et al. [20] use an alternative approach in which patient information is used to identify those who are at high-risk
of receiving an inappropriate therapeutic and to prioritize review of orders made on their behalf.

These approaches may be missing critical signals from the provider’s suboptimal interactions with the EHR
leading up to the submission of an order, and therefore entire ‘phenotypes’ of errors. In this paper we develop a
predictive model for flagging orders requiring intervention using only information about the ordering provider’s
interaction with the EHR. The model is then tuned and evaluated within the clinical context in which it would be

deployed.



METHODS

Setting
This work was conducted within a large urban academic hospital system comprised of 3 hospitals (a quarternary care, a
tertiary care, and an orthopedic sub-specialty hospital) with over 1,600 beds (combined) and numerous satellite locations.
Pharmacy orders were submitted via the electronic medications management system, EPIC. Auto-verification
was implemented only for dietary supplements. Interventions were made by pharmacists in a main dispensing pharmacy
or unit-based satellites, as well as by clinical pharmacists that rounded directly with the medical teams in certain
specialty areas. The frequency of each type of clinical intervention may vary in different functional areas. For
example, a pharmacist rounding with a medical team is more likely to see patient-specific details and optimize a
medication therapy plan to improve patient tolerance. Alternatively, a pharmacist dispensing medications from the
pharmacy may not have access to as many patient-specific details, but may intervene on general medication issues
(e.g. reviewing medication dose, checking for appropriateness given patient renal function/age/weight, advising of
allergy risk). There may also be variability in documentation of interventions between pharmacists and at times of
increased workload, however supervision of clinical pharmacists and review of interventions by supervisors finds a high

rate of adherence to the expected workflow.

Analysis

Data

This study relies on inpatient data from July 10" through July 24™ 2017. The dataset included a total of 181,407
individual orders submitted by 2,708 providers. On average, providers submit 4.96 orders at once. We therefore
consolidated orders made simultaneously into 36,585 order “batches”. Of these, 2,054 (5.61%) contained at least one

order that required intervention. The sample is described in Table 1.

Type Inpatient

Dates July 10-24, 2017
# orders 181,407

# order batches 38,966

# order batches requiring intervention 2,054 (5.61%)

# providers 2,708

# departments 183

# therapeutic classes 45

# patients 16,714

Table 1: Description of sample used.



Feature Construction

Model features were determined using descriptive analysis and clinical expertise. Conversations with clinician

informants revealed that they experience high administrative workload and a high degree of disruption and fragmentation

in their workflows. This can tax working memory, which acts as a temporary storage for task-relevant information (often

in the face of distractions) [21, 22, 23]. This is consistent with prior research [14, 17] and informed our selection of 17

features (continuous features described in Table 2).

1.

3.

Measures of clinician engagement with patients and the EHR in the hour preceding the order. These features
capture behaviors that may require the provider to store more information in working memory [22, 23] (e.g.
seeing many patients in a short period of time), or periods in which a provider is multitasking or their
workflow is disrupted (e.g. needing to communicate information about a patient to a colleague while engaged
with a different patient) [24]. Interruptions and multitasking increase the demands on working memory by
requiring them to process information unrelated to their primary task, increasing the potential for error [21, 25,
21].
e Number patient encounters
e Number workstations accessed by a provider
e Number general administrative actions the provider engaged in in the EHR (e.g. reviewing a
patient list, checking messages, using the chat tool).
e Number administrative actions in a patient’s EHR (e.g. reviewing a prior patient’s history) outside of
the current patient encounter
e Number of administrative actions in the EHR related to a specific patient during an in-person visit
(e.g. reviewing their chart)
Details of the orders contained in the order batch. Creating orders is one of the more complex parts of the
order-prescribing task [21] and taxes a provider’s working memory (e.g. when choosing clinical elements for
an order), particularly when they are being made for multiple patients. This is especially true when the provider
is disrupted or distracted as they are placing the order, increasing the probability of making an error or sub-
optimal order.
e Number of orders in batch (submitted at once)
e  Number of orders in a batch using a predefined order template, called ordersets
e Number of medications in a batch which are re-orders of a prior medication order, called reorders
e Number of orders in a batch intended to keep a patient’s medications up-to-date, commonly from old
or outdated prescriptions, when the patient’s care is transferred from one context to another (e.g. when
transferred from the ambulatory context to the inpatient context or from one team in the hospital to
another), called reconciliations
e Number of time sensitive ("STAT") orders in a batch
e Number of patients for whom orders within a batch are being made
Contextual data related to the clinician and the order. The context in which orders are made may in-fluence
providers’ behavior; for example, clinicians in certain specialties (e.g. Emergency Department) may experience
higher levels of cognitive load. We include the following contextual features:

