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Abstract. Momentum stochastic gradient descent (MSGD) algorithm has been widely
applied to many nonconvex optimization problems in machine learning (e.g., training
deep neural networks, variational Bayesian inference, etc.). Despite its empirical success,
there is still a lack of theoretical understanding of convergence properties of MSGD. To fill
this gap, we propose to analyze the algorithmic behavior of MSGD by diffusion
approximations for nonconvex optimization problems with strict saddle points and
isolated local optima. Our study shows that the momentum helps escape from saddle
points but hurts the convergence within the neighborhood of optima (if without the step
size annealing or momentum annealing). Our theoretical discovery partially corroborates
the empirical success of MSGD in training deep neural networks.
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1. Introduction
Nonconvex stochastic optimization naturally arises in many machine learning problems. Taking training deep
neural networks as an example, given n samples denoted by {(xi,yi)}ni�1, where xi is the ith input feature and yi is
the response, we solve the following optimization problem:

min
θ

F (θ) :� 1
n

∑n
i�1

ℓ(yi, f (xi,θ)), (1)

where ℓ is a loss function, f denotes the decision function based on the neural network, and θ denotes the
parameter associated with f. Stochastic gradient descent (SGD), which has been known for a long time as stochastic
approximation in the control and simulation literature (Robbins and Monro 1951, Borkar and Meyn 2000, Kushner
and Yin 2003, Borkar 2009, Fu et al. 2015), has been applied to solve machine learning problems such as Problem (1)
(Newton et al. 2018). Momentum stochastic gradient descent (MSGD; Polyak 1964) is one of the most popular
variants of SGD. Specifically, at the tth iteration, we uniformly sample i from (1, : : : ,n). Then, we take

θ(t+1) � θ(t) − η�ℓ(yi, f (xi,θ(t))) +μ(θ(t) −θ(t−1)), (2)

where η is the step size parameter and μ ∈ [0, 1) is the parameter for controlling the momentum. Note that when
μ � 0, iterate (2) is reduced to vanilla stochastic gradient descent (VSGD).

Although SGD-type algorithms have demonstrated significant empirical success for training deep neural
networks, their convergence properties for nonconvex optimization are still largely unknown. For VSGD,
existing literature (Ghadimi and Lan 2013) shows that it is guaranteed to converge to a first-order optimal
solution (i.e., �F (θ) � 0) under general smooth nonconvex optimization.

The theoretical investigation of MSGD is even more limited than that of VSGD. The momentum in iterate (2)
has been observed to significantly accelerate computation in practice. To the best of our knowledge, we are only
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aware of Ghadimi and Lan (2016) in existing literature, which shows that MSGD is guaranteed to converge to a
first-order optimal solution for smooth nonconvex problems. Their analysis, however, does not justify the
advantage of the momentum in MSGD over VSGD.

To fill the gap between the significant empirical success and the lack of theoretical understanding of MSGD,
we are interested in answering a natural and fundamental question in this paper.

What is the role of the momentum in nonconvex stochastic optimization?
The major technical bottleneck in analyzing MSGD and answering the question comes from the nonconvex

optimization landscape of these highly complicated problems (e.g., training large recommendation systems and
deep neural networks). We propose to analyze MSGD for nonconvex optimization problems under the
assumption of isolated local optima and strict saddle points. This allows us to make progress toward
understanding MSGD and gaining new insights on more general problems. Specifically, we consider the
following problem:

min
x∈Rd

F (x) � E[ f (x, ξ)],

where ξ is a random variable representing the noiseand f (x,ξ) is nonconvex in x given any realization of ξ. We
assume that the nonconvex landscape has the following structures. (1) Every local optimum has positive
curvatures along all directions; (2) there always exist negative curvatures around saddle points (strict saddle
property).

The strict saddle property is shared by several popular nonconvex optimization problems arising in machine
learning and signal processing, including streaming principle component analysis (PCA), matrix regression/
completion/sensing, independent component analysis, partial least square multiview learning, and phase
retrieval (Ge et al. 2016, Li et al. 2016, Sun et al. 2016). Moreover, because there is a significant lack of
understanding of the optimization landscape of general nonconvex problems, many researchers suggest that
analyzing strict saddle optimization problems should be considered as the first important step toward
understanding the algorithmic behaviors in general nonconvex optimization. We also want to remark that our
analysis can be extended to connected local optima cases. Doing so requires more technical machinery instead of
fundamental insights. Therefore, we present the analysis for the isolated optima case for readability and
simplicity, and it has already conveyed our core ideas on the effect of momentum.

By making use of the diffusion approximation of stochastic optimization, we provide global and local analysis
of MSGD. Specifically, to study the global dynamics, we transfer the discrete time trajectory to a continuous time
one by interpolation and prove that asymptotically this continuous time solution trajectory of MSGD converges
weakly to the solution of an appropriately constructed ordinary differential equation (ODE). This ODE
approximation shows that the momentum helps traverse among stationary points in the nonstationary region,
where the variance of the stochastic gradient can be neglected compared with the large magnitude of the
gradient. Intuitively, with the help of the momentum, the algorithm makes more progress along the descent
direction. Thus, the momentum can accelerate the algorithm in this region by a factor of 1=(1−μ).

ODE approximation, however, cannot justify how momentum works in the stationary area where the variance
of the stochastic gradient dominates the update. To highlight the effect of the variance, we consider the
asymptotic behavior of the normalized estimation error obtained by MSGD around the stationary points. We
show that the continuous time interpolation of the normalized error sequence converges weakly to a solution of
an approximately constructed stochastic differential equation (SDE). By analyzing this SDE solution, we find that
the momentum can play different but important roles around saddle points and local optima.

• The momentum helps escape from the neighborhood of saddle points. In this region, because the gradient
diminishes, the variance of the stochastic gradient dominates the algorithmic behavior. Our analysis indicates that
the momentum greatly increases the variance and perturbs the algorithm more aggressively. Thus, it becomes
harder for the algorithm to stay around saddle points. In addition, the momentum also encourages more
aggressive exploitation, and in each iteration, the algorithm makes more progress along the descent direction by a
factor of 1=(1−μ), where μ is the momentum parameter, compared with the VSGD.

• The momentum hurts the convergence within the neighborhood of local optima. Similar to the neighborhood
of saddle points, the gradient dies out, and the variance of the stochastic gradient dominates. Because the
momentum increases the variance, it is harder for the algorithm to enter the small neighborhood. To this respect,
the momentum hurts in this region. We suggest to apply a step size annealing scheme to neutralize the large
variance introduced by momentumwithin the neighborhood of local optima.

