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Thermal perturbations from cosmological constant relaxation
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We probe the cosmological consequences of a recently proposed class of solutions to the cosmological
constant problem. In these models, the universe undergoes a long period of inflation followed by a
contraction and a bounce that sets the stage for the hot big bang era. A requirement of any successful early
universe model is that it must reproduce the observed scale-invariant density perturbations at cosmic
microwave background (CMB) scales. While these class of models involve a long period of inflation, the
inflationary Hubble scale during their observationally relevant stages is at or below the current Hubble
scale, rendering the de Sitter fluctuations too weak to seed the CMB anisotropies. We show that sufficiently
strong perturbations can still be sourced thermally if the relaxion field serving as the inflaton interacts with
a thermal bath, which can be generated and maintained by the same interaction. We present a simple model
where the relaxion field is derivatively (i.e., technically naturally) coupled to a non-Abelian gauge sector,
which gets excited tachyonically and subsequently thermalizes due to its nonlinear self-interactions. This
model explains both the smallness of the cosmological constant and the amplitude of CMB anisotropies.
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I. INTRODUCTION

Cosmological observations have shown that the universe
is presently undergoing accelerated expansion due to a
form of energy density dubbed “dark energy.” The inferred
measured value of the dark energy density is ~10 meV*.
This measurement constrains the value of the cosmological
constant (CC) to be no bigger than ~10 meV#, an energy
density that is at least 60 orders of magnitude smaller than
known perturbative contributions to it from the Standard
Model. The extreme fine tuning necessary to cancel these
known contributions is known as the cosmological constant
problem (see [1] for a review). A compelling possibility is
to accept the expected large CC value, with all its radiative
corrections included, as a starting point and have it
compensated by a scalar field whose dynamics lowers
its potential energy over time, gradually relaxing the
effective CC in the process [2]. Given an appropriate
interaction structure and cosmology, the relaxation can
be made to naturally stop when the CC is sufficiently fine-
tuned, thereby naturally generating a tiny CC.

References [3,4] put forward a simple, proof-of-principle
model for this class of solution' that not only accomplishes

'See [5,6] for other attempts along the same vein.
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CC fine-tuning from a naturally large initial value, but also
explains how this story could fit into the hot-big-bang
epoch. In this scenario, the universe undergoes an expan-
sion, a contraction, and an expansion again. During the first
expansion, the universe is in an extremely long period of
inflation. This period of inflation is produced by the rolling
of a scalar field that has a small, but technically natural,
slope. As the field rolls down its potential, the effective CC
steadily decreases and eventually becomes slightly neg-
ative. At this time, the large contributions to the CC have
been dynamically canceled. But, we are left with a universe
that is cold and empty due to the long period of inflation.
However, the negative value of the CC halts the expansion
of the universe and makes it contract. During this period of
contraction, various small energy densities in the universe
(such as the kinetic energy of the scalar itself) blueshift,
producing a contracting hot universe with a small negative
CC. The energy density produced in the contraction could
conceivably excite UV degrees of freedom that could
trigger a bounce, causing the universe to reexpand as a
hot universe but with a small, dynamically relaxed CC. In
this scenario, our current hot big bang epoch exists during
this stage of reexpansion.

The principal accomplishment of this class of models is
that it allows for a factorized approach to solve the CC
problem. Specifically, it permits UV physics at very high
energies to play a role in solving the CC problem. In these
models, the tuning necessary to cancel the CC is accom-
plished in the infrared by a slowly rolling scalar field. The
UV plays a role at high energies/temperatures where this
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dynamics can trigger a bounce causing the reexpansion of a
confracting universe.

One important issue that has not been addressed in the
cosmology of the minimal CC-relaxation model described
above is the origin of the approximately scale-invariant
spectrum of scalar perturbations observed in the cosmic
microwave background (CMB). The minimal model has an
inflationary period, and therefore scale invariance, built into
it. However, in order to solve the CC problem the Hubble rate
during its observationally-relevant last tens of e-folds must at
most be as low as its value today, H, ~ 104> GeV. If the
CMB anisotropies were to be seeded by the vacuum
fluctuations during such an extremely low energy inflation,
the resulting scalar power spectrum would be far too small.
One may hope that the superhorizon evolution of the
curvature perturbations in the contraction phase after infla-
tion would lead to their growth, however under general
assumptions superhorizon curvature perturbations are con-
served in the absence of nonadiabatic pressure perturbations
[Tr",S].2 The latter is essentially because the homogeneous
background p and the large-scale perturbations dp of the total
energy density follow the same evolution equation, which
leads to their ratio p/p being fixed. This suggests the need
for a nonadiabatic pressure perturbation contribution or a
different source of curvature perturbations.