e Ordering clinician type (e.g. Nurse Practitioner, Resident)
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e Ordering clinician specialty (e.g. Emergency Medicine, Oncology)
e Day of the week

e Time of day (e.g. early morning, late morning)

e Hospital

e Order therapeutic class (e.g. Antivirals, Antibiotics)

Feature Mean Median Std. Dev.
# administrative actions in hour preceding order 15.42 2 29.62
# administrative actions in patient files in hour preceding order 30.26 7 46.30
# orders in batch 3.09 2 3.22
# ordersets in batch 0.05 0 0.44
# actions related to patient encounters in hour preceding order 49.65 8 79.81
# patients in batch 1.07 1 0.31
# reconciliations in batch 1.23 0 3.96
# STAT orders in batch 0.68 0 1.80
# unique patient encounters in hour preceding order 3.63 1 5.70
# unique workstations 1.62 1 1.06

Table 2: Descriptive statistics of continuous features included in the model

Machine Learning Model
The model was designed as a binary classification task where the target labels corresponded to whether an order batch
required intervention.

The data were split randomly into 70%, 15%, and 15% sets for model training, validation, and testing,
respectively. Logistic regression with L1 and L2 regularization were used as baselines, and gradient-boosted trees
(XGBoost) were employed as our focal ML algorithm. Cross-validation was used to identify the A penalty in
the regressions with regularization where the value selected gives the simplest model but also lies within one
standard error of the optimal value of lambda (A=0.013 and A = 0.28, respectively).

The XGBoost model was implemented with nested 5-fold cross-validation with early stopping (maximum of
50 rounds). Grid search was used to tune model hyperparameters, resulting in a maximum tree depth = 7, minimum child
weight = 1, subsampling = 0.84, evaluation metric = auc, eta = 0.17, gamma = 0.32. The validation set was used to
monitor the model training through early stopping to evaluate the model performance and the effectiveness of the
decision boundary; the test set was then used to evaluate the generalizability of the trained model. Due to a significant
class imbalance in the training data (5.53% of batches required intervention), synthetic minority oversampling technique
(SMOTE) was used to generate a pseudo-synthetic training set with 5,672 order batches in which 2,836 (50%) required

intervention.



RESULTS

The XGBoost algorithm outperformed both of the logistic regressions as well as the random forest algorithm by a
significant margin in both area under the receiver-operator (AUROC) and precision-recall (AUPR) curves (Table 3).
This indicates complex and non-linear relationships between predictors that are not captured by linear classifiers or

simple decision trees.

Model AUROC AUPR
Logistic regression with L1 (Lasso) regularization 0.528 0.276
Logistic regression with L2 (Ridge) regularization 0.530 0.278
Random Forest with pruning 0.579 0.180
Extreme gradient boosted trees (XGBoost) 0.908 0.439
Table 3: Model performance metrics for baseline (Lasso, Ridge, and Random Forest regression) and focal models
(XGBoost).

The trained XGBoost model had an AUROC of 0.908 (Figure 1); however, the high AUROC performance is
likely a result of the imbalance data set. In this case, the Precision-Recall curve can offer us a more accurate
representation of model performance (visualized in Figure 2). The AUPR curve is 0.439. The resultant Lift curve shows
that flagging a small fraction of orders for review results in the detection of a large number of the orders that required
intervention (e.g. selecting the top 20% of orders according to the model results in approximately 4 times the total

number of orders requiring intervention being identified). This is visualized in Figure 3.