Our ODE/SDE approximation analysis justifies the role of momentum in both stationary and nonstationary
areas. However, given the complicated nonconvex landscape, our diffusion approximation analysis cannot
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establish the second-order convergence guarantee and the asymptotic convergence rate of MSGD. Therefore, we
further provide a simple but highly nontrival example, streaming PCA, to illustrate our characterization of the
effect of momentum and also establish the asymptotic convergence results.

Streaming PCA is a nonconvex problem with only one global optimum and d – 1 strict saddle points up to
sign change, where d is the dimension. Its optimization landscape contains the following three regions:

•R1: the region containing the neighborhood of strict saddle points with negative curvatures;
•R2: the region including the set of points whose gradient has sufficiently large magnitude;
•R3: the region containing the neighborhood of all local optima with positive curvatures along all directions.
By studying the corresponding mean ODE and SDE, we show that with arbitrary initialization, MSGD can

converge to the global optimum. We provide asymptotic convergence rates of MSGD, which precisely quantify
the acceleration by momentum inR1 and R2. Meanwhile, we also show that with the proper step size annealing
scheme implemented, MSGD can achieve the same convergence rate as VSGD inR3:

Our characterization helps explain some phenomena observed when training deep neural networks. There have
been some empirical observations and theoretical results (Choromanska et al. 2015) showing that saddle points are
the major computation bottleneck, and VSGD usually spends most of the time traveling along saddle and
nonstationary regions. Because the momentum helps in both regions, we can find in practice that MSGD performs
better than VSGD. In addition, from our analysis, the momentum hurts convergence within the neighborhood of the
optima. However, we can address this problem by decreasing the step size or the momentum parameter.

We further verify our theoretical findings through numerical experiments on training a residual network (He
et al. 2016), using both Canadian Institute For Advanced Research (CIFAR)-10 and CIFAR-100 data sets. The
experimental results show that the algorithmic behavior of MSGD is consistent with our analysis. Moreover, we
observe that with a proper initial step size and a proper step size annealing process, MSGD eventually achieves
better generalization accuracy than that of VSGD in training neural networks.

To the best of our knowledge, our proposed theory is the first attempt toward understanding the role of momentum
in nonconvex stochastic optimization beyond the convergence to stationary solutions. Taking our results as an initial
start, we expect more sophisticated and stronger follow-up work for analyzing MSGD (e.g., extending our asymptotic
theory to its nonasymptotic counterpart). Please refer to Section 7 for more detailed discussions.

The rest of the paper is organized as follows. Section 2 introduces our nonconvex optimization problem
settings and MSGD for solving the problem. Sections 3 and 4 analyze the global and local dynamics of MSGD
based on diffusion approximations, respectively. Section 5 studies streaming PCA and provides an asymptotic
convergence rate analysis. Section 6 presents the numerical experiments on both streaming PCA and training
deep neural networks to demonstrate our theoretical results. Section 7 makes some further discussions on the
related literature, our theoretical and experimental results, and future work. The online companion includes all
technical details.

2. MSGD
Recall that we study MSGD for a general nonconvex optimization problem as follows:

min
x∈Rd

F (x) � E[ f (x, ξ)], (3)

where ξ is a random variable representing the noise and f (x,ξ) is nonconvex in x given any realization of ξ: We
assume that there is a stochastic gradient oracle taking x′ ∈ R

d as input and outputting �f (x′,ξ′), where ξ′ is a
realization of the noise ξ, such that

E[�f (x′,ξ′)] � �F (x′), Cov[�f (x′,ξ′)] � Σ:

Given a vector v � (v(1),: : : ,v(d))� ∈ R
d, we define the vector norm: ‖v ||22� ∑

j(v(j))2. We impose the following
standard assumptions on the objective F (x) and f (x,ξ):
Assumption 1.

•Uniform boundedness. There exists a constant C such that ‖�f (x,ξ)‖2 ≤ C, ∀x,ξ:
• Lipschitz continuous. There exists a constant L such that

‖�F (x1) − �F (x2)‖2 ≤ L‖x1 − x2‖2, ∀x1, x2 ∈ R
d:

In general, the optimization landscape of Problem (3) can be very complicated with numerous local optima
and saddle points. Here, we consider the case where all the saddle points satisfy the strict saddle property and
every local optimum is isolated as stated in Assumption 2.
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Assumption 2 (Isolated Optima and Strict Saddle Points).
Denote S � {x ∈ R

d | �F (x) � 0} as the set of all stationary points. For x′ ∈ S, x′ must be one of the following:
• A strict saddle point such that λmin (�2F (x′)) < 0:
• An isolated local optimum such that λmin (�2F (x′)) > 0:

We want to remark that our analysis can also be extended to study the case of connected local optima.
However, the proof will be much more involved. Please refer to Section 7 for a detailed discussion.

We apply SGD with Polyak’s momentum (Polyak 1964) (MSGD for short) to solve Problem (3). At the kth
iteration, MSGD takes the following update:

xk+1 � xk − η�f (xk, ξk) + μ(xk − xk−1), (4)

where η > 0 is the step size and μ(xk − xk−1) is the momentum with the momentum parameter μ ∈ [0, 1). When μ
� 0, iterate (4) is reduced to SGD. We remark that although we focus on Polyak’s momentum, extending our
theoretical analysis to Nesterov’s momentum (Nesterov 1983) is straightforward.

3. Analyzing Global Dynamics by ODE
We first analyze the global dynamics of MSGD by taking a diffusion approximation approach. Roughly speaking, by
taking the step size η→ 0, the continuous time interpolation of the iterations {xk}∞k�0, which can be treated as a
stochastic process with Càdlàg paths (right continuous with left-hand limits), becomes a continuous stochastic process.
For MSGD, this continuous process follows an ODE with a unique solution. This ODE helps us understand how the
momentum affects the global dynamics. We remark that the momentum parameter μ is a fixed constant in our analysis.

More precisely, we define the continuous time interpolation Xη(·) of the solution trajectory of the algorithm as
follows. For t ≥ 0, set Xη(t) � xηk on the time interval [kη, kη+ η): Throughout our analysis, similar notations are
applied to other interpolations (e.g., Hη(t), Uη(t)). We then answer the following questions.

Does the solution trajectory sequence {Xη(·)}η converge weakly as η goes to zero? If so, what is the limit?
This question has been studied for VSGD in the existing literature for special nonconvex optimization problems,

such as streaming PCA in Chen et al. (2017). The infinitesimal perturbation analysis (IPA) technique is widely used
to show that under some regularity conditions, Xη(·) converges weakly to a solution of the following ODE:

Ẋ(t) � −�F (X(t)): (5)

This method, however, cannot be applied to analyze MSGD because of the additional momentum term. Here,
we explain why this method fails. Rewrite Algorithm (4) as

δk+1 � μδk − η�f (xk,ξk), xk+1 � xk + δk+1:

One can easily check that (δk,xk) is Markovian. To apply IPA, the infinitesimal conditional expectation (ICE)
must converge to a constant. However, the ICE for MSGD, which can be calculated as

E[δk+1 − δk | δk,xk]
η

� (μ− 1)δk
η

−�F (xk),
goes to infinity (blows up). Thus, IPA is not applicable here.

