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Abstract

Let x,y € (0,1], and let A, B, C be disjoint nonempty stable subsets of a graph
G, where every vertex in A has at least z|B| neighbours in B, and every vertex
in B has at least y|C| neighbours in C, and there are no edges between A, C. We
denote by ¢(z,y) the maximum z such that, in all such graphs G, there is a vertex
v € C that is joined to at least z|A| vertices in A by two-edge paths. This function
has some interesting properties: we show, for instance, that ¢(z,y) = ¢(y,x) for
all z,y, and there is a discontinuity in ¢(z,x) when 1/x is an integer. For z =
1/2,2/3,1/3,3/4,2/5,3/5, we try to find the (complicated) boundary between the
set of pairs (z,y) with ¢(z,y) > z and the pairs with ¢(z,y) < z. We also consider
what happens if in addition every vertex in B has at least x|A| neighbours in A,
and every vertex in C has at least y|B| neighbours in B.

We raise several questions and conjectures; for instance, it is open whether
¢(z,x) > 1/2 for all x > 1/3.

Mathematics Subject Classifications: 05C35, 05C70

1 Introduction

Our interest in the topic of this paper grew mainly from the Caccetta-Haggkvist conjec-
ture [1] from 1978:

1.1. Conjecture: For every integer k > 1, and all n > 0, if G is an n-vertex digraph in
which every vertex has out-degree at least n/k, then G has girth at most k.

(All graphs and digraphs in this paper are finite, and have no loops or parallel edges,
though digraphs might have “antiparallel edges”, that is, directed cycles of length two.
The girth of a digraph is the minimum length of a directed cycle.) Conjecture 1.1 is true
for k = 1,2 but the case k = 3 is still open and is of particular interest. There are many
possible extensions and variations (see [8] for a survey), and here are two:

1.2. Conjecture: If G is a non-null digraph of girth at least three, there is a vertex v
such that the number of vertices with (directed) distance exactly two from v is at least the
out-degree of v.

This would imply 1.1 when k£ = 3 for digraphs with all in-degrees and out-degrees at
least n/3.

1.3. Conjecture: If G is a non-null digraph with girth at least three, there is a vertex
v such that the number of vertices with (directed) distance one or two to v is at least the
twice the out-degree of v.

This would imply 1.1 when k& = 3. The first is more well-known (the “second neigh-
bourhood conjecture”, from 1990), but the second is also interesting.

Sometimes, questions about digraphs can usefully be converted into questions about
directed bipartite graphs, by what we call “bipartite expansion”: given a digraph G with
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vertex set {vy, ..., v,}, take two disjoint sets A = {ay,...,a,} and B = {by,...,b,}, make
a; adjacent from b; for 1 < ¢ < n, and for every edge v;v; of G, make b; adjacent from a;.
Applying bipartite expansion to 1.1 led two of us [7] to the following two conjectures:

1.4. Conjecture: For every integer k > 1, if G is a digraph with a bipartition (A, B)
with |A| = |B| > 0, and every vertex has out-degree more than |A|/(k + 1), then G has a
directed cycle of length at most 2k.

It is shown in [7] that this is implied by 1.1, and is best possible if true, and is true
for k=1,2,3,4,6 and all & > 224,539.

1.5. Conjecture: For every integer k > 1, and every pair of reals o, B > 0 with ka+ [ >
1, if G is a non-null digraph with bipartition (A, B), and every vertex in A has out-degree
at least 5| B|, and every vertex in B has out-degree at least a|A|, then G has girth at most
2k.

It is shown in [7] that this implies 1.1, and is true for k¥ = 1,2. Let us mention also
the following theorem of [7], a bipartite analogue of 1.3:

1.6. Let G be a directed bipartite graph with no directed cycle of length two, and let (A, B)
be a bipartition. Suppose that every vertex in A has at least 5|B| out-neighbours in B,
and every vertex in B has at least a|A| out-neighbours in A, where o, 5 > 0. Then there
is a vertex v € B and at least (o + )| A| vertices uw € A such that there is a directed path
from u to v of length at most three.

These results and conjectures for bipartite digraphs are quite pretty, and led us to
consider “tripartite digraphs”: a digraph with vertex set partitioned into three stable sets
A, B,C, where its edges are directed cyclically, that is, from A to B, and from B to C,
and from C to A. For instance, start with a digraph G, with vertex set {vy,...,v,}, and
make three disjoint sets A = {a,...,a,}, B={b1,...,b,} and C = {¢y,...,¢,}, and for
each edge v;v; of G, make b; adjacent from a;, and ¢; adjacent from b;, and a; adjacent
from ¢;. Let this new digraph be H. Then H has a directed cycle of length three if and
only if G has one, and so one might hope to get a version of 1.1 (in the k£ = 3 case) for such
tripartite digraphs. Indeed, one might hope that if every vertex of G has outdegree at
least |G|/3, then H must have a directed triangle; but this is false. The reason this does
not work is that there are loopless digraphs G' with minimum out-degree at least |G|/3
(indeed, at least |G|/2) that have directed cycles of length two but not of length three
(for instance, replace every edge of a complete bipartite graph K, ,, with two antiparallel
edges); and directed cycles of length two in G do not translate into directed cycles of H.

Even so, it seems like a good question: if GG is a graph, with vertex set partitioned
into stable sets A, B, C, and every vertex in A is adjacent to at least x|B| vertices in B,
and every vertex in B to at least y|C| vertices in C, and every vertex in C' to at least
z| A vertices in A, when must G have a triangle? A good understanding of this might
be helpful for the versions of the Caccetta-Haggkvist conjecture given above. This is the
topic of this paper.
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Another way to state the question is, suppose we have disjoint sets A, B, C, and there
are edges between A, B and between B, C such that every vertex in A is adjacent to at
least x|B| vertices in B, and every vertex in B to at least y|C| vertices in C; when can
we fill in edges between C, A without getting a triangle, such that every vertex in C' is
adjacent to at least z|A| vertices in A? This is true if and only if no vertex in C' can
reach more than (1 — z)|A| vertices in A by two-edge paths. So for which values of z
can we guarantee that some vertex in C' can reach more than (1 — z)|A| vertices in A by
two-edge paths? Or, essentially the same question: which values of z will guarantee that
some vertex in C' can reach at least z|A| vertices in A by two-edge paths?

Let us make some definitions. A tripartition of a graph G is a partition (A, B,C')
of V(G) where A, B,C are all nonempty stable sets. We denote the semi-open interval
{r : 0 < & < 1} of real numbers by (0,1]. For z,y € (0,1], we say a graph G is
(x,y)-constrained, via a tripartition (A, B,C), if

e every vertex in A has at least x| B| neighbours in B;
e cvery vertex in B has at least y|C| neighbours in C; and

e there are no edges between A and C.

For v € V(G), N(v) denotes its set of neighbours, and N?(v) is the set of vertices with
distance exactly two from v. We write N3 (v) for N*(v)N A, and so on. A first observation:

1.7. Let z,y € (0,1], and let Z be the set of all z € (0,1] such that, for every graph
G, if G is (z,y)-constrained via (A, B,C) then |[N%(v)| > z|A| for some v € C. Then
sup{z € Z} belongs to Z.

Proof. Let 2/ = sup{z € Z}, and let G be an (z,y)-constrained graph, via (A, B,C).
We must show that |N3(v)| > 2| A] for some v € C. We may assume that 2’ > 0; so there
exists z with 0 < z < 2/, such that [z|A|] = [2/|A]]. Since 2’ = sup{z € Z} and z < 2/,
and Z is an initial interval of (0, 1], it follows that z € Z, and so |N%(v)| > z|A| for some
v € C. Consequently, |N3(v)| = [z|A[] = 2| A], as required. This proves 1.7. |

We define ¢(x,y) to be sup{z € Z}, as defined in 1.7. The objective of this paper is
to study the properties of the function ¢. We will show, for instance, that:

o O(z,y) = ¢(y,z) for all z,y (proved in 2.3); and

e for each integer k > 1, there is a discontinuity in ¢(z,x) when x = 1/k: ¢(z,z) <

1/k when = < 1/k, and ¢(z, x) > #ZE‘H when = > 1/k.

We have a trivial lower bound, that will be used throughout the paper:
1.8. ¢(x,y) > max(x,y) for all z,y > 0.

Proof. Let G be (x,y)-constrained, via (A, B, ). Since every vertex in A has at least
x| B] neighbours in B, and B # (), there exists u € B with at least x|A| neighbours in
A; let v € C be adjacent to u (this is possible since y > 0), and then |N%(v)| > z|A|.
Consequently, ¢(z,y) > x. Now every vertex in A can reach at least y|C| vertices in C'
by two-edge paths (since z > 0); and so by averaging, some vertex in C' can reach at least
y|A| vertices in A by two-edge paths. Hence, ¢(x,y) > y. This proves 1.8. |
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And a trivial upper bound (used to prove 3.2, 6.1 and 6.7):

1.9. For all x,y € (0,1],
[ka] + [ky] — 1

o(z,y) < 2

for every integer k > 1.

Proof. Let z,y € (0,1], and let & > 1 be an integer. Let A, B,C be three disjoint
sets each of cardinality k, where A = {ay,...,ax}, B={b,..., b} and C = {ey,..., ¢k}
Make a graph G with vertex set AUBUC as follows. Let g = [kz], and for 1 < i < k make
a; adjacent to b;, b;41,...,bi14—1 (reading subscripts modulo k). Now let h = [ky], and
for 1 <@ < k make b; adjacent to ¢;, ¢i11, ..., Cirn1 (reading subscripts modulo k). Then
G is (x,y)-constrained via (A, B,C); and for 1 <i < k, N3(c;) = {ai,ai-1,...,0i—g-ni2}
(again, reading subscripts modulo k). Consequently, ¢(z,y) < (¢g+h — 1)/k. This proves
1.9. |

In particular, we have:
1.10. For every integer k > 1, if x,y > 0 and max(x,y) = 1/k then ¢(x,y) = 1/k.

Proof. From 1.8, ¢(x,y) > 1/k; and the graph consisting of k disjoint three-vertex paths
shows that ¢(z,y) < 1/k. (This also follows from 1.9, since [kx], [ky] = 1.) This proves
1.10. |

What makes the function ¢ interesting is that for some values of x,y, 1.8 is far from
best possible, and indeed 1.9 seems closer to the truth. Initially we hoped to extend
Kneser’s theorem from additive group theory [6] to a general graph-theoretic setting, via
a corresponding wild conjecture that the bound in 1.9 is always best possible, that is,
that for all z,y € (0, 1], there is an integer k > 0 with ¢(z,y) = % This turns
out to be false, but perhaps not ridiculously false; maybe something like it is true.

There are two other related problems:

e Let us say G is (z,y)-biconstrained (via (A, B,C)) if G is (z,y)-constrained via
(A, B,(C), and in addition
— every vertex in B has at least x| A| neighbours in A, and
— every vertex in C has at least y|B| neighbours in B.
e Say G is (z,y)-ezxact (via (A, B,()) if G is (x, y)-constrained via (A, B,C), and in
addition there exist ' > = and 3’ > y such that
— every vertex in A has exactly 2’| B| neighbours in B;
— every vertex in B has exactly 2’| A| neighbours in A;
— every vertex in B has exactly y'|C| neighbours in C'; and

— every vertex in C' has exactly 3/| B| neighbours in B.
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We shall sometime use “mono-constrained” to clarify that we mean the (z, y)-constrained
case and not the (z,y)-biconstrained case. Let 1(z,y) be the analogue of ¢(z,y) for bi-
constrained graphs; that is, the maximum z such that for all G, if G is (x, y)-biconstrained
via (4, B,C), then |N%(v)| > z|A| for some v € C. (As before, this maximum exists.)
Similarly, let £(z,y) be the analogue of ¢ and 1 for the exact case. Then we have

1.11. For all z,y € (0,1],

[kl + [ky] —1
k

max(z,y) < ¢(z,y) < ¢(z,y) <E(z,y) <
for every integer k > 1.

The proof of the non-trivial part of this is the same as the proof of 1.9. One might
hope that 1 (and even more ) are better-behaved than ¢, although this seems not to
be true. For instance, we proved that ¢(x,y) = ¢(y,z) for all x,y, but were not able to
decide whether the same holds for ©. And we were unable to prove anything whatsoever
for the exact case that is not true for the biconstrained case, so the paper will focus on ¢
and .

Let us see an example. Start with the graph of figure 1. Each vertex has a number
written next to it in the figure; replace each vertex v by a set X, of new vertices of
the specified cardinality, and for each edge wv of the figure make every vertex in X,
adjacent to every vertex in X,. This results in a graph with 81 vertices, divided into
three sets of 27 corresponding to the three rows of the figure; call these A, B, C' (labelled
from top to bottom). The graph produced is (13/27,1/9)-biconstrained via (A, B,C),
and yet |N3(v)| = 13 for every vertex v € C; so this proves that ¢(13/27,1/9) < 13/27
(and therefore equality holds, by 1.11). This shows that there need not exist an integer
k with ¥(z,y) = M The same graph, used from bottom to top, shows that
¥(1/9,13/27) = 13/27.

Figure 1: ¢(13/27,1/9) = 13/27

The example is not yet (13/27,1/9)-exact, because some vertices in A have three, four
or five neighbours in B, and vice versa. We can make it exact as follows. For each edge
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uv of the figure with v in the second row and v in the third, the two sets X, X, have the
same cardinality, one of three, four, five. Delete some edges between X, and X, such that
every vertex in X, has exactly three neighbours in X, and vice versa. Then the modified
graph is (13/27,1/9)-exact, and shows that £(13/27,1/9) = 13/27. Consequently, even
for the supposedly nicest function & of our three functions, there is not always an integer
k with (z,y) = %

So what can we prove about the functions ¢ and ¥? There are many ways to approach
this. Some of our results are of the general form “what bounds can we place on ¢(z,y)
or ¥(x,y) as a function of z,y?”. Others are of the form “for which z,y is ¢(z,y) or
(x,y) = 27" where z is some simple rational number, because with z fixed it is easier to
see graphically the values of z, y that are far from being decided, and because some useful
proof techniques naturally yield results in this form. (For instance, we sometimes look
for a small set of vertices that covers one of A, B, C, and this approach leads to results of
the form described.) One might also look for results of the form “for which xz,y is ¢(z,y)
or ¥(x,y) > z7” for some fixed z, and this is different; indeed, when 1/z is an integer, it
has a nice answer, namely if and only if max(z,y) > z (proved in 6.1). But we did not
find any other results of this form that were not consequences of results of the other two
forms.

Thus, we focus on seven special cases, v =y, and z = 1/2,2/3,1/3,3/4,2/5,3/5, but
in each case the results for ¢ and for ¢ are quite different. The paper is organized as
follows:

e We begin with a proof that ¢(x,y) = ¢(y, z) for all z,y.

e Then we give some general upper bounds on ¢(z,y) and ¥ (x,y), particularly fo-
cussing on the case when x = y. We determine ¢ (x,z) exactly, and show that
¢(z, x) has a discontinuity whenever 1/z is an integer.

e Next we consider when ¢(x,y) > 1/2, or ¢(x,y) > 1/2. There are several theorems
that this is true for certain pairs (z,y), and their union fills a good part of the
(x,y)-square. We also give a number of constructions that shows the statement is
not true for certain pairs (z,y). Ideally this would fill the complementary part of
the square, but there is an “undecided” band of varying width down the middle.

e Then we do the same for 2/3 instead of 1/2; and then for 1/3,3/4,2/5,3/5.
e Finally, we discuss some other questions and approaches.

Some of our results appear in [4] and [5].

Incidentally, we could ask instead, if G is (x, y)-constrained via (A, B, C'), which values
of z will guarantee that some vertex in A can reach at least z|C| vertices in C' by two-edge
paths? But this is of no interest; it is true if z < y, and false if z > y, since perhaps all
the vertices in B have the same neighbours in C'.

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.47 7



2 Weighted graphs and some linear programming

In this section we prove that ¢(z,y) = ¢(y,x) for all x,y. The argument uses linear
programming, and we need some preparation. We denote the set of real numbers by R,
and the non-negative reals numbers by R, . A weighted graph (G, w) consists of a graph
G together with a function w : V(G) — Ry. If X C V(G), we denote ), . w(v) by
w(X). Let (G,w) be a weighted graph, and (A, B, C) a tripartition of G. If 2,y € (0, 1],
a weighted graph (G, w) is (x,y)-constrained via (A, B, C), if:

d ZveAw(U) = ZUGB UJ(U) = Evecw(v> = 17
e for cach v € A, w(N(v) N B) > x; and

e for cach v € B, w(N(v)NC) > y.
Similarly, we say (G,w) is (z,y)-biconstrained via (A, B,C), if in addition:
e for each v € B, w(N(v) N A) > z; and

e for each v e C, w(N(v)N B) > y.

To make the graph of figure 1 into an appropriate weighted graph, divide all the numbers
by 27.

2.1. For z,y,z € (0,1], the following are equivalent:
o d(z,y) > 2

e w(N3(v)) = z for some v € C, for every weighted graph (G,w) that is (z,y)-
constrained via a tripartition (A, B, C).

Similarly, the following are equivalent:
o Y(z,y) > 2

e w(N%(v)) = z for some v € C, for every weighted graph (G,w) that is (x,y)-
biconstrained via a tripartition (A, B,C').

Proof. To prove the “if” direction of the first statement, let G be (x, y)-constrained via
(A, B,C). Define w(v) = 1/|A|, for each v € A, and w(v) = 1/|B| for v € B and similarly
for v € C. Then (G,w) is an (x,y)-constrained weighted graph, and the claim follows.
The “if” direction of the second statement is proved similarly.

For the “only if” direction, let (G,w) be a weighted graph, (z,y)-constrained via
(A, B,C), and suppose such a weighted graph can be chosen with w(N%(v)) < z for each
v € C. Consequently, we may choose (G, w) such that in addition, w is rational-valued.
Choose an integer N > 0 such that Nw(v) is an integer for each v € G. For each v € V(G),
take a set X, of Nw(v) new vertices; and make a graph G’ with vertex set (J,cy(g) Xo,
by making every vertex of X,, adjacent to every vertex of X, for all adjacent u,v € V(G).
Let A" = J,c4 Xv, and define B’,C’ similarly; then (A’, B’,C") is a tripartition of G’,
and G’ is (z,y)-constrained via (A4’, B',C"). Since in G, w(N3%(v)) < z for each v € C,
it follows that in G’, |[N% (v')| < z|A'| for each v' € C’, a contradiction. The “only if”
direction of the second statement is similar. This proves 2.1. |
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Let G be a graph with a bipartition (A, B), and let w : B — R, be some function.
We define w(A — B) to mean the minimum, over all u € A, of w(N(u)) (taking w(A —
B) =0if A=0).

2.2. Let G be a graph with a bipartition (A, B), and let w : B — R, be some function
such that w(B) = 1. Then either

e there is a function w' : B — R, , such that w'(B) =1 and w' (A — B) > w(A — B),
and such that w'(v) = 0 for some v € B; or

e there is a function f: A — Ry, such that f(A) =1 and f(B — A) > w(A — B).

Proof. We may assume that A # (). If some vertex in A has no neighbour in B, then
w(A — B) = 0 and the second bullet holds; so we assume that each vertex in A has a
neighbour in B.

Let © = w(A — B). The function w’, defined by w'(v) = 1/|B| for each v € B,
satisfies w'(A — B) > 0, since every vertex in A has a neighbour in B. Thus, we may
assume that = > 0, replacing w by w’ if necessary.

Let M be the 0/1-matrix (a,, : © € A,v € B), where a,, = 1 if and only if u,v are
adjacent. Let 14 € R4 be the vector of all 1’s, and define 15 similarly. Then w € RP
satisfies:

e 1Zw=1; and
o Mw > x1,4.
Consequently, b = w/x satisfies b € Rf, and
e 1Lb=1/z; and
o Mb>1,

Choose ¢ € RE with Mg > 1,4, with lgq minimum. Thus, 15¢ < 1/z. Since Mg > 14
and G has an edge it follows that 15q > 0; let 1/y = 1%q, and define w" = yq. Then
y = x, and 15w’ = 1 and Mw' > yl4, and so we may assume that w'(v) > 0 for each
v E B, because otherwise the first bullet holds.

Now ¢ minimizes 15¢ subject to the linear constraints ¢ € RZ and Mg > 14. From
the linear programming duality theorem, there exists p € ]RA suCh that p" M < 1%,
and pf14 = 1%q = 1/y. Define f = yp. Then f : A — R+ satisfies f(A) = 1, and
f(N(v)) <y for each v € B.

Let v € B; we claim that f(N(v')) = y. This follows from the “complementary
slackness” principle, but we give the argument in full, as follows. Let s = w'(v')(y —
f(N(v'))). Thus, s > 0, and we will show s = 0. We have

y:Zyw’( s—i—z Z —s—l—z Z flu )>s+2yf(u):s+y.

veEB vEB ueN (v u€A veN (u) ucA

Consequently, s = 0, as claimed. Hence, f satisfies the second bullet. This proves 2.2. |
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From 2.2 we deduce a very useful result, used throughout the paper

2.3. If x,y € (0,1] then ¢(x,y) = ¢(y, ).

Proof. Let z = ¢(x,y), and choose a weighted graph (G,w) that is (x,y)-constrained
via (A, B, (), such that w(N%(v)) < z for each z € C. Moreover, choose G with |V(G)|
minimum. If there is a function w’ : B — R, such that w/'(B) = 1 and w'(A — B) >
w(A — B), and such that w'(v) = 0 for some v € B, then we may replace w by a new
weight function, changing w to w’ on B and otherwise keeping w unchanged, and then
we may delete the vertex v € B with w'(v) = 0, contrary to the minimality of |V (G)].
Thus, there is no such w’, and so by 2.2, there is a function f : A — R, such that
f(A) =1and f(B— A) > w(A — B) > x. Similarly, there is a function g : B — R4,
such that g(B) = 1 and ¢(C' — B) > y. Let H be the graph with bipartition (A4, C) in
which u € A and v € C are adjacent if u ¢ N%(v) in G. Thus, in H, w(C — A) > 1 — z;
and so from 2.2 and the minimality of |V (G)], there is a function h : C' — R, such that
h(C)=1and (in H) h(A — C) > 1 — z. Let w' be defined by the union of f, g and A in
the natural sense; then (G, w’) is a weighted graph and is (y, z)-constrained via (C, B, A),
and w'(NZ(v)) < z for each v € A. This proves that ¢(y,z) < 2, and so proves 2.3. 1

We remark that we have not been able to prove an analogue of 2.3 for the biconstrained
case, or for the exact case, although we have no counterexample for either one.
There is another useful application of 2.2, the following:

2.4. Let (G,w) be an (x,y)-constrained weighted graph, via (A, B,C'), with the property
that w(N3(v)) < z for each v € C. Suppose that there exists X C A with |X| < 271 such
that |J,cx N&(v) = C. Then there exists u € A and a weighted graph (G',w') such that

G’ is obtained from G by deleting u;

(G, w') is (x,y)-constrained via (A’, B,C'), where A" = A\ {u};
o inG', w (N3 (v)) <z foralveC; and
o w'(u) =w(u) for allu e BUC.