True Positive Rate

False Positive Rate

Figure 1: Average Receiver-Operator Characteristic (ROC) curve. AUROC is 0.908.
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Figure 2: Precision-Recall curve. AUPR is 0.439.
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Figure 3: Lift curve

The choice of decision boundary will influence the performance of the model in the context of the clinical workflow.
We therefore want to consider constraints on model error that exist at different stages in the workflow, then
evaluate the model performance within the context of each of these stages. The hospital system on which this
analysis is centered follows a well-established, digitally-mediated process for prescribing and dispensing medications
in the inpatient setting that involves the verification of all orders that are placed by clinicians to the pharmacy. Based

on this workflow, we evaluate the model at two potential points:



Intervene at the point of order submission by the clinician; for example, alerting the clinician at the time of
order entry that it may contain an error or require optimization. In this scenario, a high number of
incorrectly flagged orders (false positives) could become burdensome and lead the provider to distrust or
disregard the system [26, 27, 28]. Within these constraints the precision rate should be relatively high, but the
precision-recall curve for our model (Figure 1) suggests that this model may not adequately minimize both false
positives and false negatives (AUPR= 0.439); we therefore consider the alternative:

Intervene at the point of order receipt by the pharmacist; for example, by removing the requirement for
pharmacist verification on incoming orders that the model has identified as having a low risk of requiring an
intervention. Clinical pharmacists currently review incoming orders assuming equal probability of requiring
an intervention. Their order verification queue could be reduced by de-prioritizing these orders. An
intervention targeting pharmacists therefore has a requirement for a low false negative rate, but pharmacists
can likely tolerate a higher rate of false positives (relative to prescribing clinicians) because they already review

a large number of orders that do not require intervention in the current workflow so any reduction in this

workload is an improvement.

In light of this, we compute the classification threshold for the model that optimizes for model recall performance

using the F10 score (0.076). Table 4(a) displays the corresponding confusion matrix and other model performance

metrics.

Though the model accuracy is only 0.41, it has a sensitivity of 0.99 and specificity of 0.37 on the test set. The

associated confusion matrix shows a very low number of false negatives (2) when de-prioritizing 35% (1,933 + 2) of

orders identified by the model as not requiring intervention.

(a) Actual Model Performance Metrics

Decision boundary = 0.076 Intervention ~ No Intervention | Accuracy Recall  Specificity = Precision

Prediction Intervention 312 3,241 0.41 0.99 0.37 0.09
No Intervention 2 1,933

(b) Actual Model Performance Metrics

Decision boundary = 0.5 Intervention ~ No Intervention | Accuracy Recall  Specificity = Precision

Prediction Intervention 242 606 0.88 0.77 0.88 0.29
No Intervention 72 4,568

(c) Actual Model Performance Metrics

Decision boundary = 0.83 Intervention ~ No Intervention | Accuracy Recall  Specificity = Precision

Prediction Intervention 130 120 0.94 0.41 0.98 0.52
No Intervention 184 5,054

Table 4: Confusion matrix associated with decision boundaries displayed on the left side of the double lines in the
table, and the corresponding model performance metrics are displayed on the right. (a) Displays model performance
associated with the selected decision boundary (0.076). (b) displays the model performance with a decision boundary
of 0.5; and (c) displays the model performance with a decision boundary of 0.83.




To demonstrate how alternative thresholds would perform consider (a) 0.5 and (b) 0.83 (model performance metrics in
Table 4 (b, c)). The model performance metrics associated with threshold (a) (Table 4(a)) show an accuracy and
specificity rate of 0.88. This is a significant increase in specificity compared with the selected threshold (0.37) and
corresponds to a substantial decrease in false positives (from 3,241 to 606 with threshold (b)). However, the number of
false negatives increases from 2 to 72, corresponding to a decrease in sensitivity from 0.99 to 0.77 with threshold (b).
These trends continue when the decision boundary is increased to 0.83 (Table 4 (c)). Though the percentage of orders
that can be de-prioritized increases from 85% (with threshold (a)) to 95% (with threshold (b)), there is a simultancous
and substantial increase in false negatives (the number of errors that are incorrectly labeled as not requiring intervention)
- well beyond what we have identified as an acceptable rate of missing errors (maximum 5%).