To address this challenge, we provide a new technique to prove the weak convergence and find the desired
ODE. In a nutshell, we first prove rigorously the weak convergence of the trajectory sequence and then, use
martingale theory to find the ODE. To be self-contained, we provide a summary on the prerequisite weak
convergence theory in Online Companion Section 1.

Under Assumption 1, we characterize the global behavior of MSGD as follows.

Theorem 1. Let Dd[0,∞) be the space of Rd-valued operators, which are right continuous and have left-hand limits for each
dimension. Suppose x0 � x1 ∈ R

d. Then, for each subsequence of {Xη(·)}η>0, there exists a further subsequence and a process
X(·) such that Xη(·) ⇒ X(·) in the weak sense as η→ 0 through the convergent subsequence in the space Dd[0,∞), where
X(·) satisfies the following ODE:

Ẋ � − 1
1−μ

�F (X), X(0) � x0: (6)

Moreover, for any δ > 0, there exists a sequence Tη,δ →∞ such that

limsup
η→0

P ∃t ≤ Tη,δ, Xη(t)≠Nδ(S)
( ) � 0,

where Nδ(S) is the δ neighborhood of the stationary points.
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Proof Sketch. To prove this theorem, we first show that the trajectory sequence {Xη(·)}η converges weakly. By
Prokhorov’s theorem 1 (in Online Companion Section 1), we need to prove tightness, which means that {Xη(·)}η
is bounded in probability in space Dd[0,∞). This can be proved by Theorem 4 (in Online Companion Section 1),
which requires the following two conditions. (1) xk must be bounded in probability for any k uniformly in step
size η. (2) The maximal discontinuity (the largest difference between two iterations; i.e., maxk{xk+1 − xk}) must go
to zero as η goes to zero. This can be shown by using the bounded gradient assumption.

We next compute the weak limit. For simplicity, we define

β
η
k � −∑k−1

i�0
μk−i[�f (xηi , ξi) − �F (xηi )] and ε

η
k � −(�f (xηk , ξk) − �F (xηk )):

We then rewrite the algorithm as follows:

mη
k+1 � mη

k + (1 − μ)[−mη
k + M̃(xηk )], xηk+1 � xηk + η(mη

k+1 + β
η
k + ε

η
k ), (7)

where M̃(x) � −(1−μ)−1�F (x): The basic idea of the proof is to view iterate (7) as a two-timescale algorithm
(Borkar 1997, 2009), where mk is updated with a larger step size (1−μ) and thus, under a faster time scale and vk
is under a slower one. Then, we can treat the slower timescale iterate v as static and replace the faster timescale
iterate m by its stable point in terms of this fixed v in iterate (7). This stable point can be shown to be M̃(x).

We then show that the continuous time interpolation of the error [mη
k+1 − M̃(xηk )] + β

η
k + ε

η
k converges weakly to

a Lipschitz continuous martingale with zero initialization. From the martingale theory, we know that such kinds
of martingales must be a constant. Thus, the error sequence converges weakly to zero, and what is left is actually
the discretization of ODE (6). Please refer to Online Companion Section 2 for the detailed proof. w

Note that for any solution X(t) to ODE (5) (i.e., the mean ODE of SGD), X(t=(1−μ)) is a solution to ODE (6).
This implies that asymptotically, MSGD is 1=(1−μ) faster than SGD to converge to the neighborhood of a
stationary point given the same initialization. Intuitively, with the help of the momentum, the algorithm makes
more progress along the descent direction, and therefore, momentum can accelerate the algorithm
asymptotically.

However, because the noise of the stochastic gradient diminishes as η→ 0, such a deterministic ODE-based
approach is insufficient to analyze the local behavior of MSGD around stationary points where the noise plays a
dominant role over the vanishing gradient. Thus, we resort to the following SDE-based approach for a more
precise characterization.

4. Analyzing Local Dynamics by SDE
To characterize the local algorithmic behavior, we need to rescale the influence of the noise. For this purpose, we
consider the normalized error (xk − x∗)= ��

η
√

under the diffusion approximation framework, where x∗ ∈ S is a
stationary point. Different from the previous ODE-based approach, we obtain an SDE approximation here.
Intuitively, the previous ODE-based approach is analogous to the Law of Large Numbers for random variables,
whereas the SDE-based approach serves the same role as the Central Limit Theorem.

Recall that under Assumption 2, the optimization problem (3) has strict saddle points and isolated local
optima. We remark that the assumption on isolated local optima helps avoid the cases where the normalization
error explodes when the iterate wanders along the connected local optima. Our analysis can be further extended
to handle connected local optima. However, the analysis will be much more complicated. Please refer to Section
7 for a detailed discussion. For consistency, we first study the algorithmic behavior around the local optimum.

Remark 1. The
��
η

√
normalization actually normalizes the error by its standard deviation. Specifically, consider

the �1=η� th iterate of SGD initialized at the stationary point x∗,

x�1=η� � x∗ − η
∑�1=η�−1
i�0

�f (xi) − η
∑�1=η�−1
i�0

ξi,

where f(x) is the objective to be maximized and {ξi}i are the noises in the stochastic gradient independently and
identically distributed (i.i.d.) sampled from some unknown distribution with mean zero and bounded variance.
Given the continuity of the gradient, �f (xi) is approximately zero, and noise will dominate around the stationary
point x∗: Therefore, x�1=η� can be further approximated as follows:

x�1=η� ≈ x∗ − η
∑�1=η�−1
i�0

ξi:
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Thus, the variance of the error x�1=η� − x∗ is of orderO(η):

Var x�1=η� − x∗
( ) � η2Var

∑�1=η�−1
i�0

ξi

( )
�O(η):

Therefore, we actually normalize the error by its standard deviation O( ��
η

√ ), which is analogous to rescaling the
sample sum by

���
N

√
in Central Limit Theorem.