Proof. Suppose not. Let H be the graph with bipartition (A, C'), in which v € A and
v € C are adjacent if u ¢ N%(v) in G. Then by 2.2, applied to H, there is a function
h : C — R4, such that A(C) = 1 and (in H) h(A — C) > 1 — z. Consequently, in
G, h(N&(v)) < z for each v € A. In particular, h(NZ(v)) < z for each v € X, and so
h(C) < z|A| < 1, a contradiction. This proves 2.4. |

Let x,y, z € (0, 1]. We say that (x,y, z) is triangular if no triangle-free graph G admits
a tripartition A, B, C of V(G) with the following properties:

e A B,C are nonempty stable sets;

e cvery vertex in A has at least x| B| neighbours in B;
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e every vertex in B has at least y|C| neighbours in C; and
e cvery vertex in C has at least z|A| neighbours in A.

As we mentioned in the introduction, it is possible to reformulate results about ¢(x, y)
in terms of triangular triples, because we have:

2.5. Forx,y,z € (0,1], ¢(z,y) > 1 —z if and only if (x,y, z) is triangular. Consequently,
the three statements ¢p(x,y) <1 — 2z, ¢(z,2) < 1 —y, and ¢(y,z) < 1 — x are equivalent.

Proof. Suppose that (x,y,z) is not triangular. Then there is a triangle-free graph G
with a tripartition (A, B, C'), satisfying the three bullets in the definition of “triangular”.
Let H be the subgraph of G with V/(H) = V(G), obtained by deleting all edges between
Aand C. If v € C, then N3(v) (defined with respect to H) contains only vertices in A
that are nonadjacent to v in G, since G is triangle-free; and so |N3(v)| < |A| — z|A], since
in G, v has at least z|A| neighbours in A. Consequently, ¢(z,y) < 1 — z.

For the reverse implication, suppose that ¢(z,y) < 1 — 2, and let H be (x,y)-
constrained via (A, B,C), such that |[N%(v)| < |A] — z|A| for each v € C. Make a
graph G by adding certain edges to H, namely for each v € C' and u € A, add an edge
wv if uw ¢ N%(v). Then G is triangle-free, and every vertex v € C' is adjacent in G to at
least |A| — (1 — z)|A| = z|A] vertices in A; and so (z,y, z) is not triangular.

In particular, (z,y, z) is triangular if and only if (z, x, y) is triangular; so it follows that
¢(z,y) < 1—zif and only if ¢(z,2) < 1 — gy, and similarly if and only if ¢(y,2) < 1 — z.
This proves 2.5. |

We call the equivalence of the second statement of 2.5 “rotating”.

It is awkward to express the biconstrained problem in the language of triangular triples,
but we can do so as follows. For x,y,z € (0,1] we say that (z*,vy, 2) is triangular if no
triangle-free graph G admits a tripartition (A, B, C) that satisfies the three bullets of the
previous definition, and in addition satisfies

e cvery vertex in B has at least z|A| neighbours in A.

Similarly, we say (x*,y*, z) is triangular if no triangle-free graph G admits a tripartition
(A, B, C) that satisfies the three bullets of the previous definition, and in addition satisfies

e every vertex in B has at least z|A| neighbours in A; and
e cvery vertex in C has at least y|B| neighbours in B;
and so on. Then, with a proof like that of 2.5, we have:
e For x,y,z € (0,1], ¥(x,y) > 1 — z if and only if (z*,y*, 2) is triangular.

We also need some shorthand for results of the form “if 2 > z then (2/,y,2) is
triangular”; let us say “(z*,y,z) is triangular” to mean “(2’,y,z) is triangular for all
2’ > 27, and treat the other two coordinates similarly. We will mix the two systems

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.47 11



of notation, in expressions such as “(z™* y*, 2) is triangular”, meaning “(z™ y™,z) is
triangular for all 2’ > 7.

Thus, in triangular language, and assuming some results from later in the paper, we
have the following.

e (1/27*/1/3*,1/3%) is triangular: because 7.1 says that (z*,1/3*,1/3%) is triangular
when z > 1/2.

e (1/27,1/3%,1/3%) is triangular, since 7.2 shows that (1/3*,1/2%,1/37%) is triangular,
and rotating gives that (1/2%,1/3%,1/3*) is triangular.

e (1/27,1/3%*,1/3%) is triangular; this follows from 4.1 with k£ = 2 and rotating.
e (1/27,1/3%,1/3™) is triangular; this also follows from 4.1 with & = 2 and rotating,.

These four statements are similar, but no two are equivalent, and it would be good
to find a common strengthening. Note, however, that (1/2%* 1/3* 1/3*) is not trian-
gular, and indeed (2/3*,1/3* 1/3*) is not triangular. We have not been able to de-
cide whether (1/2%,1/3%,1/3) and (1/2%,1/3,1/3") are triangular, or indeed whether
(1/2*,1/3%,1/3") is triangular. This extends to weighted graphs in the natural way.
For instance, the weighted graph of figure 2 (identify the vertices on the left with those
on the right, in order) shows that (4/7,2/7,3/8) is not triangular.

3
8

2
7

Figure 2: (4/7,2/7,3/8) is not triangular

3 Constructions

In this section we construct some graphs to prove upper bounds on ¢(z,y) or ¢ (z,y) for
certain values of x,y. We begin with a result that will be used several times later in the

paper:

3.1. Let x,y € (0,1], and let z € (0,1] such that z/(1 —2) = ¢(x/(1 —z),y/(1 —y)); then
¢(z,y) < z.
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Proof. Let (G',w') be a weighted graph that is (z/(1 — z),y/(1 — y))-constrained via
some tripartition (A’, B, C"), such that w'(N%(v)) < z/(1 — 2) for each v € C’. Add
three new vertices a, b, c to G’, and two edges ab and be, forming GG. Define w by

w(a) z
wv) = (1—2)w'(v) for each v € A’
w(b) = =z
w(v) = (1—xz)w'(v) for each v € B
w(c) =y
w() = (1—y)w'(v) for each v € C".

Then G is (z,y)-constrained via (A"U{a}, B'U{b}, C" U{c}) and shows that ¢(z,y) < z.
This proves 3.1. 1

The first application of 3.1 is:

3.2. Let k > 0 be an integer, and let v,y € (0,1] with kx,ky <1 and % + ﬁ <1,

with strict inequality if x or y is irrational; then ¢(z,y) < k#ﬂ
Proof. By increasing x and y if necessary, we may assume that x, y are rational. Suppose
first that £ = 0; then we may assume that x +y = 1. Choose an integer n > 1 such that

nz (and hence ny) is an integer. By 1.9,

[na] + [ny] -1

olr,y) < —r4y—1/n<l.
This completes the proof for k£ = 0. For general k we proceed by induction on k. We may
assume that k > 0; let x,y € (0,1] with ;75— + Ty < 1, with strict inequality if 2 or y
is irrational. Let 2’ = 2/(1 — ), and ¥ = y/(1 — y). Thus, 2’y € (0, 1] with

x’ Y x Yy

frd <1’
1—(k—1)x’+1—(k—1)y’ 1—kx+1—ky

with strict inequality if 2’ or 3/ is irrational. From the inductive hypothesis, ¢(2’,7) <
1/k. Let z satisfy z/(1 — 2z) = ¢(a',y'); then z/(1 —2) < 1/k, and so z < 1/(k+1). From
3.1, ¢(z,y) < z < 1/(k+ 1). This proves 3.2. |

The next result is used for £ = 2, 3, and also to prove 7.8.

3.3. Let k > 0 be an integer, and let x,y € (0,1] with x + ky < 1 and kx +y < 1, with
strict inequality in both if x or y is irrational; then (x,y) < %

Proof. Again, we may assume that z,y are rational. Let s = max(x,y); thus, s < 1/k.
Choose an integer N > 1 such that p=a2N/(1 — (k—1)s) and ¢ = yN/(1 — (k —1)s) are
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integers. (It follows that p 4+ ¢ < N, from the hypothesis.) Let G be a graph with vertex
set partitioned into three sets A, B,C, with |[A| = N +k and |B| = |C| =N +k —1; let

! / *
A = Hay,as,...,an,4}, ... a;_4,a"},
/ /
B = {blab%"'abNabla"'v k—1}7
/ /
C = {e1,6,. 50N,y Coq )

Let GG have the following edges:
o for 1 <¢ < N, a; is adjacent to b;, bi41, . .., bitp—1 reading subscripts modulo V;
o for 1 <¢ < N, b; is adjacent to ¢;, ¢iy1, . .., Cirg—1 reading subscripts modulo N;
o for 1 <i< k—1,d is adjacent to b}, and b is adjacent to c..
e ¢ is adjacent to b; for 1 <7 < N.

(Thus, this is the same as in the graph implicitly used in the proof of 3.2, except for the

extra vertex a*.) Let r satisfy
krN =1/k — x.

Thus r > 0. For each v € V(G), define w(v) as follows:
o w(v)=(k—1)r(N+1)/N forv € {ay,...,an}; w(v) =1/k—rforv e {d],...,a,_};
e wla*)=1/k— N(k—1)r;

w(v) =(1—(k—1)s)/N for v € {by,...,by}; w(v) = s for v e {b},...,b,_;}; and

e wv)=(1-=(k—1)y)/N forv €{cy,...,en}; ww) =y forve{d,...,c, 1}

Then (G,w) is a weighted graph. We claim it is (z,y)-biconstrained via (A, B, ('), and
w(N3(v)) < 1/k for each v € C. To see this we must verify:

r < p(l—(k—=1)s)/N

y < q(1=(k-1)y)/N

y < q1—(k=1)s)/N

x < 1/k—r

z < plk—1)7r(N+1)/N+1/k— N(k—1)r, and
1)k > 1/k—=Nk—-1)r+(p+q—1)(k—1)r(N+1)/N.

The first and third hold with equality from the definitions of p, ¢, and the second follows
since y < s. The fourth follows from the definition of r. For the fifth, on substituting for p
and simplifying, we need to show that r(k—1)(N—xz(N+1)/(1—(k—1)s)) < 1/k—x, and
this follows from the definition of . Finally, the sixth simplifies to (p+¢—1)(N+1)/N <
N, and this is true since p + ¢ < N. Consequently, (z,y) < %, by 2.1. This proves
3.3. |
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We also need the next three results later in the paper. The first has three applications,
in 7.7, 9.9 and 11.3:

3.4. Let o'y, 2" € (0,1), with ¥(2',y") < 2/. If x,y,z € (0,1] satisfy < 1/(2 — 2'),
y<y/(+y), e+ (1 -ay/y <1,2>1/2-2), and
< z—2 4+ (1 ,z)7

1-2

then ¥(x,y) < z.
Proof. Since 2’ < 2/ (because ¢ (2',y") < 2’) it follows that
r<1/2-2")<1/(2-2) <=

Let G’ be (z, y)-biconstrained via (A, B, C), such that |[N%(u)| < 2/|A| for all u € C. Add
three vertices a, b, ¢ to the graph, and edges from a to every vertex in B, edges from b to
every vertex in A, and an edge between b and c. Let this new graph be G. Assign weights
as follows:

w(a) = p
w(v) = (1—p)/|A| for each v € A
w(b) = ¢
w(v) = (1—q)/|B| for each v € B
w(e) =y
w(v) = (1—1y)/|C] for each v € C.

We will choose p, ¢ such that the weighted graph (G,w) is (x,y)-biconstrained via (A U
{a},BU{b},C U{c}) and w(NjU{a}(u)) < z for all w € C'U {c}. The conditions are:
l-pzx,l-q2wx,q2y,(1-q)2'+q=z, (1-p)2’+p>z, (1-y)y 2y, 1-q)y >y,
1 —p <z and (1 —p)z’ + p < z. These are equivalent to the following:

1 T <p<min |1 il
max|1l—2z, —— | <p <min —r,—
11— p 1— 2

-
max(y,%) gqgmin(l—x,l—g’)

Thus, it suffices to show that the lower bound on p is at most the upper bound on p, and
the same for q. We obtain eight conditions, which simplify to those given in the theorem
statement. This proves 3.4. |

The next result is applied in 7.8, 9.9 and 11.5:

3.5. Let o/,y',2" € (0,1), with ¥(2/,y") < 2'. If x,y € (0,1] satisfy y < 1/(2 —v/),
<2 /(14+2), e <2z, 1 —y)z/a’+y<1, z2>1/(2-2), andx < (2= 2')/(1 = 2'),
then ¥(x,y) < z.
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Proof. Let G’ be (z,y)-biconstrained via (A, B,C), such that |N%(w)| < 2’| A| for all
w € C. Add three vertices a,b,c to G', with an edge from a to b, edges from b to every
vertex in C, and edges from ¢ to every vertex in B. Let this new graph be G. Assign
weights as follows:

w(a) = p

w(v) = (1—p)/|A| foreachv e A
w(b) = ¢

w(v) = (1—¢q)/|B| for each v € B
w(c) = 1—y

w(v) = y/|C] for each v € C.

The conditions that the weighted graph (G, w) is (x,y)-biconstrained via (AU {a}, BU
{b]], C U{c}) with w(NflU{a} (u)) < z for all u € C'U{c} can be written as follows:

r z—2
l-z)<p<mn|l—-—, ——
max (z,1 — z) < p < min < iy z’)

s
max(x,?_z/) <q<m1n<1—y,1—%).

We need to check that the lower bound for p is at most the upper bound for p, and the
same for g. This gives eight conditions, which simplify (using that 1 — ¢y’ > 2/, since
¥(a',y") < 1) to those given in the theorem. This proves 3.5. |

The next is used to prove 10.5:

3.6. Let s,t > 1 be integers with s/t < 1/2. Let x,y € (0,1], satisfying tz/s +y < 1,
x+ty/s <1, and either sy < x or sz < y. Furthermore, if either x ory is irrational, let
strict inequality hold in all of these, that is, tx/s+y < 1, x+ty/s < 1, and either sy < x
or st <y. Then (z,y) < s/t.

Proof. By increasing x or y if necessary, we may assume that x,y are both rational. Let
k41 =L In terms of k, the hypotheses become k > 1, (k+1)z+y < 1, 2+ (k+1)y < 1,
and either sy < x or sz < y.

Suppose first that sy < z. Choose an integer N > 1 such that p = 2 N/(1 — kx) and
q = yN/(1—Ekx) are integers, and thus p+q < (x+y)N/(x+y) = N. Let G; be the graph
with vertices {a1,...,an,a*,by,...,by,c1,...,cn} where (reading subscripts modulo N)
each a; is adjacent to b;, ..., bi1,—1, each b; is adjacent to ¢;, ..., ¢iyq—1, and a* is adjacent
to all of the b;.

Let m =t —s. Let Go be the graph with vertex set {a,...,a,,, b}, ..., b c,....,c.},
where each a; is adjacent to b},...,b;, ., (reading subscripts modulo m), and each b; is ad-
jacent to ¢. Let G be the disjoint union of G; and Gy. Let A = {ay,...,ay,a*,d},...,a.,},

and B = {by,...,by, b}, ..., b } and define C' similarly.
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Let r satisfy (k + 1)rN = 2 — . Assign weights as follows:

w(a;)) = kr(N+1)/N
w(a) = 1/b—r/s

w(a*) = 1/(k+1)— Nkr
w(b;)) = (1—kx)/N
w(bf) = x/s

w(e;) = (1—ksy)/N
w(e) = v

This defines a weighted graph (G, w), (x,y)-biconstrained via (A, B, C), such that
w(N3(v)) < s/t =1/(k+1)

for all v € C, and so ¥(z,y) < s/t, as desired.

Now suppose sy > x, and consequently sx < y. Choose an integer N > 1 such that
p=xN/(1—ky), g =yN/(1— ky) are integers, and thus p+ ¢ < N. Let G; be as before.
Let m = b—a, and let Gy be the graph with vertex set {a},...,a, b}, ...,b c,...,c },
where each @} is adjacent to b}, and each b} is adjacent to ¢}, ..., ¢, ,_;, reading subscripts
modulo m (thus, this is the earlier graph G flipped). Let G be the disjoint union of G
and Gq, and define A, B, C' as before. Let r > 0 satisfy (k+ 1)rN < 1/(k+1) —x and

r < 1/(k+1)—y. Assign weights as follows:

w(a;) = kr(N+1)/N
w(a) = 1/t—r/s
w(a*) = 1/(k+1)— Nkr
w(bi) = (1-ky)/N
w(by) = y/s

w(e) = (1-ky)/N
w(c;) = y/s.

Then (G, w) is a weighted graph, (z,y)-biconstrained via (A, B, C), and w(N3(v)) < s/t
for all v € C, showing that ¥ (x,y) < s/t. This proves 3.6. |

The next result is used to prove 7.10, 7.11, 9.10, 9.11, 9.12, 9.13, 11.6 and 11.7.

3.7. Let x,y,z € (0,1], withy < 1/2 < z. Ifp(2—1/z,y/(1 —y)) < 2 —1/z, then
¢z, y) < z.

Proof. Let 2’ = 2z —1)/x,and ¥ = y/(1 —y), and let 2/ = ¢ (2 — 1/z,y/(1 —y)). Let
G’ be a graph that is (z',y’)-constrained via (A, B, C), such that |N%(w)| < 2| A] for all
w € C. Add three vertices a, b, c to the graph, and edges from a to every vertex in B,
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edges from b to every vertex in A, and an edge between b and c¢. Let this new graph be

G.
Assign weights w(v) (v € V(G)) as follows:

w(a) = 1—=z

w(v) = z/|A| foreachv e A

wb) = 11—z

w(v) = z/|B| for each v € B

w(e) =y

w(v) = (1—1y)/|C] for each v € C.

Then the weighted graph (G, w) is (x, y)-constrained via (AU{a}, BU{b}, CU{c}), since
22’ + (1 —2) = z and (1 — y)y' = y. Moreover, w(N3(v)) < (1 — 2) + 22’ < z for all
v e C;and w(NiU{a}(c)) = z. Thus ¢(x,y) < z. This proves 3.7. |

4 Biconstrained graphs

In this section we prove some lower bounds on ¥ (z,y). On the diagonal x = y, ¥(z,y)
behaves perfectly; it turns out that for all z, ¥ (z, x) = 1/k, where k is the largest integer
with 1/k > x. That follows from the next result via 4.2 and 4.3. The next result will also
be used to prove 6.3 and in section 7, and contributes to Figure 7:

4.1. For all integers k > 1, if x,y € (0,1] with x + ky > 1 and kx + m > 1, then
U(z,y) = 1/k.

Proof. By 1.8 we may assume that x,y < 1/k. Let G be (z,y)-biconstrained, via
(A, B,C). We must show that |N3(v)| = |A]/k for some v € C, so we suppose that this
is false. Choose K C C with |K| < k, and, subject to that, with |K| maximum such
that the sets N(v) (v € K) are pairwise disjoint. Let I C A be the union of the sets
N3(v) (v € K), and let J C B be the union of the sets N(v) (v € K). It follows that

(1) [ANI[> (1 = |K[/F)[A], and [B\ J| < (1 = [Kly)|B|.

If |K| =k, then by (1), |B\ J| < (1 — ky)|B| < z|B|, and since every vertex in A
has x| B| neighbours in B, it follows that every vertex in A has a neighbour in J, that is,
I = A, contrary to (1). Thus |K| < k.

Since each vertex in A\ I has at least z|B| neighbours in B, and they all belong to
B\ J, some vertex t € B\ J has at least

ANI| 1 |K|/k

B >
BB 7 2 T TRy
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neighbours in A\ I by (1). Since |K| < k — 1 and ky < 1, and therefore |K|y < 1, it

follows that
1—|K|/k>1—(k—1)/k_ 1

1—|Kly = 1—=(k—1)y  k(1—(k—1)y)’

and so t has at least m neighbours in A\ I. Let u € C be adjacent to t. From

the maximality of K, u has a neighbour w € N(v) for some v € K. Since w has at least
x| A| neighbours in I, it follows that

x| A|
k(1= (k=1)y)

a contradiction. This proves 4.1. |

INA(w)] > z|A] +

> |Al/k,

We deduce:

4.2. For all integers k > 1, if v,y € (0,1] with x + ky > 1 and kx +y > 1, then
U(x,y) > 1/k.

Proof. If k = 1 the result is easy (and follows from 5.2 below), so we assume that
k > 2; and hence we may assume that z,y < 1/k < 1/2 by 1.8. By 4.1 we may assume
(for a contradiction) that kr + —; < 1. Consequently, kx + =577 < 1. Let

t =1—kz. Then - (k 1 < kt, and so k(k —1)t* — (k + 1)t + 1 < 0. This is quadratic in

t, with discriminant (k + 1) — 4k(k — 1), and the latter is negative if k¥ > 2; so we may
assume that & = 2. Then 2t —3t +1 < 0,s0 (2t —1)(t — 1) < 0, that is, 1/2 < t < 1.
Butt =1—-2z,501/2<1—-2z <1, thatis,z < 1/4. But 2z +y > 1l and y < 1/2, a
contradiction. This proves 4.2. |

4.2 implies the result stated earlier, that:
4.3. For allz > 0, Y(x,x) = 1/k, where k is the largest integer with 1/k >
Proof. Certainly ¢ (z,z) < 1/k, since by 1.11,

W, z) < [k +]£kx] -1 _ 1k,

Equality holds by 4.2. This proves 4.3. |

Next we need a lemma, used for 4.5:

4.4. Let k > 1 be an integer, let (k—1)/k* <y < 1, and let (A, B,C) be a tripartition of
a graph G, such that:

o cvery vertex in B has at least y|C| neighbours in C; and

o |[N3i(v)| < |A|/k for each v € C.
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Then there exist vy, ...,vx € A such that N(v;) N N(v;) =0 for 1 <i<j<k.