In this paper, we improve on the minimal CC-relaxation
model, while keeping the broad-brush cosmological history
described above unchanged, by coupling a field ¢ that
relaxes the CC to a Yang-Mills sector axially. Such a
derivative coupling generates a thermal bath of radiation
which, in turn, damps the motion of ¢ without giving it a
thermal mass [12].3 The thermal fluctuations in the radi-
ation fields cause fluctuations in ¢ that are potentially much
stronger than those of quantum origin [14].* With appro-
priate choices of parameters, this model simultaneously
solves the cosmological constant problem and explains the
observed CMB anisotropies. Moreover, the thermal damp-
ing on the rolling of ¢ improves considerably the degree of
CC fine-tuning that can be achieved through relaxation.

The rest of the paper is organized as follows. We present
in Sec. Il the particle physics content of our cosmological
constant relaxation model as well as a brief summary of its
cosmology. We then describe the background evolution of
the universe through the key cosmological epochs in our
model and the validity of the effective field theory under
consideration in Sec. IIl. Next, we show in Sec. IV that our
model can explain the density perturbations seen in the
CMB, before concluding with Sec. V.

’In some gauges, e.g., longitudinal gauge, there exist a
curvature perturbation mode that is growing when the universe
is contracting, however it has been shown, again under general
assumptions, that this mode does not contribute to the observa-
tionally relevant post-bounce constant mode [8-11].

*See also [13].

“See also [15,16].

II. MODEL

Our starting Lagrangian contains an axionlike field ¢

with a linear potential which couples axially to a dark, pure
SU(N,.) Yang-Mills sector

_l 2 _l a apy_iﬂ a Frapy
£= 3087 + 99 ~3GLG™ ~ L EaLem (1)

Here, a = eé/élfr is the fine-structure constant of the gauge
sector and e; (not g) denotes the associated coupling
strength. The potential V = —g3¢ serves as the effective
CC to be relaxed and we will sometimes refer to it as the
CC. Any ¢-independent contribution to the CC is
accounted for by appropriately shifting ¢ by a con-
stant value.

To start with, the ¢ field is large and negative, with its
large and positive potential V = —g>¢ driving a period of
cold inflation, where the yet unoccupied gauge sector plays
no role. The ¢ field proceeds to roll down its potential and,
once it gains enough kinetic energy, the gauge fields
become tachyonic, grow rapidly, and subsequently thermal-
ize. Shortly after, the universe enters a period of warm
inflation where the gauge-field thermal bath affects the
background evolution through the thermal friction it exerts
on ¢ and sources the dominant density perturbations from
its thermal fluctuations. We assume the modes correspond-
ing to the fluctuations seen in the CMB become super-
horizon during this period. Warm inflation ends when ¢ has
relaxed to a small negative value, which is followed by ¢
going through zero to positive values, making the potential
—g> ¢ negative and causing the universe to crunch. The now
blue-shifting gauge-field radiation soon dominates the
universe. Once it hits a high enough temperature, we
assume that some UV dynamics are triggered causing
the universe to bounce and reexpand, entering the standard
hot big bang epoch. An example of such UV dynamics was
discussed in [3], but many other such models may be
possible. A sketch of the full cosmological history is shown
in Fig. 1.

Our simple model achieves not only the tuning of the
effective CC from a naturally large positive value to a small
negative one, but also the right level of CMB anisotropies.
The phenomenology of our model is largely determined by
the slope —g® of the ¢ potential and the thermal-dissipation
coefficient T describing the damping of ¢ during warm
inflation in our model [12]

TZF ()

Here f is related to the Lagrangian parameters a and fg
through the relation f o f;/a*? with an 0(0.1) propor-
tionality constant that depends mildly on & and the details
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FIG.1. The scale factor vs comoving Hubble scale sketch (not-

to-scale) of our model. While it is shown here that the scale factor
today is greater than that at the end of warm inflation, the reverse
is also possible.

of the Yang-Mills sector. We will treat the more directly
relevant quantity, f, together with g as our free model
parameters. The viable parameter space is shown in Fig. 2,
as we will show.
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FIG. 2. Viable parameter space: the colored regions are ruled
out and the black line [cf. (31)] yields the right amplitude of the
scalar power spectrum P, ~ 10~°. The gray region [cf. (26)] is
ruled out as the CC would vary too quickly today. The orange
region [cf. (27)] requires the CC relaxation to continue beyond
the regime of validity of the higher dimensional operator that
couples ¢ to the non-Abelian gauge sector. The cyan region
[cf. (21)] does not go through the strong regime of warm
inflation.

III. BACKGROUND
A. Cold inflation

We suppose that the universe starts in a cold inflationary
phase with a Hubble scale H}, driven by the potential V; of the
slow-rolling ¢ field. In order to avoid eternal inflation, we
require the classical rolling to dominate over quantum

fluctuation, c;b,vH;l ~ g*/H? 2 H;, which can be rewritten as

i S Mg (3)

where Mp is the reduced Planck mass. Hence, the highest
possible initial CC, V;, that is amenable to our proposed CC-
relaxation mechanism is set by the highest viable values of
the slope parameter g from the considerations below. As we
will see, the combined requirements of solving the CC
problem and having the dynamics of the CC relaxation be
within the regime of validity of our effective field theory
(EFT) puts an upper bound of g < 10~'® GeV, comrespond-
ing to V; SGeV*. If we add to this the requirement of
explaining the CMB anisotropies, g is further limited to be
g <1072 GeV, which corresponds to V; < (100 MeV)*.