4.1. Local Dynamics Around Local Optima
We first consider the algorithmic behavior of MSGD when it is around a local optimum x∗. Define the normalized
process uηk � (xηk − x∗)= ��

η
√

, where λmin (�2F (x∗)) > 0: Accordingly, Uη(t) � (Xη(t) − x∗)= ��
η

√
: The next theorem

characterizes the limiting process of Uη(t):
Theorem 2. As η→ 0, {Uη(·)} converges weakly to the unique stationary solution of

dU � − 1
1−μ

�2F (x∗)Udt+ 1
1−μ

dWt, (8)

where {Wt} is a Wiener process with covariance matrix Σ � E[�f (x∗,ξ)�f (x∗ ,ξ)�]:
Note that our analysis is very different from that in Chen et al. (2017) because of the failure of IPA because of

the similar blowup issue. We remark that our technique mainly relies on theorem 5 (in Online Companion
Section 1) from Kushner and Yin (2003). Because the proof is much more sophisticated and involved than IPA,
we introduce the key technique, fixed-state chain, in a high level.

Proof Sketch. Note that the algorithm can be rewritten as

xη,ik+1 � xη,ik − η
∑k−1
j�1

μk−j�f xηj , ξj
( )

+ �F xk( )
[ ]

− η �f xηk , ξk
( )

− �F xηk
( )[ ]

:

Here, for a vector x ∈ R
d and an integer i ≤ d, x(i) represents the ith dimension of x. We define

ζ
η
k � − ∑k−1

j�1
μk−j�f (xηj ,ξj)

[ ]
, Zη

k � g ζ
η
k ,x

η
k

( )
+ γ

η
k ,

γ
η
k � �F xηk

( )
−�f xηk ,ξk

( )
, and g ζ

η
k ,x

η
k

( )
� ζ

η
k −�F xηk

( )
:

Here, g is the accelerated gradient flow, and γ
η
k is the noise. Then, the algorithm becomes

xηk+1 � xηk + ηZη
k � xηk + ηg(ζηk ,xηk ) + ηγ

η
k ,

and thus, we have uηk+1 � uηk + ��
η

√ [g(ζηk ,xηk ) + γ
η
k ]: Note that g(ζηk ,xηk ) ∈ F

η
k and E[γη

k | F η
k ] � 0 imply that the noise

{γη
k} is a martingale difference sequence.
We then manipulate the algorithm to extract the Markov structure of the algorithm in an explicit form. To

make it clear, given X, there exists a transition function P(·, · | X) such that

P{ζηk+1 ∈ · | F η
k} � P(ζηk , · | X � xηk ):

This comes from the observation ζ
η
k+1 � μζ

η
k −μ�f (xηk ,ξηk ), where the randomness only comes from ξk when state

xk is given. Then, the fixed-state chain refers to the Markov chain with transition function P(·, · | X) for a fixed X.
The state of this Markov chain is denoted by {ζk(X)}. For notational simplicity, let M̃(x) � −1=(1−μ)�F (x): We
then decompose xηk+1 − xηk as follows:

xηk+1 − xηk �ηM̃(xηk ) + ηγ
η
k + η[g(ζk(xηk ),xηk ) − M̃(xηk )]

+ η[g(ζηk ,xηk ) − g(ζk(xηk ),xηk )] � ηM̃(xηk ) + ηWη
k :

(9)

The error term Wη
k in (9) comes from three sources: (1) difference between the fixed-state chain and the limiting

process: g(ζk(xηk ),xηk ) − M̃(xηk ); (2) difference between the accelerated gradient flow and the fixed-state chain:
g(ζηk ,xηk ) − g(ζk(xηk ),xηk ); and (3) the noise γη

k .
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We handle them separately and combine the results together to get the variance ofWη,i
k . Note that {uηk} satisfies

the following update:

uηk+1 − uηk �
��
η

√
M̃(xηk ) +

��
η

√
Wη

k :

Together with the fact that around the optimum x∗, M̃(x) � −1=(1−μ)�2F (x∗)(x− x∗) + o ‖(x− x∗)‖2
( )

, we further
obtain

uηk+1 − uηk
η

� − 1
1−μ

�2F (x∗)uηk +
Wη

k��
η

√ + o | uη,1k |
( )

: (10)

After calculating the variance of W, we see that essentially (10) is the discretization of SDE (8). For the detailed
proof, please refer to Online Companion Section 3.1. w

Note that SDE (8) admits an explicit solution, which is known as an Ornstein–Uhlenbeck (O-U) process
(Øksendal 2003), having the following expression:

U(t) � exp − 1
1 − μ

�2F (x∗)t
( )

U(0) +
∫ t

0
exp

1
1 − μ

�2F (x∗)(t − s)
( )

Σ
1
2

1 − μ
dBt:

Given U(0), the formula shows that U(t) is Gaussian for all t > 0: Therefore, we can identify the limiting density
of U(t) as t→∞ by figuring out the limiting mean and covariance matrix. In fact, the mean m(t) � E(U(t)) and
covariance matrix ρt � E[U(t)U(t)�] satisfy the following ODEs, respectively:

dm(t) � −�2F (x∗)
1−μ

m(t)dt,

dρ(t) � − 1
1−μ

�2F (x∗)ρ+ ρ�2F (x∗)
( )

+ 1

(1−μ)2Σ:

Because �2F (x∗) is positive definite, we have m(t) → 0 and

ρμ � lim
t→∞ρ(t) �

∫ ∞

0
exp − 1

1−μ
�2F (x∗)s

( )
1

(1−μ)2Σexp − 1
1−μ

�2F (x∗)s
( )

ds <∞:

Therefore, when MSGD enters the neighborhood of a local optimum, it will stay near the local optimum and
behave like a Brownian motion. Moreover, by a change of variables, we can rewrite ρμ as follows:

ρμ �
∫ ∞

0
exp − 1

1−μ
�2F (x∗)s

( )
1

(1−μ)2Σexp − 1
1−μ

�2F (x∗)s
( )

ds

� 1
(1−μ)

∫ ∞

0
exp −�2F (x∗)s( )

Σexp −�2F (x∗)s( )
ds

� 1
(1−μ)ρ0:

We see clearly that the momentum essentially increases the variance of the normalized error by a factor of 1=(1−
μ) around the local optimum compared with VSGD. Thus, it becomes harder for the algorithm to converge. The
next theorem provides a more precise characterization of such a phenomenon.