Proof. If some vertex v in A has degree zero, then we may take v; = --- = v, = v.
So we assume that every vertex in A has a neighbour in B. For each v € A, let
c(v) = |N&(v)|, and let A(v) C A be the set of vertices in A that have a neighbour
in N(v). Let |A(v)| = a(v).

(1) For each v € A, c(v) > kya(v)|C|/|A].

If we choose u € NZ(v) independently at random, then since every vertex in A(v) has
at least y|C| second neighbours in NZ(v), the probability that a given vertex w € A(v)
belongs to N%(u) is at least y|C|/c(v), and so the expectation of |N3(u)| is at least
(y|C|/c(v))a(v). On the other hand, the expectation of |[N%(u)| is less than |A|/k. This

proves (1).

Let H be the graph with vertex set A, in which distinct u, v are adjacent if (in G)
u,v have a common neighbour in B. Thus, every vertex v has degree a(v) — 1 in H. So

20E(H)| = > eala(v) —1); but
(kylCI/1AD) D alv) <Y elv) =Y ING(v)| =) INA(u)| < |A]-|C|/k.

Consequently,
21E(H)| < (A C1/k)/(kylCI/IA]) — |A] = |AP/(K*y) — |A]| < |AP/(k = 1) — |A].
By Turan’s theorem, H has a stable set of cardinality k. This proves 4.4. |

We deduce the next result, which is used to prove 6.3 and contributes to figures 5 and
7

4.5. Let k > 1 be an integer, and let x,y € (0,1] where y > (k — 1)/k* and kx +y > 1.
Let G be (x,y)-constrained via (A, B,C), such that every vertex in C has at least y|B|
neighbours in B. Then |N%(v)| = |A|/k for some v € C. Consequently, {(x,y) > 1/k.

Proof. Suppose not; then there is a weighted graph (G’,w), (z,y)-constrained via some
tripartition (A’, B’,C"), such that

e for cach v € ', w(N(v)) > y|B'|; and
e for each v € C', w(N% (v)) < 1/k.

Choose such a weighted graph (G',w) with |V(G’)| minimum, and let z < 1/k such
that w(N%(v)) < z for each v € C'. By 4.4, there exist vy,...,v, € A’ such that
N(v1),...,N(vg) are pairwise disjoint. Consequently, w(N(vy) U---U N(vg)) > kx; and
since w(N(u)) >y > 1 — ka for each u € C’, it follows that |J, .y N& (v) = C' where
X ={v1,...,u}. But |[X]| < 27!, contrary to 2.4 and the minimality of |V (G’)|. This
proves the first claim, and the second follows. This proves 4.5. |
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5 The mono-constrained case

In this section we are mostly concerned with ¢(z,y) when x = y. We know that 1) behaves
well on the diagonal z = y, because of 4.3, so what about ¢? More generally, what about
an analogue of 4.1 or 4.2 with 1 replaced by ¢?

Figure 3: ¢(3/10,4/11) < 4/9.

If we replace 1) by ¢ in 4.1, it becomes false, even with k& = 2, because ¢(3/10,4/11) <
4/9, as the graph of figure 3 shows (the sets A, B, C are the rows, and the numbers on the
vertices are used as in figure 1). But as far as we know, 4.2 might hold with v replaced
by ¢. Let us state this as a conjecture:

5.1. Conjecture: For all integers k > 1, ifx,y € (0,1] with x+ky > 1 and kx+y > 1,
then ¢(z,y) > 1/k.

On the other hand, we have not even been able to prove what is presumably the
simplest nontrivial case of this, namely that ¢(x,y) > 1/2 for all x,y with z,y > 1/3.
But we do have several results approaching 5.1. First, it is true with £ = 1; we have the
trivial:

5.2. Forxz,y € (0,1], ifx+y > 1, orz+y =1 and x is irrational, then ¢(x,y) = 1.

Proof. Let G be (x,y)-constrained via (A, B,C). Then some vertex v € C' has at least
y|B| neighbours in B, and strictly more if y is irrational; and so N%(v) = A, as every
vertex in A has at least z|B| neighbours in B. This proves 5.2. |

This is used for 4.2, 5.6 and 7.9. It is tight, in that if z +y = 1 and x, y are rational,
then ¢(z,y) < 1. We omit the proof, which is easy.

The conjecture 5.1 would imply that ¢(z,z) > 1/2 if 2 > 1/3. We have not been able
to prove this, but we can show that ¢(z,z) > 3/7 if x > 1/3. That is implied by the
following;:

5.3. Let k > 2 be an integer; then for x,y € (0,1], if y > 1/k then

x(2 — 3x)
o(z.y) 2 kx(l—x)+a22—3x+1

Indeed if k = 2, then ¢(x,y) = 2x — x* (which is larger).
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Proof. Let G be (z,y)-constrained via (A, B,C). If x is irrational then G is (z,y)-
constrained via (A, B, ('), for some rational 2’ > x; so we may assume that z is rational,
by increasing z if necessary. Suppose that £ = 2, and choose v1,v, € B independently
and uniformly at random. For each u € A, the probability that u is adjacent to at least
one of vy, vy is at least 2z — 22, since u has at least z| B| neighbours in B; and so we may
choose vy, vo such that at least (22 — 2%)| A| vertices in A are adjacent to at least one of
them. But v, vy have a common neighbour in C, since y > 1/2, and the claim follows.

Thus, we may assume that k > 3. By 1.8, ¢(x,y) > z, and so we may assume that

x(2 — 3x)
>z,
kx(1—z)+ 22 —3x+1

that is, z < 1/(k — 1). Consequently, x < (kK —2)/(k — 1) since k > 3. Define

B z(1—x)
b= kx(l—2)+ 22 -3z +1’
5 = ’ and

- (k=21 —a)
S z(2 — 3z)

kx(l1—z)+22 -3z +1

These are all non-negative, and p is rational with denominator 7" say; and by replacing
each vertex by T copies, we may assume that p|A| is an integer. Since z < (k—2)/(k—1)
it follows that s < 1.

For 1 < i < k— 1, we define v; € B, and a subset P; of Ny(v;) with |P;| = p|A|,
inductively, as follows. Let Q = P, U---U P;_4.

(1) There exists v; € B such that sa +b > x(s|Q| + |A| — |Q|), where a = |Na(v;) N Q|
and b= |Na(v;) \ Q|-

Suppose not; then summing over all v € B, we deduce that

D sINa() N QI+ INa(w)\ Q < z(s]Q] + |A] = Q)| BI:

vEB vEB

But the first sum is s times the number of edges between ) and B, and so at least
xs|B]| - |Q|; and the second is similarly at least x|B|(|]A| — |Q|), a contradiction. This
proves (1).

Let v; be as in (1). Thus, sa+b > z(s|Q| +|A4| — |Q|) = (1 — (1 —s)(k —2)p)|A|. In
particular, since

a+b>=sa+b>a(l—(1-s)(k—2)p)|A =plAl,
there exists P; C N4(v;) of cardinality p|A|. Also, since a < (k — 2)p|A|, and so
stk =2)plAl + 0> sa+b>x(1 - (1 —s)(k = 2)p)|A],
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it follows that
b>z(1—(1-s)(k—2)p)|Al — s(k —2)p|A| = (m — p)|A],

and so
[Na(vy) U Na(vi)| = m|A]

for 1 < h < 4. This completes the inductive definition of vq,...,v,_1 and P;,..., Py_1.
Let P = PyU---UP;_;. Then |P| < (k—1)p|A|. Since every vertex in A\ P has at least
x| B| neighbours in B, there exists v, € B with at least z(|A| — |P|) > z(1 — (k — 1)p)|A]
neighbours in A\ P. Let Py be its set of neighbours in A\ P. Then for all ¢ with
1<i<k—1,
IPI+ 1Pl > (o(1 = (k= 1)p) + p)|A] = m| Al

Consequently, for all distinct v,v" € {v1,..., v}, [Na(v) U Na(v')| = m|A|. But since
y > 1/k, some two of vy,..., v have a common neighbour u € C, and so |N3(u)| = m.
This proves 5.3. |

We deduce from 5.3 a version of 4.3 for the mono-constrained case:

: : : 2k—3
5.4. Fory € (0,1], if y > 1/k where k > 2 is an integer, then ¢(1/k,y) > 55" -

Consequently, ¢(1/k,y) > 1/k + 1/(2k*) + Q(k73).

5.4 tells us in particular that ¢(z,z) > 555~ > 1/k when # > 1/k (if k > 2 is an
integer), and since ¢(1/k,1/k) = 1/k, there is a discontinuity in ¢(x,x) when z = 1/k,
and the limit of ¢(x,x) as + — 1/k from above is different from ¢(1/k,1/k). What
happens when  — 1/k from below? The next results investigate this. We will show that

if x is sufficiently close to 1/k from below, then ¢(x,z) = 1/k.

5.5. If k > 0 is an integer and x € (0,1] satisfies (1 — x)F < x, then ¢(x,z) > 1/k. In
particular, if x > 0.382 then ¢(x,x) > 1/2, and if x > 0.318 then ¢(z,x) > 1/3.

Proof. Let G be (z,x)-constrained via (A4, B,C). If we choosing k vertices from C
uniformly at random, the number of vertices in B nonadjacent to all of them is at most
(1—2)*|B| in expectation; and so there exist vy, ..., v, € C such that at most (1 —z)*|B|
vertices in B are nonadjacent to all of them. Since (1 — z)*|B| < z|B|, it follows that the
sets N3 (v;) (1 <4 < k) have union A, and so one of them has cardinality at least |A|/k.
This proves 5.5. |

The proof of 5.5 is very simple, but the result is not of any value. It is of no use
when k > 4 because then (1 — z)* < z implies > 1/k; and we will prove in 6.6 and 8.3
that ¢(x,z) > 1/2 when = > 0.352202, and ¢(z,x) > 1/3 when x > 0.28231, which are
stronger than 5.5 when k£ = 2,3. Here is another approach to the same question, more
successful for larger values of k (see figure 4):

5.6. Let k > 1 be an integer, and let v > 1/k—e wheree = 1/(13k%). Then ¢(z,x) > 1/k.
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Proof. We may assume that x = 1/k —e. By 5.2 we may assume that k > 2. We leave
the reader to check that

o 1/(2k) — e > 6k?e;
e r>1/(k+1); and
o (2kx —1)/(2k —1) > (ke)/(x + ke).

(These are inequalities we will need later.) Let G be (z, z)-constrained via (A, B, C'), and
suppose that |[N%(v)| < |A|/k for each v € C. Let P be the set of vertices in B that have
at most (1/k — 2ke)|A| neighbours in A.

(1) [P] < [BI/(2F).

Every vertex in B has fewer than |A|/k neighbours in A, and so the number of edges
between A and B is at most |P|(1/k — 2ke)|A| + (|B| — |P|)|A|/k. On the other hand,
the number of such edges is at least (1/k —¢)|A| - |B|; and so

|PI(1/k = 2ke)| Al + (IB] = [P])|Al/k = (1/k = ¢)[A] - | B,
which simplifies to 2k|P| < |B|. This proves (1).
(2) If u,v € B\ P have a common neighbour in C, then [Na(u)\ Na(v)| < 2ke|A|.

Since u,v € B\ P have a common neighbour in C, it follows that | Na(u)UNa(v)| < |Al/k.
But |[Na(u)| = (1/k — 2ke)|A| since uw € B\ P, and so |Na(u) \ Na(v)| < 2ke|A|. This
proves (2).

(3) There exist vy,...,v, € B\ P such that for 1 < i < j < k, there are at least
(1/(2k) — €)|A|/k vertices in A that are adjacent to v; and not to v;.

Choose vy,...,v, € B\ P as follows. Choose v; € B\ P arbitrarily. Inductively,
suppose we have defined vy,...,v; where i < k. Each has at most |A|/k neighbours
in A, and so the set of vertices in A adjacent to one of vy,...,v; has cardinality at most
(1/k)|A| < (1—1/k)|A|. Let D be the set of vertices in A nonadjacent to each of vy, ..., v;
then |D| > |A|/k. Since, by (1), each vertex in D has at least z|B|—|P| > (1/(2k)—¢)|B|
neighbours in B\ P, there exists v;11; € B\ P with at least (1/(2k) — €)|A|/k neighbours
in D. This completes the inductive definition. We see that for 1 < i < j < k, there are
at least (1/(2k) —¢)|A|/k vertices in A that are adjacent to v; and not to v;. This proves

(3).
Let H be the bipartite graph G[(B \ P) U C].

(4) For 1 <i<j <k, v; and v; belong to distinct components of H.
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From (2), the sets Ne(v1), ..., No(vg) are pairwise disjoint, because (1/(2k) — )| A|/k >
2ke|A|. Suppose that there is a path of H joining some two of vy, ..., v, and take the
shortest such path @); between v; and v; say, where j > i. Let ) have m vertices in B,

say Uy, ..., U, in order where u; = v;. We claim that m < 4. For suppose that m > 5.
From the minimality of the length of (), us has no common neighbour in C' with any
of vy,...,vk, and so the sets Ng(us), No(v1), ..., No(vx) are pairwise disjoint, which is

impossible since z > 1/(k + 1). Thus m < 4. By applying (2) to each pair of consecutive
members of V(Q) N B, we deduce that

INa(vj) \ Na(v;)| < (m —1)2ke|A| < 6kelA|.

But |[Na(vj) \ Na(v;)| = (1/(2k) — ¢)|A|/k, and so (1/(2k) — ¢)|A|/k < 6ke|A|, a contra-
diction. This proves (4).

For 1 < i < k, let H; be the component of H containing v;, and let V(H;) N B = B;
and V(H;) N C = C;. If there exists v € B\ P that does not belong to any of By, ..., By,
then the sets Ng(v), No(v1), ..., No(vg) are pairwise disjoint, which is impossible since
they all have cardinality at least x|C|, and (k+1)z > 1. Consequently, the sets By, ..., By
and P form a partition of B.

(5) For 1 < i < k there exists w; € C; adjacent to at least

(1_]%))5‘31" vertices in
B;.

T+k(k—1

For 1 < i < k, since v; has at least x|C| neighbours in C, it follows that |C;| > z|C|.
Let 1 < ¢ < k. Since C,...,C) are pairwise disjoint, and the union of the sets
C; (7 €{1,...,k}\ {i}) has cardinality at least (k — 1)z|C], it follows that

|G| < |C| — (k= 1)z|C| = z|C| + ke|C).

There are at least x| B;| - |C| edges between B; and C;, and so some vertex in C; has at
least

z(ICI/IGDIBi| = «(IC]/ (x[C| + ke|C)|Bi| = (z/(x + ke))| Bil
neighbours in B;. By substituting z = 1/k — ¢, this proves (5).

For 1 <i <k, let A; = N3(u;). Since |A4;] < |A]/k for 1 < i < k, there exists v € A
that is in none of Ay, ..., Ax. Now v has at least x| B| neighbours in B, and they all belong
to By U---U By except for at most |P| of them. Consequently, there exists i € {1,...,k}
such that v has at least (z|B| — |P|)|B;|/| B\ P| neighbours in B;. Since v ¢ A;, it follows

that
(z|B| = |PD|Bil/|B\ P| + (z/(z + ke))| Bi| < |Byl.

Since z|B| < |B| and |P| < |B|/(2k) by (1), it follows that
(o1 B] — [PDIBA/B Pl > (x— 1/2k)| B /(1 — 1/(2k)) = (2kz — 1)|Bil/(2k — 1),
and so (2kx — 1)/(2k — 1) < ke/(z + ke), a contradiction. This proves 5.6. |
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Y(x, ) ———— @1 o(z,x) (1,1)

(1/2,1/2) - (1/2,1/2)
(1/3,1/3) s
(1/4,1/4) /4174
x j x

Figure 4: Graphs of ¥(z,z) and ¢(z, z)

For comparison, in figure 4 we give graphs of the function ¢ (x,z) (which we know
completely, because of 4.3), and the function ¢(x,z) (which we only know partially, from
5.6, 5.4 and 1.10.)

The next result is a useful general lower bound on ¢(x,y). It will be used to prove
6.6, 9.7, 10.3 and 11.3, and contributes to figure 6:

5.7. For z,y,z € (0,1], if y > 1/2 and 42%y(1 — 2) > (z — x)? then ¢(x,y) > z. If in
addition 4z%y(1 — 2) > (2 — )? then ¢(x,y) > 2.

Proof. Let G be (z,y)-constrained via (A, B,C), and suppose that |[N3(w)| < z|A| for
each w € C. There are at least zy|A| - |B| - |C| two-edge paths between A and C, and
so there is a vertex w € C that is an end of at least xy|A| - |B| such paths. Let w be an
end of exactly zq|A| - | B| such paths; thus y < ¢. Let By = Ng(w), and let t = | B,|/|B].
Since |N3(w)| < z|A|, there exists A; C A including N3(w) with |A;| = z|A| (we may
assume the latter is an integer.) For each u € A; let u have exactly d(u)|B| neighbours
in By, and therefore at least (x — d(u))|B| neighbours in B\ By. It follows that

Z d(u) = qz|A|.
ucA
Let v; € By and vy € B\ By, and let A(vy,v3) = Na(v1) U Na(vq). For every such
choice of vy, vq, since y > 1/2, there is a vertex w’ in C' adjacent to both vy, v, and since
|N3(w')] < z|Al, it follows that |A(vy,v2)| < z|A|. Let us choose v; € By and vy € B\ By,
uniformly at random. It follows that the expected value of |A(vy,v2)| is less than z|A].
The expected value of |A(vy,v9) N Aq| is at least

dw)  w—dw)  du)(z — d(u)
Z( " ) )

t 1—-t

ucA
and the expected value of |A(vy,v2) \ Ap] is at least

T
2 1oy

u€A\ Ay
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Consequently, the sum of these two is less than z|A|, and so

5 (d(u) Lo —dw) d(ui(a: —d(U))) LY

e t 1-t (1—1) e, 1—t

Since ) d(v) = zq|A|, this simplifies to

u€A;
pqlA|(1 =2t —2) + Y d(u)® + xt|A| < zt(1 - t)|Al.

ucA

Now since ) ., d(v) = zq|A| and |A,| = z|A], it follows from the Cauchy-Schwarz
inequality that ) ., d(u)* > 2°¢*|A|/z. Consequently,

zq|A|(1 — 2t —x) + x2q2|A|/z + xt|A| < zt(1 —t)]A|.
This can be rewritten as:
(2t —xq+ /2 — 2/2)* + 2%q(1 — 2) — (2 — x)*/4 < 0.

Since the first term above is a square, it is nonnegative, and so, since ¢ > vy, it follows
that
v*y(l1 —2) — (z —2)*/4 < 0,

contrary to the hypothesis. This proves the first statement of the theorem, and the second
is immediate by slightly increasing z. This proves 5.7. |

6 When is ¢(z,y) or ¥(xz,y) > 1/27

Another way to approach the problem of understanding ¢ and 1 is to ask, given some
value z, for which z,y € (0,1] is ¢(x,y) = 27 Or we could ask the same question for 1,
or ask when ¢(z,y) > z. For instance:

6.1. If k > 1 is an integer, then for z,y € (0,1], ¢(z,y) > 1/k if and only if max(z,y) >
1/k.

This follows trivially from 1.9 and 1.8. And the same holds with ¢ replaced by .
But deciding when ¢ (z,y) > 1/k or ¢(z,y) > 1/k seems to be much less obvious. In this
section we discuss when 1(x,y) or ¢(x,y) is at least 1/2.

For z,y € (0,1], we say (temporarily) that (z,y) is good if ¥(z,y) > 1/2, and bad
otherwise. The “map” of good and bad points is shown in the left half of figure 5. The
solid black curve borders the known bad points, and the dotted curve borders the good
points; between them is undecided. The borders are complicated, and we have indicated
in the figure which theorem is responsible for each stretch of border.

Let us explain some of the details. First, if max(z,y) > 1/2, then (z,y) is good; and
all pairs (z,y) with = + 2y, 2z + y < 1 are bad, by 3.3. We searched by computer to find
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X

Figure 5: In the left-hand figure, ¢ (z,y) < 1/2 for pairs (z,y) below the solid line, and
(x,y) = 1/2 above the dotted one; between we don’t know. The right-hand figure does
the same for ¢.

other examples of bad pairs (z,y), and found about 12 maximal such pairs of rationals,
with numerator and denominator at most 100. In fact we only searched for pairs (z,y)
where the corresponding (z,y)-biconstrained graph is similar to the graph obtained from
figure 1, that is, it is obtained by “blowing up” the vertices of another graph in which
the graph between two of the three parts is a matching. All these examples not only
show that i (z,y) < 1/2, but also that ¥ (y,z) < 1/2, and &(z,y) < 1/2. In particular,
for every bad pair (z,y) we found by computer search, (y,x) is another. This is just an
artifact of our method of search, and is not evidence that the set of all bad pairs is closed
under switching = and y (though it might be; it is for ¢, by 2.3). For each bad pair (z,y)
the computer found, all pairs (z/,y") with ' < x and ¢y < y are also bad, and that gave
us a step function bordering the area of the known bad points. We improved on this; we
were able to smooth out some of the steps of the step function, by means of 3.3 and 6.5,
so the step function the computer found now only survives towards the ends of the solid
black curve in the figure. (These “fills” are not invariant under switching x and y.) We
give the coordinates of some bad pairs that we find particularly interesting. The apparent
asymmetry between x and y in the left half of the figure is just asymmetry among what
we have been able to prove; we have no proof of asymmetry. The right half of figure 5
does the same for ¢. Here there is symmetry exchanging x and y, by 2.3, and so we only
“explain” half of the border.