Finally, we examine the global and local feature importance of model features. In Figure 4 we display the 20
features with the highest gain. Whether the provider is a Resident has the greatest impact, followed closely by the number
of reconciliations contained in an order batch. The number of individual orders in a batch and orders for antibiotics have
moderate gain, whereas remaining features have relatively low influence over the model at the aggregate level.

To understand how these features impact individual predictions, we visualize local feature importance (Figures
5(a) to 6(b)) as the log-odds of an order requiring pharmacist intervention with the addition of each feature to
the model. The baseline intercept corresponds to the naive probability that any single order batch requires intervention
(5.61%). Figure 5(a) visualizes these effects for a randomly sampled order from the test set where the outcome of the
model resulted in a true positive, Figure 5(b) visualizes a true negative, Figure 6(a) visualizes a false positive, and
Figure 6(b) visualizes a false negative. The y-axis corresponds to the probabilities associated with the calculated log-
odds, red bars correspond to a decrease in the log-odds of an order requiring intervention, and the blue bars signify an
increase in the log-odds. The order represented in Figure 5(a) contains two cardiovascular medications, which is
associated with an increase in the log-odds of this order requiring intervention of 0.65 over the baseline rate (5.61% in
the sample). The plot also showed significant increases in the log-odds attributed to the number of reconciliations
contained in the batch, orders for antibiotics, and providers who are residents (+0.55, +0.46, and +0.44,respectively).
The number of patients the provider saw in the hour preceding the submission of the order and the day of the week
(Monday) were among the features that reduced the log-odds of the order requiring intervention (by -0.45 and -0.41,

respectively).

10



Feature importance
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Figure 4: Top 20 features with highest global importance. Gain represents the improvement in accuracy brought by a
feature to the branches it is on.
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Figure 5: The y-axis represents the change in the probability of the order requiring intervention. Red bars represent a
decrease in the log-odds, whereas blue bars represent an increase. (a) Contribution of features to the log-odds of a true
positive order. The estimated probability of this order requiring intervention is0.39, well above the 0.076 decision
boundary and consistent with the observed outcome. (b) Contribution of features to the log-odds of a true negative
order. The estimated probability of this order requiring intervention is 0.004, below the 0.076 decision boundary.
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Figure 6: The y-axis represents the change in the probability of the order requiring intervention. Red bars represent a
decrease in the log-odds, whereas blue bars represent an increase. (a) Contribution made by individual features to the
log-odds of a false positive order. The estimated probability of this order requiring intervention is 0.10, which is above
the 0.076 decision boundary, though this particular order was not observed to require intervention. (b) Contribution
made by individual features to the log-odds of a false negative order. The estimated probability of this order requiring
intervention is 0.003. Despite being well below the 0.076 decision boundary, this particular order did require
intervention.

DISCUSSION

The widespread deployment of electronic health records and computerized order entry systems have largely reduced
medication order errors and inefficiencies in the inpatient setting. Emerging research suggests, however, that they have
also introduced new sources of error related to the interaction between the provider and the platform. Despite this, prior
work has centered on the compatibility of the medication ordered with the patient’s medical records. We instead
developed a machine learning model using provider behavioral data and other contextual features related to the usage of
these systems. We collected data on providers’ actions in the EHR and pharmacy orders over a 2-week period within the

hospital system. We then built a classification model to identify incoming orders requiring pharmacist intervention and
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tuned the model considering the constraints of the pharmacist’s workflow. The resultant model had an AUROC curve
of 0.91and an AUPR curve of 0.44.

Though the precision-recall curve in Figure 2 suggests that false positive and negatives are not entirely
separable, we show that by strategically tuning the model to the clinical context in which it is deployed we
can still bring significant value to users. The model performance metrics (Table 4 (a)) show a very low number of false
negatives (2) when de-prioritizing 35% (1,933 + 2) of orders deemed by the model as not requiring intervention. While
this reduction may not be as meaningful to a well-resourced institution, many hospitals have understaffed pharmacies.
In these settings, such an intervention may be critical for managing the workload on pharmacy staff. Future work may
further improve the accuracy of the model by taking into consideration the severity of the intervention or stratifying by
type of intervention. This may improve the model’s utility in a broader range of clinical contexts.