Theorem 3. Let (λi, ei) be the eigenvalue, eigenvector pairs of �2F (x∗) such that λ1 ≥ λ2 ≥ : : : ≥ λd > 0: Given a
sufficiently small ε > 0 and φ � ∑d

i�1Σi,i <∞, we need the step size η satisfying

η < (1−μ)λdε=(4φ) (11)

such that Xη(t) enters the ε neighborhood of the local optimum with probability at least 3/4 at some time T3 after restarting
the counter of time: that is, ‖Xη(T3) − x∗ ||22≤ ε, where

T3 � (1−μ)
2λd

· log 8λdδ
2

λdε− 4ηφ

( )
,

given ‖Xη(0) − x∗ ||22≤ δ2:
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Note that when μ � 0, we can choose the step size of VSGD as η0 � λdε=(4φ), which does not satisfy (11) for μ
close to one. This means that when using the same step size of VSGD, MSGD fails to converge because the
variance increased by the momentum becomes too large. To handle this issue, we have to decrease the step size
by a factor 1−μ, also known as the step size annealing: that is,

η � (1−μ)ελd=(4φ) � (1−μ)η0: (12)

We also want to remark that here the probability 3/4 can be any constant in (0, 1): Theorem 3 implies the
algorithm needs asymptotically at most

N3 � T3

η
� φ

ελ2
d

· log 8λdδ
2

λdε− 4η0φ

( )
iterations to converge to an ε-optimal solution. Note that the N3 does not depend on μ. Therefore, MSGD does
not have an advantage over VSGD around local optima.

4.2. Local Dynamics Around Saddle Points
We then study the algorithmic behavior around strict saddle points. Define the normalized process uηk �(xηk − x̂)= ��

η
√

, where x̂ ∈ S,λmin (�2F (x̂)) < 0: Accordingly, Uη(t) � (Xη(t) − x̂)= ��
η

√
: By the same SDE approximation

technique used in Section 4.1, we obtain Theorem 4.

Theorem 4. For any C > 0, there exist δ > 0 and η′ > 0 such that

sup
η<η′

P(sup
τ>0

‖Uη(τ)‖2 ≤ C) ≤ 1− δ: (13)

Proof Sketch. We prove (13) by contradiction. Assume that the conclusion does not hold: that is, there exists a
constant C > 0, such that for any η′ > 0, we have

sup
η≤η′

P sup
τ>0

|Uη τ( )‖2 ≤ C
( ) � 1:

That implies there exists a sequence {ηn}∞n�1 converging to zero such that

lim
n→∞P sup

τ>0
|Uηn τ( )‖2 ≤ C

( ) � 1: (14)

We next show that this subsequence {Uηn(·)}n is tight. To do so, we need to verify two conditions of theorem 3 in
Online Companion Section 1: (i) for large enough n, Uηn is bounded in probability; (2) the modulus of continuous
converges to 0 in probability as n→∞. By (14), we know that condition (i) in theorem 3 holds. We next check
condition (ii) in theorem 3. When supτ>0 |Uηn,i(τ) |≤ C holds, Assumption 1 yields that ‖uηnk+1 − uηnk ‖2 ≤ C′ηn,
where C′ is some constant. Thus, for any t,ε > 0, we have

‖2Uηn t( ) −Uηn t+ ε( )‖2 ≤ ε=ηC′η � C′ε,

or equivalently,

-′
T Uηn ,ε) ≤ C′ε, ∀T > 0,
(

where - is the modulus of continuous defined in definition 3. Thus, condition (ii) in theorem 3 holds. Then, we
have that {Uηn(·)}n is tight and thus, converges weakly. Following similar lines to Theorem 2, we can verify
C.5–C.8 in theorem 5 in Online Companion Section 1, and show that {Uηn(·)}n converges weakly to a solution of

dU � − 1
1−μ

�2F (x̂)Udt+ 1
1−μ

dWt: (15)

The process defined by SDE (15) is an unstable O-U process. When initialized at x̂, it has mean zero and exploding
variance. When not initialized at x̂, it has explodingmean and variance. Thus, for any δ, there exists a time τ′, such that

P(‖U(τ′)‖2 ≥ C) ≥ 2δ:

Because {Uηn}n converges weakly to U, {Uηn(τ′)}n converges in distribution to U(τ′): This implies that there
exists n > 0, such that for any n >N,

| P(‖U(T)‖2 ≥ C) −P(‖Uηn (T)‖2 ≥ C) |≤ δ:
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Then, we find a τ′ > 0 such that

P(‖Uηn(τ′)‖2 ≥ C) ≥ δ, ∀n >N,

or equivalently,

P(‖Uηn(τ′)‖2 ≤ C) < 1− δ, ∀n >N:

Because ω | supτ‖Uηn(τ)(ω)‖2 ≤ C
{ } ⊂ ω‖ |Uηn(τ′)(ω)‖2 < C

{ }
, we have

P(sup
τ

‖Uηn(τ)‖2 ≤ C) ≤ 1− δ, ∀n >N,

which leads to a contradiction with (14). Our assumption does not hold. We prove Theorem 4. w

Theorem 4 implies that with a constant probability δ, MSGD escapes from the saddle points at some time T1

(i.e., ‖Xη(T1) − x̂ ||22 is greater than δ2; δ �O( ��
η

√ )). Note that from the proof of Theorem 4, when the step size η is
small, the process defined by SDE (15) characterizes the local behavior of Xη around saddle points. For any fixed
μ, let Uμ be the solution to (15). Then, we can verify that

E(Uμ(t)) � 1
1−μ

E(U0(t)), Var(Uμ(t)) � 1
1−μ

Var(U0(t)):

More precisely, we can obtain the following proposition on the asymptotic escaping rate of MSGD.

Theorem 5. Let �2F (x̂) � PΛP� be the eigenvalue decomposition of �2F (x̂), where Λ � diag(λ1, : : : ,λd) and λ1 ≥ λ2 ≥
: : : ≥ λd and λd < 0: Denote Σ � E[�f (x̂,ξ)�f (x̂,ξ)�]: Given a prespecified ν ∈ (0, 1), η � η0, and δ �O( ��

η
√ ), then the

following result holds.We need at most

T1 � (1−μ)
2 | λd | log

2η−1δ2(1−μ) | λd |
Φ−1 9

16

( )2(P�ΣP)d,d
+ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (16)

such that ‖Xη(T1) − x̂ ||22≥ δ2 with probability at least 3
4, where Φ(x) is the cumulative distribution function (CDF) of the

standard normal distribution.

Theorem 5 suggests that we need asymptotically

N1 � (1 − μ)φ
| λd|2ε

log
2(1 − μ)η−1δ2 | λd |
Φ−1 1+ν=2

2

( )2
(P�ΣP)d,d

+ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

iterations to escape from saddle points. Thus, when using the same step size, MSGD can escape from saddle
points in fewer iterations than VSGD by a factor of 1−μ. This is because of the fact that the momentum can
greatly increase the variance and perturb the algorithm more aggressively. Thus, it becomes harder to stay
around saddle points. Moreover, the momentum also encourages more aggressive exploitation, and in each
iteration, the algorithm makes more progress along the descent direction by a factor of 1=(1−μ).