A graph has radius r if there is a vertex u such that every vertex has distance at most
r from u, and for all ' < r there is no u such that every vertex has distance at most 7’/
from u. We will need the following theorem of Erdés, Saks and Sés [2]:
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6.2. Let G be a connected graph with radius at least v, where r > 1 is an integer. Then G
has an induced path with 2r — 1 vertices, and consequently has a stable set of cardinality
at least r.

When we have more than one graph defined using the same vertices, we speak of
“H-distance” to mean distance in the graph H, and so on. The next result will be used
to contribute to figure 5 when .4199 < = < .5 and .1945 < y < .25 (see figure 5 for the
relevant section of the border).

6.3. Let z,y € (0,1], such that
(1 +3y) +2(dy® —y —2)+1 -2y +2y° < 0.
Then ¥(x,y) > 1/2.

Proof. Let G be (z,y)-biconstrained via (A, B,C'), and suppose that |N%(v)| < |A]/2
for each v € C. Then 1.8 implies that x,y < 1/2. Suppose that y > 1/4. The given
inequality implies that 5622 — 64z + 17 < 0, and so x > .41. Since 2z +y > 1, 4.5 implies
that y < 1/4, a contradiction. Thus y < 1/4. We leave the reader to verify that, when
y < 1/4, the following are consequences of the given inequality:

3—3y
that = 4+ 2y < 1

> 1 — 2x; and in particular, ﬁ > 1 — 2x, so from 4.1 with £ = 2 it follows

° ﬁ>1—2x;andsoﬁ>1—2x,sincey<1/4; and
e v+ 3y > 1.

(We found the easiest way to check these is to have a computer plot the various curves.)
Let H be the bipartite graph G[B U C].

(1) If v,v" € C have H-distance at most 2t where t > 0 is an integer, then
INAW) \ NA(v)] <(1/2 — 2)|Al.
Take a path P of H joining v and v’, of length at most 2¢. Let the vertices of P in C' be
V=00, .., 0 =,

in order. For 1 < ¢ < t let u; € B be adjacent to v;_; and v;. Then for 1 < 7 < ¢,
N3(vi—1) N N%(v;) includes Na(u;) and hence has cardinality at least z|A|; and since
|N3(v;)] < |A]/2, it follows that |N3(v;) \ N3(vi_1)| < (1/2 — x)|A|. But the union of
the ¢ sets N2 (v;) \ N%(v;_1) includes N3(v') \ N3(v), and so the latter has cardinality less
than ¢(1/2 — )| A|. This proves (1).

(2) There do not exist vy, ...,vs € C, pairwise with no common neighbour in B.
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If such vy,...,vy exist, then every three of N(vy),..., N(vy) have union of cardinal-
ity at least 3y; and since 3y > 1 — z, every vertex in A has a neighbour in at least
two of N(v1),...,N(vsg). Consequently, every vertex in A belongs to at least two of
N3(vy),...,N3(vs), and so one of N3(vy),...,N3(vs) has cardinality at least |A|/2, a
contradiction. This proves (2).

(3) H has at least two components.

Suppose not, and let H' be the graph with vertex set C' in which v,v" are adjacent if
they have a common neighbour in H. By (2), it follows that H' has no stable set of cardi-
nality four, and so has radius at most three by 6.2. Choose v € C' such that every vertex
in C' has H'-distance at most three from v. Let B; = Ng(v) and A; = N%(v). Every
vertex in A \ A; has at least x|B| neighbours in B\ By, and so some vertex u € B\ By
has at least z(|B|/|B \ B1])|A \ 41| neighbours in A\ A;. Let As be the set of neighbours
of uin A\ A;. Since |B\ Bi| < (1 —y)|B| and [A\ Ai| > |A[/2, and 35, > 1 — 2z, it
follows that

|[As| = (2/(1 = y))|Al/2 = 3(1/2 — z)[A].

Let v € C be adjacent to u. Since the H’-distance from v to v’ is at most three, the
H-distance from v to v’ is at most six. By (1), |[N3(v') \ Ni(v)] < 3(1/2 — x)|4|, a
contradiction. This proves (3).

(4) If H' is a component of H then |V(H')N B| < (1 —x)|B].

Suppose that |[V(H') N B| > (1 — z)|B]|; then every vertex in A has a neighbour in
V(H'). By (2), and since H has at least two components, there do not exist three vertices
in CNV(H') pairwise with no common neighbour, and so by 6.2, it follows that there is a
vertex v € C NV (H') with H'-distance at most four from every vertex in C NV (H’). Let
A’ = N%(v); then |A'| < |A|/2. Since every vertex in A\ A’ has at least y|C| second neigh-
bours in CNV(H'), and |CNV (H')| < (1—y)|C|, some vertex v' € CNV(H’) has at least
(y/(1—y))|A\ A'| second neighbours in A\ A". By (1), (y/(1—y))|A\ 4’| <2(1/2—x)|A|.
But |A'| < |A]/2, s0 y/(4(1 —y)) < 1/2 — x, a contradiction. This proves (4).

(5) Some component H' of H satisfies (1 —x)|B| > |V(H') N B| > x| B].

By (2) and (3), H has either two or three components. If H has only two components,
then they both satisfy (5), by (4); so we assume there are three. Let the components of
H be Hl,HQ,Hg, and for 1 <1 < 3, let V(Hz) NnB = Bz and V(Hl) NnC = C“ and let
|B;|/|B| = b; and |C;|/|C| = ¢;. Suppose that by, by, b5 < x. Consequently, every vertex
in A has neighbours in at least two of By, By, B3. For 1 < ¢ < 3, let A; be the set of
vertices in A with a neighbour in B;. Thus, every vertex in A belongs to at least two
of Ay, As, As, so from the symmetry we may assume that |A;| > 2|A|/3. By (2), every
two vertices in C; have a common neighbour in B. Choose v € C, and let A’ = N3(v);
then |A'| < |A]/2. Since every vertex in A; has at least y|C| second neighbours in C},
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some vertex v' in C has at least (y/c1)|A;1 \ A’| second neighbours in A; \ A’. By (1),
(y/c1)|Ar \ A'] < (1/2 — x)|A|. But |A'| < |A|/2, so |A1 \ A| > |A]/6; and ¢; < 1 — 2y,
so y/(6(1 —2y)) < 1/2 — z, a contradiction. This proves (5).

(6) Every vertex in C' has at most (1 — x — y)|B| neighbours in B. Consequently,

V(H)NB| _1—2—y|V(H)NC]|
| Bl y Cl

for each component H' of H.

Suppose that v € C has more than (1 — z — y)|B| neighbours in B. Choose v" € C
in a different component of H; so v,v" have no common neighbour in B. Consequently,

INW)UN@)| > (1 -z —y)+y)B,

and so every vertex in A has a neighbour in N (v)UN (v'). But then one of |[N%(v)]|, | N3 (v')|
is at least |A|/2, a contradiction. This proves the first assertion. Let H' be a component
of H. Then H' has at least y|C|- |V (H')N B| edges, and at most (1—z—y)|B|-|V(H")NC|
edges, so the second claim follows. This proves (6).

Let H' be as in (5), and take the union of the other (one or two) components of H. We
obtain nonnull subgraphs Hy, H, of H, pairwise vertex-disjoint and with union H, such
that |V(H;)NB| > z|B| fori=1,2. Fori=1,2,let V(H;)NB = B; and V(H;)NC = Cj;
and let |B;|/|B| = b; and |C;|/|C| = ¢;. Thus by, by > z. From (6), b; < (1 —z —y)c/y
for i = 1,2; and ¢, ¢ > y, since every vertex in B; has at least y|C| neighbours in C;.
Also bl+b2 =cCtc= 1.

For i = 1,2 let A; be the set of vertices v € A that have more than (b; — y)|B]
neighbours in B;. Let Ag = A\ (A1 UAs). Hence, if u € Ay, then since u has at least x| B)|
neighbours in B, u has at least (x+y—bq)| B| neighbours in By, and at least (x+y—b;)|B)|
neighbours in Bs.

Since Ay, Ay and Ap have union A, we may assume that |A;| + |Ag|/2 > |A|/2. Now
A; C N3(v) for each v € O, since if u € Ay, then u has more than (b; — y)|B| neighbours
in By, and v has at least y|B| neighbours in B. Consequently, |[N3(v) N Ag| < |Ag|/2 for
each v € C.

Let us choose v € (4 uniformly at random; then the expected number of second
neighbours of v in Ay is less than |Ag|/2, and so for some vertex u € Ay, the probability
that u € N3(v) is less than 1/2. Let D be the set of neighbours of u in B;. Then
|D| > (x +y — b9)|B|, and the probability that v has a neighbour in D is less than 1/2.
Thus, more than |Cy|/2 vertices in C; have no neighbour in D. On the other hand, the
expectation of the number of neighbours of v in D is at least |D|y/c1; and so there exists
v € C) with more than 2|D|y/c; neighbours in D. Also there exists v" € C7 with no
neighbours in D. It follows that

|Np(v) U Np(v')| 2 y|B| +2|Dly/c1 > (y + 2(x +y — ba)y/c1)| Bl
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Some vertex in Ag is not a second neighbour of either of v,v’, and so
[Np(v) UNg(V)] < (b1 — (z +y — b2))| Bl

Consequently, y+2(z+y+b;—1)y/c; < 1—x—y. Now ey < (1—xz—2y+yby)/(1—x—1y)
since

l-b=bh<(l-z—-yc/y=1-x—y)(1—a)/y.

So
2yl +y+b - —z-y)/(l-—2z—-2y+yb)<1—-z—2y,
that is,
biy(l —x) < 221+ 2y) + 2(—2 + 49%) + 1 — 2y + 20>,
But b; > x, contrary to the hypothesis. This proves 6.3. |

The next result contributes to figure 5:
6.4. Let z,y € (0,1], such that x +2y > 1, x > 1/4 and y > 1/3. Then ¢¥(x,y) > 1/2.

Proof. The only lower bound constraints on y are y > 1/2 — /2 and y > 1/3, and these
are both satisfied if y = 0.38 since x > 1 /4 Hence, we may assume that y < 0.38, by
replacing y by min(y, 0.38). Consequently, 4> — 3y + 1 > 0, and so

1—y)P<l1-2y<uz.

Let G be (z,y)-biconstrained via (A, B,C), and suppose that |[N3(w)| < |A]/2 for each
w € C. Choose wy,ws, w3 € C uniformly at random. The expected number of vertices
in B nonadjacent to all of wy,ws,ws is at most (1 — y)*|B| < z|B|; so we may choose
wy, we, ws such that fewer than x| B| vertices in B are nonadjacent to all of wy, wsy, w3. For
i=1,2,3let A; = N3(w;). Thus, A; U Ay U Az = A. In particular, one of Ay, Az, say As,
includes at least half of A\ A;; and since |A4;| < |A|/2, it follows that |As \ A;| > |A]/4.
Since |As| < |A]/2, it follows that |A; N As| < |A|/4 < z|A|; and so Ng(w;), Ng(ws,) are
disjoint (because any common neighbour would have at least x|A| neighbours in A, all
belonging to A; N As). Hence,

[Np(w1) U Np(ws)| > 2y|B| > (1 - z)|Bl,
and so A; U Ay = A, contradicting that |A,|, |As| < |A|/2. This proves 6.4. |

The next result also contributes to figure 5:

6.5. Let x,y € (0, 1], such that x < 13/27 and y < 1/7 and 3x + 5y < 2. Then (x,y) <
13/27. If in addition y < 1/8, then ¥(y,z) < 1/2.

Proof. We claim that, for both statements of the theorem, we may assume that 3z +5y =
2. By increasing x, we may assume that either x = 13/27 or 3x +5y = 2; and if x = 13/27
then y < 1/9, since 3z + 5y < 2, and by increasing y we may assume that 3x + 5y = 2.
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This proves our claim. Since 3z + 5y = 2 and = < 13/27, it follows that y > 1/9; and
since y < 1/7 it follows that z > 3/7.

We return to the graph of figure 1. Let A, B, C' be the three rows of vertices, in order
where A is the top row. We need to adjust the vertex weights. Define p =1/2 —2/2 —y
and r = (z — y)/2. With the vertices in the same order as the figure, take vertex weights
as follows:

5/27,5/27, 1/9,1/9,1/9, 4/27,4/27

p? p? y? y? y? T? /r.
17, 1/7, 1/7,1/7,1/7, 1/7, 1)7

One can check (it takes some time and we omit the details) that this defines an (z,y)-
biconstrained weighted graph showing that ¢ (z,y) < 13/27. For the second statement,
take the same graph and same vertex weighting, except replace the third row (of all
one-sevenths) in the table above, by

OO TR A T A
where p’ = 1/2 — 3y, and r’ = 3y/2. This weighted graph is (y,x)-biconstrained via
(C, B, A), and shows that ¢(y,z) < 1/2. (Again, we leave the reader to check that this
works.) This proves 6.5. 1

Now the mono-constrained case: for which pairs (z,y) is ¢(z,y) > 1/2? Now we have
symmetry between x and y, and we found some examples of pairs (z,y) with ¢(z,y) < 1/2
on a computer searching randomly. (Conjecture 5.1 says that all points above both the
lines x + 2y = 1 and 2z + y = 1 should be good, and indeed, all the maximal examples
the computer found lie in the wedges between the lines.)

The next result strengthens 5.5 when k£ = 2, and contributes to figure 5:

6.6. Let v,y € (0,1], such that 22y > (1 — x — y)?. Then ¢(z,y) > 1/2.

Proof. Suppose that ¢(z,y) = 1/2 — & where € > 0. Then by 2.3 and 2.5 we have
d(x,1/24e)<1—y. Lety =1/24+cand 2 =1—y. Since y > 1/2 and ¢(x,y’) < z, the
second statement of 5.7 implies that 4z%y'(1 — 2) < (2 — x)?, and so 22y < (1 —z — y)?,

a contradiction. This proves 6.6. |

In particular, 6.6 implies that ¢(x,z) > 1/2 if x > 0.352202, which is stronger than
5.5 when k = 2.
The next result is used to prove 7.10, 7.11 and 8.4, and contributes to figure 5:

6.7. Let v,y € (0,1] with x < 1/3 and y < (1 — x)?/(2 — 4z + 622); then ¢(z,y) < 1/2.

Proof. Since (1 — z)?/(2 — 4x + 62%) < 1/2 for all z > 0, it follows that y < 1/2.
Since z < 1/3 it follows that (1 — z)?/(2 — 4z + 62%) > 1/3, and so by increasing y, we
may assume that y > 1/3. Also, by increasing y slightly if necessary, we may assume
that s = (1/y — 2)"/2 is rational. Thus, 0 < s <1 < 1/y —1and 1+ 2/s < 1/, since
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1/3<y<1/2and y < (1 —2)%/(2 — 4z + 622). Choose an integer N > 2 such that sN
is an integer.

Choose a graph G that is (s,1 — s)-constrained via a tripartition (A, By, C}), such
that [A;| = |Bi| = |C1] = N and N3 (v) # A for each v € C,. (It is easy to see that such
a graph exists, for instance, one of the graphs used in 1.9.) Let Gy be isomorphic to G1,
and let (Ay, B, C3) be the corresponding tripartition. Take the disjoint union of Gy and
(G5, and add edges to make every vertex in B; adjacent to every vertex in Cy. Add three
more vertices a, b, ¢, where a is adjacent to b, b is adjacent to every vertex in C, and c is
adjacent to every vertex in By, forming G. We define a weighting w of G as follows. Let
p=1/(2N) and ¢ = 1/2 — 1/(4N?). Define w by:

w(a) = 1-p—gq

w(v) = p/N for each v € A4

w(v) = q/N for each v € A,

w() = 1—2x/s

w(v) = z/(Ns) for each v € By U By
w(e) = 1-(1+s)y

w(v) = y/N for each v € C}

w(v) = sy/N for each v € Cy

Define A = A; U Ay U {a} and define B, C similarly. Then the weighted graph (G, w) is
(x,y)-constrained via (A, B, ('), and proves that ¢(x,y) < 1/2. (To see the latter, observe
that, for instance, if v € C then

w(Ni(v)) <1-p—g+p(1-1/N)=1-q—p/N =1-(1/2=1/(4N*)) - 1/(2N?) < 1/2,

from the choice of G). This proves 6.7. |

7 The 2/3 level

When is ¢(z,y) > 2/3; or the same question for ¢)? In this section we say what we know
about these. The results are shown in figure 6.
The next two results are used for 7.3 and in figure 6:

7.1. If x > 1/2 then ¢(x,1/3) > 2/3.

Proof. Let G be (z,1/3)-biconstrained via (A, B, C'), and suppose for a contradiction that
|N3(v)| < 2|A|/3 for all v € C. By averaging, there exists vy € A such that |[N&(vy)| <
2|C|/3. Let By = N(vg) and Cy = NZ(vo). Hence, |By| > z|B|, and |Cy| < 2|C|/3, and
there are no edges between By and C'\ Cy, and every vertex in Cy has a neighbour in By.

Choose v; € Cy. Thus, N(v;) N By # 0. Let By = N(v;) and A; = N3(vq). So
|Ay| > z|A|, and |A;| < 2|A|/3. Every vertex v € A\ A; has a neighbour in By, since
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Figure 6: When ¢ (z,y) < 2/3 and when ¢(z,y) < 2/3.

|B\By| < |B|/2 < |N(v)|. Consequently, every vertex in A\ A; has at least |C|/3 > |Cy|/2
second neighbours in Cy, and by averaging it follows that some vertex vy € C has at
least |A '\ A;|/2 second neighbours in A\ A;. Let By = N(vy) and Ay = N%(vg). Then
|As\ A1] > |A\ A1]/2 > |A|/6. If there exists u € By N By, then since u has at least z|A|
neighbours in A;, and they all belong to A, it follows that

|| = [Aa N AL + [A2 \ Ay > z|A[ + |A]/6 = 2]A|/3,

a contradiction. Consequently, B; N By = 0.

In particular, | B; U Bs| > 2|B|/3, and so every vertex in A has a neighbour in By U By;
and so A; U Ay = A. Since |A;|, |A2| < 2|A|/3, it follows that |A; N As| < |A|/3. For
i =1,2, choose b; € BiNBy. Then N(b;)NA C A, fori = 1,2, and so [N (b;)NN(b2)NA| <
|A]/3. Consequently, [(N (b)) UN(by))NA| > 2|A|/3. Since by, by € By and they each have
at least |C|/3 neighbours in Cy, and |Cy| < 2|C|/3, it follows that they have a common
neighbour v € Cy. But then N(b) U N(by) N A C N3(v), and so [N3(v)| = 2|A|/3, a
contradiction. This proves 7.1. 1

7.2. Lety > 1/2, and let G be (1/3,y)-constrained via (A, B,C'), such that every vertex in
B has at least | A|/3 neighbours in A. Then there exists w € C such that [N3(w)| > 3| Al.
Consequently, ¥(1/3,y) > 2/3.

Proof. By averaging, there exists v; € C with at least y|B| neighbours in B. Let
By = N(v;) and A; = N%(vy). Thus |B;| > y|B|. Since every vertex in B\ B; has at
least y|C| neighbours in C, some vertex vy € C has at least y| B\ B;| neighbours in B\ B;.
Let B2 = N(’UQ) and A2 = N%(Ug) ThUS, ‘BQ \ Bl| 2 y|B \ Bl|, and so

|B1UBy| = |Bi|+y|B\Bi| = y|B|+(1—-y)[B:| = y|B|+y(1-y)|B| = (2—y)y|B| > 3|B|/4.
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In particular, since every vertex in A has at least |B|/3 neighbours in B, it follows that
Ay U Ay = A, But By N By # 0, since |By],|B2| = y|B| > |B|/2, and so there exists
b € B;N By; and since b has at least |A|/3 neighbours in A, and they all belong to A; N As,
it follows that [A;NAy| > |A]/3. Since |A;UA,| = |A], it follows that |A;]|+|As| > 4| A/3,
and so one of |A4;|, |As| is at least 2|A|/3. This proves 7.2. |

The last two results are closely related, via reformulation into triangular language,
as we saw in section 2. The graph of figure 2 shows that ¢(4/7,2/7) < 5/8, and so we
studied ¥ (4/7,2/7), and proved the following, which is used in figure 6.

7.3. Ifz,y € (0, 1] such that max(z,y) > 1/2, x > 1/3, x+2y > 1, and 3z+y/(1—y) > 2,
then ¥ (x,y) > 2/3.

Proof. Let G be (z,y)-biconstrained, via (A, B, C'), and suppose for a contradiction that
|N3(v)] < 2|A|/3 for each v € C. By 7.2, y < 1/2 since x > 1/3; and so x > 1/2 since
max(z,y) > 1/2. Hence, y < 1/3 by 7.1. Also x < 2/3, by 1.8.

(1) For all vi,vo € C, if |N(v1) U N(ve)| > (1 — 2)|B| then N(vi) N N(vy) = 0,
N3(v1) UN%(v9) = A, and |[N3(v1) N N3(ve)| < |A]/3.

Every vertex in A has a neighbour in N(u) U N(v), and so N3(u) U N3(v) = A. Since
|N3(u)] < 2]A]/3 and |N%(v)| < 2]A|/3 it follows that |N%(u) N Ni(v)| < |A|/3, and
so there is no vertex in N(u) N N(v) (since any such vertex would have at least z|A|
neighbours in A, all belonging to N%(u) N N%(v)). This proves (1).

(2) There exist vy,vy € C with N(v1) N N(vq) = 0.

Choose v; € C. Since every vertex in A\ N3(v;) has at least z|B]| second neighbours
in B\ N(v1), some vertex us € B\ N(vy) has at least (z/(3(1 — y)))|A| neighbours
in A\ N3(v1). Let v, € C be adjacent to uy. If vy, vy have a common neighbour wu,
then since Na(u;) € N3(vg), it follows that |[N3(ve)| = (2/(3(1 — y)) + )| A|, and so
x/(3(1—y))+x < 2/3, that is, (4 —3y)r < 2 —2y < (4 —3y)/2, and so = < 1/2, a
contradiction. This proves (2).