V.

B. Thermalization of the gauge sector

Meanwhile, the non-Abelian gauge fields play no role as
the universe inflates, that is, until they are considerably
excited. The equations of motion for the gauge fields A%,
after a spatial-Fourier and a helicity decomposition, reads

A=+ HAT + (i )?A¢* + (non-Abelian terms) =0 (4)
where k « a! denotes a physical wave number and

a

(0F 2 = k(k % 26H),  E=gor

(5)

For a given k, the non-Abelian terms in (4) are negligible if
kZ eg|(A%(t,x)) 41|, where (A%(t,x)); 4 is the
gauge-field amplitude in the configuration space averaged
over an L ~ k™! sized domain. Initially, the gauge fields
have only horizon-size fluctuations with the typical ampli-
tude |(A%(t,x))| ~ H, and so the evolution of modes with
k> egH is well described by the terms shown in (4),
according to which + helicity modes with k < 2EH are
tachyonic. This provides a way to excite the gauge sector
even if it begins in a Bunch-Davies vacuum.

The value of & x H~? increases as ¢ rolls down the
potential with a Hubble-friction supported terminal velocity
¢ =g /3H. When & goes considerably above unity,
comoving gauge-field modes become tachyonic well
before they cross the horizon and get amplified exponen-
tially until the growth is stopped by Hubble friction slightly
outside the horizon. The total energy density of the gauge
fields soon reaches a steady state where the gain from
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tachyonic instability is balanced by Hubble dilution, at a
value [17]

e?mf

§3

1
—7(GuG™)y ~ NZ10~* —-H". (6)

In the many Hubble times that follow, the steady-state
gauge field energy density grows according to (6) as &
increases, until it reaches the value [18]

_(en)y’

(G G™ dra

1
- 7

- 7
whereupon non-Abelian terms in (4) become comparable to
the Abelian ones for k ~ éH modes. By equating (6) and

(7), one can calculate iteratively the £ when this occurs to be

7 — In(N? 7 7 — In(N?
&m[ﬁz—l;r(“a)}rﬁln[ﬁz—r;f““)}r._ (8)

At this point, some of the modes that would otherwise be
growing tachyonically acquire positive non-Abelian con-
tributions to their squared frequency, terminating said
growth. Nonlinear interactions among these modes then
lead to a net transfer of energy from the amplified modes to
other less excited modes (including those with—helicity)
[19]. The entropy is maximized when the gauge sector is in
thermal equilibrium with a peak energy ~Ty, that is given
by energy conservation, i.e., by equating ~(N2z%/30)T¢
with the —(Gj,G%")/4 at that time. However, such a
thermal configuration can only be achieved if the near-
equilibrium thermalization rate ~10N2a? Ty, is greater than
H [20] in the first place, which is equivalent to

LG gy > s N
_Z(G"”G y=23x10 (Nca)BH' 9)

In what follows, we call the critical & when the above is
satisfied & ;.

We will focus on the case in which at the point the gauge
fields hit the nonlinear regime they have enough energy to
immediately thermalize. This requires &np 2 Egear, Which
for N, = O(1) translates to

N.az0.1 (10)
which comes from plugging (7) and (8) into (9), and
solving for N _a numerically. The temperature T, at which

the gauge sector first thermalizes will be O(1) higher than
the Hubble rate Hy, at that time, and is roughly given by

Ty~ L (11)

where we used ¢ ~ g3/3H, (5), (8), and (10). The opposite
case, &y < &qu» 18 also interesting. We choose to avoid it
simply because we have less control of the evolution of the
universe in that case, as it requires some knowledge of the
nonlinear dynamics of the non-Abelian fields when & Z &y
but before (9) is satisfied. We speculate on what would
happen in that regime in Appendix.

In the above and in what follows, we assume that all the
relevant scales of fluctuations (the higher of the Hubble rate
H or the temperature T at a given time) during the CC
relaxation are above the confinement scale of the gauge
sector, i.e., the gauge sector is always weakly coupled. The
lowest fluctuation energy scale occurs when the gauge
sector begins to thermalize, when H ~ Hy, (the Hubble rate
H was higher before and once the gauge sector thermalize
its temperature is always higher than H and will only
increase). So, as long as a is perturbative at that point, it
will also be perturbative at all other epochs.

C. Warm inflation

Once the non-Abelian gauge fields are thermalized, they
behave as a thermal bath of dark radiation with energy
density

n’
por = 359:T". (12)

This dark radiation then damps the motion of ¢ with a
dissipative coefficient T = T3/f? as a form of backreac-
tion. The number of degrees of freedom g, will depend on
the gauge group of the Yang-Mills fields under consid-
eration. For simplicity, we will from now on specialize to
the SU(2) case, for which (z2/30)g, = O(1).