In summary, compared with VSGD (μ � 0), momentum accelerates escaping from saddle points by a factor of
1−μ: However, momentum can also hurt the final convergence around the local optimum because of the
increased variance. Therefore, we suggest to decrease the step size by a factor 1−μ in the later stage, MSGD can
then achieve the similar convergence rate as VSGD. Note that we can also decrease the momentum parameter μ
instead of the step size η: We will show in Section 6 that momentum annealing and step size annealing can both
ensure the convergence of MSGD.

5. Example: Streaming PCA
In this section, we apply our convergence analysis to study the algorithmic behavior of MSGD and provide
explicit convergence result for the streaming PCA problem formulated as follows:

max
v

v�EX~D[XX�]v subject to v ∈ S � {v ∈ R
d | ‖v‖2 � 1}: (17)

For notational simplicity, we denote the covariance matrix as Σ � E[XX�]. Before we proceed, we impose the
following assumption on Σ.
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Assumption 3. The covariance matrix Σ is positive definite with eigenvalues λ1 > λ2 ≥ : : : ≥ λd > 0 and associated
normalized eigenvectors v1, v2, : : : , vd. Moreover, there exists an orthogonal matrix Q such that Σ �QΛQ�, where
Λ � diag(λ1,λ2, : : : ,λd):

Under this assumption, the optimization landscape of Problem (17) has been well studied. Chen et al. (2017)
have shown that the eigenvectors 6v1, 6v2, : : : , 6vd are all the stationary points for Problem (17) on the unit
sphere S. Moreover, the eigen-gap assumption (λ1 > λ2) guarantees that the global optimum v1 is identifiable up
to sign change. Meanwhile, v2, : : : , vd−1 are d – 2 strict saddle points, and vd is the global minimum.

Given the optimization landscape of Problem (17), we have already understood well the behavior of VSGD
algorithms, including Oja’s rule and stochastic generalized Hebbian algorithms (SGHAs) for streaming PCA
(Chen et al. 2017). We consider a variant of SGHA with Polyak’s momentum (Polyak 1964). Recall that we are
given a streaming data set {Xk}∞k�1 drawn independently from some zero-mean distribution D. At the kth
iteration, the algorithm takes

vk+1 � vk + η(I − vkv�k )Σkvk +μ(vk − vk−1), (18)

where Σk � XkX�
k and μ(vk − vk−1) is the momentum with a parameter μ ∈ [0, 1). When μ � 0, iterate (18) is

reduced to SGHA. A detailed derivation of iterate (18) is provided in Online Companion Section 4.

Remark 2. The constraint in Problem (17) restricts the solution space to be a unit sphere S, which is a manifold.
In order to match our Algorithm (2), we consider Problem (17) to be an unconstraint optimization problem on
the manifold by using the manifold gradient (I − xx�)Σx. For general manifold optimization problems, additional
projection may be required to ensure that the solution trajectory stays on the manifold. However, for the sphere
constraint as in Problem (17), when η is small, moving along the direction of the manifold gradient, the solution
trajectory can stay close to S, as shown in lemma 1 in Online Companion Section 4.

Before we proceed, we impose the following assumption on the problem.

Assumption 4. The data points {Xk}∞k�1 are drawn independently from a distribution D in Rd, such that

E[X] � 0, E[XX�] � Σ, ‖X‖ ≤ Cd,

where Cd is a constant (possibly dependent on d).

This uniformly boundedness assumption can actually be relaxed to the boundedness of the (4+ δ) th-order
moment (δ > 0) with a careful truncation argument. The proof, however, will be much more involved and
beyond the scope of this paper. Thus, we use the uniformly boundedness assumption for convenience.

Under Assumptions 3 and 4, we first apply Theorem 1 and provide an ODE approximation for Algorithm (18)
in Corollary 1.

Corollary 1. Suppose v0 � v1 ∈ S. Then, Vη(·) ⇒ V(·) in the weak sense as η→ 0 in the space Dd[0,∞), where V(·) is the
unique solution to the following ODE,

V̇ � 1
1−μ

(ΣV −V�ΣVV), V(0) � v0, (19)

and has the following explicit form V(t) �QH(t), where

H(i)(t) � ∑d
i�1

H(i)(0)exp λit
1−μ

( )[ ]2⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠−

1
2

H(i)(0)exp λit
1−μ

( )
, i � 1, : : : ,d,

where H(0) �Q�v0: Moreover, suppose v0 ≠6vi, ∀i � 2, : : : ,d, as t→∞, V(t) converges to v1, which is the global
maximum to Problem (17).

Please refer to Online Companion Section 4.2 for the detailed proof. Different from the general ODE (6), ODE (19)
has an explicit form solution, which implies that whenever MSGD escapes from strict saddle points vi, i ≥ 2, it will
directly converge to the global optimum v1: Therefore, we can provide a more precise characterization of the
algorithmic behavior in the nonstationary area for streaming PCA than general nonconvex problems. Moreover,
because streaming PCA has one isolated global optimum and strict saddle points, our SDE analysis for the stationary
area can be directly applied. We have Corollary 2 to characterize the asymptotic convergence rate of MSGD.

Corollary 2. Let η be the step size of MSGD and η0 � (λ1 −λ2)ε=φ be the step size of VSGD as chosen in Chen et al.
(2017).
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• Phase I: Escape from saddle points. Suppose vη0 � v2, the strict saddle point corresponding to λ2: Given η � η0 and
δ �O( ��

η
√ ), we need asymptotically at most

N1 � (1−μ)φ
(λ1 −λ2)2ε

log
2(1−μ)η−1δ2(λ1 −λ2)

Φ−1 9
16

( )2
α2
12

+ 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (20)

iterations such that ‖vηN1
− v2 ||22≥ δ2 with probability at least 3/4, where Φ(x) is the CDF of the standard normal

distribution.
• Phase II: Traverse from saddle points to the global optimum. Suppose ‖vη0 − vi ||22≥ δ2, ∀i ≥ 2: For sufficiently small η,

δ �O( ��
η

√ ), we need
N2 � (1−μ)φ

2ε(λ1 −λ2)2
log

2− δ2

δ2

( )
(21)

iterations such that ‖vηN2
− v1‖22 ≤ δ2 with probability at least 3=4:

• Phase III: Converge to the global optimum. For ε > 0 and η � (1−μ)η0, there exists some constant δ �O( ��
η

√ ), such that
‖vη0 − v1‖2 ≤ δ2, we need

N3 � φ

ε(λ1 −λ2)2
· log 8(λ1 −λ2)δ2

(λ1 −λ2)ε− 4η0φ

( )
(22)

iterations to ensure ‖vηN3
− v1‖22 ≤ ε with probability at least 3/4.