(3) If vi,ve,v5 € C and N(vi) N N(ve) = 0 then N(vs) is disjoint from ezactly one
of N(v1), N(va).

If N(v3) is disjoint from both N(vy), N(vq), then every two of N(vy), N(vq), N(v3) have
union of cardinality more than (1 — z)|B|, and so every vertex in A belongs to at least
two of N3(v;) (i = 1,2,3). Consequently, one of N3i(v;) (i = 1,2,3) has cardinal-
ity at least a|A|/3, a contradiction. Now suppose that N(us) has nonempty intersec-
tion with both N(v;), N(vg). Thus, |N3(v;) N Ni(v3)| > z|A| for i = 1,2, and since
|IN3(v1) N N3(vg)| < |A]/3, it follows that |N%(v3)| = (2 — 1/3)|A| > 2|A|/3 since
x > 1/2, a contradiction. This proves (3).
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Let H be the bipartite graph G[B U C]. From (2) and (3), H has exactly two com-
ponents Hy and Hs say. Let C; = V(H;) UC and B; = V(H;) N B for i = 1,2. Then
from (3), every two vertices in C; have a common neighbour in B;, for ¢ = 1,2. Let
¢ = |Cy|/|C, for i = 1,2. Thus ¢; + ¢ = 1. We may assume that b; > 1/2. Choose
vy € C. Since |A\ N%(v1)| > |A|/3, and every vertex in A\ N%(v;) has at least y|C|
second neighbours in C, some vertex vy € C} has at least (y/(3c1))|A| second neighbours
in A\ N%(v;). But since vy,v, € C, they have a common neighbour in By; therefore
|N3(v2)] = (y/(3c1)+x)|A], and so y/(3c1)+x < 2/3. Now ¢; < 1—y, s0 3z+y/(1—y) < 2,
contrary to the hypothesis. This proves 7.3. |

If A C V(G) and X C V(G) \ A, Na(X) denotes the set of vertices in A with a
neighbour in X. The next result is a useful lemma which says, roughly speaking, the
larger X is, the larger N4(X) is. In this section we only use it for £ = 1, but we will use
it with & = 2 for three results in the section discussing when ¢ (x,y) > 3/4.

7.4. Let x,y,z € (0,1], and suppose that G is (x,y)-biconstrained via (A, B,C), and
|IN3(w)| < z|A| for allw € C. Then for all integers k > 1, if B C B with

|B'|
| B

> (k=D —y) + max(l —y,1 —z/(1 —y)),

then |NAo(B')| > (z + k(1 — 2))|Al.

Proof. We proceed by induction on k, and so we assume that either £k = 1 or the result
holds for k — 1. Let A" = N4(B'). Every vertex in B \ B’ has at least y|C| neighbours
in C, so there exists v € C with at least y|B \ B’| neighbours in B\ B’. By hypothesis,
|B'|/|B] >1—x/(1 —vy), that is, x| B| + y|B \ B'| > |B \ B’|. But every vertex in A\ A’
has at least 2| B| neighbours in B\ B’, and therefore has one such neighbour adjacent to
v; and so A\ A’ C N%(v). Let B” = B'N Ng(v), and A” = N4(B").

(1) [A"] = (z + (k= 1)(1 = 2))[A].

Since |Ng(v)| > y|B]|, it follows that |B”| > y|B| — (|B] — |B'|) = |B| — (1 — y)|B].
If k =1, then |B’|/|B| > 1 — y by hypothesis, and therefore B” # (), and so |A”| > z|A|
as claimed. If k£ > 2, then since |B'|/|B| > (k — 1)(1 —y) + max(l —y,1 —z/(1 —y)), it
follows that
| B”|
| B

and so |A”| = (x + (k — 1)(1 — 2))|A]| from the inductive hypothesis. This proves (1).

> (k= 2)(1 —y) + max(l —y, 1 —z/(1 —y)),

Since A” C A', and A” U (A\ A’) C N%(v), it follows that
Al 2 INA()] = (z + (k= 1)(1 = 2))|A] + [A\ A

and so |A'| = (x + k(1 — 2))|A|. This proves 7.4. |
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We apply 7.4 to prove the next result, which is used for figure 6:

7.5. Let x,y € (0,1], such that y > 1/2, x + 3y > 2 and v > 2(1 — y)?/(2 — y). Then
Y(z,y) = 2/3.

Proof. Let G be (z,y)-biconstrained, via (A, B, C'), and suppose for a contradiction that
|N3(v)| < 2|A]/3 for each v € C.

(1) If B C B with |B'|/|B| > max(1—y,1—x/(1—y)), then there are at least (x+1/3)|A|
vertices in A with a neighbour in B'. In particular, if |B'| > (x + 2y — 1)|B| then the
same conclusion holds.

The first statement follows from 7.4 with £ = 1. For the second, x +2y —1 > 1 —y
since x+3y > 2; and x+2y—1 > 1—x/(1—y) since z > 2(1 —y)?/(2—1y). Consequently,
x4+ 2y —1>max(l —y,1 —x/(1 —y)). This proves the second statement and so proves

(1).

Say wy,wq € C are close if [Ng(wy) U Np(ws)| < (1 — x)|B|.

(2) There exists wy € C such that the set of vertices in C that are close to wy has
cardinality at least |C|/2.

This is trivial if every two vertices in C' are close; so we assume there exist wy,wy € C
that are not close. Consequently, every vertex in A has a neighbour in Ng(w;)U Ng(w,),
and so N3(w;) U N3(wq) = A. If there exists w € C' that is not close to either of wy, wy
then similarly N3 (w;) U N%(w) = A and N3(wq) U N3(w) = A; and so every vertex in A
belongs to at least two of N3(w;), N%(ws), N3(w), and therefore one of these three sets
has cardinality at least 2|A|/3, a contradiction. Thus, exchanging w;, ws if necessary, we
may assume that at least half of all vertices in C' are close to wy. This proves (2).

Let Cy be the set of vertices in C' that are close to wy; thus |Cy] > |C]/2. Let
By = Np(w;) and A; = N3(w). Since |B;| > y|B| and every vertex in A\ A; has at least
| B| neighbours in B\ B, there exists v € B\ By with at least {%[A\ 4| neighbours in
A\A;. Sincey > 1/2 and |C] > |C|/2, vy has a neighbour wy € C. Since ws is close to w;
it follows that |[Np(w;)UNg(ws)| < (1—2)|B|, and so |Ng(w)NNp(we)| = (z+2y—1)|B].
From (1), there are at least (x+1/3)|A| vertices in A with a neighbour in Ng(w;)NNg(ws).
These vertices all belong to Ay, and so

1 1
IN?(wsy)| > . f y|A\A1| + (x + §> Al > (ﬁ + x4+ §) |Al.

Consequently, ﬁ +x + 1/3 < 2/3, that is, ﬁ + 3z < 1. By hypothesis, =z >

2(1 —y)?/(2 — y), and so substitution for z yields
2(1 - y)*/(2—y)

Ly
which simplifies to (3y — 2)(2y — 3) < 0, contrary to 1.8. This proves 7.5. |

+6(1—y)?/(2—y) <1,
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The next result is used to prove 9.9, and in figure 6:
7.6. Let x,y € (0,1]. If either
< 11/17 and y < 1/7 and x + 3y < 1; or
e r<1/8andy <11/17 and 3x +y < 1
then ¥ (z,y) < 2/3.

Proof. Take the graph consisting of seven disjoint copies of a three-vertex path, numbered
a;,b;,c; inorder (1 <4< 7). For 1 <i<3and4<j <7, make q; adjacent to b; and
make a; adjacent to b;, forming G. Let A = {a; : 1 < i < 7} and define B, C' similarly.

For the first statement, we may assume by increasing x,y that x + 3y = 1. It follows
that © > 4/7 (because y < 1/7) and similarly y > 2/17, and 4o = 4 — 12y > 1 4 9y.
For 1 < i < 3, let w(a;) = 3/17, w(b;) = (4 —1)/9, and w(c;) = 1/7. For 4 < i < 7,
let w(a;) = 2/17, w(b;)) = (1 — x)/3, and w(¢;) = 1/7. Then this weighted graph is
(x,y)-biconstrained via (A, B,C) and shows that ¢(x,y) < 2/3. This proves the first
statement.

For the second statement, we may assume that 3z +y = 1, and so = > 2/17 and
y > 5/8, and so 3y = 3 — 9z < 1+ 8x. Let us take the same graph and redefine w,
as follows. For 1 < i < 3, let w(a;) = (1 —y)/2 and w(b;) = w(¢;) = (1 — 4x)/3. For
4<i<7, let w(a;) =3y —1)/8 and w(b;) = w(¢;) = x. Then this weighted graph is
(x,y)-biconstrained via (C, B, A) and shows that ¢(x,y) < 2/3. This proves the second
statement, and hence proves 7.6. 1

The next result is used for figure 6:

7.7. Let 2y, 2 € (0,1] such that (!, y) < 2 < 1/2; and let z,y € (0,1] satisfy

1< 5, v <1— 3(11__”",) y < 1+ £ (z,y) < 2/3. Consequently:

o Y(z,y) <2/3ifx <3/5 andy < 1/4cmd:c+2y 1;

o Y(z,y) <2/3ifx <5/8 andy < 1/6 and v+ 3y < 1.

Proof. The first statement follows from 3.4 taking z slightly less than 2/3. The two
statements in bullets follow by setting 2’ = ¢/ = 2’ = 1/3, and then 2’ = 2’ = 2/5 and
y' = 1/5. This proves 7.7. |

The next result is used to prove 9.9, and in figure 6:

7.8. Leta',y, 2" € (0,1] such that (2, y') < 2’ < 1/2; and let x,y € (0, 1] satisfy v < 2=
Vv +y < 1. Then (z,y) < 2/3. Consequently:

y<2 ,,and
o Y(z,y) <2/3ify<3/5and22x+y<1; and

o Y(x,y) <2/3ify>3/5and x+3y <2, and x4+ 3y <2 if x ory is irrational.
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Proof. The first statement follows from 3.5, taking z slightly less than 2/3. To prove
the first bullet, let 2x +y < 1, and so x < 1/2. If also y < 1/2 then ¥ (x,y) < 1/2 by
1.10; so we may assume that y > 1/2. We claim there is an integer k£ > 1 with

3_3 1—
Yebhg—Y
6y — 2 1y —2

To see this, if y > 5/9 we can take k = 1 (because we are given that y < 3/5), and if
y < 5/9, then
-y 3—3y 51
dy—2 6y —2
and so again k exists. Thus, y < 275, and = < L < g Let o/ = 2/ = k/(2k + 1), and
y' =1/(2k + 1). Then the claim follows from the first statement.

For the second bullet, let = + 3y < 2 with y > 3/5, with  + 3y < 2 if x or y
is irrational. Consequently, we may assume that x,y are rational, by increasing them
slightly if necessary. Let 2’ = 2/y — 3, and ¢/ = 2 — 1/y; it follows that 2’ + 2y’ < 1 and
22’ +1y < 1, and 2/, ¢ are rational, and so ¥ (2’,y") < 1/2 by 3.3. The result follows from
the first statement. This proves 7.8. |

?

For the mono-constrained question, we have a result used for 10.4, and in figure 6:
7.9. For z,y € (0,1), ify < 1/2 and x > (1 — y)?/(1 — 2y*) then ¢(z,y) > 2/3.

Proof. Let G be (z,y)-constrained via (A, B,C). If z +y > 1 the result follows from
5.2, so we may assume that z +y < 1. Since x > (1 —y)?/(1 — 2y?), we may also assume
that

e 1, y are rational; and
e every vertex in A has strictly more than x| B| neighbours in B

by reducing x and y a little if necessary while retaining the property that z > (1—y)?/(1—
2°).

Let p=(1—x —y)/(1 —2y). Thus, p is rational, so we may assume (by multiplying
vertices) that p|B] is an integer. Also p < y, since x > (1 —y)?/(1 — 2y?). Let s =
(x — (1 —9)?)/(y(1 —y)). Tt follows that 0 < s < 1, since x > (1 —y)?/(1 — 2y?) and
r+y<1

Choose v; € C' with at least y|B| neighbours in B, and let By C N(vy) with |B;| =
y|B|. Choose vy € C such that sby + by > y(sy + (1 — y)), where by|B| = |N(v2) N By
and by|B| = |N(v2) \ By|. (Such a vertex exists by averaging.) We claim that by + by > p;
for from the definition of s,

bo+by=sbo+by>ylsy+(1—y)=yllz—1—-9y)?)/(1—y)+1—y)=zy/(1—vy),

and p = (1 -2z —y)/(1 —2y) <ay/(1 —y) since v > (1 —y)*/(1 - 2¢?)
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Also we claim that by > 1 — o — y; for from the definition of s,
sy+l—w—y=y(sy+1—y) <sb+ by < sy+bo.

Consequently, |N(v1) U N(v2)| = (1 — 2)|B|, and there exist P, C N(v;) and P, C
N(vq), both of cardinality p|B|. Choose v3 € C' with at least y(1 — 2p)|B| neighbours in
B\ (P, UDP,). Then for i =1,2,

[P U N (vs)] = (y(1 = 2p) +p)|B| > (1 —)|B].

Since every vertex in A has strictly more than z|B| neighbours in B, it follows that every
vertex in A belongs to at least two of the sets N%(v;) (i = 1,2, 3); and so one of these sets
has cardinality at least 2|A|/3. This proves 7.9. |

The next result is used to prove 9.10, 9.11, 10.6, and in figure 6:

7.10. For all z,y € (0,1], if x < 3/5 and y < (z* — 2z + 1)/(192 — 222 + 7), then
¢(x,y) <2/3.

Proof. Since (22 — 2z +1)/(192% — 222+ 7) < 1/3 for all z, it follows that y < 1/3, and
so we may assume that > 1/2, or else the result is true since ¢(1/2,1/2) = 1/2. Let
¥ =2—1/zand ¥ =y/(1 —y). Thus 0 < 2’ < 1/3. Moreover,

y/ < (1 - I/)Q :
2 — 4x' + 622

since y < (2% — 2z + 1)/(192% — 222 + 7). By 6.7, ¢(z',y') < 1/2. Choose z with
o(a',y) <2—1/2 < 1/2. Thus, z < 2/3, and by 3.7, it follows that ¢(x,y) < z < 2/3.
This proves 7.10. |

The next result is used to prove 9.12, 9.13 and 10.7, and in figure 6:

7.11. For all z,y € (0,1], ify < 1/4 and v < (12y* — 8y + 2)/(20y* — 12y + 3), then
o(z,y) < 2/3.

Proof. We may assume that x > 1/2, since ¢(1/2,1/2) = 1/2. Let 2’ =2 — 1/x and
v =y/(1—y). Thus, 2/,y' € (0,1], and v/ < 1/3, and 2’/ < (1 —v¢')?/(2 — 4y’ + 6y?) since
r < (12y% — 8y +2)/(20y* — 12y + 3). By 6.7, (', 2') < 1/2, and so ¢(a’,y') < 1/2 by
2.3. By 3.7 (taking z with ¢(a’,y’) <2 —1/z < 1/2), it follows that ¢(z,y) < 2/3. This
proves 7.11. |

8 The 1/3 level

Next we do the same for ¥ (z,y) > 1/3 and ¢(x,y) > 1/3. Figure 7 summarizes our
results.
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T

Figure 7: When ¢(z,y) < 1/3 and when ¢(z,y) < 1/3.

The next result gives part of figure 7:

8.1. Let x,y € (0,1] withy > £ and 3z + > 1. Then ¢(x,y

W=

y
3(1-y)

) 2
Proof. We may assume that y < 1/3, by 1.8, and so y/(3(1 — y)) < 1/6. Consequently,
x > 5/18, and in particular z > 2y/3. Also, since 1/5 < y < 1/3, it follows that
3y —y/(3(1 —y)) >1/2; and so

(reant) () -

and consequently z +y > 1/2. Let G be (z,y)-biconstrained via (A, B, '), and suppose
that |[N%(v)| < |A|/3 for each v € C. Let H be the subgraph induced on B U C, and let
Hy, ..., Hy beits components. Let B; = V(H;)NB and C; = V(H;)NC, and b; = | B;|/|B],
¢ = |Cil/|C|, for 1 < i < k. Since y > 0, B;, C; are both nonempty and so b;,¢; > y for
1 <i<k Forl<i<k, let A; be the set of vertices in A with a neighbour in B;, and
let A} be the set of vertices in A such that N(v) C B;.

(1) k> 2.

Suppose that £ = 1, and let H’ be the graph with vertex set B in which u, " are adjacent
if u,u’ have a common neighbour in H. Then every stable set of H' has cardinality at
most 4. By 6.2 there is a vertex u; € B with H'-distance at most four to every other
vertex in B; and so the H-distance from u; to each vertex in B is at most eight. Let
v; € C be adjacent to u;. Let A’ = A\ N3(v;) and B’ = B\ N(v;). Hence, |A’| > 2|A]|/3.
Since every vertex in A" has at least z|B| neighbours in B’, and |B’| < (1 — y)|B|, some
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vertex u € B’ has at least
x| A'| - 2| A|

l-y~ 3(1-y)
neighbours in A’. Choose a path of H between u; and u of length at most eight, and
let its vertices be wi-vo-ug-- - - - v-uy = w say, in order. Thus, ¢ < 5, and so there exists

i with 1 < i < ¢t — 1 such that there are at least |N4/(u)|/4 vertices that belong to
Na(uir1) \ Na(u;). Since |[Na(u;)| = z|Al, it follows that

T+ 2%

INZ(vig1)] = 2| Al + [Nar(u)] /4 > 20—y
a contradiction, since z > 2y/3 and so x + z/(6(1 —y)) > v+ y/(9(1 —y)) > 1/3. This
proves (1).

Al = [A]/3,

2)b<l—x—y<1/2 for1<i<k, and sok > 3.

Suppose that by > 1 — 2z — y say. Thus, if u € A\ Ay, then u € N3(v) for every
v e C\C; and so |[A\ Ay < |A|/3, and so |A;]| > 2|A|/3. Let H' be the graph with
vertex set C in which v, v’ are adjacent if they have a common H;-neighbour in B;. Thus,
H'’ has stability number at most three (by (1)) and so has radius at most three, by 6.2.
Choose v; € (' such that every vertex in C has H,-distance at most six from v;. Let
A" = Ay \ N3(vy); thus |A'] > |A|/3. Since every vertex in A’ has a neighbour in B; and
hence has at least y|C| second neighbours in Cf, there exists v € C} such that

Y Y
N2, ()| = 2 |A| > —2 | A
NG W] > 141 > gl

(1-y)
since |C1] < (1 — y)|C|. Choose a path of H; between vy, v of length at most six, with
vertices vi-u1-vo- - - - -Uuy_1-vy = v say where t < 4. Then for some ¢ with 1 <i <t —1,

N2/ 1 N2/ ) >LA
| Nar(visa) \ N (v3))] 51 —g) k

and hence

V)l > (24 g ) 1A

since all vertices of Na(u;) belong to N3(v;41) and do not belong to N% (v;iy1) \ N3 (v;).
But 3z 4+ y/(3(1 —y)) > 1, a contradiction. This proves (2).

By (2), kK > 3; and k < 4 since y > 1/5. We may assume that |B|,|Bs| > |B;| for
i > 3; let By = Uscip, Bis and Cy = Uz, Cio Hence, [Bo| < |B|/2 since k < 4. Let
by = |Bo|/|B| and ¢y = |Cy|/|C|; let Ay be the set of vertices in A with a neighbour in By,
and let A} be the set of vertices in A such that N(v) C By. For 0 < i < j < 2, choose
Ajj = Aji € A; N Aj such that the sets Ajo, Aiz, Aoz, Af, A7, A5 are pairwise disjoint and
have union A. For 0 < i < 2 let a; = |A4;|/|A| and af = |Af|/|A|, and for 0 < 4,5 < 2
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with ¢ # j let a;; = |A;;|/|A|. Since by,be < 1 —z—y<axz+yand by <1/2 <z +y, we
have b; < x +y for : = 0,1,2. Let 0 < ¢ < 2, and choose v € C; uniformly at random.
Then A C N3(v) because b; < x + y, and the expected value of [N3(v) N (A; \ AF)] is at
least (y/c;)|A; \ Afl; so the expected value of [N3(v)] is at least

c1+ Zan i = (a4 L)) 1Al

(3

Since |N3(v)| < |A|/3, it follows that a} + (y/c;)(a; — a}) < 1/3. Now A}, Ag1, Age are
pairwise disjoint subsets of Ay, so ag; + ap2 < ag — ag; and hence

ag + (y/co)(aor + ao2) < ag + (y/co)(ao — ag) < 1/3.

Similarly we have af + (y/c1)(ao1 + a12) < 1/3 and ab + (y/ca)(ag2 + a12) < 1/3; and by
summing these three inequalities and using the equation

af+a§+a§+a12+a13+a23:1

we obtain

a12 <£+2—1>+a13(2+£—1)+a23 (E—FE—].) < 0.
&1 C2 &1 C3 Co Cs
Consequently, there exist distinct 4, j € {0, 1,2} with y/¢;4+y/c;—1 < 0. But 1/¢;+1/¢; >
4/(ci+c¢;), and ¢;+c¢; < 1—y, and so 4y/(1—y) < 1, a contradiction. This proves 8.1. 1

For ¢, we need the following, used to prove 8.3.

8.2. Let x,y € (0,1]. Let G be (x,2/3)-constrained via (A, B,C), such that every three
vertices in B have a common neighbour in C, and every verter w € C satisfies |[N%(w)| <
(1 —y)|A|. If v1 € B has a|A| neighbours in A then

a<1—(1+2v—52%y/(1—2)
Proof. Let v; € B have a|A| neighbours in A. Define A; = Na(v;) and choose
Cy C Ne(vp) with |Ch] = 2]C|/3 (we may assume this is an integer). Let A} = A\ A,
and C1 = C'\ (.
(1) If some vertex vy € B has a set Ay of t|B| neighbours in AY, then
o cvery v € B has at most (1 —y — a — t)|A| neighbours in A\ (A; U Ay); and

e the sum over all v € B of the number of neighbours of v in A\ (A1 U Ay) is
(1 —a—t)x|A||B|.
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The first claim follows since vy, v9, v have a common neighbour in C'. The second holds
since every vertex in A\ (A; U As) has x| B| neighbours. The third follows. This proves

(1).