The background equations in this epoch take the form

d+QBH+Y)p—g =0 (13)
por = Y* —4Hppr (14)
SMEH? = pog + 5% — 7 (15)
M%HZ—%'Z—épDR- (16)

These admit attractor solutions, dubbed warm inflation,
where the universe is inflating (V > ppg and H < H? and
thermal fluctuations dominate the fluctuations of ¢. During
warm inflation, the rolling of ¢ is overdamped with
negligible ¢, the thermal bath is kept in a quasiequilibrium
with negligible ppg, and these imply
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. 3 T .
¢ﬁ’f—fﬁ’ POR % 2. (17)
In the parameter space regimes of our interest, the
universe lands in the weak regime (Y < H) when the
gauge sector first thermalizes at the temperature 7, found
in (11). Incidentally, this initial temperature is comparable
to the steady state value T ~ g%/ f2H3,, derived from (17),
at that time. The radiation temperature then proceeds to
track its steady-state value and scale as T o« H~> until it is
high enough to enter the strong regime (Y = H). This

happens when
4/5
Hstmng“"g(%) . (18)

Once the universe is in the strong regime, the steady-state
temperature scales more slowly with the Hubble rate,
T o« H~'7_1t can be seen from the background equations
that the conditions for slow-roll inflation, V > ppr and
H< H2, break at about the same time, when the Hubble
rate and gauge-sector temperature are of the order of

12\ 1/9
Heg = (f;!i?) , Tena = (Mpfzgé)ug (19)
P

marking the end of warm inflation. The field value at that
point is around

fB 1/9
Pena = — (QS_Mf;) Mp. (20)

In order to have an extended period of strong warm
inflation, where density perturbations are enhanced, we

require Hgoqe to be well above H,y, which amounts to

f<(Mpg?)' 8. (21)

D. Crunching

Though inflation has ended, ¢ continues to roll down at
its thermal-friction-supported terminal velocity fﬁmdz
@/ T ena- It soON crosses zero, overshoots to positive values,
and passes a point where the now negative V = —g’¢

cancels out the ppg > {ﬁ?/z term in Eq. (15) completely. At
that point the universe comes to a halt (H = 0) and begins
to crunch (H < 0). This Hubble sign flip causes the energy
density ppg of the dark radiation to start blueshifting as a™.
Soon, it takes over as the dominant component and remains
to be so for most of the crunching phase. Due to the
increasing thermal friction T o 73 and Hubble rate H « T2
during the crunching, the distances ¢ travels in the
subsequent Hubble times continue to diminish. Hence,
most of the ¢ displacement after the end of warm inflation

101 3

10° 5

10-2 4

1078

-120  -100  -80 —60 —40 -20 0
Naps = [ |H] dt

FIG. 3. Evolution of ¢, T, and H from the slow-roll regime to
where ¢ stalls in the crunching stage before the bounce. Dashed
lines indicate negative values. Quantities are normalized to their
initial slow-roll value, and are plotted against the absolute number
of e-folds. The inset plot is a zoom-in around the H = 0 point.
Here, we take f = 100 keV and g = 10-2* GeV.

is already covered in the first Hubble time or so, and ¢

eventually parks at a value ~@epqHzL ~ |Pendl-

We performed a numerical simulation to confirm the
background evolution around the end of warm inflation and
the start of crunching discussed above (see Fig. 3). We set
f =100 keV, g = 1072* GeV, and evolve the equations of
motion numerically using the absolute number of e-folds
Ny = [|H|dt relative to the H =0 point when the
universe starts crunching as a proxy for time. The results
suggest that the Hubble rate does not change significantly
in the last tens of e-folds of the warm inflation. The same
plot also shows that the stalling value of ¢ is comparable to
its absolute value |¢henq| at the end of warm inflation (a few
e-folds before the H = 0 point).

E. Bouncing and expanding to the present epoch

At this point, the universe is still crunching, the CC is
tuned to a tiny but negative value, and the Standard Model
sector is empty. The details of what happens next will
depend on the full high energy theory that takes over
outside the realm of validity of the EFT shown in Eq. (1).
That said, we know that several things need to happen in
order to produce the observed features of the universe:
(1) the universe must bounce (stop crunching and start
expanding), (2) the Standard Model sector must be excited,
and (3) the CC must be made positive and at the right level.
The bounce can be achieved either by violating NEC [5] or
by inducing vorticity [3]. It is conceivable that the Standard
Model sector as well as the degrees of freedom responsible
for the bounce, whatever the mechanism is, are generated as
the radiation is blue-shifted to sufficiently high temper-
atures. While we expect the ¢ contribution to the CC, —g¢,
to remain negative, the CC also receives contributions from
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other sectors that are decoupled from the relaxation
dynamics of ¢p. Some of these sectors may have multiple
vacua and possibly transitioned between them as the
universe was heated before the bounce and cooled after
the bounce.” Such a vacuum switching adds a ¢-indepen-
dent contribution to the CC which would show up in the
EFT under consideration as a constant shift AV in the
potential V of ¢

V=—-g¢p>V=-@p+AV (22)

This shift must be positive in order to explain the observed
CC value today.