The features that have the highest gain in our model (Figures 5(a) to 6(b)) are consistent with clinical
experience. For example, Residents are often the least experienced class of provider and can have high workloads.
This could account for their orders having a higher likelihood of requiring intervention. We also see order reconciliations
providing substantial gain in this model. The reconciliation of medications involves reviewing medications that patients
were receiving at an earlier phase of care (either as an outpatient prior to being admitted or on a different unit prior to
being transferred) and decide which ones to continue and discontinue depending on the change of clinical context.
Clinicians may anchor on the patient’s previous prescriptions, biasing them towards continuing these medications and
not thoughtfully assessing whether the change in context should correspond to an adjustment.

The total number of orders in a batch might correlate to a higher rate of intervention because each
individual order has some baseline probability of containing an error and the probability of requiring intervention
increases for batches containing more orders. It could also represent cognitive overburdening of the submitting clinician;
orders often accumulate as the clinician is rounding and are submitted together at the end, providing opportunity for
errors associated with switching among patients and their different needs. Finally, antibiotic ordering is understood to
be complex and many institutions have structured guidelines and oversight groups that direct their approach to ordering
antibiotics. It is thus not a surprise that antibiotic ordering is associated to increased gain in our model.

This modeling approach offers us a novel perspective on the factors influencing order entry by focusing on the
behavior of the provider and errors that arise from the workflow around the EHR. Whereas previous models predicting
errors ingest patients’ medical records, by focusing on the behavior of the clinician we also reduce the risk to the privacy

and security of these patients’ data while still being useful to pharmacists.

LIMITATIONS & FUTURE WORK

In our analysis, we used data from two weeks in July, 2017. While we believe that this sample is sufficient to demonstrate
the use of clinician behavior and other contextual features in predicting the occurrence of order errors, there may be
seasonality and other effects that limit the generalizability of the model. For example, July is the start of the year for
medical and surgical trainees. This introduces the possibility of increased order errors due to new interns being less
knowledgeable about medications, the EHR system, and about processes in busy health systems [29]. Further analysis
using longer periods of data collection is needed to account for new trainees’ evolving clinical experience and

knowledge.
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Future work may also consider comparing the results of these models across hospital systems to gain a better
understanding of how different clinical contexts influence the occurrence of such errors; however, each hospital system
is likely idiosyncratic in terms of the culture, processes, and procedures which may affect the occurrence and treatment
of order errors. We therefore believe that models for detecting these errors will likely need to be tuned for the specific
hospital in which they are deployed. Additional refinement of order error by type (e.g. improper dosage, incorrect
medication, etc.) may bring further precision to these models, and improve their utility to the clinician in context.

The implementation and deployment of this model in the hospital setting remains an open question;
specifically, what features are available at the time the batch of orders is submitted to run the model and provide decision
support. Three types of features outlined in the analysis section include measures of HER clinical engagement, details
of orders, and contextual data related to clinician and order. Both of the latter feature sets are readily available at
order time. The most difficult feature is the former (EHR clinical engagement) that are not routinely available in
real time from our EHR vendor. A custom build from the EHR would be required to access these data elements. Future

work could analyze more sub-feature sets to see how to maintain performance given features more readily available.

CONCLUSION

Errors involving medications are a significant challenge which is well suited to interventions based on machine learning
models. Conventional approaches have opted to compare medication orders to the contents of the patient’s medical
records and does not consider sources of error that are produced by EHRs and reflected in the provider’s behavior.

In this work, we develop a machine learning model that relies only on features related to the provider’s behavior
and basic contextual information related to the order to demonstrate a well-performing model. Further, we show
that with proper tuning, such models can significantly improve the workload on pharmacists without risking the privacy

and security of sensitive patient data.
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