The sum over u € A}, of [NZ (u)|, is at most 2(1 — y — a)|A||C|; and for each u,
|NE, (u)] = maxyeng(w) | Ne, (v)]. But the latter is at least

Y [N (0)l/(x|BI).

vENp(u)

It follows that

2
. D INa( < el -y —a)lAllBIC].
u€ Al vENp(u)
Consequently,
2
D IN4 (0)][Ney (v)] < 321 =y = a)|Al|B||C].

veB

Moreover, each vertex in (] has at least | B| nonneighbours in B, and so there are at
most (1 —z)/3|B||C| edges between B and C. Hence, there are at least (1 + z)/3|B||C|
edges between B and (.

For each v € B, let p(v) = | N4, (v)|/|A|l. Thus, > zp(v) = 2(1 —a)|B|. By setting
q(v) = 3|N¢, (v )|/|C’| — 1 we deduce: for each v € B there exists ¢(v) such that

e for cach v € B, 1/3 < ¢q(v)/3+1/3 < 2/3, that is, 0 < q(v) < 1;
e > ve B(qv)/34+1/3) = (1+2)/3|B|, that is, > v € Bq(v) > x|B];

. Zg‘egf?(v)(q(v)/i% +1/3) < 22(1 —y — a)|B|, that is, 3,5 p(v)q(v) < (z — 2zy —

Let @ C B be the z|B| vertices in B (we may assume this is an integer) with p(v)
smallest. Then the expression in the last bullet above is minimized by setting ¢(v) = 1
for v € Q, and g(v) = 0 for v € B\ Q. Consequently, > ., p(v) < (z — za — 2zy)|B|.

Choose vy € B\ Q with [Ny (v2)| maximum; A, say, where |Ay| = t|A[. By (1), every
v € B has at most (1 —y — a — t)|A] neighbours in A \ Ay, and the sum over all v € B
of the number of neighbours of v in A} \ Ay is (1 — a — t)z|A||B|. So the number of edges
between A\ A and B\ @ is at most (1 —y—a—1t)(1 —x)|A||B|; and the number between
Ai\ Az and @ is at most (z—za—2xy)|A|[B], since 3 ., p(v) < (x—za—2zy)|B|. Hence,
the number between A\ Ay and B is at most ((1—y—a—1t)(1—x)+x—za—2xy)|A||B],
and since this number equals (1 — a — t)x|A||B|, it follows that

l—y—a—-t)(1—2)+z—za—2xy > (1l —a—t)z,
that is,
l—-y—a—-t—o+za—ay+2tx > 0.
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Consequently, t < (1 —x —y —a+ xa —zy)/(1 — 22).
Now t(|B| — |Q)[A| + (z — wa — 2zy)|A||B| = z(1 — a)[A]|B], so

t(l —x) > 2xy.

Hence,
(l—z—y—a+xa—2axy)/(1—22)>t>=2xy/(1 — 1),
that is,
(1-z)(l—x—y—a+xa—uzay) > (1l —2x)2zy.
Consequently,
(1—2)*(1 —a) > (1+ 2z — 52%)y.
This proves 8.2. |

The next result is used for figure 7:

8.3. Let x,y € (0,1] with (1 — z)*> > (2 + 1)(1 + 2z — 522)y and x > 1/4 and 42*y* >
(1 —y)(x —y)2. Then ¢(x,y) = 1/3. Consequently, if v > 0.28231 then ¢(z,z) > 1/3.

Proof. Let ¢(x,y) = z and suppose that z < 1/3. Then there is a graph G that is
(z,1 — z)-constrained via A, B, C, such that |[N3(w)| < (1 —y)|A| for each w € C, by 2.5
and 2.3. As in 5.7, there exists w € C such that there are at least z(1 — 2)|A| - |B| edges
between Np(w) and N3(w). Define B; = Ng(w) and By, = B\ By; and let By = t|B|.
For each u € A, let u have d(u)|B| neighbours in B;. Let A; = N%(w) and Ay = A\ Aj;
and let |As| = s|A|. Thus, d(u) = 0 for each u € As.

()t>=x, and s 2y, and 0 < d(u) < min(z,1 —t) for each u € A. Also

VIAl = Y dw) > 21— 2)|A].

ucAq

We may assume that every vertex in A has degree exactly z|B[; so 0 < d(u) < min(z, 1—t)
for each u € A. Since |A;| < (1 — y)|A|, it follows that s > y. In particular, Ay # (), and
so some vertex in Ay has z|B| neighbours in B, and so ¢t > x. Since there are at least
z(1—2z)|Al-|B| edges between Np(w) and N (w), it follows that >°, ., d(v) > z(1—z)|A|.
Since |A;] < (1 — y)|A| and every vertex in A; has degree exactly z|B|, it follows
that the number of edges between A; and B is at most x(1 — y)|A| - |B|, and so

o(1 —y)|A] = > ,c4, d(v). This proves (1).

2)1-t> w)zf(hf%x/?’wg)y Consequently, © < 1 —3t/2 and so x <1 —t.

There are at least 2x|A| - |B|/3 edges between By and A, since z < 1/3. But each

vertex in By has at most
1+2
. (1+ 2z — 5%y A
(1—x)?
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neighbours in A, by 8.2, and the first claim follows. To show that x < 1 — 3t/2, suppose
not; then
22(1 —x)?/3

20/3+1/3>1—-t>
z/3+1/ (1—2)?2—(1422x—522)y

and so
2z + 1)((1 —2)* — (1 + 22 — 52%)y) > 22(1 — 2)?,

that is,
(1—2)* > 2z + 1)(1 + 22 — 52?)y

contrary to the hypothesis. This proves (2).

Let us choose vy, v € A; uniformly and independently at random, and choose vy € Ay
uniformly at random. Then for u € A, the probability that all of vy, v}, vy are nonadjacent

to u is )
t—x+dw) (1—t—d(v)
t 1—t¢ ’

Since 1 —y > 2/3 and so vy, v}, vy have a common neighbour in C, say w’, and |N%(w')| <
(1 —y)|A|, it follows that

Z (1_t—xz—d(v) (1—175:5(11)) ) < (1—y)|A],

u€A

that is,

Zt+d(u)—ﬂf (Hd(u)_l)? > y|Al.

) t 1—-1

This can be rewritten as:

> f(d) = 11— ) (1 = y)|Al,

u€A

where f(r) is the polynomial (r + ¢ — z)(r + ¢ — 1)?>. We therefore need to investigate
the maximum value of »° _, f(d(v)) (which we call “the objective function”) over all
choices of the numbers d(u)(u € A) satisfying the various constraints, and verify that this
maximum is less than ¢(1 — ¢)%(1 — y)|A|.

The derivative of f(r) is zero when 3r? +2(3t — x — 2)r + (3t — 2o — 1)(t — 1) = 0,
which has roots r = 1 —¢ and r = (2o +1)/3 —t. Let us define ry = (22 +1)/3 —t. Since
ro < 1 —t, the function f(r) increases for r < ry and for r > 1 — ¢, and decreases for
ro<r<l1-—t.

The second derivative of f(r) is zero when 3r + 3t — z — 2 = 0, that is, when r =,
where r; = 2/3 +x/3 —t. By (2), x < r1, and we are only concerned f(r) for r in with
the range 0 < r < x; so in particular all such r are less than 7. The function f(r) is
concave through the range 0 < r < rq, since its second derivative is at most zero.

Let us choose real numbers d(v)(v € A) satisfying the constraints
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e 0 <d(u) <z for each u € A;

e d(u) =0 for at least y|A| vertices u € A;

o z(1=y)[A] > ) eq, d(v) > 22[A[/3

to maximize the function ) _, f(d(v)). From the concavity of f, it follows that there
exists r* with 0 < r* < x such that d(v) € {0,r*} for all v (because if there were u, v with
d(u),d(v) distinct and nonzero, replacing them both by (d(u) + d(v))/2 would still satisfy
the constraints and increase the objective function). Similarly, if there were more than
y|A| vertices v with d(v) = 0, then choose some one of them, v say, and choose some u
with d(u) > 0; then again replacing them both by (d(u) + d(v))/2 would still satisfy the
constraints and increase the objective function. We deduce that there are exactly y|A|
vertices v with d(v) = 0.

Now the problem breaks into three cases, depending which of the constraints z(1 —
YAl = D ca, d(v) = 22|A]/3 hold with equality.

Suppose first that neither holds with equality. Then from the optimality of the objec-
tive function, it follows that r* = 7y, and since

WIAl =D dw) = z(1 - 2)|A],

ucAq

it follows that
r(1—y) = (1 —y)ro = 2(1 - 2),
that is,
x> 2r+1)/3—-t>2x/(3—3y).

Thus, if ¢ satisfies
(1—2)/3<t<(2x+1)/3—-22/(3—3y)

then there is a possible optimal solution where the objective function has value
ylAl£(0) + (1 = y)[Alf (o).
Now f(0) = (¢t — z)(t — 1)?, and
flro) = (ro+t—a)(ro+t—1)" = (1 —2)/3)((2x — 2)/3)* = 4(1 — x)*/27.
We must therefore check that for ¢ in the given range,
ylAl(t = 2)(1 = 1)* +4(1 = )| AJ(1 — 2)°/27 < t(1 = t)*(1 — )| A],

This simplifies to:
4(1 —2)*(1 —y) < 27(1 — t)*(t — 2ty + ay).

Now the function 27(1 — t)?(t — 2ty + xy) has no local minimum at ¢ with ¢ < 1, and so
is minimized at one of the ends of the range. Since ¢t > x, we might as well replace the
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lower extreme of the range by t > x (because it makes the arithmetic easier); so to check
the lower extreme, we need to check that

401 —2)3(1 —y) < 272(1 — 2)*(1 — y),

that is, 4(1 — z) < 27z, which is true by hypothesis.
For the upper extreme, t < (2x+1)/3 —22/(3 —3y) < 1/3; so it suffices to check that

41 —2)3(1 —y) < 27(1 — t)*(t — 2ty + zy)

when ¢ = 1/3, that is, to check (1 —x)3(1 —y) < (1 — 2y + 3zy). But (1 —z)® < 1/2
by hypothesis, and (1 — 2y + 3zy)/(1 —y) > (1 —2y)/(1 —y) > 1/2 since y < 1/3. This
finished the first of the three cases.

Now let us assume that x(1—y)|A| = > .4, d(v). It follows from the optimality of the
objective function that r* < ry. Moreover, since z(1 —y)|A| = > 4, d(v), it follows that
z(1—y)|A| = (1—y)|A|r*, so r* = x. This is only possible if z < 7, that is, t < (1—xz)/3;
and this is impossible since ¢ > x > 1/4. This finishes the second case.

Finally, we assume that }_ _, d(v) = 2z|A[/3. Tt follows from the optimality of the
objective function that r* > ry. Moreover, since »_ ., d(v) = 2z|A[/3, it follows that
(1 —y)|Alr* = 2x|A|/3, that is, r* = 22 /(3 — 3y). We must check that

ylt—a)t =12+ (A —y)(r" +t—a) "+t —1)> <t(1 —t)*(1 - y).
This is cubic in ¢, and, collecting the various powers of ¢, it becomes:

yt' + 2 (—ay =2y + (L—p) (" —2) + 21 —y)(r" = 1) +2(1 —y))

+Hy+ 2oy + (1 —y) (" = 1)* +2(L = y)(r" —2)(r" = 1) = (1~ y))

+(—zy + (1 —y)(r* —2)(r* = 1)?) < 0.
This simplifies to:
Yt + (v —2y) 2 +t(y —22/3+ 42y /(3—3y)) —zy+2(3y—1)(22/3—1+%)*/(3(1—y)?) < 0.
The derivative of the left side with respect to ¢ is
3yt? + 2(z — 2y)t +y — 22/3 + 4’y /(3 — 3y),

which can be rewritten as

3y(t+ (. —2y)/B3y))* — (x —y)*/(3y) + 42’y /(3 — 3y).

Since by hypothesis, —(z — y)?/(3y) + 42%y/(3 — 3y) > 0, the derivative is nonnegative,
at every value of t. Thus, we only need verify the inequality for the maximum value of ¢
that lies in the range.

By (2), t < 2(1 — x)/3; so it is enough to verify that

yt—2)t =12+ A =)+t —a)(r +t—1)* <t(1 —t)*(1 —y)
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holds when ¢ = 2(1 — x)/3. Thus, we need to check that
y(2(1—2)/3)° + (v = 2)(2(1 — 2)/3)* + (2(1 — 2)/3)(y — 22/3 + 42"y /(3 — 3y))

—xy + 23y — 1)(22/3 — 14+ )?/(3(1 — y)?) < 0.

We checked on a computer that this is true for all z,y with 1/4 <2 < 1/3and 0 < y < .
This proves 8.3. |

The next result is used for 11.6 and 11.7, and in figure 7:

8.4. Let x,y € (0,1] with x < 1 and y < L@ZQ; then ¢(x,y) <

1
4 3—122+16 3

Proof. Since % < 1/3 for all z > 0, it follows that y < 1/3. Let 2’ = /(1 — z)
and y' = y/(1 —y); then 2/,y € (0,1], and 2/ < 1/3 and y < (1 — z)?/(2 — 4z + 62?).
By 6.7 it follows that ¢(2,y) < 1/2. Choose z with ¢(2',y) < z/(1 — z) < 1/2; then
¢(x,y) < 2 <1/3 by 3.1. This proves 8.4. |

9 The 3/4 level

In this section we investigate when ¢ (x,y) > 3/4 and ¢(x,y) > 3/4. The results are
shown in figure 8.

Y

n —
PN

Figure 8: When ¢(z,y) < 3/4 and when ¢(z,y) < 3/4.

The next thirteen results all contribute to figure 8:
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9.1. Let z,y € (0,1], such that y > 1/3, x > 1/2, and 2y — 2y* > 1 —x. Then ¥(z,y) >
3/4.

Proof. Let G be a graph that is (x,y)-biconstrained via (A, B, C'). We can assume that
x,y are rational, and by multiplying vertices if necessary that y|B| € Z. Let v; € C, and
let By C N(v;) be such that |B;| = y|B|. Choose vy € C' with at least y|B \ B;| = y(1 —
y)|B| neighbours in B\ By, and choose By C N (vy) with |Bs| = y|B|. Choose vz € C with
at least y(1—2y) neighbours in B\ (B;UBy). Thus, |[N(v1)UN(v9)| = y+y(l—y) > 1—ux,
and for 1 = 1,2, [IN(v;) UN(vs)| 2y +y(l —2y) > 1—x.

For 1 <7 < 3, let A; = N3(v;). Since y > 1/3, it follows that there exist 7,7 with
1 < i < j < 3such that N(v;) N N(v;) # 0, and so |4; N A;| > z|A|] > |A]/2. But
A;UA; = Asince [N(v;) UN(v;)| > 1—x, and so |A;| + |4;| > 3|A|/2, and therefore one
of |A4;],]A;| = 3|A|/4. This proves 9.1. |

9.2. Let z,y € (0,1], such that x > 2/3, x + 2y > 1, and either 4(1 —x)(1 —y) < 1 or
x>1—2y+2y% Then Y(x,y) > 3/4.

Proof. If x +y > 1 the result follows from 4.1 with £ = 1, so we may assume
that y < 1 —x < 1/3. Let G be (z,y)-biconstrained via (A, B,C), and suppose that
|N3(v)| < 3|A|/4 for each v € C. Let H be the graph with V(H) = V(C), where distinct
u,v are adjacent in H if and only if v and v have distance two in G (that is, in G they
have a common neighbour in B).

(1) For all wy,wy, w3 € C, if N(wy) N N(wy) # O and N(wy) N N(ws) # 0, then
N(wy) N N(ws) # 0. Consequently, each component of H is a complete graph.

Suppose that wy,wq, w3 € C, and N(wy) N N(wz) = 0, and v; € N(w;) N N(wsq) for
i =1,3. Let A; = N3(w;) for i = 1,2,3. Since x + 2y > 1 we have A; U A3 = A.
Consequently, |A; N As| < |A]/2, and since Na(v1) N Na(vs) € A; N As, it follows that
[Na(v1) N Na(vs)| < [A]/2. Thus,

[NA(w2)] > [Na(vi) U Na(vs)| > (22 — 1/2)|A] > 3| A|/4,
a contradiction. This proves (1).

Let a be the size of the largest stable set in H, that is, the number of components of
H. Let the vertex sets of the components of H be C1,...,C,, and for 1 < i < a let B; be
the set of vertices in B with a neighbour in C;. The sets By, ..., B, have union B, and
from the definition of H, they are pairwise disjoint. For 1 < i < «a, let w; € C; and let

(2) For1<i<j<a, AiUA; = A, and so |A; N Aj| < |A]/2. Consequently, o < 3.
Since w;, w; have no common neighbour in B, it follows that |N(w;) U N(w,)| > 2y|B| >

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.47 51



(1—x)|B|, and so A;UA; = A. Since |4;|,|4;] < 3|A|/4, it follows that |A;NA;| < |A]/2.
This proves the first assertion. Suppose that o > 4. By the first assertion, every vertex in
A belongs to at least three of Aq,..., A4. Consequently, some A; has cardinality at least
3|A|/4, a contradiction. This proves (2).

(3) a # 1.

Suppose that a = 1. Every vertex in A\ A; has at least x| B| neighbours in B\ N(w;),
so we may choose v € B with at least

2| AN Ay|/(1 = y) > x| A]/(4 = 4y) > [A]/12

neighbours in A\ A;. Let w € C be a neighbour of v. Since w;,w have a common
neighbour, it follows that

INA(w)| > (z+1/12)|A] = 3| Al /4,

a contradiction. This proves (3).

(4) For 1 <i < a, if |Bi| > (1 — )| B| then |C;] > 3|C].

Suppose that |B;| > (1 — z)|B]| say, and let |C;| = ¢|C|. Since x > 2/3, every vertex
u € A\ A; has a neighbour in B;, and so |NZ(u) N C;i| > y|C| = (y/c)|C;]. Hence, there
exists w € C; such that

Y Y
M) N (AN AN > Ly Al > L)
But w, w; have a common neighbour, and so |N%(w) N A;| > z|A|, and therefore
Sl > 1N @) > o+ Dal
4 A 4
Consequently, 3/4 > x + y/(4c), and so ¢ > y/(3 — 4x). This proves (4).
(5) > 1—2y+2y* and o = 2.

Since a < 3, we may assume without loss of generality that |B;| > |B|/3 > (1 — x)|B].
Since each |C;| > y|C|, it follows that |Cy| < (1 — (e — 1)y)|C]. By (4), 1 — (o — 1)y >
y/(3—4x), and since a > 2, it follows that 1 —y > y/(3—4x), that is, 4(1—z)(1—y) > 1.
From the hypothesis it follows that @ > 1 — 2y + 2y>. This proves the first claim. Suppose

that a > 2; then
Y Y

>
3—4dr = 3—4(1 — 2y + 2y?)
which simplifies to (1 —y)(1 — 4y)? < 0, a contradiction. This proves (5).

1—2y >
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We may assume without loss of generality that |Cy| < |C]/2. By (4), |Bi| < (1 —
x)|B| < |B|/2, and so |Bs| > |B|/2.

Every vertex in By \ N(wy) is adjacent to at least a fraction y/(1 — y) of the vertices
of (5, and hence there exists w € Cy with

y
[N (w) \ N(ws)| > m!Bz \ N (w)].

Thus,

1 —
1—

IN(w) UN ()] > [N ()| + 2 1B\ N(wa)| = 72| Byl +

2y
N .
1 y| (ws)]

Since |By| > x| B| and |N(ws)| = y| B, it follows that

|NmoUN@m|>(iw y(1=2y)

B 1—2z)|B
2 M2 ) 1 )

(because z > 1 — 2y +2y? by (5)). Thus, N3(w) U N3 (wy) = A, and since w and wy have
a common neighbour in By it follows that

[NA(w)] + [NG(w2)| > (z + 1)|A] > 3| A]/2
and so one of |[N3(w)|, |N%(wq)| = 3|A|/4, a contradiction. This proves 9.2. |
9.3. Letxz,y € (0,1], witha > 1/3,y > 1/2, x+3y > 2, and either x > (5—6y)/(11—12y)
orx > (3—4y)/(4—4y). Then ¢¥(z,y) > 3/4.

Proof. Let G be (z,y)-biconstrained via (A, B,C), and suppose that N3(v) < 3]A|/4
for each v € C'. By 4.1 with k = 1 it follows that x +y < 1. Let H be the graph with
V(H) = V(C), in which distinct u, v are adjacent if and only if | N (u)UN (v)| < (1—=x)|B].

(1) For all u,v € C, if u,v are nonadjacent in H then N3(u) U N3i(v) = A. If u,v
are adjacent in H then |N3(u) N N3 (v)| > (z + 1/4)]A].

If u,v are nonadjacent in H, then |N(u) U N(v)| > (1 — x)|B|, and so every vertex
in A has a neighbour in N(u) U N(v), that is, N3(u) U N3(v) = A. Now we assume that
u, v are adjacent in H. Consequently,

[N(v1) "N (v2)| >2y —(1—2) >1—y
by hypothesis. Moreover, x > 1/3 and y > 1/2 imply that
IN(uyNNw)| >2y+x—1>1/3>1—-x/(1 —vy).

Thus, 7.4 implies that |[N%(u) N N3(v)| > (z + 1/4)|A]. This proves (1).
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If there exist wy,...,wy € C, pairwise nonadjacent in H, then by (1) each pair of the
sets of the sets N%(w;) (1 < i < 4) has union A, and so each vertex in A belongs to at
least three of the four sets; and so one of the four sets has cardinality at least 3|A|/4, a
contradiction. Thus, we may choose wq, ws, w3 € C such that every other vertex in C' is
adjacent in H to at least one of wq, ws, w3. Choose a partition C' = C; U Cy U C5 such
that for 1 < i < 3, every vertex in C; is equal or adjacent in H to w;.