In the interest of solving the CC problem, we require our
relaxation process to tune the CC to a negative value whose
magnitude ~g*|enq| is comparable to or less than the shift
AV which, in turn, must be comparable or close to the value
observed today ~(2 meV )4,

T |Pena| S AV ~ (2 meV)*. (23)
This theoretical constraint allows the process that shifts the
relaxed tiny negative CC to the positive value observed
today to be natural, i.e., not fine-tuned. Apart from that, we
also want to avoid the possibility that the now correct CC,
V ~ (2 meV)*, would untune itself due to the subsequent
rolling of ¢. Whether, or to which degree, this occurs has
some dependence on the UV completion of our EFT
[Eq. (1)]. We assume here that the thermal friction on ¢
increases with temperature, in which case most of the ¢
rolling would occur at low energies where our EFT is valid,
and leave the discussion on the opposite possibility (that the
thermal friction diminishes at high temperatures) to the next
subsection.

The most relevant constraint on the dark energy today
comes from its measured energy density ~(2 meV)* and
the constraints on its equation of state wpg, which in our
model is given by

(2 meV)t + ¢6/2 + poro/3
DE ~ O .
(2 meV)* + $5/2 + poro

(24)

The Planck TT, TE, EE + lowE + lensing + Sne + BAO
constraints the equation of state today to be —1 < wpg <
—095 [21]. Note that in cases of our interest

PDR > (T/H)cy»cbz, and so the latter constraint is
essentially a constraint on the amount of dark radiation
today:

PDRO 5 0.6 meV* (25)

A concrete realization of this scenario can be found in
Appendix A of [4].

In the likely scenario where ¢ and ppg are tracking the
steady state solution (17) today,6 we can use (17) to express
por in terms of the current Hubble rate Hy &~ 107*> GeV
and the model parameters f and g

4/7

It turns out that this is more stringent than the theoretical
constraint (23), and so can be regarded as our model
requirement for solving the cosmological constant
problem.

F. EFT validity

The EFT under consideration, Eq. (1), is trustworthy
throughout the CC-relaxation process if at any given time
the cutoff’ fe/a~10a32f of the higher dimensional
operator that couples ¢ to the Yang-Mills sector is above
the highest relevant fluctuation scale, i.e., the higher of the
Hubble rate and the gauge sector temperature. The Hubble
rate is the only relevant scale during cold inflation and its
highest value H; occurs at the very beginning, while the
temperature 7 dominates over H throughout warm inflation
and is highest at the end of it. In cases of our interest, we
always have T > g 2 H;. Thus, it suffices to require

Since Sec. IIIB we have specialized to the regime
where 0.1 Sa <1 [for N, = O(1)] at the time of the
gauge sector thermalization. The running of the coupling
constant for a pure Yang-Mills theory tells us that by
the end of warm inflation, we would have a ~ [1/0.1+
(11/67)N In (Tenq/Hg)] ! ~0.01. In light of this, (27)
turns into a constraint on f and g.

Let us return to the issue of the CC untuning itself due to
the rolling of ¢. We have discussed previously the case
where the thermal friction on ¢ becomes stronger with
increasing temperature in the UV regime, in which case
most of the ¢ rolling occurs at low energies. We now
consider the extreme scenario where the thermal friction
disappears completely outside of the realm of validity of
our EFT, assuming that the UV regime is radiation
dominated throughout. In that case, when the temperature
goes above the cutoff fs/a during the contraction, at the

6Assumjng that the ppg at the time of BBN is consistent with

the AN bound, ¢ and ppr would naturally evolve to reach the
steady state given by (17) before today.

"We adopt f/a as the cutoff of our EFT here, but the actual
cutoff scale will depend on how the EFT is UV completed. For
example, in some UV completions with ¢ coupled to heavy
fermions [22,23], the scale at which the EFT breaks down is
closer to f than fg/a.
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Hubble scale H o ~ 1020 f2/Mp, the initially small ¢
(due to thermal friction) immediately accelerates to
g3/Hc“toﬂ-‘ in a Hubble time due to the slope —g3 of the

¢ potential. Following that, ¢ scales up as a=3 due to
Hubble antifriction up to the bounce point and proceeds to
scale down asc'ﬁ ~ a3 (all the while with ¢ > ¢°/H) until ¢
is back at ¢®/Hoyemr at H ~ Hoyor. Where the thermal
friction turns back on and slows ¢ down significantly.
Given this scaling and that H~! « a® during radiation

domination, the field excursion per Hubble time c;bH‘l
would be maximum at the bounce point, where

PH" ~ (¢ /H2,ot) Toounce/ 1002 f). Requiring the CC
to not change by more than ~(2 meV)* at that time
amounts to

Tbounce < a 15/2 f 3 g _6.
10'¢ GeV ~ \0.01 10 MeV ) \ 10720 GeV

(28)

To reiterate, this is only when the thermal friction dis-
appears as soon as the temperature is above the cutoff.
Thus, this is a model-dependent constraint. Since this is not
a forbidding constraint, the success of the CC relaxation
per se does not hinge on the UV physics, even if the only
viable UV model requires the friction to disappear.