Please refer to Online Companion Section 4.3 for the detailed proof. From Corollary 2, we can see clearly that
momentum accelerates escaping from saddle points and traversal to the global optimum by a factor of 1−μ: If
we further decrease the step size in Phase III, MSGD can achieve the same convergence rate as VSGD.

6. Numerical Experiments
We present numerical experiments for both streaming PCA and training deep neural networks. The experiments
on streaming PCA verify our theory in Section 5, and the experiments on training deep neural networks support
our theoretical results for the general problem and also verify some of our discussions in Section 7.

6.1. Streaming PCA
We first provide a numerical experiment to verify our theory for streaming PCA. We set d � 4 and the covariance
matrix Λ � diag{4, 3, 2, 1}: The optimum is (1, 0, 0, 0): Figure 1 compares the performance of VSGD and MSGD
(with and without the step size annealing and momentum annealing in Phase III). The initial solution is the
saddle point (0, 1, 0, 0). We choose μ � 0:9 and η � 5 × 10−4, decrease the step size of MSGD by a factor 1−μ after
2 × 104 iterations in Figure 1(b), and decrease the momentum by a factor 1/10 after 2 × 104 iterations in Figure
1(c). Figure 1 plots the results of 100 simulations, and the vertical axis corresponds to ‖H(1)

k | −1 |. We can clearly
differentiate the three phases of VSGD in Figure 1(a). For MSGD in Figure 1, (b)–(d), we hardly recognize Phases
I and II because they last for a much shorter time. This is because the momentum significantly helps escape from
saddle points and evolve toward the global optimum. Moreover, we also observe in Figure 1(b) that MSGD
without the step size annealing and the momentum annealing does not converge well, but the step size
annealing or the momentum annealing resolves this issue. All these observations are consistent with our
analysis. Figure 1(e) plots the optimization errors of these three algorithms averaged over all 100 simulations,
and we observe similar results.

6.2. Deep Neural Networks
MSGD and its variants have been widely applied in training deep neural networks (Sutskever et al. 2013,
Kingma and Ba 2014, Goodfellow et al. 2016, He et al. 2016) and have been implemented in popular deep
learning libraries, such as Tensorflow (Abadi et al. 2016) and PyTorch (Paszke et al. 2019). In this section, we
present several experiments to compare MSGD with VSGD in training a nine-layer Residual Net (ResNet-9; Page
2018) over CIFAR-10 and CIFAR-100 data sets for 10- and 100-class image classification tasks, respectively. Both
data sets contain 60,000 images, in which 50,000 images are used for training, and the other 10,000 are used for
testing. The network architecture of ResNet-9 is shown in Figure 2 and summarized in Table 1. All experiments
are done in PyTorch with one NVIDIA RTX 2080-Ti graphics processing unit (GPU). For each experiment, we
repeat 20 times with different random seeds and report the average and standard deviation.
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We adopt the training configure from Page (2018), which uses the label smooth loss function (Szegedy et al.
2016). Specifically, for a K classification problem, given a training sample x with class y, we denote its predicted
probability for class i as pi(x), and then, the loss function is

f (x,y;ε) � (1− ε)∑K
i�1

δi(y)logpi(x) + ε

K

∑K
i�1

logpi(x),

Figure 1. Comparison Between SGD andMSGD (with andWithout the Step Size Annealing (SSA) andMomentumAnnealing
(MA) in Phase III)

Notes. (a) Three phases in SGD. (b) MSGD does not converge. (c) MSGD with SSA converges. (d) MSGD with MA converges. (e) Comparison
among SGD and differentMSGDs.
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where ε denotes the smoothing parameter and δi(y) � 1{i�y} is the indicator function. In our experiments, we set ε
as 0.2. In addition, for each experiment, we train the network for 100 epochs and use the batch size as 512.
Moreover, we use the state-of-the-art step size setting with warm-up as follows:

ηi �
i
20

η, 1 ≤ i ≤ 20,

1− i− 20
80

( )
η, 21 ≤ i ≤ 100,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
where ηi is the step size used in the ith epoch for 1 ≤ i ≤ 100: The warm-up is effective to obtain a good parameter
in training deep neural network.

For MSGD, we set the momentum parameter μ as 0.9 and choose the step size ηM as {0:04ℓ : ℓ ∈ N, 4 ≤ ℓ ≤ 15}:
Thus, for VSGD, we use the equivalent step size of MSGD (η V � ηM=(1−μ)) chosen from {0:4ℓ : ℓ ∈ N, 4 ≤ ℓ ≤
15}:We then compare the loss values achieved by MSGD and VSGD under these settings over CIFAR 10 in Figure
3 and CIFAR 100 in Figure 4. As can be seen, the validate loss of MSGD decreases faster than that of the VSGD
and eventually achieves a smaller value. For more comparison results, please see Online Companion Section 5. In
addition, Table 2 presents the validate accuracy of both MSGD and VSGD over CIFAR data sets. As can be seen,
on average, the MSGD is better than the VSGD with the equivalent step size over CIFAR-10 and CIFAR-100 tasks.
We further test the significance of the pairwise comparison between the best MSGD and the best VSGD. For
CIFAR-10 (ηM � 0:36 and ηV � 2) and CIFAR-100 (ηM � 0:56 and ηV � 2:4), the corresponding p-values are 0:0108
and 1:023 × 10−5, respectively. This shows that the best MSGD significantly outperforms the best VSGD.

7. Discussions
7.1. Related Literature
In the existing literature, we are only aware of Ghadimi and Lan (2016) and Jin et al. (2017) considering stochastic
nonconvex optimization using momentum. Ghadimi and Lan (2016) only consider convergence to the first-order
optimal solution and therefore, cannot justify the advantage of the momentum in escaping from saddle points;

Figure 2. The Network Architecture of ResNet-9 and Its Detailed Components

Input Conv_0 Conv_1 ResBlock_1 Conv_2 Conv_3 ResBlock_2 Linear

(a)

(b) (c)

(d)

Input Conv BN ReLU Input Conv MaxPool BN ReLU

Input

Conv

Add

BN ReLU Conv BN ReLU

Notes. (a) An illustrative visualization of nine layers in ResNet-9 (Residual block contains two layers). (b) Grey convolutional layer. (c) Pink
convolutional layer. (d) Residual block containing two convolutional layers. ReLU, rectified linear unit; Conv, convolutional layer; BN, batch
normalization.