(2) |Ci] < (1 =y)|C]| for 1 < i< 3.

Suppose that |Cy] > (1—y)|C|. Define B; = N(w) and A; = N3(w). Choose v € B\ N (w)
with at least | A\ A1|/(1—y) > z|A|/(4—4y) neighbours in A\ A;. Since |C4| > (1—y)|C],

there exists w € ' adjacent to v. Then
INA(w)| > z|Al/(4 = 4y) + (z + 1/4)|A] > 3]A| /4
since z > 1/3 and y > 1/2, a contradiction. This proves (2).

(3) Every vertex in B has neighbours in ezxactly two of Cy, Cy, Cs.

Since each |C;| < (1—y)|C] < y|C| by (2), it follows that every vertex in B has neighbours
in at least two of C, Cy, C5. Suppose that v € B has a neighbour w; € C; for i = 1,2, 3.
Let A; = N3(w}) for i =1,2,3. For 1 <i < j <3, A;UA; = A by (1), and so every
vertex of A belongs to at least two of Aj, As, A3, and Na(u) is a subset of all three of
Ay, Ay, Az. Consequently,

[Arl +[Ag| + [As] = 2[A] + [Na(w)| > (2 + 2)[A] > 9] A /4
and so some |A;| > 3|A|/4, a contradiction. This proves (3).

From (3) we may partition B into B, Bs, B3 such that every vertex in B; has neigh-
bours in C5 and in C3 but not in C, and similarly for By, Bs. Without loss of generality,
we may assume that |By| < 1/3. Let A; = N3(w).

(4) [N3(w) \ A1] < (2 —4x)|A\ Ay| for each w € C}.
By (1) |N%(w;) N N3(w)] > (z + 1/4)]A|, and since |N3(w)| < 3]A|/4, it follows that
[NA(w) \ Ai] < (1/2 = 2)]A] < (2 - 42) A\ 4.
This proves (4).
This has two consequences. The first is that = < (3 —4y)/(4 — 4y). To see this, by (4)
we may choose u € A\ A; such that |NZ(u)NC,| < (2—4z)|Cy|. Since |By| < |B|/3, u has

a neighbour v € By U B3, and we may assume that v € By from the symmetry. So at least
y|C| neighbours of v belong to C} U C3, and therefore at least (y — (1 —y))|C| neighbours
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belong to C1, since |Cy| < (1 —y)|C]. So (2y — 1)|C| < (2 —42)|Cy| < (2 —4x)(1 —y)|C],
and hence = < (3 —4y)/(4 — 4y) as claimed.

The second consequence is that x < (5 — 6y)/(11 — 12y). To see this, let S = B\
(By UN(wy)). By (4) and since each vertex in By U Bs has a neighbour in (1, it follows
that each vertex v € By U Bs has fewer than (2 — 4x)|A\ A;| neighbours in A\ A;. Since
S C ByU B, it follows that some vertex u € A\ A; has fewer than (2 — 4x)|S| neighbours
in S. But w has no neighbours in N(w,), and only at most r|B| neighbours in Bj; and
since it has at least z|B| neighbours in total, we deduce that

z|B| < (2 —42)|S| +7|B| < (2 — 4z)(1 — r — y)| B| + 7| B
(since ByNN(w) = 0 and | N (wy)| = y|B| and therefore |S| < (1—r—y)|B|). Consequently,
r<(2-4x)(1—-r—y)+r=2—-4o)(1—-y)+r(de—-1)<2—-42)(1-y)+ (42 —1)/3

and so x < (5 —6y)/(11 — 12y).
We have shown then that z < (3 —4y)/(4 —4y) and = < (5 —6y)/(11 — 12y); but this
contradicts the hypothesis. This proves 9.3. |

9.4. Let x,y € (0,1] with 1/2 <y < 2/3 and x > 6y*> — 8y + 3. Then ¥ (x,y) = 3/4.

Proof. We may assume that y € Q, by decreasing y if necessary. Let G be (z,y)-
biconstrained via (A, B,C'), and suppose that |N3(w)| < 3|A|/4 for each w € C. By
multiplying vertices if necessary, we may assume that y|B| € Z. Since z > 6y*> — 8y +3 =
6(y —2/3)% 4+ 1/3, it follows that x > 1/3. Let H be the graph with V(H) = C in which
distinct u, v € C are adjacent if and only if |N(u) U N(v)| < (1 —2)|B|. It follows that if
u,v are nonadjacent in H, then N%(u)U N3(v) = A. As in the proof of 9.3, there do not
wy,...,wy € C, pairwise nonadjacent in H; and so we may choose wi,wsy, w3 € C' and a
partition C' = C7 U Cy U5 such that for 1 < ¢ < 3, every vertex in C; is equal or adjacent
in H to w;. Let |C;| = ¢;|C], and choose B; C Nw;) with |B;| = y|B| for 1 <14 < 3. Let
F' be the set of all edges vw of G with v € B and w € C, such that for 1 < i < 3, not
both v € B; and w € C;.

() B < —z—y) < (2-3y)(2y—1).

Let w € C, with w € C; say; then since w,w; are adjacent in H, it follows that w
has at most (1 — z — y)|B| neighbours in B\ B;. Thus, |F| < (1 —z —y)|B]|-|C|. But
1—2—y<(2-3y)(2y — 1) since x > 6y* — 8y + 3. This proves (1).

Let py = |B1\ (B2U B3)|/|B|, and define po, p3 similarly. Let ¢; = |(BoU Bs) \ B1|/|B|,
and define g9, g3 similarly. Let po = |B\ (By U B2 U B3)|/|B|, and gy = | By U By U Bs| /| B].
Let ¢ = q1 + g2 + q3. Thus,

Potpitpetpstqtatqptqg =
Prt+q+tq2tq =
P2t qtag+q =
PPt@tate =

S

ot
ut
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By subtracting the last three of these from the first, we obtain

Po—2q — (1 + @2 +q3) =1 — 3y,

and so pg = 2qo +q¢ — 3y + 1.

Every vertex in B\ (B; U By U Bs) is incident with at least y|C| edges in F, every
vertex in By \ (By U Bj3) is incident with at least (y — ¢;)|C| edges in F', and every vertex
in (By U Bs) \ By is incident with at least max(y — ca — ¢3,0) = max(y + ¢; — 1,0) edges
in F' (and similar statements hold for cg, ¢3). Summing, we deduce that

|F|

BIC] >poy+ Y (0ily — i) + gmax(y + ¢; — 1,0)).

1<i<3

Since p; =y —qo —q+¢q; fori =1,2,3, and ¢; + c2 + c3 = 1, it follows that

dopily—c)=> W—aw-aq+a)y—-c)=w—w-0)By—1) +aq— Y g

1<e<3 1<e<3 1<e<3

Also, pg = 2qo + q — 3y + 1, and so

F
7|B”Hl7| > (2q0+¢=3y+)y+y—a—a)By—1)+ay— Y qici+ > gimax(y+e—1,0).
1<i<3 1<i<3
This simplifies to
]
>(1-yp+ )Y a(l—y—c)
BC] >

iel
where I is the set of i € {1,2,3} such that ¢; <1 —y. From (1) we deduce that

L=+ > a(l—y—ca)<(2-3y)(2y—1).

il

In particular it follows that (1 —y)g < (2 —3y)(2y — 1) < (1 —y)(2y — 1), and so
go < 2y — 1. Moreover, since |By U B3| < |B|, it follows that |Bs N Bs| > (2y — 1)|B|, and
so q1 = 2y — 1 — qp, and the same holds for ¢, g3. Consequently,

(I—9)a+> 2y—1—g)(l—y—c) < (2-3y)(2y—1),

el

and so
I=ygp+ > Qy—1—q)(1—y—a)<(2-3y)2y—1),

1<i<3

since 2y — 1 — qo > 0. This simplifies to (2y — 1)go < 0, a contradiction. This proves
9.4. |
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9.5. Let x,y € (0,1] with x > 1/4 and y > 2/3. Then ¥ (x,y) > 3/4.

Proof. Suppose that G is (x,y)-biconstrained via (A4, B,C), and |N3(w)| < 3|A|/4
for each w € C. Since x > 1/4 and y > 2/3, it follows that z > 2(1 — y)?, that is,
y>(1—-y) +1—x/(1—y);andalsoy > 2 —2y. Let w € C. By 7.4 with £ = 2 and
B’ = N(w), it follows that

INA()] > (z+1/2)|A] > 3|A] /4,

which is a contradiction. This proves 9.5. |

9.6. Let x,y € (0,1] withy > 2/3, x +4y > 3 and x > 3(1 — y)?/(2 —y). Then
Plx,y) = 3/4.

Proof. Suppose that G is (z,y)-biconstrained via (A, B,C), and |N3(w)| < 3|A|/4 for
each w € C. Consequently, y < 3/4, and so z > 3/20 since z > 3(1 — y)?/(2 — y). From
the hypotheses it follows that

2+ —1>1—y+max(l —y,1 —z/(1 —y)).

If wy,wy € C with |[N(w;) UN(ws)| < (1—2)|B| then |N(wy) NN (wq)| = (2y+2—1)|B|.
Thus, 7.4 applied with k = 2 tells us that, for all such wy, ws € C, more than (x4 1/2)|A|
vertices in A have a neighbour in N(w;) N N(wsy). Let H be the graph with vertex set
C, in which wy, wy are adjacent if |N(w;) U N(wq)| < (1 — x)|BJ. As in the proof of 9.3,
there is no stable set of size at least four in H. It follows that there exist wq, wy, w3 € C
and a partition C' = C7 U Cy U (5 such that for 1 < ¢ < 3, every vertex in C; is equal
to or adjacent in H to w;. We assume without loss of generality that |Cy| > 1/3. Since
y > 2/3, every vertex in B has a neighbour in Cy. Let By = N(w;) and A; = N3(w),
and choose v € B\ B; with more than x|A|/(4 —4y) neighbours in A\ A;. Since y > 2/3,
there exists w € C adjacent to v. Then

INA(w)| > (z+1/2+ 2/(4 — 4y))|A| > 3|A]/4

since z > 3/20 > 1/7 and y > 2/3, a contradiction. This proves 9.6. |

9.7. Let x,y € (0,1] with y > 1/2 and x*y > (3/4 — x)%. Then ¢(z,y) > 3/4.
Proof. Apply 5.7 with z = 3/4. |

9.8. Let z,y € (0,1] withy < 1/3 and x > Hz_f%yQ Then ¢(z,y) > 3/4.

Proof. Suppose that G is (z,y)-constrained via (4, B,C), and |N3(w)| < 3|A|/4 for
each w € C. Consequently, z + y < 1. By reducing x or y if necessary, we may assume
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that every vertex in A has strictly more than z|B| neighbours in B, and that x,y are

rational. Let
=z —y

b= 1 -3y
By multiplying vertices, we may also assume that y|B| and p|B| are integers. Note that
the hypotheses imply that p < xy.

(1) There exists s € [0,1] such that for all b,c, if 0 < a <y and sa+b > y(sy+1—1y),
thena+b>pandb>1—x—y.

We claim first that
—y(l - 2y — 2 +ax—1
max@fL?y))gmm(y v+ ,1).
Yy y—vy

To see this, we need to check that 0 < %, and % < 1, and % <
2y—y’4z—1
y—y?

. The first is true since

x 1 4% — 3y°

> - + =
l—y 1+y-—32 YT Ty — 32

The second is true since p < zy < y. The third simplifies to p/y < /(1 — y), and this is
true since p < xy. This proves the claim, and so there exists s such that

(1 — % —y? a1
max(O,W)ésSmin(y y+2x ,1).
) y—y
We will show that s satisfies (1). Suppose that 0 < a < y and sa +b > y(sy + 1 — y).
Then

a+b>=sa+b>zy(sy+1—y)=p
and
sy+b=sa+b>y(sy+1—y)=>sy+1l—x—y
(and therefore b > 1 — x — y). This proves (1).

(2) There exists t € [0,1] such that for all a,b, if 0 < a < 2p and ta+b > y(1 —2p(1 —1t))
thena+b>pandp+b>1—x.

We claim first that

Wy +p—y . (r+y+p—2py—1
max ( 0, ———— | <mi 1
2py 2p(1 —y)
To see this we must check that 0 < THAP2R=l and 2008 1 and 2242228
2p(1—y) 2py 2Py
erytp=2py—1 The first is true since

2p(1-y)
1—xz— 1—2
(I —2—y)( y)>1_$_y‘
1 -3y

p—2py =
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The second is true since p < zy < y; and the third simplifies to p < xy and so is true.
This proves the claim, and so there exists ¢t with

max(O,w) <t<min($+y+p_2py_1,0).
2py 2p(1 —y)

We will show that ¢ satisfies (2). Let a, b satisfy 0 < a < 2y and ta+b > y(1 —2p(1 —1t)).
Then

a+b>ta+b>y(l—2p(1—1t))>p

and
2tp+b>ta+b>y(l—2p(l—t)) =2tp+1—a—p

(and so b > 1 — x — p). This proves (2).
Choose w; € C' with at least y|B| neighbours in B.
(3) There exists we € C' such that |N(ws)| = p|B| and |N(wy) U N(wq)| = (1 — x)|B|.

Choose By C N(w,) with |By| = y|B|. Choose s as in (1). Then

D GINw) NBi+|Nw) \ Bi) =) sIN@)NC|+ Y [N(@)NC|

wel vEB: veEB\B1
>(sy” +y(1 —y)|B]-|C].

Consequently, we may choose ws € C' such that

IN(w2) N By |[N(wa)\ B
| B| | B

= y(sy + (1 —y)).

Since

[N (wz) N B | < | B1 | .

|Bi |Bi
the choice of s implies that |N(ws)| > p|B| and |[N(w2) \ Bi| = (1 — 2 — y)|B|, and so
|N(wy) UN(ws)| = (1 —x)|B|. This proves (3).

0 <

(4) There exists wy € C' such that |N(ws)| = p|B|, and |N(w;) U N(ws)| = (1 — z)|B| for
i=1,2.

Since |N(wy)|,|N(wq)| > p|B| and p|B| is an integer, we may choose R C B with
|R| = 2p|B| such that |N(wy) N R|,|N(w2) N R| > p|B|. Choose t as in (2). As in
the proof of (3), there exists wy € C' with

[Ny O R| N () \ R

| B| |B| |>y(2pf+(1—2p>> =y(1 —2y(1 —1)).
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From the choice of ¢, it follows that |N(ws)|/|B| = p, and |N(ws) \ R| > 1 — 2 — p, and
consequently | N (wy) U N(ws)|, |N(wsz) U N(ws)| = (1 — x)|B|. This proves (4).

For 1 < i < 3, choose B; C N(w;) with |B;| = p|B|. Since |B; U By U B3| < 3p, we
may choose wy € C with at least y(1 — 3p)|B| neighbours in B\ (B; U By U B3). Then
for all 1 <7 < 3 we have:

| Xi UN(wa)| = (p+y(1=3p))|B| > (1 —x)|B]

by the definition of p. It follows that for 1 <i < j <4, |[N(w;) UN(w;)| = (1—x)|B|, and
so (since every vertex in A has strictly more than x|B | neighbours in B) it follows that
N3 (w;) UN3(wj) = A. Thus, every vertex in A belongs to at least three of the four sets
N3(w;) (1 <4 < 4), and so one of them has cardinality at least 3|A|/4, a contradiction.
This proves 9.8. |

9.9. Let z,y € (0,1]. Then ¢ (z,y) < 3/4 if either:
<1/6 andy <5/7 and 2z +y < 1; or

o © <3/20 and x + 4y < 3, and x + 4y < 3 if x is irrational; or

N

17/23 and y < 1/8 and x + 3y < 1; or

e T
o :<5/Tandy <1/6 and x +2y < 1.

Proof. If 2/,y' with 22’ + ¢’ < 1 and ¢y’ < 3/5, then ¢(2',y’) < 2/3 by the first bullet
of 7.8. Given x,y as in the first bullet, the hypotheses imply that there is a choice of
',y with 22" + ¢y’ < 1 and v’ < 3/5, and which also satisfy the hypotheses of 3.5 with
2 =(2,y') and z slightly less than 3/4 (checking this needs some lengthy calculation,
which we omit); and so the first statement follows from 3.5. The second statement follows
similarly from 3.5 and the second bullet of 7.8. The third statement follows from 3.4 and
the first bullet of 7.6; and the fourth follows by applying 3.4 with z = max(2/7, x), taking
2’ =3/5,y =1/5 and 2/ = 3/5. This proves 9.9. |

The next two results are both obtained by applying 3.7 to 7.10.

9.10. If z,y € (0,1], with x < 5/7 and y < 4()95(171: then ¢(x,y) < 3/4.

2560120
Proof. Since % 1/4 for all x > 0, it follows that y < 1/4, and so we may
assume that = > 1/2, since ¢(1/2,1/2) =1/2. Let 2/ =2—1/z and v/ = y/(1 — y) Thus,
',y € (0,1], and 2’ < 3/5 since x < 5/7, and 3/ < 191/%;2;}” since y < ﬁzﬁm By

7.10, it follows that ¢(a’,y’) < 2/3. By 3.7 (taking z with ¢(a',y') < 2 —1/2 < 2/3), i
follows that ¢(z,y) < 3/4. This proves 9.10. I

THE ELECTRONIC JOURNAL OF COMBINATORICS 29(2) (2022), #P2.47 60



9.11. Ifz,y € (0,1], withy < 3/8 and = < ;2%’22:%, then ¢(z,y) < 3/4.

Proof. We may assume that x > 1/2, since ¢(1/2,1/2) = 1/2. Let 2/ = 2 — 1/x

and v = y/(1 —y). Thus, o',y € (0,1], and ¢ < 3/5, and 2’ < % since

x < %%. By 7.10 and 2.3, it follows that ¢(2',y) = ¢(y',2') < 2/3, and so by
3.7 (taking z with ¢(2',y') < 2 —1/z < 2/3), it follows that ¢(z,y) < 3/4. This proves

9.11. |

The next two results are proved similarly, using 7.11 instead of 7.10.

9.12. Ifz,y € (0,1], withy < 1/5 and = < iggi:%, then ¢(z,y) < 3/4.

Proof. We may assume that > 1/2. Let 2’ = 2 — 1/z and ¢ = y/(1 — y). Thus,
',y € (0,1], and v < 1/4, and 2’ < ;éjﬁ__% since = < %. By 7.11, it follows
that ¢(2',y’) < 2/3. By 3.7 (taking z with ¢(2,y') < 2 —1/z < 2/3), it follows that

o(z,y) < 3/4. This proves 9.12. |
9.13. Ifz,y € (0,1], with x <4/7 and y < %m, then ¢(x,y) < 3/4.

Proof. Since 34x? — 40z + 1293z% — 108z + 32 < 2/5 for all x > 0. it follows that
y < 2/5, and so we may assume that z > 1/2. Let 2’ =2 — 1/x and ¢ = y/(1 — y).

I ’ / 1222 -82'42  : 3422402412
Thus, 2',y" € (0,1], and 2" < 1/4, and y' < 5577575 since y < g3 o osaras- BY

7.11 and 2.3, it follows that ¢(z’,y") = é(y,2') < 2/3, and so by 3.7 (taking z with
o(2',y) <2—1/z < 2/3), it follows that ¢(z,y) < 3/4. This proves 9.13. |

10 The 2/5 level
Next, we analyze when 1), ¢ > 2/5. The results are shown in figure 9.
The seven results in this section are all motivated as contributions to figure 9.
10.1. Let z,y € (0,1] with x > 1/5, y > 1/3, and 3y — 2y* > 1 — x; then ¥(x,y) = 2/5.

Proof. Suppose that G is (z,y)-biconstrained via (A, B, C), and |N%(w)| < (2/5)|A| for
each w € C. Let wy € C, and let A; = N3(w;). By averaging, there exists wy € C' such
that

[A2\ A1l = y|A\ Ai| > (3y/5)|Al

where Ay = N3(ws). Since |A| < 2|A]|/5, it follows that
|As N Ay < (2/5 — 3y/5)|A| < x|A|,

and so N(wq) N N(wy) = 0. Let B' = N(w;) U N(wy); thus |B’| > 2y|B|. By averaging,
there exists wy € C such that |[N(w;3) \ B'| = y|B \ B[, and so

[N(w1) U N (w2) UN(ws)| 2[B'| +y|B\ B = y|B| + (1 - y)| B|
>(y+ (1 —y)2y)[B| > (1 —2)|B].
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Figure 9: When ¢ (z,y) < 2/5 and when ¢(z,y) < 2/5.

Hence, setting A3 = N3(ws), it follows that A; U Ay U A3 = A.
Since y > 1/3, some pair of N(w;), N(ws), N(ws) have nonempty intersection, and so
some pair of A, Ay, A3 have intersection of cardinality at least x|A| > |A|/5. But then

[Aul + [ Az| + [As > [A1 U Ay U As| + [A[/5 = (6/5)]A],
which is impossible since |A;| < (2/5)|A| for 1 < ¢ < 3. This proves 10.1. |
10.2. Letz,y € (0,1] withx > 1/3, x+3y > 1, and eithery > 1/4 or x+y/(10(1—-2y)) >
2/5; then ¥ (x,y) = 2/5.

Proof. Suppose that G is (z,y)-biconstrained via (A, B, C), and |N3(w)| < (2/5)|A| for
each w € C. Choose wy,...,w, € C' with & maximum such that N(w;),..., N(w,) are
pairwise disjoint.

(1) o= 3.
Suppose that o < 2. Let A’ be the union of the sets N5 (w;) for 1 < i < a — 1, and
let B’ be the union of the sets N(w;) for 1 <i < a—1. So |A'| < (2a/5)|A| < (4/5)|A],
and |B’| > y|B|. By averaging, there exists v € B\ B’ such that

IN(W) N (AN A 2 (2/(1 = y) AN A = (32/(5(1 = y)))|Al;

let w € C' be adjacent to v. Since N(w) has nonempty intersection with N(w;) for some
i < a, it follows that |[N%(w) N A’| > z|A|. Adding, we deduce that

INA(w)] > (32/(5(1 — )))|A| + z|A] > (2/5)|Al,
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a contradiction.