IV. PERTURBATIONS

CMB observations by the Planck satellite found at 95%
confidence level the following amplitude and spectral index
of the scalar power spectrum [24]

Pr(k,)~2.1x107%,  ng(k,)=0.9649+0.0084 (29)
at around the pivot scale whose wave number today is
k. = 0.05 Mpc~!. These observed perturbations are often
attributed to the vacuum fluctuations during an inflationary
period taking place at some energy scale well above MeV, the
big bang nucleosynthesis (BBN) temperature, in a universe
that has a beginning and has been expanding since.

Our CC-relaxation model does include a period of
inflation, albeit one that is separated by a crunch and a
bounce from the hot big bang epoch. When it comes to
explaining CMB anisotropies, this fact by itself is not an
issue as the CMB scale perturbations are frozen as soon as
they turn superhorizon during the prebounce inflation and
therefore insensitive to the subsequent cosmological history
until around the epoch of recombination [9]. A robust
feature of our CC-relaxation model is that the last stages of
the prebounce inflation must occur at SmeV energy scales
in order to solve the cosmological constant problem. Given
the fact that the vacuum contribution to the scalar power
spectrum P; is related to the inflationary Hubble rate H as

Py H?, its low energy scale poses a significant challenge
in getting the right level of curvature perturbations.

We show in this section that thermal perturbations during
warm inflation can provide enough enhancements of the
curvature perturbations relative to the vacuum one to match
the amplitude seen in CMB. However, due to the lack of
curvature in the linear potential —g>¢ in our model, the
resulting scalar power spectrum is always blue-tilted, in
contrast to the red-tilted spectrum suggested by CMB
observations. This is, nevertheless, a mild problem that
can be addressed in isolation, while respecting the required
shift symmetry for the CC relaxation.

Moreover, our prebounce inflationary period automati-
cally solves all the other problems that the standard, post-
big-bang inflation solves. The horizon and flatness
problems are solved by the sheer amount of expansion
during the inflationary period as in traditional inflationary
scenarios. While the thermal fluctuations during warm
inflation give rise to highly amplified scalar perturbations,
they do not source extra tensor perturbations. The tensor
perturbations remain to be sourced by quantum fluctua-
tions, which in our case is suppressed due to the smallness
of the Hubble rate near the end of warm inflation. Hence,
our model predicts a vanishingly small tensor to scalar ratio
r. Warm inflation also yields unique non-Gaussianity
signatures that are within the current observational bounds.
In the strong dissipative regime that is of interest to us,
T > 3H, warm inflation predicts fy. = O(10) [12,25].

A. Scalar amplitude

The curvature power spectrum for modes exiting the
horizon during the strong warm inflation (with T > H) is
given by [14]

Pr~5x 10710 (3%)8(%) (%)2 (30)

The exact amplitude P(k,) evaluated at the CMB pivot
scale down to O(1) factors will depend not only on the
spectral index but also on the number of e-folds separating
the horizon exit of the pivot scale and the end of warm
inflation. These are more model-dependent and will be
discussed in the next subsection. Our focus here is on
getting the amplitude at the right order of magnitude. An
extrapolation of the small spectral tilt observed in the CMB
suggests that P;(k) would not vary by orders of magnitudes
in the range of scales that become superhorizon in the last
tens of e-folds of warm inflation. Hence, a good estimate
for P,(k,) is given by Eq. (30) for the mode that exited the
horizon at end of warm inflation

l?Mll 2/3

015025-7



JI, KAPLAN, RAJENDRAN, and TANIN

PHYS. REV. D 105, 015025 (2022)

where we have used (2), (17), (19), and taken T ~ T4, efc.
Thus, Pg(k,) ~ 1079 can be achieved with

fm g, ()

Given the strong dependence of the amplitude Eq. (31)on f
and g, we expect this rough parameteric requirement to be
robust against model variations. To explain both the CMB
anisotropies and the CC problem at once, we need to satisfy
the above plus the dark energy constraint Eq. (26). This
amounts to

<1072 GeV, <10 MeV. 33
g

B. Scalar spectral index

The spectral index evaluated at the pivot scale k, is
given by

6

==(1ley — Sf?v) (34)
=k, !

_dinP;
" dN

ng, —

where dN is differential number of e-folds and

A
Y+ 3E)\V,

__ M Vi
”V=m(ﬂ) (33)

are two of the warm-inflation slow-roll parameters evalu-
ated at the horizon crossing of the pivot scale. In the
minimal model where the potential is perfectly linear,
V(¢) = —g°p, and ¢ interacts only with the weakly
coupled non-Abelian gauge sector that provides the dom-
inant friction during warm inflation, we have #, = 0 and
consequently the scalar power spectrum is always blue-
tilted n,— 1 > 0.