Table 1. Network Architecture of ResNet-9

Layer Output size Filter, activation, and pooling

Convolutional 32 × 32 [3 × 3, 64] × 1, stride 1
Convolutional 16 × 16 [3 × 3, 128] × 1, stride 1, max pooling (2)
Residual block 16 × 16 [3 × 3, 128], stride 1
Convolutional 8 × 8 [3 × 3, 216] × 1, stride 1, max pooling (2)
Convolutional 4 × 4 [3 × 3, 512] × 1, stride 1, max pooling (2)
Residual block 4 × 4 [3 × 3, 512], stride 1
Linear Number of classes Max pooling (4), fully connected
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Figure 4. Experimental Results of ResNet-9 on CIFAR-100 Under the Best Settings: ηV � 2:4, ηM � 0:56

Notes. (a) Best setting: ηV � 2:4 and ηM � 0:56. (b) Zoomed-in view for the best setting.

Figure 3. Experimental Results of ResNet-9 on CIFAR-10 Under the Best Settings: ηV � 2, ηM � 0:36

Notes. (a) Best setting: ηV � 2 and ηM � 0:36. (b) Zoomed-in view for the best setting.

Table 2. Results of Validation Accuracy and the Corresponding Standard Deviations (in Parentheses) for the Last Epoch
Under the ResNet-9 over CIFAR-10 and CIFAR-100

η
1−μ 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6

CIFAR-10
VSGD 95.31 95:32 95.19 95.23 95.07 95.06 94.91 94.80 94.70 94.45 94.38 94.06

(0.14) (0.14) (0.23) (0.19) (0.22) (0.20) (0.25) (0.34) (0.20) (0.30) (0.26) (0.51)

MSGD 95.65 95.71 95.78 95.81 95.83 95:87 95.82 95.84 95.80 95.78 95.77 95.75
(0.13) (0.13) (0.11) (0.11) (0.11) (0.14) (0.08) (0.11) (0.14) (0.15) (0.12) (0.10)

CIFAR-100
VSGD 75.44 75.46 75:49 75.21 75.10 74.81 74.73 74.45 74.18 73.83 73.47 73.12

(0.39) (0.42) (0.30) (0.35) (0.40) (0.67) (0.50) (0.52) (0.45) (0.61) (0.73) (0.80)

MSGD 76.95 77.09 77.38 77.53 77.76 77.80 78.02 78.04 78.01 78.15 78:17 78.16
(0.21) (0.26) (0.25) (0.25) (0.25) (0.23) (0.17) (0.25) (0.26) (0.28) (0.32) (0.24)

Note. The best results among different settings are highlighted in bold.

Table 3. Comparison with Relevant Literature

FOOS SOOS SA SEA Assumptions A/N

Our study � � � � Strict saddle, isolated optima A
Ghadimi and Lan (2016) � × � × LCG/LH/unconstrained N
Jin et al. (2017) � � × � LCG/LH/unconstrained N

Note. A/N, asymptotic/nonasymptotic; FOOS, first-order optimal solution; LCG, Lipschitz continuous gradient; LH, Lipschitz continuous
Hessian; SA, stochastic approximation; SEA, saddle escaping analysis; SOOS, second-order optimal solution.
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Jin et al. (2017) only consider a batch algorithm, which cannot explain why the momentum hurts when MSGD
converges to optima. Moreover, Jin et al. (2017) need an additional negative curvature exploitation procedure,
which is not used in popular Nesterov’s accelerated gradient algorithms. We summarize the comparison
between our results and related works in Table 3.

Our analysis technique is closely related to several recent works using stochastic differential equations to
study stochastic gradient-based methods. Li et al. (2017) adopt a numerical SDE approach to derive the so-called
stochastic modified equations for VSGD. However, their analysis requires the drift term in the SDE to be
bounded, which is not satisfied by MSGD. Other results consider SDE approximations of several accelerated
SGD algorithms for convex smooth problems only (Krichene and Bartlett 2017, Wang 2017). In contrast, our
analysis is for nonconvex problems, which are more general and more technically challenging.

In a broader sense, our work is also related to Matthews et al. (2018); Mei et al. (2018, 2019); Rotskoff and
Vanden-Eijnden (2018); and Sirignano and Spiliopoulos (2018, 2019), which use weak convergence to prove the
asymptotic approximation of extreme large neural networks. However, they consider that the size of the
networks goes to infinity, whereas we consider the case that step size goes to zero.

7.2. Connected Local Optima
We want to remark that our analysis can be extended to handle connected global optima. As we have mentioned,
the major difficulty is the unboundedness of the normalized error (xt − x∗)= ��

η
√

. This can be overcome by choosing
a suitable metric to characterize the distance between the iterate and global optima. Take rank-r PCA as an
example, where the rotation of any global optimum is also global optimal, and thus, all the global optima are
connected. In this case, we can use the principal angle between column spans of a given global optimum and the
iterate (Chen et al. 2018) to characterize the error. Because the principal angle is rotational invariant, the
normalized error will be a unique quantity and will not blow up even when the iterate is wandering among
different optima. Moreover, we can also utilize special landscape structure, such as partial dissipativity (Zhou
et al. 2019), around the connected local optima to facilitate our analysis. However, the analysis will be more
involved and is out of the scope of our paper.

7.3. Connection to Deep Neural Networks (DNNs)
The results on training DNNs are expectable or partially expectable, given our theoretical analysis for streaming
PCA. Our results show that with a good network architecture, the momentum indeed improves the training.

Our analysis implies that when η is sufficiently small, MSGD with step size η and momentum μ performs
similarly to VSGD with step size η=(1−μ): In practice, however, people actually use a relative large step size
during training, and we can still observe the advantage of MSGD over VSGD with the same equivalent step size.
As we can observe in Table 2, MSGD always performs better than VSGD. Moreover, MSGD achieves the optimal
generalization using ηM=(1−μ) � 5:6, but VSGD performs the best using a smaller equivalent step size ηV � 2:4 <
5:6 under the ResNet over CIFAR-100. This implies MSGD can afford larger equivalent step size than VSGD.
These phenomena cannot be fully explained by our theory.

7.4. Flat/Sharp Local Optima
Keskar et al. (2016), Neyshabur et al. (2017), and Zhang et al. (2017) suggest that the landscape of these spurious/
bad local optima is usually sharp (i.e., their basins of attractions are small and steep). From this aspect, using a
larger equivalent step size can help MSGD escape from spurious/bad local optima and stay in “flat/good local
optima” because the higher variance of the noise introduced by the momentum encourages more exploration
outside the small basin of attraction of sharp local optima (Figure 5).

Figure 5. Two Illustrative Examples of the Flat and Sharp Local Optima

Note. MSGD tends to avoid the sharp local optimum because its high variance encourages exploration.
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7.5. Extension
Our theoretical analysis can be applied to study other problems related to momentum. For example, Liu et al.
(2018) use the main technique of this paper to study an asynchronous MSGD with the focus on the trade-off
between momentum and asynchrony. For another example, by analyzing the SDE around different local optima,
we can theoretically characterize how momentum helps select flat optima.
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