Thus, a > 3; suppose that o > 4. Since x + 3y > 1 it follows that every vertex in A
belongs to at least two of the sets N%(w;) (1 < i < 4), and so one of these four sets has
cardinality at least |A|/2 > (2/5)|A|, a contradiction. This proves (1).

(2) If w € C then N(w) N N(w;) is nonempty for exactly one value of i € {1,2,3}.

Since o = 3, it follows that N(w) N N(w;) is nonempty for at least one such ; suppose
that N(w) has nonempty intersection with both N(w;), N(wy) say. Let A; = N3(w;) for
i=1,2,3, and Ay = N3(w). Since A; U Ay U A3 = A, and each |4;| < (2/5)|A|, there are
fewer than | A|/5 vertices in A that belong to more than one of Ay, Ay, A3, and in particular
|A1NAs| < |A]/5. But |[AgNA;| > z|A| fori = 1,2, and so |Ag| = (22—1/5)|A| > (2/5)|A],
a contradiction. This proves (2).

From (2), we can partition B = By U By U Bs, and partition C' = C; U Cy U (3, such
that all six of these sets are nonempty, and for all distinct 4, j € {1,2,3} there is no edge
between B; and Cj, and for all 4 € {1,2,3} and all w,w’ € C;, N(w) N N(w') # (. Let
|B;| = b;|B| and C;| = ¢;|C| for i = 1,2,3. Without loss of generality we may assume
that by < 1/3 < x, and so every vertex in A has a neighbour in B; U Bs.

(3) z+y/(10(1 — 2y)) < 2/5 and soy > 1/4.

Suppose that = + y/(10(1 — 2y)) > 2/5. Without loss of generality, we may assume
that at least |A|/2 vertices in A have a neighbour in B;. Choose w € Cj. Since
|IN3(w)] < (2/5)|A], there are at least |A|/10 vertices u € A\ N%(w) that have a neigh-
bour in By. For each such u, |[NZ(u) N Cy| > y|C|, and since |Cy| < (1 — 2y)|C] (because
|Cal, |Cs] = y|CY), it follows that |[N&(u) N Cy| = (y/(1 — 2y))|Cy]. Consequently, there
exists w’ € Cy such that N%(w’) contains at least (y/(10(1—2y)))|A| vertices in A\ N3 (w).
Since w, w’ have a common neighbour, it follows that |N3%(w) N N3(w')| > z|A|, and so

[N = (= +y/(10(1 - 2y))|A] > (2/5)|A],

a contradiction. Thus, x 4+ y/(10(1 — 2y)) < 2/5, and so y > 1/4 from the hypothesis.
This proves (3).

Since (by —y) + (ba —y) + (b3 —y) = 1 — 3y < z, it follows that for every vertex u € A,
there exists i € {1,2,3} such that |[N(u) N B;| > (b; — y)|B|; and consequently there is
a partition A = A; U Ay U Az such that for i = 1,2, 3, every vertex in A; has more than
(b; —y)| B| neighbours in B;. It follows that A; C N%(w) for each w € C;. Let |A;| = a;]A|
fori=1,2,3.

For ¢ = 1,2, let D; be the set of vertices in A3 with a neighbour in B;, and let
d; = |D;|/|A|. Fori=1,2,if u € D; then

[NE(w) N Cil = yIC| > (y/(1 - 2y))ICil,
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and so there exists w € C; such that

INZ(w) N D;| = (y/(1=2y))|Ai| = (y/(1 — 2y))di| Al;

and since A; C N3(w), it follows that (y/(1 — 2y))d; + a; < 2/5. Since d; + dy > a3, and
a1 + as = 1 — az, summing for ¢ = 1,2 yields that

4/5 > (y/(1 —2y))(di + d2) + (a1 + a2) = (y/(1 — 2y))as + (1 — as),

that is, (1 — 3y)asz/(1 — 2y) > 1/5; and since az < 2/5, this implies that y < 1/4, a
contradiction. This proves 10.2. |

10.3. If x,y € (0,1] and 122%y > 5(1 — z — y)?, then ¢(z,y) > 2/5.

Proof. Suppose not. Then ¢(z,y) = 1—(3/5+¢€) for some € > 0, so by rotating we have
¢(z,3/5+€) < 1—y. But 5.7 gives ¢(x,3/5 +€) > 1 — y, a contradiction. This proves
10.3. |

10.4. Ifz,y € (0,1] and 2 > 1/3 and y > (5 — V/3)/11, then ¢(x,y) > 2/5.

Proof. Suppose not. Then ¢(z,y) = 1—(3/5+¢) for some € > 0, so by rotating we have
#(3/5+¢€,y) <1—x<2/3 But3/5> (1—y)?/(1—2y?), since y > (5 —+/3)/11; and
so 7.9 gives that ¢(3/5+ €,y) > 2/3, a contradiction. This proves 10.4. |

10.5. If x,y € (0,1], and either 5z/2 +y < 1 and 2y < x, or z + 5y/2 < 1 and 2z < vy,
then (x,y) < 2/5.

Proof. Apply 3.6 with s/t = 2/5. This proves 10.5. |

10.6. Ifz,y € (0,1] with x < 3/8 and y < 52;2;37@, then ¢(x,y) < 2/5.

Proof. Define 2’ =z/(1 —z) and ' = y/(1 — y). Then 2’,y' € (0,1], and 2z’ < 3/5, and
Yy < 19;1(,-;79262)3;“’ and so ¢(2',y") < 2/3 by 7.10. Choose z with ¢(2',y') < z/(1 —z) < 2/3;
then ¢(x,y) < z < 2/5 by 3.1. This proves 10.6. |

10.7. If x,y € (0,1] with y < 1/5 and = < %, then ¢(z,y) < 2/5.

Proof. Define 2’ = z/(1 —x) and ¢ = y/(1 —y). Then 2/,y/ € (0,1], and v/ < 1/4, and
' < %, and and so ¢(z’,y") < 2/3 by 7.11. Choose z with ¢(2/,y") < z/(1 —2) <
2/3; then ¢(x,y) < z < 2/5 by 3.1. This proves 10.7. |
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Figure 10: When ¢ (z,y) < 3/5 and when ¢(z,y) < 3/5.

11 The 3/5 level

Next, we analyze when ¢ > 3/5, and similarly for ¢. The results are shown in figure 10.
The seven results in this section all contribute to figure 10.

11.1. Ifz,y € (0,1] withy > 1/2, x > 1/5, and

11—
3_ 327 ot

2y —

then ¥(z,y) = 3/5.

Proof. Suppose not, and let G be (z,y)-biconstrained via (A, B, C'), such that |[N3(w)| <
3|A|/5 for all w € C'. We can assume that z,y are rational, and by multiplying vertices
if necessary, we can assume that both z|B| and |C|/5 are integers. By averaging, there
exists u € A such that |[NZ(u)| < 3|C|/5. Choose B’ C N(u) with |B'| = x|B|, and
choose C" C C with NZ(u) C C”" and |C'] = 3|C|/5.

(1) There exist wy € C" and wy € C'\ C' such that |N(wy) U N(wq)| > (1 —z)|B|.

Choose wy; € C" and wy € C \ C' uniformly and independently at random, and let
S = N(wy) UN(wy). We will compute the expectation of |S|. Let t = 2/5. For each
v € Bi, v has at least y|C| neighbours in C”, so the probability it is in S is at least
y/(1—1t). For each v € B\ B, define d(v) = |N(v) N (C'\ C})|/|C|. Then the probability
that v is a neighbour of wy is d(v)/t, and the probability that v is a neighbour of w; and
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not a neighbour of ws is at least

Thus, the expectation of |S| is at least

Yot 3 (e () )

veEB’ vEB\B’
B Y (1—y—2t)d(v) + d(v)?
_Zl—t+ Z t(1—1) '
veEB veEB\B’
Choose ¢ with
Z d(u) = qt|B|.
vEB\B’

Each vertex w € C'\ C' has at least y|B| neighbours in B \ B’ so it follows that g > v.
Thus, the expectation of |S| is at least

y 1—y—2t d(v)?
B+ L2 gy Y A0

1—t 1—t t1—t)

veEB\B'’

Since ), cp 5 d(v) = ¢t|B| and |B\ B'| = (1 — z)|B|, it follows by Cauchy-Schwarz that

Z d(U)2> q

1—2
veEB\B’

2t2

|Bl.

Thus, the expectation of |S| is at least
¢t
(1—z)(1—1)

To prove (1), it suffices to show that the expectation of |S| is more than (1 — z)|B],
and so it suffices to show that

Y
1 —

Y 1 — 2t q’t B
N e 5= (y+a—y—20+ 25 ) 20

1 1l—x/)1—t

¢t

— X

y+q(1—y—2t)+1 > (1—1¢)(1 —x).

Remembering that ¢ = 2/5, this is

2

4
2(1 = 5y)q + 5 T 10y > 6(1 - 2),

—
and the derivative of the left-hand side with respect to ¢ is

8q 8y
21 -5y)+ —>=22(1 —-b5y)+ —==2>0
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for ¢ > y. It follows that the left-hand side is minimized when ¢ = y, so it suffices to

show that )

4
2(1 = 5y)y + - i

+ 10y > 6(1 — x),
-z

which is equivalent to the hypothesis. This proves (1).

Let wy,wy be as in (1), and let A; = N3 (w;) for i = 1,2. Then A = A; U Ay, and since
y > 1/2 we have N(v;) N N(vg) # (), and consequently |A; N Ay| > z|A| > |A|/5. Then

|Ay| + |As] = |A1 U A + |A; N As] > 6]A|/5

and so we have |A;| > 3|A|/5 for some i, a contradiction. This proves 11.1. |

11.2. If x,y € (0,1] with x > 1/2 and x + 2y > 1, then ¢¥(z,y) > 3/5.

Proof. Let G be (z,y)-biconstrained via (A, B, C'), and suppose that |N3(w)| < (3/5)|A4]
for each w € C. Choose o maximum such that there exist wq,...,w, € C where
N(w;)) N N(wj) =0for1 <i<j<a.

(1) a=2.

Since z+2y > 1 it follows that N3 (w;)UN?3(w;) = A for all distinct 7, j € {1,...,a, and so
if « > 3 then every vertex in A belongs to at least two of the sets N3 (w;), N3 (wsq), N3 (ws),
which is impossible since they each have cardinality less than (3/5)|A|. So a < 2.

Suppose that oo = 1; then every wy € C satisfies N(w1) NN (wsy) # 0. Let By = N(wy)
and A; = N3(wy); thus |A;| < (3/5)|A| and |By| > y|B|. Choose v € B\ B; with v at
least z|A\ A1]/(1 —y) > 2x|A|/(5(1 — y)) neighbours in A\ Ay, and let wy € C be a
neighbour of v. Then

(3/9)A] > [N (wn)| > 2l A] + 22 A[/(5(1 — p)) > (x+ o )) 4] > 3145

5(z+1
since x > 1/2, a contradiction. This proves (1).

Since a = 2, every vertex w € C shares a neighbour with at least one of wy,ws. Let
A; = N3(w;) for i = 1,2. Since x+2y > 1, we have A = A; U Ay, and so |A;NAy| < |A|/5
because |A;|, |As| < 3|A|/5. Then, if some w € C' shares a neighbour with w; and shares
a neighbour with wy, it follows that |N3(w)| > 2x|A| — | A|/5 > 4| A|/5, a contradiction.

Thus, every vertex in C' shares a neighbour with exactly one of w; and wsy. Let H be
the bipartite graph G[B U C]. Tt follows that there are exactly two components of H, say
H,, Hy, where w; € V(H;) for i = 1,2. Let B; = BN H; and C; = C N H; for i = 1,2.
Without loss of generality we may assume that |By| > |B|/2. It follows that for each
u € A, u has a neighbour in By and consequently

Y
New) NGl 2 0l0] < (G,
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because |Cy| = y|C|, and thus |C;| < (1 — y)|C|. Since |A\ Ai| > (2/5)|A|, there exists
w € C7 with more than 2|A|y/(5(1 — y)) neighbours in A\ A;. But w and w; share a
common neighbour, so

2y|A| ( 2y
N2(w)] > =" 4+ z|A| > [ ——+ (1 —2y) | |A| > 3|A|/5
[Na(w)] 50— ) |4 50 —9) ( ) | 1Al = 3]A|/
since the last inequality is equivalent to 5y* — 5y + 1 > 0, which is true because y < 1/4
(since z + 2y > 1, and o > 1/2). This proves 11.2. |

11.3. If z,y € (0,1] with y > 1/2 and 402%y > (3 — 5z)?, then ¢(x,y) > 3/5.
Proof. Apply 5.7 with z = 3/5. This proves 11.3. |

11.4. If x,y € (0,1] with x < 4/7 and y < 1/2 and x + 3y < 1, then ¥(z,y) < 3/5.

Proof. We may assume that > 1/2 since ¥(1/2,1/2) < 3/5; and so y < 1/6 since
x 4+ 3y < 1. The claim follows from applying 3.4 with z slightly less than 3/5 and
¥ =y =2 =1/4. This proves 11.4. |

11.5. If x,y € (0,1], such that 3x + y < 1, and x + 5y < 3, with strict inequality in both
if x ory is irrational, then (z,y) < 3/5.

Proof. By increasing z,y if necessary, we may assume that x,y are rational. Suppose
that ¢ (x,y) > 3/5. We claim first that:

(1) x < 1/6, and y > 1/2, and bxy + 15y < 9, and = < (1 — y)/(5y), and =z <
3(1—y)?/(1+5y).

Since 3z + y < 1, it follows that x < 1/3, and y > 1/2 since ¥(1/2,1/2) = 1/2 < 3/5.
Thus, x < 1/6, since 3x+y < 1. This proves the first two statements. Since z+ 5y < 3, it
follows that y < 3/5, and so 5zxy + 15y < 3z + 15y < 9. This proves the third statement.
For the fourth, 5z < 3z/y (since y < 3/5), and 3x < 1—y, and so bz < (1—y)/y. Finally,
for the fifth statement, if y < 4/7, then 1+ 5y < 9 — 9y, and so

z < 92(1 —y)/(1+5y) <3(1 —y)*/(1+5y);
and if y > 4/7, then
(3 —5y)(145y) =3+ 10y — 259> < 3 — 6y + 3y* = 3(1 — y)?

and so
r <3 -5y <3(1—y)*/(1+5y).

This proves (1).
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Since = < 1/6, it follows that /(1 — z) < (5z)/3 and (1 — y)/(3y) < 1/3. The
hypotheses (via (1)) imply that

and

Consequently, there exists a rational ' with /(1 — ) < 5z/3 < 2/, and

2 11—y 1
4x<x’<min §—E’),—y,— .
3—3y—=x Y Jy 3

/ /

max (Zy—171_ :c(l—y)) <min(1—3x/,1_$);
Y x 3

choose a rational ¢’ between them. Then '+ 3y’ < 1 and 32’ + ¢’ < 1, and so ¢ (2, y') <

1/3, by (theorem 3.3 of the paper). Let ¢(2',y') = 2/ < 1/3, and choose z < 3/5

with (1 —2)/2 < 1—-2,and (1 —2)/(1—2) < 1—2) and z > z/2’. Then from 3.5,

Y(z,y) < z < 3/5, a contradiction. This proves 11.5. |

Thus,

11.6. If x,y € (0,1] with x < 4/7 and y < 52;3%42&:%), then ¢(x,y) < 3/5.

Proof. Since % < 1/4 for all x > 0, it follows that y < 1/4. Let 2/ =2 —1/x

and v = y/(1 —y). Then 2,y € (0,1], and 2’ < 1/4, and ¢y < % since

y < % By 8.4, ¢(«,y) < 1/3. By 3.7, with ¢(2/,y/) < 2—1/z < 1/3, it follows
that ¢(x,y) < z < 3/5. This proves 11.6. |

11.7. If x,y € (0,1] withy < 1/5 and = < %, then ¢(z,y) < 3/5.

Proof. Since % < 1/4 for all x > 0, it follows that y < 1/4. Let 2’ = 2—1/z and

2 —
Y =y/(1—y). Thena',y' € (0,1], and 2’ < 1/4, and 2’ < 3—(112y’2——lfj—1)6y’2 since x < %.
By 8.4 and 2.3, ¢(2',y) = o(v/,2") < 1/3. By 3.7, with ¢(2/,y) < 2 —1/z < 1/3, it

follows that ¢(x,y) < z < 3/5. This proves 11.7. |

12 Peaceful coexistence

We have not been able to evaluate ¢(z, y) in general, but here is an easier question (that we
also cannot do, but it seems to be less far out of reach). It is always true that ¢(x,y) > z,
by 1.8, but if y is sufficiently small then equality may hold. For fixed x, what is the largest
y such that ¢(x,y) = x7

Let (G,w) be a weighted graph. We say it is z-regular via a bipartition (A, B) if
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|A| = |B|, and w(v) > 0 for each v € V(G);

the 0, 1-adjacent matrix between A and B is nonsingular;
ZueAw(u) = ZUEBw(U) = 17 and
for each u € V(G), 3 ey w(v) = .

(Note that the fourth bullet is required to hold both for u € A and for v € B.) Its order
is |A|, and its min-weight is min,e g w(v). We will show:

12.1. For z,y € (0,1], ¢(x,y) = x if and only if there is an z-reqular bipartite weighted
graph with order at most 1/y.

Proof. If there is a such a weighted graph (G,w), via (A, B), where |A| = |B| = n
say, let C be a set of n new vertices, and add a perfect matching between B and C.
Extend w to C' by defining w(v) = 1/n for each v € C. The weighted graph just made
is (z,1/n)-constrained, and shows that ¢(z,1/n) < z, and consequently ¢(z,y) < = (and
s0 ¢(z,y) = ).

For the converse, suppose that G is (x,y)-constrained via (A, B,C), and |N3(v)| <
x| A| for each v € C.

(1) Each vertex in A has exactly x|B| neighbours in B, and each vertex in B has ex-
actly x|A| neighbours in A.

Each vertex u € B has at most z|A| neighbours in A, since u has a neighbour v € C
and |N%(v)| < z|A|. Since each vertex in A has at least z|B| neighbours in B, averaging
shows that equality holds throughout. That proves (1).

Say two vertices in A are twins if they have the same neighbour set in B, and two
vertices in B are twins if they have the same neighbour set in A. This defines equivalence
relations of A and B, and we call the equivalence classes twin classes.

(2) For each vertex v € C, all its neighbours in B are twins, and so N(v) is a subset
of a twin class of B.

By (1) each vertex in N(v) has z|A| neighbours in A, and all these vertices belong to
N2(v); and since |N3(v)| = z|A|, equality holds, and in particular, all vertices in N (v)
are twins. This proves (2).

Let T be the set of all twins classes of B. For each T' € T, let C(T) be the set of
all v € C with N(v) C T. Thus, the sets C(T') (T € T) are nonempty, pairwise disjoint
and have union C'. There is one of cardinality at most |C|/|T|, say C(T'); and then each
vertex in 7" has only at most |C|/|T| neighbours in C, and so y < 1/|T]|.

Choose one vertex from each twin class of A and of B, and let H be the subgraph
induced on this set. For each vertex v of H, let w(v) = |T|/|B| if v € T for some twin
class T' of B, and w(v) = |T|/|A]| if v € T for some twin class T' of A. Then we have:
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e (H,w) is a bipartite graph, with bipartition (Ag, By) say;
© D uea, w(u) = ep,wv) =1

e for each u € V(H), >_, ¢y, w(v) = z; and

o | Byl < 1/y.

Let us choose a weighted graph (H,w) and bipartition with these properties, with
|V(H)| minimum. If there is a function f : A — R such that > ., f(u) = 0 for each
v € B, not identically zero, then by adding a suitable multiple of f to the restriction
of w to A, we can arrange that w(u) = 0 for some u € A, and then u can be deleted,
contrary to the minimality of |V(H)|. Thus, there is no such f, and similarly there
isno f: B — R such that > ¢y, f(v) = 0 for each u € A, not identically zero.

Consequently, |Ag| = |By| = n say, and the adjacency matrix between Ay and By is
nonsingular. Moreover w(v) > 0 for each v € V(H), from the minimality of V/(H). This
proves 12.1. |

By 2.3, ¢(z,y) = x if and only ¢(y, x) = z, so this also answers the analogous question
for ¢(y,z). If x is irrational, there is no x-regular bipartite weighted graph, and so
¢(z,y) > x for all y > 0. If = € (0, 1] is rational, let us define the order of z € (0, 1] to be
the minimum order of z-regular bipartite weighted graphs. If = p/q say where p,q > 0
are integers, then the order of x is at most ¢, because one can construct an appropriate
cyclic shift graph. But the order of x can be strictly less than ¢. For instance, the top
part of the graph of figure 1 is 13/27-regular (take as vertex-weights the numbers given,
divided by 27), and so the order of 13/27 is at most seven. Figure 11 gives a smaller
example, showing that the order of 2/5 is at most four.

2 1
5 5

(1N}
=

Figure 11: A 2/5-regular weighted bipartite graph of order four.

We can prove that the order is also bounded below by a function of ¢ that goes to
infinity with ¢. More exactly, if G is p/g-regular (in lowest terms) and has order n, then
q is at most (n + 1)"*Y/2_ This follows from a theorem of Hadamard [3], that every
n x n 0, 1-matrix has determinant at most (n 4+ 1)™+1/22="  We do not know whether
there are weighted bipartite graphs with order n that are p/g-regular (in lowest terms),
where ¢ is exponentially large in n. (Hadamard n xn 0, 1-matrices have determinants that
achieve Hadamard’s bound, and they exist when n 4 1 is a power of two, but they give
weighted bipartite graphs that are vertex-transitive, and which therefore are p/g-regular
with ¢ = n.)
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One could ask the same question for the biconstrained problem: given x, for which

values of y is it true that ¢ (z,y) = 7 A similar analysis (we omit the details) shows:

12.

2. For x,y € (0, 1], the following are equivalent:
o Y(z,y) = 1;
e Y(y,x) =x; and

e there is an x-reqular bipartite weighted graph with min-weight at least y.
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