To get a red-tilted spectrum, we need a nonzero and
sufficiently positive #y to counter the ey term in Eq. (34).
This can be achieved, for example, by coupling ¢ to a cold,

confined non-Abelian sector with a decay constant f and a
confinement scale A. Doing so adds a modulation to the
linear potential —g’¢p

V(g) = —*d + A* [{:os% - cos(¢ }%ﬂ . (36)

The phase ¢y accounts for the separation between the zero
of V(¢) that is relevant to our scenario and the nearest
extremum of the potential modulation. The constant shift
A* cos(¢y/f) ensures that the potential still crosses zero
when ¢ does. We require A*/f < ¢°, so that the resulting
potential alternates between steep cliffs and flat plateaus

10!

X/
=

10-2 4

10-3

T T T T
—&0 —60 —40 —20 1]
Nops = [ |H]| dt

1.04

Planck 2018, 95% C.L.

1.02

1.00

& 0.98 1

0.96

0.94

T T T T
—80 —T0 —G0 —50 —A40 —30 —20 —10
Nuvs = [ |H|dt

FIG. 4. The top panel here is the same as Fig. 3, but for the
modulated potential Eq. (36). It shows that the background
evolution remains unchanged qualitatively. The bottom panel
shows the scalar spectral index n, as a function of the absolute
number of e-folds, with the gray band showing the Planck
constraints. Here, we take f =100keV, g=10"2 GeV,

7 =2x 10" GeV, ¢y = 457, and A = 0.97(F¢?)1/4.

with no minima. Otherwise ¢ could be trapped prematurely
in one of these minima. This no-trapping condition and the

definition of 5, amount to an upper bound on f, which can
be written as

- _cos[(@, —o)/f] (T ; -1
f< T (ﬁ)fﬁ,‘b’* (37)

assuming that the CMB scales became superhorizon before
slow-roll breaks. It is likely that the CMB scales
k~107-10"! Mpc~!, including the pivot scale k., all
exited the horizon on one of the plateaus since the rolling of
¢ is significantly slower there, and it must be on a part of
the plateau where V" >0 so that the resulting spectral
index is red. This would require the field excursion over the
ANcygp e-folds during which the CMB scales exited the
horizon to be much less than the oscillation period 2z f of
the potential, which sets a lower bound on f

015025-8
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F> —M;‘;M“ $.HT! (38)

Given that ANcyg ~ 10 and iy ~ 1%, the following choice
of parameters
Fr10pHT, KT (39)
meet the requirements discussed above (with a little
tuning). For example, if f~100keV and g~
1023 GeV then f ~10' GeV and A ~ 10~ GeV would
work. Figure 4 shows that, for appropriate choices of f and

A, there is a range of e-folds AN > 10 with n, lying inside
the CMB 95% confidence level band, Eq. (29). We have
also checked that the running of the spectral index is well
within the 95% confidence level limits from Planck. Note
that modes continue to exit the horizon in the radiation-
dominated contraction following the end of warm inflation.
To account for this, we have chosen the parameters such
that the pivot scale crossed the horizon at around N = 40
e-folds before the end of warm inflation, instead of the
typically assumed N = 60.

V. DISCUSSION AND CONCLUSION

We have developed a model that dynamically relaxes the
(effective) cosmological constant to a tiny value through
the rolling of a shift-symmetric scalar field down its linear
potential. This simple model not only explains the unex-
pected smallness of the cosmological constant and the
reheating of the universe to the hot big bang era, but also
gives rise to the right amplitude of the primordial density
perturbations at the CMB scales. It also improves the degree
of cosmological constant tuning and is even simpler com-
pared to the previously proposed model of the same kind [4].
Remarkably, this class of models is already strongly con-
strained by the shift symmetry required to ensure the
radiative stability of the ¢ field, and yet our model can give
rise to a rich cosmology that achieves the above-mentioned
feats in a way that is consistent with all the current
observations. It will be interesting to attempt a more
systematic and generalized approach to realizing this class
of solutions. Possible extensions include considering differ-
ent dissipative mechanisms and multiple rolling scalars.

A number of assumptions were made in reaching our
conclusions. We assumed that the nonlinear self-inter-
actions of the gauge fields tend to bring themselves to a
thermal equilibrium, but did not describe the thermalization
process in full. Numerical simulations will provide a fuller
picture of the thermalization process in the nonlinear
regime and a dedicated study may reveal analytically-
calculable processes that lead to the thermalization of the
gauge fields, possibly before they turn nonlinear. The
simple EFT shown in (1) that achieves the CC relaxation

and generates the right amplitude of primordial density
perturbations does not on its own provide: a concrete
realization of the nonsingular bounce, a mechanism that
turns the relaxed tiny negative CC into the positive value
(2 meV)* observed today, and an explanation for the slight
red tilt of the scalar power spectrum seen in the CMB.
While we have provided examples for each of these, it
would be interesting to write down a complete and
renormalizable model that achieves all the key steps in
this scenario, as it would provide further consistency
checks.

The rich cosmology of our scenario gives rise to a series
of predictions that can be checked against current and
future cosmological surveys. First, the range of scales
spanning 60 or so e-folds that reenter the horizon during the
postbounce expansion will include not only the modes that
turn superhorizon during warm inflation, but also those
during the subsequent contraction period. The resulting
scalar power spectrum will have a mixed feature where it is
nearly scale-invariant at large scales (the inflation part) and
perhaps strongly blue-tilted at small scales (the contraction
part), with a rapid transition somewhere in between.
Furthermore, the non-Gaussianities in the primordial per-
turbations generated during the warm inflation period in
our model are small enough to be within the current
constraints, but can be tested in future observations. Our
model also predicts highly suppressed inflationary gravi-
tational waves, however the cosmological bounce that
occurs afterward may generate potentially observable
gravitational waves with a peaked spectrum.

Unlike most early universe models, the most defining
parts of our model [i.e., those described by the EFT shown
in Eq. (1)] operates at low energies, and this gives us further
opportunities to test it today. If it is indeed realized in
nature, the present-day cosmology should mirror to some
extent what happened in the pre-bounce, low-energy
universe. In fact, our model says that we are about to
enter a new period of warm inflation. Most directly related
to the dynamical explanation for the cosmological constant
problem is the evolving nature of the dark energy. This can
be probed through the time variation of its equation of state
today. The strong friction needed to generate the right level
of primordial density perturbations requires a thermal bath
of dark radiation coupled to the dark energy. Assuming
even weak mixing with the standard model, such a dark
radiation could be probed directly in a variety of ways [26].
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APPENDIX: GAUGE SECTOR
THERMALIZATION IN THE SMALL
COUPLING a REGIME

As argued in Sec. I B, one requirement for the gauge
sector to thermalize is that it must have enough energy to
satisfy (9). If &y < é..u» the gauge sector does not
immediately thermalize when it becomes nonlinear, and
will stay in the nonlinear regime without thermalizing until
it acquires enough energy from ¢. In this appendix, we
argue that the gauge sector would still thermalize in this
case and estimate the possible values of the Hubble Hy, rate
when it does. The challenge lies mainly in determining the
growth rate of the energy density of the gauge fields in the
nonlinear regime, where (6) no longer applies. The gauge
field temperature right after thermalization is then given by
Tw ~Hy/10N%a?, which can be much higher than the
Hubble rate at that time, Hg,, depending on how small
N a is.

Let us first assume that when & = &y, the universe
settles to a steady state where the kinetic energy of ¢ is
approximately constant in a Hubble time:

d (¢ s - N
5(7)—93¢—3H¢ —ox0 (Al
where
1 H)*
Q = _Z(GﬁyGaﬂy)N]_rN (iﬁi r (Az)

is the energy density transfer rate from ¢ to the gauge
sector, parametrized by the rate I" to be estimated later. In
order to thermalize, the energy density acquired by the
gauge sector per Hubble time QH ™! must satisfy (9), which
for N, = O(1) happens when

H\'/* 1
W~\r) 77

From (Al), we see that there are two possible steady states
for ¢ at that time

(A3)

93Q}

. 5
¢y ~ min [m,? [93 Hﬂ’

- — (A4
Hy, 089’3} )

depending on how small a is. The Hubble rate at which the
gauge sector thermalizes Hy, can then be found from (A3),
(A4), and the definition of & [Eq. (5)]

Hy o [ (2, At (a9

We now attempt to estimate I". The thermalization con-
dition (9) requires the energy density in the gauge sector to go
well above (7). If at that time the energy density is still
concentrated around the tachyonic k ~ £H modes, we would
have eg|(A% (1))~ eyt | > e *(=(GLG™)xy /4) /4~
EH. Itfollows that k < eg|(A% (¢, x)) .41 | for most of these
modes and this shuts off their tachyonic instabilities. While
the tendency to maximize entropy implies that energy would
continue to flow from ¢ to the gauge sector even when the
latter has become completely nonlinear and no longer
tachyonic, it is possible that the energy transfer rate in that
regime is highly suppressed. To be on the conservative side,
we assume that tachyonic instability is the only way for the
gauge fields to acquire energy from ¢. The tachyonic band
would reopen if the configuration-space gauge-field ampli-
tude is somehow reduced. There are two ways for this to
happen. First, Hubble friction will eventually deplete it if the
gauge sector stops gaining energy from ¢. The second way is
through the self-scatterings among the nonlinear modes,
which tend to redistribute energy from the amplified low
wave number modes to the less-occupied high wave number
modes. This has the effect of increasing the typical gradient
of A%. The average amplitude on the tachyonic scales
|(A®(t, X)) L~(er)- | must therefore go down due to cancel-

lations (the same conclusion can be reached from energy
conservation considerations). Based on these considerations,
we expect I" to lie in the range H ST" S EH. The lowest I
corresponds to the case where the self-scattering rates are so
slow that the gauge fields need to wait a Hubble time before
the tachyonic band opens up again due to Hubble dilution,
while the highest I is expected when the self-scattering rates
are so fast that the tachyonic band is essentially always open.
It follows from (A3) thata~7/* < &;, < a~7/° and this can be
plugged into (AS5) to give the Hubble rate when the gauge
fields thermalize.
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